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In [Countable thin Π0
1 classes, Ann. Pure Appl. Logic 59 (1993) 79–139], Cenzer,

Downey, Jockusch and Shore proved the density of degrees (not necessarily c.e.) con-
taining members of countable thin Π0

1 classes. In the same paper, Cenzer et al. also

proved the existence of degrees containing no members of thin Π0
1 classes. We will prove

in this paper that the c.e. degrees containing no members of thin Π0
1 classes are dense

in the c.e. degrees. We will also prove that the c.e. degrees containing members of thin
Π0

1 classes are dense in the c.e. degrees, improving the result of Cenzer et al. mentioned
above. Thus, we obtain a new natural subclass of c.e. degrees which are both dense
and co-dense in the c.e. degrees, while the other such class is the class of branching c.e.
degrees (See [P. Fejer, The density of the nonbranching degrees, Ann. Pure Appl. Logic
24 (1983) 113–130] for nonbranching degrees and [T. A. Slaman, The density of infima
in the recursively enumerable degrees, Ann. Pure Appl. Logic 52 (1991) 155–179] for
branching degrees).
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1. Introduction

The study of Π0
1 classesa and, in particular, the degrees of their members, is a

longstanding branch of computability theory, which has many applications. One
well-known example in this area is the Low Basis Theorem of Jocksuch and Soare
[16] which asserts that any nonempty Π0

1 class has a member of low (actually
superlow) degree.

Π1
0 classes can be thought of as the collections of paths [T ] through a computable

subtree T of 2<ω. There are many ties between areas of logic and effective math-
ematics, including logical theories of Peano Arithmetic, constructions in effective
algebra and analysis, colorings of computable graphs, and algorithmic randomness.
As an archetypal example, the many one-degree cone of orderings of a computable
formally real field is in an effective one-to-one correspondence with the collections
of members of nonempty Π0

1 classes [19]. Π0
1 classes also have deep connections with

proof theory and reverse mathematics, and this Metakides–Nerode theorem has a
re-interpretation that over RCA0, the statement that “every countable formally real
field has an ordering” is equivalent to the system Weak König’s Lemma (WKL0)
(see [15]). There are many other examples and the reader is referred to the survey
papers [2, 5] and Cenzer’s book draft [6]. For basics of Π0

1 classes, please also refer
to Soare’s book [22], or Cenzer et al.’s paper [3], Jockusch and Soare’s paper [17].

Since a Π0
1 class might be finite, in which case all the members are computable,

little else can be said without additional hypotheses. One example of such an addi-
tional hypothesis is that a Π0

1 class P has no computable members. Then not only
must it have members of low degree, but it must have members of all possible jumps
[16]. (That is for all X ≥ ∅′, there exists Y ∈ P with Y ′ ≡T X .) The classes we
are interested in this paper are thin Π0

1 classes, where a Π0
1 class P is thin if it

is not clopen, and for all Π0
1 subclasses Q of P , there is a clopen set U such that

Q = P ∩ U .
Thin Π0

1 classes were introduced by Martin and Pour-El [18] (under duality),
where Martin and Pour-El constructed an axiomatizable essentially undecidable
theory T with few extensions, meaning that if T ′ extends T then T ′ is a finite
(and hence a principal) extension of T . Thin Π0

1 classes are the natural analog of
hyperhypersimple sets when considered in the lattice of Π0

1 classes, since Cholak,
Coles, Downey and Herrmann [8] proved that a Π0

1 class P is thin if and only if it
is not clopen and the lattice of Π0

1 subclasses of Q modulo finite differences forms a
(∆0

2) Boolean algebra. Moreover, as an analog of Soare’s theorem [21] that maximal
sets form an orbit in the lattice of c.e. sets, Cholak et al. proved that the perfect
thin classes (i.e. the lattice of subclasses is isomorphic to a free Boolean algebra)
formed an orbit in the automorphism group of the lattice of Π0

1 classes. In passing,
we remark that if you assign a degree to a class as being the Turing degree of the
sets of nonextendible nodes in a tree T which represents P , then the degrees of Π0

1

aWe are using the convention that when we say “Π1
0 classes”, we mean “computably bounded Π0

1
classes”.
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subclasses in the orbit are exactly the array noncomputable degrees (see [11]). This
orbit is essentially the only orbit, as discovered by Downey and Montalban [12].
Thus thin Π0

1 classes form a natural and also fascinating class with many natural
associations with the c.e. degrees.

The study of the fine structure of degrees of members of thin Π0
1 classes began

with Cenzer et al. in [4] where the main focus was on the case when the Boolean
subalgebra of subclasses was countable. The simplest such class is called a minimal
class, where the Boolean algebra is the Boolean algebra of finite and co-finite subsets
of N. Equivalently, P is minimal if P is infinite and every subclass is either finite
or co-finite.

In [4], it is shown that if a is a degree of a member of a thin class, then it has
to be somewhat “lowly” in the generalized sense: A′ ≤T A ⊕ ∅′′ whenever A is a
member of a thin Π0

1 class (see [4, Theorem 2.10]). Of significant interest to this
paper is the c.e. degrees of members of thin classes.

Theorem 1.1 (Cenzer, Downey, Jockusch and Shore [4]). (1) The degrees
(not necessarily c.e.) containing members of minimal Π0

1 classes are dense in the
c.e. degrees.

(2) 0′ contains a member of a minimal Π0
1 class.

(3) There exists a c.e. degree a containing no member of thin Π0
1 classes.

In [13], Downey, Wu and Yang began to extend the results shown in [4]. The
rank of a computable tree is its Cantor–Bendixson rank, and the rank of a real (i.e.
a member of the Cantor space) is the least rank of a computable tree containing
that real.

Theorem 1.2 (Downey, Wu and Yang [13]). For any ∆0
2 degree a and any

computable ordinal α:

(1) a contains a real of rank α. (This improves earlier results of Cholak and Downey
[9], and Cenzer and Smith [7].)

(2) If a contains a member of a thin Π0
1 class, then a contains a member of a thin

Π0
1 class of rank α.

(3) This fails outside the ∆0
2 degrees.

The first result we prove in this paper is the following.

Theorem 1.3. The c.e. degrees not containing members of thin classes are dense
in the c.e. degrees. That is, for any c.e. degrees b < a, there is a c.e. degree c with
b < c < a such that c contains no members of thin classes.

By Sacks density theorem, we only need to require c with b ≤ c ≤ a.
We will then improve a result of Cenzer et al. in [4], where it was shown that

the degrees containing members of thin Π0
1 classes are dense in the c.e. degrees. It

was left open whether these degrees can be c.e. or not. We will show in the second
half that the degrees can be constructed as c.e.
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Theorem 1.4. The c.e. degrees containing members of thin Π0
1 classes are dense

in the c.e. degrees. That is, for any c.e. degrees b < a, there is a c.e.degree d with
b < d < a such that d contains a member of some thin Π0

1 classes.

Thus the c.e. “thin” degrees are really unusual. They do not depend on rank, and
they form one of the very few (natural) classes of constructions which are both dense
and co-dense in the c.e. degrees. The only other major class that springs to mind
is the branching and nonbranching degrees (see [14] for density of nonbranching
degrees and [20] for density of branching degrees.)

It is routine to show that the thin/nonthin degrees have no implications with the
branching/nonbranching degrees. This can help us to understand the fundamental
ideas of the main construction, which turns out to be fairly nonroutine. The proof
of Theorem 1.3 can be viewed as a 0′′′ argument, where dealing with the movement
from right to left in the priority tree construction involves a feature of respecting
certain historical “commitments” generated by “priority inversions” (a feature of
0′′′ arguments involving local versus global priority, i.e. the priority of the mother
versus that of the children) commitments in a way that is quite novel. This aspect
will be seen in the construction. Furthermore, anyone who has worked with tree
arguments, particularly with 0′′′ ones (such as Ambos-Spies, Hirschfeldt and Shore
[1] or Slaman [20]) in the setting of density theorems, is aware that synchronization
of permitting and the tree machinery tends to be intricate. For this reason we will
work up quite slowly to the construction.

The proof of Theorem 1.4 is also rather novel and the main complexity stems
from the definition of the uses, and we believe that the method may be more widely
applicable.

The paper is organized as follows. In Sec. 2, we give a brief description of
CDJS’s constructions of a single c.e. NONTHIN degree (a c.e. degree containing no
member of any thin Π0

1 class), and in Sec. 3, we will show how to combine CDJS’s
construction with the density arguments, and provide a full analysis of outcomes
and interactions among strategies. In Sec. 4, we will give the construction of C, and
show in Sec. 5 that the constructed set C satisfies all the requirements. In Sec. 6, we
present the basic idea of the proof of Theorem 1.4, followed with the construction,
and in Sec. 7, we will verify that the construction works.

2. CDJS’s Construction of a NONTHIN Degree

We now construct a c.e. set C such that any set Turing equivalent to C can-
not be a member of any thin Π0

1 class. C is constructed to meet the following
requirements:

Re: if Φe(C) and Ψe(Φe(C)) are both total, such that Ψe(Φe(C)) = C and that
Φe(C) is in Π0

1 class [Te], then [Te] is not thin.

To satisfy one requirement Re, we will construct a subtree Se of Te, to witness
that [Te] is not thin. We will satisfy Re by satisfying the following subrequirements:
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Se,i: There exists an interval (xe,i, ze,i) such that [Te] contains a branch (at least
one) extending Φe(C) � xe,i, but not Φe(C) � ze,i. For convenience, we say
that [Te] contains a branch in interval (or, region) (xe,i, ze,i).

• If i is even, then all nodes in Te extending Φe(C) � xe,i, but not Φe(C) � ze,i,
will be put on Se. We will say that all nodes on Te in the region (xe,i, ze,i)
are on Se. These nodes are called plus-nodes.

• If i is odd, then all nodes in Te extending Φe(C) � xe,i, but not Φe(C) � ze,i,
will be terminated on Se. We will say that all nodes on Te in the region
(xe,i, ze,i) are terminated on Se. These nodes are called minus-nodes.

Note that if all the Se,i-subrequirements are satisfied, then [Se] is a subclass of
[Te], containing infinitely many branches of [Te] (guaranteed by plus-nodes), and
at the same time, omitting infinitely many branches of [Te] (guaranteed by minus-
nodes). This shows that [Te] is thin.

The construction of C will be conducted on a priority tree, T . Let τ be an Re

strategy, and τ has two outcomes, 1 and gw, where 1 indicates that the construction
of the corresponding tree Se is initiated, and gw denotes the case that a substrategy
α eventually enumerates its y into C, securing a global win for τ .

Let α be an Se,i-substrategy of τ . Define the length of agreement function �(α, s),
where s is an α-stage, as usual:

�(α, s) = max{x < s : ∀y < x[Ψe(Φe(C))(y)[s]] = Cs(y) and

∀z < ψe,s(y)[Φe(C)(z)[s] converges] and Φe(C)[s]�ψe,s(y) is on Te,s}.
Suppose that α is a minus-substrategy, i.e. i is odd. α proceeds as follows:

(1) Select xα, and wait for Φe(C)(xα) to converge, and then wait for �(α, s) > xα.
(2) After seeing that �(α, s) > xα, select yα, bigger than ϕe(xα), the use of

Φe(C)(xα), and wait for Ψe(Φe(C))(yα) to converge to 0, and that Φe(C) to
converge on all numbers ≤ψe(yα).

(3) After seeing that �(α, s) > yα, select zα as a number bigger than ψe(yα).
So far, we have selected a triple (xα, yα, zα).

(4) Wait for Φe(C)(zα) to converge.
(5) When Φe(C)(zα) converges, declare that the nodes on Se in the region (xα, zv)

are terminated (recall that α is a minus-substrategy). Simultaneously, wait for
a stage t such that all nodes in Te in the region (xα, zα) become dead.
(If there is no such a stage t, then [Te] contains at least a branch in the region
(xα, zα).)

(6) After we see that all nodes in the region (xα, zα) are dead, put yα into C, and
simultaneously, wait for Φe(C)(zα) to converge.
Note that if our assumption is correct, i.e. both Φe(C) and Ψe(Φe(C)) are total,
C = Ψe(Φe(C)) and Φe(C) is in [Te], then we can never have a chance to put
yα into C. That is, if yα is put into C, then Re is satisfied via one of the
following:

1850001-5



May 14, 2018 13:15 WSPC/S0219-0613 153-JML 1850001

R. G. Downey, G. Wu & Y. Yang

(a) Φe(C)(zα) does not converge anymore, then Φe(C) is not total.
Here, we assume that if Φe(C)(zα) converges, then Φe(C)(z) converges for
all z ≤ zα.

(b) Φe(C)(zα) converges later, but there exists a z ∈ (xα, zα) such that
Φe(C)(z) has a different value.
If so, Φe(C) will not be a branch in [Te], because a necessary condition of
putting yα into C is that [Te] contains no branch extending Φe(C)[t] � xα,

but not Φe(C)[t] � zα.
(c) Φe(C)(zα) converges later, and the value is the same as those at stage t.

In this case, C(yα) 	= Ψe(Φe(C))(yα) as up to zα (hence, up to ψe(yα)),
Φe(C) [values here] is the same as before.
This implies that the computation Ψe(Φe(C))(yα) is the same as before,
with value 0.

Each substrategy α is responsible for selecting a triple (xα, yα, zα), or (x, y, z)
for short, if clear from the context. Once such a triple is selected, α will check
whether all the nodes in Te in the interval (xα, zα), become dead, or not. If yes,
then yα will be put into C, which provides a global win for τ . If not, then all the
substrategies will have their triples (x, y, z), and Te will have infinite branches in
each such intervals. Therefore, all these substrategies work together to make sure
that [Se] is a subclass of [Te], witnessing that [Te] is not thin.

α has outcomes:

(x,w) < (y, w) < (z, w) < (ter),

where (x,w), (y, w), (z, w) denote the outcomes that the construction waits at Steps
(1), (2) and (4) respectively, i.e. the corresponding computation does not converge.
Outcome (ter) denotes the outcome that this substrategy waits at Step (6) forever,
i.e. this α-substrategy successfully finds an interval containing an infinite path of Te.

Note that if α reaches Step (7), i.e. y is put into C, then this action provides
a global win for τ , and τ will have outcome gw. Under this outcome, as either
C(y) 	= Ψe(Φe(C))(y), or Φe(C) is not on [Te], the construction of subtree Se is
fully stopped, as there is no need to have [Se] to witness that [Te] is not a thin
Π0

1 class.
A plus-substrategy, i.e. when i even, proceeds in a similar way, with the change

of (5) to the following (5′).

(5′) All the nodes on Te in the region (xe,i, ze,i) are copied on Se.

A plus-substrategy has the same outcomes as a minus-substrategy, except the out-
come (ter), as plus-substrategies do not terminate nodes. It is the difference between
(5) in minus-substrategies and (5′) in plus-substrategies.

The tree Se is constructed by an Re-strategy τ , together with its substrategies,
α say. Below τ ’s outcome gw, or α’s outcomes (x,w), (y, w), (z, w), the construction
of Se is inactive, as Re is satisfied under these outcomes. That is, the construction

1850001-6
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of Se needs to be continued only when each substrategy of τ has outcome (ter),
which means that τ1 is active under this outcome.

Consistency among strategies. We now consider interactions among strategies.
First note that the interactions between substrategies of one requirement Re are
trivial, as once a substrategy enumerates a y into C, then Re will get a global
win and we will not continue the construction of the subtree Se (it is not needed
anymore).

We first consider the interactions between two R-strategies, Re1 -strategy, τ1,
and Re2 -strategy, τ2, say, and τ1 has priority higher than τ2. That is, τ2 is below
τ1’s outcome 1. A trivial case is when a substrategy α1 of τ1 enumerates a number
into C first. Then, from now onwards, τ1 will have outcome gw, and τ2 will not be
visited again in the remainder of the construction.

Our main concern arises when some substrategy of τ2 puts a number into C

first. We assume that τ1 has priority higher than τ2, and α2 has (local) priority
higher than α1, and αi is a substrategy of τi, for i = 1, 2, respectively. When α2

say, enumerates a number, y say, into C, τ2 is satisfied. However, this enumeration
can injure τ1’s construction of Se1 , in the following way:

• α1 terminates all nodes in the region (xe1,i, ze1,i), at a stage s1 say.
• At a stage s2 > s1, α2 enumerates yα2 into C, it can make Φe1(C) to enter the

region (xα1 , zα1). Thus, as Φe1(C) comes back to (xα1 , zα1), some nodes in this
region should come back to be alive. This would make Se1 not computable.

To avoid this, we require that when α2 selects its yα2 , this selected number
should be confirmed by τ1 first. That is, after α2 selects xα2 , and sees that �(α2)
exceeds xα2 , α2 is ready to select yα2 , and it first waits for a plus-substrategy of τ1,
α∗ say, to select its (xα∗ , yα∗ , zα∗), just as the one given in the basic strategy above.
After �(α∗) exceeds zα∗ , we let α2 to take yα∗ as yα2 , and follow the basic strategy
described above. α∗, as a plus-substrategy, has outcomes (x,w), (y, w), (z, w), and
if one of them is true, then α∗ shows that �(α∗) is bounded, giving a global win of
τ1. That is, under these outcomes, there is no construction of subtree Sτ1 .

Note that α∗ is only responsible for the selection of (xα∗ , yα∗ , zα∗), and provides
number yα∗ for α2 as yα2 . In the meanwhile, α∗ is not responsible for securing an
infinite path of [Te]. In this sense, α∗ has a big difference from a standard plus-
strategy. Without loss of generality, we assume �(α∗) exceeds zα∗ , so α2 will take
yα∗ as yα2 . Now, if α2 enumerates yα2 into C, then this is a global win for τ2.
Can this enumeration affect the construction of tree Sτ1? In particular, can the
enumeration of yα2 bring Φe1(C) back to the region (xα1 , zα1)? Here, we assume
that α1 reaches Step (6) and the nodes in the region (xα1 , zα1) are terminated. We
can also assume that α1 is below α2’s outcome (ter) (otherwise, yα2 is large enough
and its enumeration into C could not bring Φe1(C) back to the region (xα1 , zα1)).
This means, xα1 is selected bigger than zα∗ , and after yα2 is enumerated into C

causing Φe1(C) to return to the region (xα1 , zα1), Φe1(C) already recovers up to
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zα∗ and hence, Ψe1(Φe1(C))(yα∗ ) equals to 0, giving

C(yα∗) = 1 	= 0 = Ψe1(Φe1 (C))(yα∗),

a global win for τ1.
We call this process of selecting yα2 as a confirmation gadget. The idea is that

when yα2 is put into C, and this enumeration causes trouble for the construction
of tree Sτ1 , this enumeration should also provide a global win for τ1. This idea
of confirming yα2 can be iterated, when more R-strategies are involved. Assume
that τ1, . . . , τn are R-strategies, in descending order of priority, and that α is a
substrategy of τn. When α selects a number y, y needs to be confirmed by all these
τ -strategies. What we do is to introduce an outcome, (α, y needed), with priority
between outcomes (x,w) and (y, w). Below this outcome, we will have for each
j = n, . . . , 1, one plus-substrategy αj of τj , in a nested pattern. After α starts to
look for y, these αj ’s work as follows, starting with j = n, till αn has a confirmed
y and hands it over to α:

(1) Select xj big, and wait for Φj(C)(xj) to converge, with use ϕj(xj).
(2) Take outcome (y needed) and let αj−1 to act. [α1 works in exactly the same

way as the basic module.]
(3) Assume that αj receives y from αj−1, which has already been confirmed by

αj−1. Wait for Ψj(Φj(C))(y) to converge to 0, and that Φj(C) to converge on
all numbers ≤ψj(y).

(4) Select zj as a number bigger than ψj(y).
(5) Wait for Φj(C)(zj) to converge.
(6) Declare that y is confirmed by τj and hands it over to αj+1 if j < n, and to α

if j = n.

The confirmation gadget can be represented on the construction tree, with each
αj having its outcomes to indicate whether �(τj , s) exceeds xj , or y, or zj , or not.
If α enumerates y into C at a later stage, then the enumeration of y will not cause
trouble to the constructions of the corresponding trees Sτj , i.e. to cause Φτj (BC)
to be in [Tτj ]\[Sτj ], as otherwise, a disagreement between C and Ψτj(Φτj (C)) at y
would be created, and preserved.

We comment here that the idea of selecting y is a bit different from the one
given in CDJS’s paper [4]. Here, the set-up above of a confirmation gadget makes
the confirmation more direct and clear.

Before we process to the density argument, we need to clarify a point that a
substrategy α can be initialized, but the region being terminated by α is still valid
in the remainder of the construction. It can happen that after α is initialized, some
small number, y′ say, being selected by a substrategy, α′ say (with higher priority, of
course), is put into C. Let τ and τ ′ be the mother nodes of α and α′, respectively.
The enumeration of y′ can lead Φτ to enter a terminated region, a situation we
always want to avoid. If τ ′ has priority higher than τ , then the enumeration of y′

provides a global win for τ ′, and hence τ cannot be visited again, and we do not need
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to worry about whether Φτ (C) enters a terminated region on Sτ or not. If τ has
higher priority, then when α′ select its y′, y′ should have been confirmed by τ , and
when α′ puts y′ into C, as discussed above, either a disagreement at y′ is created,
and τ has a global win, or Φτ (C) cannot come back to previous values up to xα, and
hence Φτ (C) cannot come back to the region (xα, zα), which is terminated by α.

This point is obvious in CDJS’s construction, as in CDJS’s paper, they only
need to construct one C, and the interactions among the R-strategies are not com-
plicated, as once a global win is achieved, it will be a win forever. However, in our
density construction, it becomes a main concern, as a global win is not permanent
anymore, due to the change of B. This means that after a substrategy is initial-
ized, we need to make sure that the associated Φτ (BC) cannot come back to the
corresponding interval being terminated by this substrategy. In our construction,
we will introduce a number for each substrategy (actually for each cycle, as we will
see soon), and this number will be called “a savior ” to make sure that once this
substrategy is initiated, we can enumerate this savior number into C such that if
later Φτ (BC) comes back to this terminated region, either we can have a B-change,
making a difference between B and Θτ (Φτ (BC)), or C and Φτ (Φτ (BC)) differ at
this savior number. We will see more details in the next section.

3. On the Density of NONTHIN Degrees

We now prove that the NONTHIN degrees are dense in the c.e. degrees. Fix B and
A with B <T A. We will construct a c.e. set C ≤T A ⊕ B such that the degree of
B ⊕ C does not contain any member of thin Π0

1 classes. C ≤T A ⊕ B is a global
requirement, and we will construct a p.r. functional Γ such that Γ(AB) is total and
equal to C. Here, we use Γ(AB) for Γ(A⊕B). This also applies to other functionals
with oracles.

Besides this, C will also satisfy the following requirements:

Re: if Φe(BC), Ψe(Φe(BC)) and Θe(Φe(BC)) are all total, then either:

(a) C 	= Ψe(Φe(BC)); or
(b) B 	= Θe(Φe(BC)); or
(c) Φe(BC) is not in [Te]; or
(d) [Te] is not thin,

where {〈Φe,Ψe,Θe, Te〉 : e ∈ ω} is an effective enumeration of partial computable
functionals Φ,Ψ,Θ and primitive recursive trees T .

To satisfy one Re, we will construct a computable subtree Se of Te such that
if Φe(BC), Ψe(Φe(BC)), and Θe(Φe(BC)) are all total, with C = Ψe(Φe(BC)),
B = Θe(Φe(BC)), and Φe(BC) a branch in [Te], then [Se], as a subclass of
[Te], witnesses that [Te] is not thin. The following subrequirements will be all
satisfied.

Se,i: There exists a region (xe,i, ze,i) such that [Te] contains a branch in this interval.
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• If i is even, then all nodes in Te in region (xe,i, ze,i) will be put on Se.
• If i is odd, then all nodes in interval (xe,i, ze,i) will be terminated on Se.

Notation. Let α be an Se,i-strategy, and τ be the mother node of α. As mentioned
earlier, if i is odd, α is a minus-substrategy, denoted as α−, and if i is even, α is a
plus-substrategy, denoted as α+.

The basic module of satisfying one S-strategy is basically the same as the
one described above in Sec. 2, but with necessary modifications to deal with A-
permissions and also the coding of B.

As before, suppose that the nodes in a region (x, z) are terminated, and we want
to make sure that Φe(BC) will not come back to this region. Now B can change
below a small number and can cause Φe(BC) to enter this region, which means
that Φe(BC) ∈ [Te]\[Se], and we fail to meet the requirement Se,i. Our idea is to
use such B-changes as permissions to put an even smaller number into C to force
Φe(BC) to enter a region of [Te]∩[Se] already prepared. That is, we select a number
v first, and call this v a savior number, wait for Φe(BC)(v) to converge to 0. Then
select an interval (x, z) (as in CDJS’s construction). Suppose that after the nodes
in the region (x, z) are terminated, and B changes, which could lead Φe(BC) to
come back into region (x, z), we enumerate this savior number v into C, so that if
Φe(BC) recovers up to x, we will then have

Ψe(Φe(BC))(v) = 0 	= 1 = C(v).

As discussed in Sec. 2, we need to ensure the consistency between the enumeration
of v and other R-strategies, i.e. this v needs to be confirmed by all of these R-
strategies with higher priority. As C is constructed to be reducible to A ⊕ B, the
enumeration of v into C needs to be permitted by A⊕B:

• An A-permission at n occurs, which is needed to terminate the associated region
(x, z).

[This A-change also undefines Γ(AB)(v), and when we redefine Γ(AB)(v),
we define it with the B-part bigger than ϕe(ψe(z)), and hence when B changes
below ϕe(ψe(z)), we are permitted to enumerate v into C.] This enumeration of
v prevents Φe(BC) from entering the region (x, z), as otherwise, Φe(BC) covers
up to x, and x is bigger than ψe(v), and we then have

Ψe(Φe(BC))(v) = 0 	= 1 = C(v).

In the construction, α− may take many tries to satisfy Se,i, and it can happen
that all these tries fail because of the lack of A-permissions or further changes
of B, and what we do is to use these changes to reduce A to B, threatening the
assumption that B <T A. α− will construct two partial computable functionals Λ
and ∆, to show that if α− could not satisfy Se,i, then one of ΛB and ∆B would be
total and equal to A, which is impossible.

α− proceeds via cycles (m,n) ∈ ω × ω, with cycle (0, 0) starts first.
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Cycle (m,n) :

(1) Select um,n, denoted by u, for simplicity.
(2) Wait for Φe(BC)(u) to converge.
(3) Run the confirmation gadget to select vm,n big, denoted by v.

v is selected with the purpose of preventing the construction of tree Se from
returning to a terminated region (x, z) [Step (13)].

Define Γ(AB)(v) = C(v) = 0 with the A-part of the use equal to n + 1,
and the B-part of the use be a number large enough. [This use will be kept the
same, up to Step (13), even though A or B changes below the corresponding
parts.]

If Step (13) never happens, then C(v) = 0 and Γ(AB)(v) will be defined
forever, after a certain stage.

If Step (13) happens, i.e. n enters A, then Γ(AB)(v) is undefined, and
we can redefine it with γ(v) anew. In particular, the B-part of the use γ(v) is
defined bigger than ψe(ϕe(v)). If B-changes on this (which could lead Φe(BC)
to return to the region (x, z)), then ∆m(B)(n) and Γ(AB)(v) are both unde-
fined and we enumerate v into C. Thus, if Φe(BC) returns to the interval
(x, z), then we will have

Ψe(Φe(BC))(v) = 0 	= 1 = C(v).

(4) Wait for Ψe(Φe(BC))(v) to converge to 0, with use ψe(v), and Φe(BC)(ψe(v))
and Θe(Φe(BC))(ϕe(ψe(v))) to converge.
[We can ensure that when Φe(BC) comes back to a terminated region (x, z),
then B, up to ϕe(ψe(v)), will not have any change, as θe(ϕe(ψe(v))) < x

(otherwise, Θe(Φe(BC)) and B will differ at some point below ϕe(ψe(v))).]
(5) Select xe,i,m,n, denoted by x, as a big number. (Especially, x is bigger than all

the uses in the computations in (4).)
(6) Wait for Φe(BC)(x) to converge.

[When B has changes up to the use ϕe(x), return to (6). It will change the
selection of ye,i,m,n and ze,i,m,n.]

(7) Run the confirmation gadget to select ye,i,m,n, denoted by y, bigger than ϕe(x).
Define Γ(AB)(y) = C(y) = 0 with the A-part of the use equals to m + 1

and the B-part of the use be a big number. This use will be kept the same, up
to (15), even though A or B changes below the corresponding part of the use.
So if Step (15) never happens, then C(y) = 0 and Γ(AB)(y) will be defined
forever, after a certain stage. If Step (15) happens, then Γ(AB)(y) becomes
undefined, as the A-part of the use γ(y) changes.

(8) Wait for Ψe(Φe(BC))(y) to converge to 0, and that Φe(BC) to converge on
all numbers ≤ ψe(y).

When B changes below the use ϕe(ψe(y)), return to (8). It will change the
selection of ze,i,m,n. Of course, if B changes below ϕe(x), return to (6). We
will not mention this later, if it is clear from the context.
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(9) Select ze,i,m,n, denoted by z, as a number bigger than ψe(y).
[So far, we have selected a triple (x, y, z).]

(10) Wait for Φe(BC)(z) to converge.
(11) Define ∆B

m(n) = A(n) with use δm(n) big.
(12) Wait for n to enter A, and simultaneously, start cycle (m,n+ 1).
(13) Declare that all the nodes in the region (x, z) are terminated in Se.

[The nodes in this region are terminated only when A has a change at
n. As mentioned above for the definition of Γ, this change of A(n) undefines
Γ(AB)(v), and when we redefine Γ(AB)(v) later, we will let the B-part of the
use γ(v) be a big number. Also we can define the A-part of the use bigger than
m, and if m enters A later, we can still use this A-change as a permission to
enumerate v into C.]

(14) Wait for a B-change below δm(n), and simultaneously, wait for a stage t such
that all nodes in Te in the region (x, z) become dead.

[If B changes below δm(n) later, we will redefine ∆m(B)(n) = 1 = A(n),
and start cycle (m,n+ 1).]

If B does not change below δm(n) and there is no such a stage t, then [Te]
contains branches in the region (x, z), and [Se] will not contain these branches.

Otherwise, i.e. before we see a B-change below δm(n), we see that all nodes
in Te in the region (x, z) become dead, we define Λ(B)(m) = A(m) with use
λ(m) big. This B-change also allows us to enumerate v into C, to prevent
Φe(BC) from returning to the interval (x, z).

Wait for m to enter A, and simultaneously, start cycle (m+ 1, 0).
(15) Put y into C.

(Note that the enumeration of y is permitted by the change of A at m. Also
note that the change of A(m) undefines Γ(AB)(v), as the A-part of the use
γ(v) is defined bigger than m (after n enters A), and this A(m)-change allows
us to enumerate v into C.)

(16) Wait for Φe(BC)(z) to converge again, and simultaneously, wait for B to
change below λ(m).

If B changes below the use λ(m), then, Λ(B)(m) is rectified, and v is
enumerated into C, to ensure that Φe(BC) will not come back to a terminated
region (x, z). Cycle (m+ 1, 0) is started.

Otherwise, we will have a global win for Re via one of the following ways:

(a) Φe(BC)(z) does not converge later. Then Φe(BC) is not total.
(b) Φe(BC)(z) converges later, but there is some w ∈ (x, z) such that the

value of Φe(BC)(w) is different from the previous one. Then Φe(BC)
cannot be a branch in [Te].

(c) Φe(BC)(z) converges, but the values of Φe(BC) � z are the same as pre-
vious ones, then C(y) = 1 	= 0 = Ψe(Φe(BC))(y).

Confirmation gadgets. Now assume that a minus-substrategy α− is running a
confirmation gadget to look for a confirmed number v or y at Step (3) or Step (7)
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respectively, and in a nested manner for αn, . . . , α1, where αj is a substrategy of τj
in the gadget, and τj1 has priority higher than τj2 if j1 < j2. αj runs as follows:

(1) Select xαj , denoted as x, as a big number.
(2) Wait for Φτj(BC)(x) to converge.

If the corresponding length of agreement does not exceed x, then take outcome
(xτj , k, f), if k is the current length of agreement of τj.
When B has changes up to the use ϕτj (x), return to (2). It will change the
selection of y and zαj .

(3) If j > 1, then run Step (1) of αj−1.
When B changes below the use ϕτj (ψτj (x)), return to αj by taking outcome
(xτj , k, d), where k is the current length of agreement of τj. It will change the
selection of y.

If j = 1, then just select y as a big number, and wait for Φτ1(BC)(y) to
converge and for Φτ1(BC) to converge on all numbers ≤ψτ1(y).
If the corresponding length of agreement does not exceed y, then take outcome
(yτj , k, f), if k is the current length of agreement of τ1.
When the length of agreement exceeds y, run Step (4) of α2.

(4) After receiving y from αj−1, wait for Ψτj(Φτj (BC))(y) to converge to 0, and
that Φτj(BC) to converge on all numbers ≤ψτj (y).
When B changes below the use ϕτj (ψτj (y)), return to (4). It will change the
selection of zτj .

(5) Select zτj , denoted by z, as a number bigger than ψτj (y).
Thus, we have selected a triple (x, y, z).

(6) Wait for Φτj(BC)(z) to converge, and then run Step (4) of αj+1, if j < n.
When B changes below the use ϕταj

(ψταj
(zαj )), return to a Step (6) of αj by

taking outcome (zτj, k, d), where k is the current length of agreement of τj.
If j = n, then we declare that y is confirmed by τn, . . . , τ1. That is, cycle

(m,n) will take this confirmed y and continue.

Note that the strategies in a confirmation gadget do not run any cycle and never
has intention to enumerate numbers into C. These strategies are actually different
from the plus-substrategies, as they are not supposed to find infinite paths in the
corresponding Π0

1 class. Their only job is to look for a suitable y for α. The outcomes
of such a confirmation gadget are called gadget outcomes. Confirmation strategies
will not be counted as plus-substrategies.

We answer two questions related to the work of these substrategies in a confir-
mation gadget: can α eventually get the wanted v or y, and after such a number is
selected and confirmed, will it be the last one that α takes? In CDJS’s construc-
tion, both questions have positive answers, as the mother node is assumed to have
infinitary outcome. In our density construction, as B is coded, there is no guarantee
for a positive answer to each question. We elaborate this point by using y as an
example, as the case for v is the same as that of y.
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Cycle (m,n) can proceed further to Step (8) only after y is confirmed and
selected. It can happen that B can change below some computation involved in the
the confirmation gadget, then α− will take outcome (yτj , k, d), say. If we assume
that α− take outcome (yτj , k, d) infinitely many times, then α− could not proceed
as in the description of α−. However, in this case, we have a global win for τj
and τj becomes inactive below divergence outcome (yτj , k, d). As in the standard
0′′′ arguments, α− is injured at this outcome, and below the divergence outcome
(yτj , k, d), we will reallocate this S-subrequirement again, and the confirmation
gadget of this new S-strategy will not need to deal with τj . It is easy to show that
the S-subrequirement can be injured in this manner at most finitely many times,
and hence, eventually, there will be a S-strategy that can find the wanted v and y
and proceed as described in the module above.

Summary: Cycle (m,n) has the following three categories of outcomes. We omit
(m,n), as it is clear and these are outcomes of cycle (m,n).

• Standard density outcomes

(k, d) < (k, f),

where k ∈ ω and for k1 < k2, we always have for any k1 < k2,

(k1, ∗) < (k2, †).
• The termination outcome (ter), which has the lowest priority among the outcomes

of cycle (m,n). Under this outcome:

— ∆B
m does not compute A(n) correctly (A-permission at n occurs), and all

nodes in the region (x, z) are declared to be terminated on Se.
So if α− has (ter) as the true outcome, then the region (x, z) contains an
infinite path in [Te]\[Se], and α− succeeds in finding such a region.

— If later, B changes below δm(n), we can redefine ∆B
m(n) as 1, which equals

to A(n), forever. This B-change also allows the enumeration of v into C,
which shows that if later, Φe(BC) comes into the region (x, z) later, then a
disagreement between C and Ψe(Φe(BC)) at v will occur, which is a global
win of τ , the mother node of α−.

— For τ , α’s success of finding an infinite path is a local win. So below outcome
(ter), we need to arrange other substrategies.

— If later, we find that this region in [Te] does not contain infinite path, then
Λ(B)(m) will be defined, and a new cycle (m + 1, 0) will be started. As a
consequence, from this stage onwards, outcome (ter) can never be true again
in the remainder of the construction.

• Gadget outcomes (xτi, k, d), (xτi, k, f), (yτi, k, d), (yτi, k, f), (zτi, k, d), (zτi, k, f).

These outcomes are kind of standard density outcomes, and these outcomes will
provide global wins of the corresponding τi by either capturing a divergence point
of τi or showing that the corresponding length of agreement is finite. We assume
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that τ1, τ2, . . . , τ� are active at α−, and we will use the selection of y to illustrate
the main features of these gadget outcomes. That is, when cycle (m,n) selects y
at Step (7). [The selection of v will have exactly the same feature of outcomes.]
Remember that it can happen that we cannot get the desired y, and we need to
figure out that in the confirmation gadget, which τi has the length of agreement
not long enough, which makes the selection of y fail.

The gadget first selects x� at stage s0, and then waits for τ�’s length of agreement
to exceed x� [it will then select x�−1]. So, before the length of agreement, l(τ�)
exceeds x�, cycle (m,n) will have outcome (xτ�, k, d), or (xτ�, k, f), where k ≤ x� is
the current length of agreement of τ�, as in standard density argument. After l(τ�)
exceeds x� at stage s1 say, it selects x�−1. [If the l(τ�) becomes less than x�, then it
will have outcome (xτ�, k, d) consequently, and x�−1 will be cancelled.] Wait for the
length of agreement, l(τ�−1) to exceed x�−1, and in this period, cycle (m,n) will
have outcome (xτ�−1, k, d), or (xτ�−1, k, f), where k ≤ x�−1 is the current length of
agreement of τ�−1. This process iterates, till τ1 selects x1. So before the length of
agreement l(τ1) exceeds x1, cycle (m,n) will have outcome (xτ1, k, d), or (xτ1, k, f),
where k ≤ x1 is the current length of agreement of τ1.

Assume that l(τ1) exceeds x1 at stage s�. Then this gadget selects y as a big
number, and waits for l(τ1) exceeds y, i.e. Ψτ1(Φτ1)(y) to converge to 0. [Note: If
some outcome (xτi, k, d) is true again, then y, and also xi−1, . . . , x1, will be cancelled
automatically.] Suppose that l(τ1) exceeds y at stage sy, then we will select z1 big,
and wait for l(τ1) exceeds z1 at stage s�+1, say.

Before stage s�+1, cycle (m,n) will have outcome (yτ1, k, d), or (yτ1, k, f), where
k ≤ y is the current length of agreement of τ1.

After stage sy, we wait for l(τ1) exceeds z1, at stage s�+1 say. Before stage s�+1,
cycle (m,n) will have outcome (yτ1, k, d), or (yτ1, k, f), where k ≤ y is the current
length of agreement of τ1. z2 is selected at stage s�+1, and we wait for l(τ2) to exceed
z2. Iterate this process, until a stage s2� at which l(τ�) exceeds z�. The confirmation
of y is completed at stage z�.

The priority of these gadget outcomes is arranged based on the process above.

• x-outcomes:

— for i < j, (xτj , ∗, ∗) has priority higher than (xτi, ∗, ∗),
— for a fixed i, (xτi, a, ∗) has priority higher than (xτi, b, ∗), for 0 ≤ a < b ≤ xi,
— for fixed i and a, (xτi, a, d) has priority higher than (xτi, a, f).

We define y-outcomes and z-outcomes in a similar way, and in z-outcomes, for
i < j, (zτi, ∗, ∗) has priority higher than (zτj , ∗, ∗).

• x-outcomes have priority higher than y-outcomes and y-outcomes have priority
higher than z-outcomes.

• If this gadget cannot select a wanted y, then one of these gadget outcomes is
true, showing that the corresponding R-strategy τi has a global win at α−.
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Now we list all outcomes of cycle (m,n) with priority indicated:

• We already have standard density outcomes (k, d) and (k, f) with order (k, d) <
(k, f). Also for k1 < k2, outcome (k1, ∗) always has priority higher than (k2, †).

• The gadget outcomes appear between outcomes (k, f) and (k + 1, d) (standard
density outcomes), for each k, and correspondingly, we have an order described
above between these outcomes.

• (ter) has the lowest priority.

Remark. It is true that between outcomes (k, f) and (k+1, d), there are infinitely
many such gadget outcomes. These outcomes depend on k, and we may even denote
these outcomes by appending k in front of it. We will not do this, as it will be clear
from the locations of these outcomes.

During the construction, we will have many times of wanting numbers, u, v, x,
y, z, etc. For convenience, we leave a noticeboard “number is needed” in front of
any divergent outcome, including both density outcomes and gadget outcomes. So
when we want to select a number, x say, we actually see computations we want to
preserve, up to k say, and what we do is to put x on the noticeboard in front of
(k + 1, d), and at the next step, we select x, and from now onwards, we will focus
on the outcomes of computations of j ≤ x, until the length of agreement exceeds
x, when we put y on the noticeboard in front of the outcome (x + 1, d). So this
noticeboard cannot be the true outcome of cycle (m,n), and the function of it is to
make sure that the corresponding computations are preserved and before we come
to outer outcomes, we can make a selection of x, which means that we will focus on
the computations up to x. We comment here that after a noticeboard is visited and
provides a wanted number, if it is visited again at a later stage, then between these
two stages, an outcome of the left of this noticeboard is true. This means that the
noticeboard can never be true outcome.

Obviously, if one of the standard density outcomes is true, then R is satisfied,
and if one of the gadget outcomes is true, then we will not have a confirmed y for
cycle (m,n), but in this case, one of the R-strategies with priority higher than the
mother node of α− is satisfied.

(ter) is the outcome showing that cycle (m,n) reaches (a permission of A at n is
received) and stops at Step (13), then ∆B

m has an error at n when computing A(n),
and on the other hand, all the nodes in the region (x, z) get terminated and this
subrequirement S is satisfied. Note that the change of A(n) undefines Γ(AB)(v),
and hence, if at a later stage, A changes, moving the construction to the left, or B
changes, showing that Φ(BC) may come back to region (x, z), then these A-changes
or B-changes undefine Γ(AB)(v) again, and we are allowed to enumerate v into C,
preventing Φ(BC) from going back to the region (x, z), as described before, when
we formulate the purpose of setting the savior number v.

Another outcome of cycle (m,n) is when the cycle reaches Step (15), i.e. A has
a change at m, and y is enumerated into C. We denote this outcome as gw, as the
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enumeration of y provides a “global win” for τ , till B changes on small numbers.
Under outcome gw:

• ΛB does not compute A(m) correctly (A-permission at m occurs), and y is enu-
merated into C, and this enumeration will ensure that C and Ψe(Φe(BC)) cannot
have length of agreement longer than z, if B does not change below the use λ(m).

If Φe(BC) returns to the region (x, z) later, then as we have already seen at
Step (13) that all nodes in Te in this region are dead, Φe(BC) could not be a
path in [Te], which means that we force Φe(BC) to be out of [Te] successfully,
another global win of τ .

If later, B changes below λ(m), we can redefine ΛB(m) as 1, which equals to
A(m), forever. Again, this B-change allows us to enumerate v into C.

• gw is a global win of τ , and below this outcome, we do not need to arrange
other substrategies of τ as under this outcome, either we will have a global
win, or B has a change on small number, changing the values (and hence the
computations) of Φe(BC) up to z. This B-change undefines ΛB(m), and starts
a new cycle (m + 1, 0). Because of this, after α− enumerates y into C, we can
create a link between τ and α, and a further τ -stage will be a τ�gw-stage, till
B has a change.

Thus, τ has two outcomes, 1 and gw, and τ takes outcome gw, only after a
link between τ and one of its substrategy α is created. This is a ΣB

1 fact.

A typical point of a density construction is the so-called delayed permission.
Here we use v as an example, and the same idea also applies to the enumeration of
number y. In the construction, it can happen that when A changes below m or n
(i.e. an A-permission is given), α− is not visited at this stage (i.e. the construction
is currently working on the right of α−), and when we define γ(v) again, we define
it as a big number, so that whenever the construction moves to the left, Γ(AB)(v)
will be undefined, and this will ensure that when α− is visited later, Γ(AB)(v) is
(again) undefined and α− can enumerate v into C. In a word, the enumeration of
v can be far behind the permission of A at n, and the permission of AB is always
there, if (m,n) is visited at a later stage.

Now come back to the outcomes of α, which consist of all possible outcomes
of various cycles (m,n) with m,n ∈ ω. The priority of these outcomes is given as
follows:

• If m1 < m2, then outcomes of the form (m1, ∗, ∗, ∗) have higher priority than
those outcomes of the form (m2, ∗, ∗, ∗).

• If m1 = m2, n1 < n2, then outcomes of the form (m1, n1, ∗, ∗) have higher priority
than those outcomes of the form (m2, n2, ∗, ∗).

• If m1 = m2, n1 = n2, then outcomes of the form (m1, n1, ∗, ∗), (m2, n2, ∗, ∗) are
just outcomes of cycle (m1, n1), and the priority of these outcomes follows from
the one we provided before, for a single cycle.
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We now consider the definition of the p.r. functional ∆m(B), and we assume
that n1 < n2. Note that when cycle (m,n2) is started, cycle (m,n1) already has
its definition of ∆m(B)(n1). It can happen that after cycle (m,n2) declares that
its region is terminated (an A-permission at n2 occurs), some n1 < n2 enters A.
According to the basic strategy, cycle (m,n1) declares that the region associated to
cycle (m,n1) is terminated. Here the change of A(n1) is an A-permission, allowing
α− to give up the region of cycle (m,n2) (recall that the very basic target of α−

is to find a region containing an infinite branch of [Tτ ]), and the A(n1) change is a
permission to enumerate the savior number vm,n2 into C, to ensure that Φe(BC)
will not come into the region being terminated by cycle (m,n2). In this case, cycle
(m,n1) terminates the associated region and α− will have outcome (m,n1, (ter)).

Another reason for cycle (m,n1) to act, after ∆m(B)(n2) is defined, is that B
changes below δm(n1), hence below δm(n2). This B-change undefines ∆m(B)(n1),
and also ∆m(B)(n2). This change of B also allows us to enumerate the savior num-
ber vm,n2 into C, if cycle already has an A-permission to terminate the associated
region.

One more situation is when n1 enters A, cycle (m,n2) defines Λ(B)(m) and
starts cycle (m + 1, 0). If so, then cycle (m,n1) will have no action (termination),
until B changes, undefining Λ(B)(m). If there is no such a B-change, then there
will be no more cycles of the form (m,−), and ∆m(B)(n1) does not compute A(n1)
correctly. On the other hand, we will have either Λ(B)(m) = A(m) or an enu-
meration of y into C, a global win for τ . If B changes, then this change will
undefine ∆m(B)(n2) and Λ(B)(m), and what we do is to terminate the region
of cycle (m,n1), which is a delayed termination. We can do so, as when n1 enters
A, Γ(AB)(vm,n1), and we define it later with big use, so when B-change occurs,
Γ(AB)(vm,n1 ) is undefined again, which enables us to terminate this region (that is,
if later, the construction moves to the left of cycle (m,n1), we are able to enumerate
vm,n1 into C to ensure that Φ(BC) does not come into this region again). So after
this B-change, we will continue to define ∆m(B) (this definition was stopped when
cycle (m,n2) defines Λ(B)(m)). This explains that there is no competition among
cycles (m,−) for the definition of Λ(B)(m).

As B <T A, ∆m(B) could not have definition on (almost) all n with
∆m(B)(n) = A(n). This means that either α− runs only finitely many cycles of the
form (m,−) in the whole construction (so only finitely many n can have ∆m(B)(n)
defined), or α runs infinitely many cycles, and one of these cycles, (m,n) say, runs
infinitely often, corresponding to a divergence outcome. In this case, ∆m(B)(n) is
not to be defined.

We can apply a similar argument to show that Λ(B) could not have definition
on each m with Λ(B)(m) = A(m).

Remark. We summarize how cycle (m,n) works consistently with the construction
of Γ. For the number v being selected by cycle (m,n), when we define Γ(AB)(v),
we let the A-part of use γ(v) be defined as a number bigger than n, and when Step
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(13) is reached, Γ(AB)(v) is undefined, and then, when we redefine it, we let the
use γ(v) even bigger, especially, the A-part of the use is bigger than m (so when the
construction moves to left toward α−, due to A-changes or B-changes, Γ(AB)(v) is
undefined, again and again, and if eventually, α− is visited again, then Γ(AB)(v) is
undefined, allowing us to enumerate v into C), and the B-part of the use is bigger
than δm(n). When B has a change below δm(n), and hence below γ(v), we can
enumerate v into C as wanted. The same is true for the enumeration of y.

When we move from left to right, we have certain computations confirmed,
Φ(BC)(w) say, which, when we come to the right, the previous computation of
Φ(BC)(w) is confirmed by computations Θ(Φ(BC)), i.e. B and Θ(Φ(BC)) agree
on ϕ(w). That is, when we move to the right, the first thing is to have each S-
strategy to have length agreement bigger than the B-part involved (i.e. to have
B and Θ(Φ(BC)) agree on ϕ(w)) and in particular, when we choose a new y, y
should be bigger than the θ-use θ(ϕ(w)). Thus, if we move to the left again, due
to B-changes below the use ϕ(x), and this change actually prevents Φ(BC) from
being back to a previous region being terminated before (up to y), as otherwise, we
will have a disagreement between B and Θ(Φ(BC)) below ϕ(w). Another reason
of moving from right to left is because of A-permissions, which undefine Γ(AB)(v)
and Γ(AB)(y), allowing us to enumerate some v or y into C as wanted.

We now describe how a plus-substrategy α+ (i.e. an Se,j -substrategy, j even)
works. Remember that an α+-strategy only copies part of Te on Se. This is much
simpler than a minus strategy. Most of the idea is the same as those described in
α−-strategy.

α+ proceeds via cycles (m), with m ∈ ω, starting with cycle (0) starts first.

Cycle (m) :

(1) Select xα,m, denoted by x, as a big number.
(2) Wait for Φe(BC)(x) to converge.

When B has changes up to the use ϕe(x), return to (2). It will change the
selection of yα,m and zα,m.

(3) Run the confirmation gadget to select yα,m, denoted by y, bigger than ϕe(x).
Define Γ(AB)(y) = C(y) = 0 with the use of A-part equals to m + 1 and

let the use of B-part be any big number.
(4) Wait for Ψe(Φe(BC))(y) to converge to 0, and for Φe(BC) to converge on all

numbers ≤ψe(y).
When B changes below the use ϕe(ψe(y)), return to (4). It will change the
selection of zα,m.

(5) Select zα,m, denoted by z, as a number bigger than ψe(y).
(Thus, we have selected a triple (x, y, z).)

(6) Wait for Φe(BC)(z) to converge.
(Copy all the nodes on Te in the region (x, z) on Se, in the sense that at

any stage, when we see new nodes on Te, we also add these nodes on Se.)
(7) Wait for a stage t such that all nodes in Te in the region (x, z) become dead.
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(8) Define Ξ(B)(m) = A(m) with use ξ(m) big. Wait for m to enter A, and
simultaneously, start cycle (m+ 1).

(9) Put y into C.
(The enumeration of y is permitted by the change of A(m).)

(10) Wait for Φe(BC)(z) to converge again, and simultaneously, wait for B to
change below ξ(m).

If B changes below the use ξ(m), then Ξ(B)(m) is rectified.
(11) Start cycle (m+ 1, 0).

Otherwise, we will have a global win for τ via one of the following cases:

(a) Φe(BC)(z) does not converge later. Then Φe(BC) is not total.
(b) Φe(BC)(z) converges later, but there is some w ∈ (x, z) such that the

value of Φe(BC)(w) is different from the previous one. Then Φe(BC)
cannot be a branch in [Te].

(c) Φe(BC)(z) converges, but the values of Φe(BC) � z are the same as pre-
vious ones, then C(y) = 1 	= 0 = Ψe(Φe(BC))(y).

Cycle (m) has two kinds of outcomes: standard density outcomes and gadget
outcomes, which are the same as those in α−-strategies. When cycle (m) reaches
Step (9), we will have a global win outcome, gw. Under this outcome,

• Ξ(B) does not compute A(m) correctly, and y is enumerated into C, so that
if Φe(BC) comes back to the same values below z later, then we will have a
disagreement between C and Ψe(Φe(BC)) at y. This will be a global win for τ ,
until B changes below ξ(m), when we will redefine ΞB(m) as 1, which equals to
A(m), forever.

We are now ready to give a full description of the construction of C.

4. Construction

We first define the construction tree T , which is defined by recursion. The priority
of the requirements is defined as follows:

R0 < S0,0 < R1 < S0,1 < S1,0 < S1,1 < R2 < · · · < Re < · · ·
< S0,e < S1,e < · · · < Se−1,e < Se,0 < Se,1 < · · · < Se,e < Re+1 < · · · .

We use τ to denote R-strategies and α to denote S-strategies.
The top node on T is labeled as R0. Assume that τ is a node on T , there are

two edges leaving τ , 1 and gw.
Assume that α is a node on T . There are infinitely many edges leaving α, i.e.

α has infinitely many outcomes. If α is a minus-strategy, then these outcomes fall
into the following three categories, related to cycle (m,n):

• Termination outcome (m,n, (ter)), which is the rightmost among outcomes of
cycle (m,n).
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• Standard density outcomes (m,n, k, d), (m,n, k, f), where k ∈ ω, and these out-
comes take lexicographic order.

• Gadget outcomes between (m,n, k − 1, f) and (m,n, k, d), where k ∈ ω,

x-outcomes: (m,n, xτj , p, d), (m,n, xτj , p, f),
y-outcomes: (m,n, yτj , p, d), (m,n, yτj, p, f),
z-outcomes: (m,n, zτj , p, d), (m,n, zτj, p, f),

where p ∈ ω.

— x-outcomes are on the left of y, z-outcomes.
— Among x-outcomes, xτj1 -outcomes are on the left of xτj2 -outcomes, if τj2 ⊂

τj1 .
— Among y, z-outcomes, for a particular τ , yτ -outcomes are on the left of

zτ -outcomes, and among different τ ’s. yτj2 , zτj2-outcomes are on the left of
yτj1 , zτj1-outcomes, if τj2 ⊂ τj1 .

— Before each (−, d)-outcome, there is a “noticeboard”, which can be used to
indicate which number is needed.

If α is a plus-strategy, then the outcomes fall into the following three categories,
related to cycle (m,n):

• Standard density outcomes (m, k, d), (m, k, f), where k ∈ ω, and these outcomes
take lexicographic order.

• Gadget outcomes between (m, k − 1, f) and (m, k, d), where k ∈ ω,

x-outcomes: (m,xτj , p, d), (m,xτj , p, f),
y-outcomes: (m, yτj , p, d), (m, yτj , p, f),
z-outcomes: (m, zτj , p, d), (m, zτj , p, f),

where p ∈ ω.

— x-outcomes are on the left of y, z-outcomes.
— Among x-outcomes, xτj1 -outcomes are on the left of xτj2 -outcomes, if τj2 ⊂

τj1 .
— Among y, z-outcomes, for a particular τ , yτ -outcomes are on the left of

zτ -outcomes, and among different τ ’s. yτj2 , zτj2-outcomes are on the left of
yτj1 , zτj1-outcomes, if τj2 ⊂ τj1 .

— Before each (−, d)-outcome, there is a “noticeboard”, which can be used to
indicate which number is needed.

(−, k, d) is a divergence outcome (at k), and (−, k, f) shows that k is the current
length of agreement, and when α has these outcomes, the mother node τ actually
has a global win, and the strategies between τ and α are injured, and as usual, we
will have backup versions of these strategies.

Fix α ∈ T . Let L(α) denote the list of requirements that are not satisfied at α:

• Let L(λ) be the set of all requirements, where λ is the root of T . Assign R0 to
λ, and say that R0 becomes active at λ.
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• For any α ∈ T with α = β� O, and assume that L(β) is given. Recall that β is
assigned with the requirement in L(β) with highest priority, P say.

If β is an R-strategy, then O is either 1 or gw. If O is 1, then we say that
R is active at β, and we let L(α) = L(β)\{Re}. If O is gw, then we let L(α) =
L(β)\{all substrategies of β}.

If β is an S-strategy Se,i say, then O has the following possibilities. Here we
assume that β is a minus-substrategy, and we assume that β is running cycle
(m,n). In case that it is a plus-substrategy, it has (m, ∗, d) and (m, ∗, f) instead,
and it runs cycle (m).

— O is (m,n, (ter)). Then let L(α) = L(β)\{Se,i}.
— O is a standard density outcome (m,n, k, d), or (m,n, k, f). Then let

L(α) = L(β) ∪ {U :U is a requirement allocated between τ and β}.
Here τ is the mother node of β. All the requirements allocated between β and
τ are injured at α and if U is such a requirement, and is an R-requirement,
then U becomes inactive at α.

— O is a gadget outcome. We assume that it is an x-outcome, (m,n, xτj , k, d),
or (m,n, xτj , k, f), and the cases that it is a y-outcome, or z-outcome will be
the same. Then let

L(α) = L(β) ∪ {U :U is a requirement allocated between τj and β}.
All the requirements allocated between β and τj are injured at α and if U is

such a requirement, and is an R-requirement, then U becomes inactive at α.
• Let Q be the requirement in L(α) with the highest priority, and assign Q to α.

If Q is an Rj -requirement, then say that Rj becomes active at α.

This completes the construction of tree T . Note that the construction ensures
that on each infinite path f of the tree T , each R-requirement can be injured
at most finitely many times, and that for each e, there is a longest node σ on f

on which Re is assigned, and no strategy below σ on f can injure σ. Thus, Re

becomes active at σ, and along f , it can happen that Re is active at all nodes, or
it becomes inactive at some node σ′ say. In the former case, all the strategies, Se,i,
can be injured at most finitely many times, and that for each i, there is a longest
node σ′′ on f on which Se,i is assigned, and all of these substrategies along f have
outcomes (m,n, (ter)). In the latter case, either σ′ is just σ, with outcome gw, or
σ′ is a substrategy of σ, with outcome either (m,n, k, d), or (m,n, k, f), for some
k, or σ′ is a substrategy of some R-strategy between σ and σ′, with outcome either
(m,n, xσ, k, d), or (m,n, xσ, k, f), for some k, or (m,n, yσ, k, d), or (m,n, yσ, k, f),
or (m,n, zσ, k, d), or (m,n, zσ, k, f).

We now describe the full construction of C, together with a computable func-
tional Γ such that C = Γ(AB).

Construction of C and Γ. Let {as}s∈ω and {bs}s∈ω be effective enumerations of
A and B, respectively. The construction will proceed by stages, and at the end of
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each stage s, define δs as the current approximation of the true path, TP . A stage
s is called an α-stage if α ⊆ δs.

Stage 0: Initialize all nodes on the construction tree T , and let C = ∅, and also
Γ = ∅. Let δ0 be λ, the root of T .

Stage s > 0: Stage s consists of three phrases:

• Phase 1 decides δs, the approximation of the true path TP at stage s,
• Phase 2 works on the construction of Sτ , where τ is an R-strategy on δs,
• Phase 3 extends the definition of Γ.

Phase 1: Definition of δs.

Substage 0: Let δs(0) = λ, the root of T .

Substage t ≤ s. Given ζ = δs � t. Initialize all nodes >L ζ.
If t = s, then define δs = ζ, initialize all nodes >ζ and go to stage s+ 1.
Otherwise, for t < s, define δs(t) and we will take action for ζ = δs(t) accord-

ingly. [For those cycles or strategies on the right of δs(t), if the associated savior
numbers have received A-permissions by stage s, and they are not in C yet, then
enumerate these numbers into C.] Initialize all the nodes and cycles on the right of
δs(t+ 1).

• ζ is an R-strategy.

If no link between ζ and any substrategy exists at the last ζ-stage, then let
δs(t) = ζ�1.

If there is a link between ζ and some substrategy, and the link is still there,
i.e. B has no changes on small numbers, and the disagreement created by β is still
valid, then δs(t) = ζ�gw.

If there is a link between ζ and a substrategy σ via cycle (m,n), and B-changes
on small numbers, then we remove this link and enumerate the savior number of
cycle (m,n) into C. Let δs = σ.

• ζ is an S-strategy.

Suppose that ζ is a minus substrategy.
If ζ has no cycles started, then start cycle (0, 0) by selecting u big (u is put on

the noticeboard on the left of outcome (0, 0, 0, d)). Define δs(t) = ζ�(0, 0, 0, b), and
let it be δs.

Otherwise, suppose that ζ is running cycle (m,n) at stage s−, the last stage at
which ζ was visited [running cycle (m,n)], and assume that ζ has outcome O at
stage s−, if any.

(i) Check whether one of the following happens between stages s− and s.

(a) B-changes from stage s− to stage s have changed some computations
associated to a cycle on the left of cycle (m,n), or have changed some
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computations associated to an outcome of cycle (m,n) whose priority is
not lower than outcome O.

(b) A has changes (during the period from stage s− to stage s), which are
needed as permissions by some (least) cycle on the left of cycle (m,n), or
by (m,n) itself.

If (a) happens, assume that (m′, n′) is the corresponding cycle, and define
δs(t) as ξ�(m′, n′, k, d) or ξ�(m′, n′, pτ ′, d, d), where p ∈ {x, y, z} and τ ′

is an R-strategy with τ ′�1 ⊂ τ . Here we assume that τ is the mother note
of ζ and τ ′ is active at ζ. Go to substage t+ 1.

If (b) happens, assume that (m′, n′) is the corresponding cycle of substra-
tegy ξ, and perform accordingly:

(b1) If n′ enters A, then terminate the nodes in the associated region (x, z)
on the tree Sτ ′ at stage s, where τ ′ is the mother node of ξ. Also
request that the associated savior number v be enumerated into C,
once cycle (m′, n′) is initiated. Let δs = ξ�(m′, n′, (ter)) and go to
stage s+ 1.

(b2) If m′ enters A, then enumerate the corresponding y into C, and create
a link between ξ and τ ′, and let δs = τ ′�gw. Go to stage s+ 1.

If both (a) and (b) appear to be true at stage s, then let the one with higher
priority act.

(ii) Suppose that neither (a) nor (b) appears to be true at stage s.
If m ∈ As, then cycle (m,n) has not requested A-permission at m yet

(otherwise, (b) above applies), and we define Λ(B)(m) = 1 = As(m) with use
λ(m) = λ(m− 1), and start cycle (m+ 1, 0).

If n ∈ As, then cycle (m,n) has not requested A-permission at n yet (oth-
erwise, (b) above applies), and we define ∆m(B)(n) = 1 = As(n) with use
δm(n) = δm(n− 1), and start cycle (m,n+ 1).

If none of the above is true, then check for cycle (m,n) which of the following
applies:

(c0) If u is not defined, then define u as a big number and let δs = ζ�

(m,n, 0, f).
(c1) If u is defined and �(τ, s) < u + 1 [we take it as a divergence if a com-

putation changes from stage s−]. Let k = �(τ, s). If at k, the associated
computation does not converge, then let δs(t) = ζ�(m,n, k, d). Other-
wise, let δs(t) = ζ�(m,n, k, f). Go to substage t+ 1.

(c2) �(τ, s) ≥ u, and v is not selected yet. Let δs = ζ�(m,n, u + 1, b), and
indicate that v is needed.

(c3) ζ has outcome (m,n, u + 1, b) at stage s−, then start the confirmation
gadget to find v.
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(c3.1(n)) We first define xτn as a big number (here we assume that
τn, . . . , τ1 are R-strategies active at ζ, with ascending order
of priority) and let δs=ζ�(m,n, u+1, f), and go to stage s+1.

(c3.2(n)) xτn is defined, and �(τn, s) < xτn + 1. Let k = �(τn, s). If at k,
the associated computation does not converge, then let δs(t) =
ζ�(m,n, xτn, k, d), and go to substage t + 1. Otherwise, if ζ
has the outcome (m,n, xτn, k, f) at stage s−, then let δs(t) =
ζ�(m,n, xτn, k, f) and go to substage t + 1. If ζ has other
outcome at stage s−, then let δs = ζ�(m,n, xτn, k, f), and go
to stage s+ 1.

(c3.3(n)) xτn is defined, and �(τn, s) ≥ xτn + 1. Let δs(t) =
ζ�(m,n, xτn−1, 0, b). [The confirmation gadget is switched to
(c3.1(n− 1)). (c3.3(1)) has a session of choosing v.]

(c3.4(n)) After seeing �(τn−1, s) ≥ zτn−1 + 1, let δs = ζ�(m,n, zτn,
0, b), and go to stage s+ 1.
[The confirmation gadget has been switched back from
(c3.1(n− 1)).]

(c3.5(n)) Define zτn as a big number and let δs = ζ�(m,n, zτn, 0, f),
and go to stage s+ 1.

(c3.6(n)) zτn is defined, and xτn < �(τn, s) ≤ zτn. Let k =
�(τn, s). If at k, the associated computation does not con-
verge, then let δs(t)= ζ�(m,n, zτn, k, d). Otherwise, let δs =
ζ�(m,n, zτn, k, f), and go to stage s+ 1.

(c3.7(n)) zτn is defined, and �(τn, s) > zτn. Then declare that the
selected v is confirmed, and let δs = ζ�(m,n, u + 1, f), and
go to stage s+ 1.

(c4) v is defined and �(τ, s) < v+1. Let k = �(τ, s). If at k, the associated com-
putation does not converge, then let δs(t) = ζ�(m,n, k, d). Otherwise,
let δs(t) = ζ�(m,n, k, f). Go to substage t+ 1.

(c5) v is selected and �(τ, s) ≥ v + 1. Then let δs(t) = ζ�(m,n, v + 1, b) and
go to stage s+ 1.

(c6) ζ has outcome (m,n, v + 1, b) at stage s−, choose x big, and let δs =
ζ�(m,n, v + 1, f). Go to stage s+ 1.

(c7) x is defined and �(τ, s) < x + 1. Let k = �(τ, s). If at k, the associated
computation does not converge, then let δs(t) = ζ�(m,n, k, d). Other-
wise, let δs(t) = ζ�(m,n, k, f). Go to substage t+ 1.

(c8) �(τ, s) ≥ x, and y is not selected yet. Let δs = ζ�(m,n, x + 1, b), and
indicate that y is needed.

(c9) ζ has outcome (m,n, x + 1, b) at stage s−, then start the confirmation
gadget to find y.

(c9.1(n)) We first define xτn as a big number (recall that we are assuming
that τn, . . . , τ1 areR-strategies active at ζ, with ascending order
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of priority) and let δs = ζ�(m,n, u+1, f), and go to stage s+1.
(c9.2(n)) xτn is defined, and �(τn, s) ≤ xτn. Let k = �(τn, s). If at

k, the associated computation does not converge, then let
δs(t) = ζ�(m,n, xτn, k, d). Otherwise, let δs(t)= ζ�(m,n,
xτn, k, f), and go to substage t+ 1.

(c9.3(n)) xτn is defined, and �(τn, s) > xτn. Let δs(t) = ζ�(m,
n, xτn−1, 0, b). [The confirmation gadget is switched to
(c9.1(n− 1)). (c9.3(1)) has a session of choosing y.]

(c9.4(n)) After seeing that �(τn−1, s) > zτn−1, let δs = ζ�(m,n, zτn,
0, b) and go to stage s+ 1.

(c9.5(n)) Define zτn as a big number and let δs = ζ�(m,n, zτn, 0, f),
and go to stage s+ 1.

(c9.6(n)) zτn is defined, and xτn < �(τn, s) ≤ zτn. Let k =
�(τn, s). If at k, the associated computation does not converge,
then let δs(t) = ζ�(m,n, zτn, k, d). Otherwise, let δs(t) =
ζ�(m,n, zτn, k, f), and go to substage t+ 1.

(c9.7(n)) zτn is defined, and �(τn, s) > zτn. Then declare that the
selected y is confirmed, and let δs = ζ�(m,n, x + 1, f) and
go to stage s+ 1.

(c10) y is defined and �(τ, s) ≤ y. Let k = �(τ, s). If at k, the associated com-
putation does not converge, then let δs(t) = ζ�(m,n, k, d). Otherwise,
let δs(t) = ζ�(m,n, k, f). Go to substage t+ 1.

(c11) y is defined and �(τ, s) > y. Let δs = ζ�(m,n, y+1, b), and indicate that
z is needed.

(c12) ζ has outcome (m,n, y + 1, b) at stage s−, choose z big, and let δs =
ζ�(m,n, y + 1, f). Go to stage s+ 1.

(c13) z is defined and �(τ, s) < z+1. Let k = �(τ, s). If at k, the associated com-
putation does not converge, then let δs(t) = ζ�(m,n, k, d). Otherwise,
let δs(t) = ζ�(m,n, k, f). Go to substage t+ 1.

(c14) z is selected and �(ζ, s) ≥ z + 1. Define ∆m(B)(n)[s] = As(n) with use
δm(n) = s, and start cycle (m,n+ 1), by letting δs = ζ�(m,n+ 1, 0, b).
Go to stage s+ 1.

(c15) ∆m(B)(n)[s] is defined as 0 and n is in As. Then terminate all the nodes
in the region (x, z), and let δs = ξ�(m,n, ter).

(c16) If ζ has outcome (m,n, (ter)) at the last ζ-stage, and some nodes on Tτ in
the region (x, z) are still alive at stage s, then let δs(t) = ζ�(m,n, (ter)),
and go to substage t+ 1.

(c17) If ζ has outcome (m,n, (ter)) at the last ζ-stage, ∆m(B)(n)[s] = 0 	= 1 =
As(n), and all nodes on Tτ in the region (x, z) are dead (i.e. they have
no further extensions on Tτ ), then define Λ(B)(m)[s] = As(m) with use
λ(m) = s, and start cycle (m + 1, 0), by letting δs = ζ�(m + 1, 0, 0, b).
Go to stage s+ 1.
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(c18) If ζ has outcome (m,n, (ter)) at the last ζ-stage, and B has change
below δm(n), then redefine ∆m(B)(n)[s] = 1 = As(n), and enumerate
the savior number v of cycle (m,n) into C. Start cycle (m + 1, 0), by
letting δs = ζ�(m+ 1, 0, 0, b). Go to stage s+ 1.

(c19) Λ(B)(m)[s] is defined as 0 and m is in As. Then enumerate y into C,
and create links between ζ and τ . Let δs = τ�gw and go to stage
s+ 1.

(c20) After the enumeration of y into C, B changes below λ(m), then, at the
next τ -stage, the savior number v is put into C, and redefine Λ(B)(m) =
1 = A(m). Start cycle (m+ 1, 0).

If ζ is a plus-substrategy, then ζ works in a similar, but a simpler way, as
indicated in the description before the construction part.

Phase 2: Construction of subtrees Sτ

For those τ which are active at δs, continue the construction of tree Sτ , a subtree of
Tτ , as follows: for a node η on Tτ of length s, check whether η is in a region being
terminated by a substrategy of τ . If yes, then we do not put η on Sτ . If not, then
we put η (with its initial segments) on Sτ .

Phase 3: Definition of Γ

Find the least j such that Γ(AB)(j)[s] has no definition. [Without loss of generality,
we assume that j is a number being selected by a minus S-strategy α− (via cycle
(m,n) say) as its parameter, v or y, as otherwise, we can find a biggest j′ < j with
such a property, and define the use γ(j) the same as γ(j′).]

Define Γ(AB)(j) as Cs(j) with the use γ(j) based on the location of cycle (m,n)
(of α−) on the construction tree T .

If s is the first stage at which Γ(AB)(j) is defined, then:

• If δs has priority higher than α− or cycle (m,n), then we just define the use γ(j)
as γ(j − 1)[s].

• Otherwise, i.e. cycle (m,n) has higher priority, we define:

— The A-part of γ(j) as the maximum of m′ + n′, where (m′, n′) is a cycle on
δs′ , where s′ ≤ s and δs′ has priority higher than δs.

— The B-part of γ(j) is the maximum of the B-uses in the computations asso-
ciated to a node with priority not lower than δs.

If Γ(AB)(j) has been defined before, then we assume that Γ(AB)(j)[s′] has
definition, where s′ < s is the last such a stage, and we check whether Γ(AB)(j)[s]
is undefined due to A-changes or because of B-changes.

If it is because of B-changes (but not because of A-changes), then we just let
γ(j)[s] = γ(j)[s′].

If it is because of A-changes, then we define Γ(AB)(j)[s] = Cs(j) with use
γ(j)[s] as follows:
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• The A-part of γ(j) is the same as A-part of γ(j)[s′].
• The B-part of γ(j) is the maximum of the B-uses in the computations associated

to a node with priority not lower than δs.

This completes the construction of stage s.

End of construction.

5. Verification

We now prove that C and Γ constructed above satisfy all the requirements. Define
TP as the leftmost path that has been visited infinitely many times. That is, TP =
lim infs δs — the so-called true path of the construction.

Lemma 5.1. TP is well-defined and has infinite length.

We use TP � k to denote the initial segment of TP of length k. We prove the
following statement, which implies Lemma 5.1 immediately.

Lemma 5.2. For each k, let ξk = TP � k. Then ξk has outcome Ok such that
ξk

�Ok is on TP, i.e. ξk�Ok ⊂ TP . That is:

(1) ξk can be initialized at most finitely often.
(2) ξk

�Ok can be visited infinitely many times during the construction, and there
are at most finitely many stages s such that δs is on the left of ξk�Ok.

(3) If ξk is an S-substrategy, then Ok is an outcome of some cycle and this cycle
can act and initialize those strategies at most finitely often.

Proof. We prove Lemma 5.2 by induction on k.
When k = 0, ξ0 is the root of the construction tree T , λ, which can never be

initialized. As an R0-strategy, λ has outcomes, 1 and gw. If in the construction, at
a stage s say, some substrategy puts a number into C, then λ will have outcome gw,
until B changes and destroys such computations. If there is no such change from
B, then λ has outcome gw on TP . If B does have such a stage, then at the next
stage (note that each stage is a λ-stage), λ will have outcome 1. Thus, if λ cannot
have outcome gw on TP , then λ has outcome 1 on TP . Also as λ is an R0-strategy,
it has no action in the construction. Thus, the statement is true for k = 0.

Now suppose that the statement is true for all � < k, and we prove that it is
also true for k.

As given, ξk = ξk−1
�Ok−1. By the induction hypothesis, we can assume that

after a stage s0 large enough, δs cannot be on the left of ξk, and as a consequence,
ξk can only be initialized by ξk−1, under outcome Ok−1, at most finitely often, by
(3) of the induction hypothesis for ξk−1. Thus, (1) is true for ξk.

For (2), if ξk is an R-strategy, (2) is obviously true, as in this case, ξk has only
two outcomes. If at a stage s say, some substrategy puts a number into C, then
ξk will have outcome gw, until B changes and destroys such computations. By the
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same argument for λ, the root of T , we can show that the statement is true for ξk
in this case.

So we assume that ξk is an S-strategy. We assume that ξk is a minus-strategy,
as the cases for plus-strategies are much simpler, and what we prove here for minus-
strategies can be applied to plus-strategies with a bit of modification.

In the construction, ξk runs (possibly, infinitely many) cycles (m,n), m,n ∈ ω,
at ξk-stages. We first show the existence of a cycle (m,n) with an outcome O (either
a termination outcome, or a standard density outcome, or a gadget outcome) on
TP . That is, cycle (m,n) has outcome O infinitely often, and only finitely many
cycles with priority higher than (m,n) can be initiated, each of which, once initiated,
can be active at most finitely often. For this purpose, we need to show that the
auxiliary partial computable functionals Λξk

(B) and ∆ξk,m(B), m ∈ ω, are well-
defined. For simplicity, we will omit the subscript ξk in the discussion, as it will
make no confusion.

Note that in the construction, for any m, if Λ(B)(m) is defined, with value
different from A(m), then at the next ξ-stage, the corresponding number y is enu-
merated into C, and a link between ξ and its mother node τ is created. This link will
not be removed until B has changes, undefining Λ(B)(m). When ξ is visited again,
Λ(B)(m) is defined as 1, equal to A(m). As we are assuming B <T A, ΛB cannot be
totally defined [otherwise, B would compute A correctly], which means that there
is a least m such that either Λ(B)(m) is not defined or Λ(B)(m) ↓	= A(m). In the
former case, i.e. a cycle (m,n) for some n defines Λ(B)(m) at a stage, then when
B changes, the B-changes undefine both Λ(B)(m) and ∆m(B)(n), and when ξ is
accessible again, cycle (m,n) defines ∆m(B)(n) as 1, and as a consequence, cycle
(m,n) will have no more definitions of Λ(B)(m) — the job of defining Λ(B)(m) is
left to other cycles. If such a process repeats infinitely many times, and Λ(B)(m) is
not defined by any cycle, then this means that ∆m(B) is defined as a total function,
computing A correctly, which is impossible. So there is a least n′′ such that either
cycle (m,n′′) does not define Λ(B)(m) in the construction, or if it is defined, then
Λ(B)(m) ↓	= A(m). In this case, ξ will have one of the outcomes of cycle (m,n) as
true outcome.

Now fix m. We assume that ∆m(B) � n is well-defined and equal to A � n. We
consider the definition of ∆m(B)(n). Recall that ξk’s target is to find an infinite
path in Tτ [here, τ is the mother node of ξk], and ensure that this path is not on Sτ .

• We assume that cycle (m,n) selects the region (x, z), at a stage s say.

If n is already in As, then ∆B
m(n) is defined as 1, and equals to A(n). In this

case, ∆B
m(B)(n) can be undefined only when B has small changes, and eventually

∆m(B)(n) is defined. Note that cycle (m,n+ 1) is initiated whenever cycle (m,n)
defines ∆m(B)(n) as A(n), as whenever such a smallB-change occurs, ∆m(B)(n+1)
[defined by cycle (m,n+ 1)] is undefined. This makes ∆m(B) well-defined.

If n is not in As, then before n enters A, whenever B changes below δm(n), we
redefine δm(n) as a number bigger than all the uses in the computations involved.
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It can happen that n is not in A at all, and some computation involved in cycle
(m,n) diverges (including those computations in the confirmation gadget), then
δm(n) goes to infinite. In this case, ∆m(B)(n) is not defined, but, on the other hand,
cycle (m,n) finds a divergent computation (hence a divergence outcome) which is
involved in the section of the region (x, z). If so, the O is the least divergence
outcome (either a standard density outcome, or a gadget outcome).

If n enters A later, then at the next ξk-stage s′ > s, say, we already see n ∈ As′ ,
then the action at this stage s′ is to terminate the nodes in the region (x, z). Again,
after stage s′, when B changes on small numbers, ∆m(B)(n) can be undefined, and
when we redefine it, we just define it as 1, with the use the same as before. This
shows that cycle (m,n) succeeds in defining ∆m(B)(n) = A(n), provided that the
corresponding computations converge, and cycle (m,n + 1) is started. According
to the construction, v is enumerated into C. The change of A(n) is actually an
A-permission for us to enumerate v into C — could be delayed as usual, to prevent
Φ(BC) from entering the terminated region (x, z). Note that once a cycle (m,n)
succeeds in defining ∆m(B)(n) = A(n), cycle (m,n) will not care whether it can
find an infinite path in Tτ or not, and what it does is to hand such a task to cycle
(m,n+ 1).

Thus, for n, either ∆m(B)(n) is defined and equal to A(n) (in this case, cycle
(m,n + 1) is started), or ∆m(B)(n) is defined and is not equal to A(n) (in this
case, if cycle (m,n + 1) is started before n enters A, then it will be stopped when
n enters A, as A’s change at n is a permission for the terination of nodes in the
region (x, z)), or ∆m(B)(n) is undefined (as a divergence outcome is found). In
the case that ∆m(B)(n) is defined and is not equal to A(n), ξ will take outcome
(m,n, (ter)), till B changes below δm(n). By B <T A, ∆m(B) cannot be a total
well-defined function, computing A correctly. This shows the existence of a number
n (least) such that either ∆m(B)(n) is not defined, or ∆m(B)(n) is defined but not
equal to A(n). In the latter case, ξ will take outcome (m,n, (ter)) forever, from the
first ξ-stage after n enters A. The former case shows that ξ has either standard
density outcome or gadget outcome. Let u be defined at stage su.

(1) If ξ has outcome (m,n, k, d) or (m,n, k, f) infinitely often, with k ≤ u, then
the least outcome which is true infinitely often is on TP .

(2) If ξ never has outcome (m,n, k, d) or (m,n, k, f), with k≤u, after certain stage,
then xτj is defined and will be kept the same after a stage big enough. [In the
following, when we say that a number is defined and will be kept the same, we
mean that the outcome (m,n, xτj , k, d) or (m,n, xτj , k, f) infinitely often, with
k ≤ xτj , then the least outcome which is true infinitely often is on TP .]

(3) If xτj−1 is defined and will be kept the same after a stage big enough, and ξ has
outcome (m,n, xτj−1, k, d) or (m,n, xτj−1, k, f) infinitely often, with k ≤ xτj−1,
then the least outcome which is true infinitely often is on TP .

...
[Iterate this process until τ1 is considered.]
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(4) If v is defined and will be kept the same after a stage big enough, and ξ has
outcome (m,n, xτ1, k, d) or (m,n, xτ1, k, f) infinitely often, with xτ1 ≥ k ≤ v,
then the least outcome which is true infinitely often is on TP .

(5) If zτ1 is defined and will be kept the same after a stage big enough, and ξ has
outcome (m,n, zτ1, k, d) or (m,n, zτ1, k, f) infinitely often, with v ≥ k ≤ zτ1,
then the least outcome which is true infinitely often is on TP .

(6) If ξ never has outcome (m,n, zτ1, k, d) or (m,n, zτ1, k, f) after certain stage, and
ξ has outcome (m,n, v, k, d) or (m,n, v, k, f) infinitely often, with v ≥ k ≥ xτ2,
then the least outcome which is true infinitely often is on TP .

(7) If zτ2 is defined and will be kept the same after a stage big enough, and ξ has
outcome (m,n, zτ2, k, d) or (m,n, zτ2, k, f) infinitely often, with zτ2 ≥ k ≤ v,
then the least outcome which is true infinitely often is on TP .

...
[Iterate this process until τj is considered.]

(8) If zτn is defined and will be kept the same after a stage big enough, and ξ has
outcome (m,n, zτn, k, d) or (m,n, zτn, k, f) infinitely often, with zτn ≥ k ≤ v,
then the least outcome which is true infinitely often is on TP .

Thus, for ξ, we let m,n as above, the description above shows that ξ has an
outcome on TP , and (2) is proved.

Let Ok be the outcome on TP , and (m,n) is the cycle. If there is no ξ-stage with
∆m(B)(n) 	= A(n), then ξ has a standard density outcome or a gadget outcome,
and in this case, this cycle has no action during the construction. If at a ξ-stage, we
see ∆m(B)(n) is defined with ∆m(B)(n) 	= A(n), then at this ξ-stage, the action
at this stage is to terminate region (x, z)d, and ξ takes outcome (m,n, (ter)). After
this, by the choice of m,n, no change of B can undefine ∆m(B)(n), and hence ξ
will not take any further action, and (3) is proved for ξ�Ok.

Lemma 5.3. Let τ be any node on T . Then each version of Sτ is a computable
subtree of Tτ .

Proof. Fix τ . It is clear that Sτ is a subtree of Tτ , as all the nodes on Sτ are from
Tτ . We can assume that at any stage s, all nodes on Tτ of length s are put on Tτ .
The basic idea of constructing Sτ is to put a node on Tτ of length s on Sτ only
at stage s (thus a node of length s is not put on Sτ at stage s, then this node will
never be put on Sτ in the remainder of the construction). In our terminology, it just
says that we need to ensure that any terminated node will be kept as terminated.
All of these guarantee that Sτ is computable.

Lemma 5.4. All R-requirements are satisfied along the true path TP .

Proof. We prove it by induction on e. Let τ be the last Re strategy on TP . τ
exists by the construction of T . Let sτ be the last stage at which τ is initialized.
Then a subtree Sτ will be constructed by all substrategies below τ�1.
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If there is a link between a substrategy σ and τ created at a stage, showing a
global win of τ , and this link is there forever (i.e. B does not change below the uses
involved), then σ creates a global win for τ , such that either C(y) 	= Ψτ (Φτ (BC))(y)
for some y, where w is selected by σ, or Φτ (BC) is not a path of [Tτ ].

So we assume that no such a link exists permanently. If some substrategy of τ
has a standard density outcome on TP , or of some R-strategy τ ′ below τ�1 shows
a gadget outcome for τ on TP , then these outcomes show that either the length
agreement for τ has a finite limit, or some computation involved in the calculation
of the length agreement for τ diverges. These outcomes show that τ is satisfied, and
below these outcomes, τ has no further substrategies on TP .

Now we assume that τ has infinitely many substrategies on TP . Then each such
substrategy σ is devoted to find an infinite path in [Tτ ]. We will show that each
such σ will find such a path successfully. To see this, by our assumption, σ is on TP ,
and we assume that cycle (m,n) is the one with an outcome on TP . Cycle (m,n)
will select the wanted numbers u, v, x, y, z (if not, then σ will provide an outcome
showing that τ is satisfied at σ), and then ∆m(B)(n) is defined after a stage big,
which turns to be different fromA(n), as ifA(n) is the same as ∆m(B)(n), then cycle
(m,n+1) will be started, contradicting the assumption of (m,n). As a consequence,
the region (x, z) will be terminated, and Tτ does have an infinite path in this region,
as otherwise, cycle (m,n) will notice this at the next σ-stage, and define Λ(B)(m),
starting cycle (m+ 1, 0), which is again impossible, by the choice of cycle (m,n).

This shows that all substrategies, i.e. all plus-substrategies and all minus-
substrategies, are satisfied, and both [Sτ ] and [Tτ ]\[Sτ ] are infinite. This shows
that [Tτ ] is not a thin class. It means that if Φτ (BC) is Turing equivalent to B⊕C,
and [Tτ ] contains Φτ (BC) as a branch, then [Tτ ] is not thin. Thus, Re is satisfied.

This completes the proof of Lemma 5.4.

To complete the verification, we will prove that C ≤T A⊕B.

Lemma 5.5. Γ(AB) is well-defined with Γ(AB) = C. Thus B ≤T B ⊕ C ≤T

B⊕A.

Proof. We first show that Γ is total. Fix k and assume that after a stage s0 large
enough such that for any k′ < k, Γ(AB)(k′) is defined and no A- or B-change can
undefine it later. We now show that there exists a stage s′ > s0 such that Γ(AB)(k)
is defined and no A- or B-change can undefine it later.

Note that if k is not assigned to any node on T as a savior v or as a parameter
y, then s0 is the wanted stage, as Γ(AB)(k) is defined as 0 and γ(k) is defined to
equal γ(k − 1).

So we consider that k is assigned to a strategy α, in particular a cycle (m,n),
as a savior v or as a parameter y. Without loss of generality, we assume that k is
assigned as y. Then when we define Γ(AB)(y) as a stage s, we define Γ(AB)(y) as 0
with the A-part of the use the maximum of the numbers in cycles (m′, n′) along δs,
the B-part of the use the maximum of the B-part of the use of Γ(AB)(y − 1), and
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also the B-uses involved in computations in those strategies ≤δs, and the B-uses
involved in computations associated with those saviors attached to some nodes with
priority higher than δs.

• Check whether A or B changes on the corresponding part of the use γ(k).

If there is no such a change, then Γ(AB)(y) is 0 and in this case, C(y) is also
0, and we will show it below. If δs has priority higher than cycle (m,n), then at
stage s, (m,n) is initialized and then y cannot be enumerated into C later. So we
assume that δs has priority lower than cycle (m,n).

If A and B do not have changes below the A-part or the B-part of γ(y), then
Γ(AB)(y) is 0, and δ never moves to the left of δs, so y cannot be enumerated into
C. Thus Γ(AB)(y) = 0 = C(y).

If such a change exists, at stage s′ say, we check whether y is in Cs′ or not (i.e.
check whether cycle (m,n) is accessible at stage s′). If y is enumerated into C at
stage s′, then Γ(AB)(y) is redefined as 1, with use γ(y) the same as the previous
one. If not, Γ(AB)(y) is redefined as 0, with use γ(y) the same as the previous one
(we keep it the same just because we will keep the γ-use nondecreasing). In any
case, Γ(AB)(y) is redefined with value C(y), and the use γ(y) has new definition
with γ(y)[s′] = γ(y)[s]. By repeating the process above, we either see that y is
enumerated into C, at a stage when Γ(AB)(y) is undefined, or eventually, we will
see a stage s∗ at which A and B will have no changes below the corresponding parts
of use γ(y), which means that y ∈ C if and only x ∈ Cs∗ . Thus, Γ(AB)(y) cannot
be undefined after stage s∗, and

Γ(AB)(y) = Γ(AB)(y)[s∗] = Cs∗(y) = C(y).

By induction, we have that Γ(AB) is total, and equals C.

This completes the verification part and hence the proof of Theorem 1.3.

6. Proof of Theorem 1.4

In this section, we prove Theorem 1.4, which is an improvement of an earlier density
result of Cenzer, Downey, Jockusch and Shore [4], where the wanted members of
thin classes were not required to have c.e. degrees. To prove Theorem 1.4, we will
construct a c.e. D in stages, such that its complement, D, will be the wanted
member of a thin Π0

1 class, [T ] (constructed by us).
As in paper [4], we assume that B is the even part of A, so we replace A with

A�B, where A consists of only odd numbers and B consists of only even numbers.
D will be constructed by stages, and Ds is the enumeration of D by stage s. Ds

denotes the complement of Ds, which is of the form {d0,s < d1,s < d2,s < · · ·}.
We also construct a computable tree T such that [T ] is a thin Π0

1 class. Again,
T will also be constructed in stages, and we denote Ts as the approximation of T
by stage s, and T =

⋃
s Ts. Here, as in paper [4], we assume that on T , 0 is on the

right of 1 and that all the paths (except those deadends) on Ts have length ds,s.
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In the construction, at a stage s, our only action is to let Ds+1 = Ds ∪ {dj,s :
k ≤ j ≤ s} for some k, a “dumping action”, which was developed for the construc-
tion of co-retraceable sets.

Our target is to use the rightmost path of Ts to code Ds: on Ts, we have nodes
σj,s coding the elements dj,s in Ds for j ≤ s (We assume here that 0 is in D so σ0,s

is not empty). That is,

• σ0,s = 1d0,s ,
• having σj,s, j < s, we let σj+1,s = σj,ŝ0̂1dj+1,s−dj,s−1.

All other paths (except for those deadends, of course) on Ts will be of the form
σj,ŝ1ds,s−dj,s for j ≤ s, and we will denote it by σj,ŝ1∗, if we do not care about
the exact number of 1’s after σj,s. When di,s is enumerated into D at a stage s,
then any path on Ts extending σi,ŝ0 is terminated forever. A property of [T ] is
that the rightmost path of [T ] will be the only one limit point in [T ], i.e. the limit
of all other paths. So, to make [T ] thin, we will construct T as in [4] to make [T ] a
minimal Π0

1 class, with exactly one limit path.
The following requirements will guarantee that [T ] is minimal, and will call these

minimality requirements:

Re: If [Pe] ⊆ [T ], then either [Pe] is finite or [T ]\[Pe] is finite.

Here, Pe is the eth-primitive recursive tree.

When B is empty, a basic case. We first consider this simple case, when B is
empty, and give a brief description of constructing T .

For Pe, we will use Pe,s to denote the approximation of Pe by stage s. We assume
that each path in Pe,s is of length ds,s. As in paper [4], to satisfy Re, what we will
do at every stage s is to check whether some σi,ŝ1∗ 	∈ Pe,s, and if so, we will
re-route the construction through this σi,ŝ1∗. This action of re-routing is actually
an enumeration of numbers into D.

We now describe how to implement the idea above, incorporated with the A-
permission.

Say that Re is active at i > e (i.e. active via σi,s) at a stage s, if:

(1) σi,ŝ1∗ 	∈ Pe,s, and
(2) for all j with e ≤ j ≤ i, Re has not been currently declared to be met at j via

σj,s.

Say that Re requires attention at a stage s if it is active at this stage at some i.
As in standard permitting argument, we will define a p.r. function ∆ as an

approximation of A by stages, whenever Re requires attention. That is, if Re

requires attention at i at stage s, then we define ∆(k) = As(k) for those k < i

such that ∆(k) has no definition by stage s.
Suppose that at stage t > s, p is the least number entering A. We check whether

∆(p) has defined or not, i.e. whether some Re has been active at some i ≥ p at
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a previous stage. If not, do nothing. Otherwise, we let Re receive attention at i,
by re-routing the construction through σi,t̂1∗, i.e. we will let σi,t+1 extend σi,t̂1∗,
and terminate those nodes extending σi,t̂0. If so, we declare that Re is satisfied at i
via σi,t at stage t. Once Re receives attention, it will be satisfied forever (remember
that B is empty in this simple case), and by definition, it will not be active anymore.

Of course, if later, a smaller number q enters A at a stage t′ > t say, and Re

was also active at some q with q ≤ i′ < i, then Re will receive attention at i′ at
stage t′.

We will show soon that if Re is not met, then there exist infinitely many i

at which Re is active, which means that ∆ has infinitely many extensions and
hence is a total computable function. This would show that A is computable, a
contradiction. Thus Re cannot be active at infinitely many i’s.

So we let i be the largest at which Re is active, and we will show now that
Re is met. We assume that [Pe] ⊂ [T ], and further, [Pe] is infinite, then by the
construction, Re cannot receive attention at any stage, and the rightmost path of
[T ] is also in [Pe]. This means that above σi, we cannot have any node in T \Pe, and
hence all nodes above σi in T and in Pe are the same. Thus, all paths in [T ]\[Pe]
extend some node σj , j < i. By the construction of T , there are only finitely many
such paths and hence [T ]\[Pe] is finite, and Re is met.

Thus, for the case when B = ∅, the construction of D is a standard direct
permitting construction, and the reduction ofD to A, via Γ say, is obvious: whenever
a number is enumerated x = di,s into D, some number p < i enters A at that stage.

For the case when B is nonempty, we will have the definition of permanently
active at i, where we say that Re is permanently active at i if Re is active at i
at stage s via σi,s for almost all stages s. For B empty, it is clear that once Re is
active at i at stage s, then it will be active at i at any stage after s, and hence it
is permanently active at i.

When B is nonempty, a general case. We now come to the general case, when
B is nonempty. We will construct a p.r. functional Γ such that Γ(A � B) = D, a
global requirement.

For the part of coding B into D, if a number i enters B at stage s, then we
will enumerate di,s into D. We assume here that i ≤ s if i enters B at stage s. In
the construction, we can put in di′,s, to satisfy R-requirements, and what we will
guarantee is that lims di,s = di exists for each i. Having this, we can prove B ≤T D

as follows: for a number i, to decide whether i is in B or not, we use D as oracle to
find a stage si such that di = di,si , and then i ∈ B if and only if i ∈ Bsi .

Let us come back to the discussion of how to satisfy a single Re requirement. The
main point is that the coding of B can fail the basic module given above, perhaps
several times, in the way that after we declare that Re is satisfied at i at stage s,
some j < i enters B later, causing us to re-route the construction through σj,ŝ1∗.
As in a standard density argument, this kind of failure will provide opportunities
to extend the definition of a p.r. functional ∆ to show that A = ∆(B), which, of
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course, is not true, as we are assuming that B <T A. In particular, if [Pe] is an
infinite subclass of [T ] and [T ]\[Pe] is infinite, then, after finitely many tries, some
win of Re will be obtained and this win cannot be undone by coding of B.

Say that Re requires attention at a stage s if it is active at this stage at some i,
where we say that Re is active at i > e (i.e. active via σi,s) at a stage s, if:

(1) σi,ŝ1∗ 	∈ Pe,s, and
(2) for all j with e ≤ j ≤ i, Re has not been currently declared to be met at j via

σj,s.

Here, σi,s codes the first i elements of Ds. As B is coded into D as described
above, σi,s always contains information of Bs (up to some number, of course). So
in the construction of T , at each stage s, we have σi,s for i ≤ s, coding an initial
segment of Bs, and eventually, as we will guarantee that D is infinite, each initial
segment of B will be coded in some initial segment of D, and hence B is reducible
to D. To be specific, we can construct a p.r. functional Θ such that B = Θ(D) as
follows: for any x, whenever we define Θ(D)(x) at stage s, we always define it the
same as B(x) with use θ(x)[s] = dx,s, and Θ(D)(x) can be undefined at a stage t if
D has a change below dx,s. In particular, when x enters B, our action of coding is
to put dx,s into D, which undefines Θ(D)(x). Θ(D)(x) can also be undefined by the
bumping actions and also the actions of satisfying R-requirements. All together,
these actions will undefine Θ(D)(x) finitely many times, and eventually, we will
have B(x) = Θ(D)(x). We will guarantee that D is infinite, making Θ(D) total. The
construction of Θ is fairly standard, and we will not include it in the construction
part.

Now we consider how to satisfy Re-requirement, with coding of B and A-
permissions involved. The basic module runs the following actions several times
(infinitely, perhaps). Recall that when Re requires attention at stage s, Re is active
at this stage via σi,s, and B’s change at some j < i will drive σi,s out of T . We will
run the following procedures, perhaps infinitely many times.

(1) At stage s, check whether Re requires attention at some i ≤ s. We do nothing
if no such i exists. Otherwise, let i be the least one, and

— for j ≤ i, if ∆(B)(j) is not defined, define ∆(B)(j)[s] = A(j)[s] with use
δ(j) = i+ 1.

(2) Wait for A to change below i+ 1. Declare that the Re-requirement is waiting
for a A-change below i+ 1 (i.e. an A-permission at i).
[If B change below δ(i) first, then di,s is enumerated into D (by the dumping
action) and hence σi,ŝ1∗ is abandoned.]

(3) When some j ≤ i enters A at stage t+1, we consider the least i′ with j ≤ i′ ≤ i

such that Re is active at some i′ at stage t+ 1, and let σi′,t+1 extend σi′,t̂1∗,
terminate those nodes extending σi′,t̂0. We declare that Re has a win via
σi′,t+1.
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[Note that here, Re-requirement acts at i′, instead of i. Re-requirement may
not be active at stage s+ 1. Also A(j)[s] 	= ∆(B)(j)[s]].

(4) Wait for B to change below i′ at stage w. Then σi′,t̂1∗ becomes B-incorrect
and hence is abandoned.
[If there is no such a stage w, then Re has a win.]

Here when we define ∆(B)(j) at stage s, this means that Re is active at stage
s. We do this because in case that j enters A, Re will act at i′ and consequently,
we will either have a win for Re or have a B-change below i′ (so below i+ 1), i.e.
the change of B at stage w above, undefining ∆(B)(j).

We now check whether Re is also active at some i′′ < i′ at stage w.

• If no, then we just wait till next stage at which Re is active again at i† > i at
a stage w′ > w, and then for those j with ∆(B)(j) defined at stage s, define
∆(B)(j)[w′] = A(j)[w′] with use δ(j)[w′] = i†.

• If Re is active at some i′′ < i′ at stage w, then for those j ≤ i′′, we will redefine
∆(B)(j)[w] = A(j)[w] with the same use δ(j)[w] = i, and for those j > i′′, we
will wait till a stage w′ > w at which Re is active again at i† > i and define
∆(B)(j)[w′] = A(j)[w′] with use δ(j)[w′] = i†.

We say that Re is permanently active at i, if Re waits for A’s permission at
i at all stages after a certain stage s. By B <T A, we can show that Re can be
permanently active at at most finitely many i, and as a consequence, Re is met from
some stage onwards. Suppose for a contradiction that there are infinitely many i’s
at which Re is permanently active. We will show that for any k, we will compute
A � k, recursive in B.

Fix k. By induction, we assume the existence of s(k − 1) after which A(j) =
∆(B)(j) is true for each j < k. We now show the existence of s(k) > s(k− 1) after
which A(k) = ∆(B)(k) is true.

We let s be a stage at which ∆(B)(k) is first defined, and then search for an
ik and a stage sk > s such that Re is active at ik and B � ik = Bsk

� ik. The
existence of sk is guaranteed by the assumption that Re is permanently active at
infinitely many i’s. Then we have A(k) = ∆(B)(k)[s] for all stage s > sk, because
otherwise, we will have a win for Re, and this win cannot be undone by changes
of B. Now we take s(k) = max{s(k − 1), sk}. Thus ∆(B) computes A(k) correctly.
This completes the induction step.

This proves A = ∆(B), if we assume that Re is permanently active at infinitely
many i’s, which is a contradiction. Therefore, Re can be permanently active at only
finitely many i’s.

This definition of reduction ∆ is standard, and we will not specify it in the
construction part. What we will indicate is that at any stage, we will check whether
Re is active at certain i at a stage s, and whether it has permissions from A and
B to act at stage s.

1850001-37



May 14, 2018 13:15 WSPC/S0219-0613 153-JML 1850001

R. G. Downey, G. Wu & Y. Yang

Remark. We have seen that Re can be permanently active at only finitely many
i’s. It is possible that Re can require attention infinitely many times, and almost
all such requests are undone because of B’s early changes.

Construction of Γ. For the construction of p.r. functional Γ, making D = Γ
(A � B), at stage s, we define Γ(A � B)(x)[s] = D(x)[s] for x ≤ ds,s with the use
γ(x) as follows: if x = di,s for some i ≤ s, we define γ(x) = i, and if x is not of
the form di,s, we either redefine it as the previous definition, if it has definition
before, or let it be the same as γ(y), where y is the largest dj,s < x. Note that
x = di,s can be enumerated into D by bumping actions (so we have either an A-
permission or a B-change less than i), and Γ(A�B)(x) is undefined in both cases.
Again, by bumping actions, when di,s enters D, all numbers between di,s and ds,s

are enumerated into D, if they are not in D yet.
We will see soon that when interactions between R requirements are considered,

our construction of D will actually utilizes delayed permissions.

Interactions between two R requirements and delayed permissions. The
A-permissions for the basic case when B = ∅ is a direct permission, as once a per-
mission is given, one requirement is met, until it is injured by meeting a requirement
with higher priority. That is, in this basic case, the interaction among R require-
ments is simple and direct. It is not true anymore, when B is nonempty. We first
consider the interactions between two R requirements, say Re and Rf with e < f .
That is, Re has higher priority.

If Re is satisfied at i via some σi,ŝ1∗, we would not try Re again in the cone
above σi,ŝ1∗, and Rf will be satisfied exactly as in the basic module. This is the
point of last clause in the definition of being active, since Re cannot be active via
any string in this cone.

The case that needs more consideration is when both Re and Rf (hence, more
requirements) are ready to act at the same stage. For instance, at stage s, we might
have that Re is ready to act at i, via σi,s say, and Rf is also ready to act at j via
σj,s. There are two cases, depending on which one is bigger, i or j.

If i < j, then, in some sense, there is no problem if both are permitted by i′ ≤ i

entering A at stage t. We will re-route the construction of T through σi,ŝ1∗ at
this stage, and the nodes above σj,s will be terminated, or abandoned. We will
follow this idea. Of course, this is also true if we might first have been satisfying Rf

at j via σj,s, and then a smaller number entering A will allow us to work toward
satisfying Re at i.

However, the case when i > j is a bit tricky. Suppose that some i′ ≤ j enters A
first at stage t. This argument also encompasses the scenario that we were meeting
Re at i first and then, when i′ ≤ j enters A later, causing us to have a close look
at Rf and j. We consider both cases combined here. As both are permitted by
i′, it is reasonable to re-route the construction through σi,ŝ1∗, by priority. But it
can happen that some q enters B later, with j < q < i, causing us to re-route the
construction of T through σq,ŝ1∗. Thus, the temporary satisfaction of Re fails, and
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on the other hand, we have no action to satisfy Rf , even though an A-permission
at i′ at stage t is given for Rf to act at j via σj,s, which means that the given
A-permission is not used by Rf properly. This cycle could repeat infinitely often
and we would fail to meet Rf because we always try to satisfy Re first, who has
higher priority.

Note that the enumeration of q into B actually provides another opportunity
for Rf to receive attention, and this is the idea of delayed permission in the con-
struction. That is, when i′ enters A, then this change undefines Γ(A�B)(dj,s), and
we can define Γ(A �B)(dj,s) again, at stage t say, by letting γ(dj,s) be i, so, when
q enters B at stage w, Γ(A � B)(dj,s) is undefined again, and we can enumerate
dj,s into D, i.e. we meet Rf by re-routing the construction through σj,ŝ1∗ [Re at
i is no longer there to stop Rf ]. Thus, Rf receives attention at stage w. So, even
though Rf does not act at j via σj,s immediately at stage t, when i′ enters A, this
enumeration of i′ allows us to redefine Γ(A �B)(dj,s) with a bigger use, i.e. i, and
hence allows us to have a deferred action at stage w, when q enters B. For this
process, we will name it as Rf at j defers to Re at i at stage t.

For convenience, we define a function g to record this process. That is, when we
set the use γ(dj,s, s) as i (we are assuming that i > j), we define g(j, s) = i. So:

• when we define Γ(A�B)(dj,s) for the first time, at stage s, we set the use γ(dj,s, s)
as j, and we let g(j, s) = j, and

• this use can be lifted up to i later at stage t say, i.e. g(j, t) = i, when Rf at j
defers to Re at i at stage t.

In the construction, we will guarantee that γ(dj,s) can be lifted up at most
finitely many times, and hence ensure that Γ(A � B)(dj,s) is defined. We drop the
oracle A �B if there is no confusion.

The argument above assumes that no other things happen from stage s to t to
stage w, which is a simple case. It can happen that after stage s, Re becomes active
at some k < i with j < k < q. Thus, Rf can defer to Re once again, and this time
at k for the least such k. [Note that k ≤ i, and since Re is never active in the cone
above somewhere, it is apparently met. This delay can happen at most i − j many
times.]

We will guarantee that lims di,s = di exists, which implies D = Γ(A �B). This
will be done by analyzing the reason that makes di,s and g(i, s) move.

Now we explain how both Re and Rf are met in this set-up.

• Re is met by exactly the same argument as above, and hence Re has at most
finitely many permanently active i.
Let i0 be the largest one such that Re is permanently active i0 and suppose that
we are now only working after stage s0 above σi0,s0 = σ∗

i0
(and hence As0 � i0 =

A � i0).
• Rf is also met. There are two possibilities:
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(a) If there is a cone above some σî1∗, in which we have permanently met Re,
then the argument for Rf is exactly the same as the one in the basic module
in this cone.

(b) If there is no such a cone, then no attack on Re can succeed. In this case, we
can also show that Rf can be permanently active at at most finitely many
j’s and Rf is met.
Suppose for a contradiction that Rf has infinitely many permanently active
j. To compute A(p), we wait for a stage s > s0 where Rf has at least p many
active j1 < · · · < jp, which are all B-correct. These numbers exist by our
assumption.
We claim that A(p) = As(p). If not, then p enters A at a later stage t > s.
Since p ≤ jp, at stage t, if we do not meet Rf at one of these jk ≤ jp, it can
only be the case that this is deferring to Re at some i > jp. But since this
satisfaction of Re is not permanent, after some stage, it will be undone by
coding of B. As argued above, this can happen at most i− jp times, and all
such attacks on Re on i ≤ g(jp) will be canceled. Thus, we can meet Rf at
jp or below jp eventually, a contradiction.
Thus A is reducible to B, a contradiction again.

When more requirements are considered. The idea above can be extended to
handle several requirements, with more complexity, of course, due to the subtlety
of tracking the movement of use of γ(dj,s, s), i.e. the approximation of the value of
g(j). Let us have a look at a few scenarios first. We will take the interactions among
R0,R1,R2,R3 as an example. Note that the priority among these requirements is
decreasing.

• Initially, there were only R2 and R3 which are active at j and k with k < j

respectively. As argued in the two-requirement case, if A permits us to re-route
the construction through σk,ŝ1∗ (hence also permits through σj,ŝ1∗), then we
would raise g(k, s) to j and re-route the construction through σj,ŝ1∗. We assume
this case first.

Then the deferred R3 at k waits for a B-change, which would remove R2 at
j, and allow us to re-route the construction through σk,ŝ1∗.

— Next, at some stage t > s, R0 becomes active at σi,t which extends σj,ŝ1∗,
and A permits the construction to re-route the construction through σk,ŝ1∗

at stage t and we will meet R0 at σi,t̂1∗.
In this case, we would still define g(k, t) = j = g(k, s), i.e. we keep the γ-use
γ(dk,s) as j, because the R3 would work above σj,ŝ1∗, until the B-coding
removes the satisfaction of R2 at σj,t, which means that Γ(dk,s) is undefined
again, and R0 and R2 cannot be met by their previous actions. This will be
called extending the deferring of R3 at k to R0 at i.

— However, the situation would have been different if there is an R1 having now
an active position l between k and j, which was permitted to act at t (so R0
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at i is also simultaneously permitted, as k < l < j < i). In this case we would
need to defer R1 at l to R0 at i by setting g(l, t) = i. Once R0 had been
found to fail, then the construction would be re-routed through σl,t̂1∗.
In this case, there is no need to defer R2 at j to R1 at l, because l is less than
j, and once R1 fails at σl,t̂1∗, B must have change below l and hence below
j, and then the construction would re-route through σl,t̂1∗.
For R3, we need to defer R3 at k to R1 at l, because k is less than l. Once R1

fails at σl,t̂1∗, B’s change below l (hence below j) allows us to re-route the
construction through σl,t̂1∗. This will be called shifting upward the deferring
of R3 at σk,s from R2 at j via σj,t to R0 at i via σi,t.

• Returning to the three requirements R0,R2 and R3 with the same positions,
but with a slight different scenario. That is, initially, R2 at j deferring to R0 at
i [instead of being met at j as above], and the construction would be re-routed
through σi,t̂1∗, which extends σj,t̂0̂1∗. Then, when k was A-permitted, we
would raise g(k, s) to i, because, according to the assumption of this case, we do
not have a win for R2 at j via σj,t̂1∗ yet, and once R0 fails at i via σi,t̂1∗ later,
we could not expect for a change of B below j, but we need to use a (delayed)
A-permission at k to re-route the construction through σk,t̂1∗.

Suppose that R0 fails at σi,t̂1∗ later at a stage w (so B changes below i,
undefining Γ(dk,w)), and also R2 becomes active at j′ via σj′,t̂1∗ (j′ < i), then,
as both Γ(dk,w) and Γ(dj′,w) are undefined, R3 at k defers to R2 at j′. This will
be called shifting downward the deferring of R3 at σk,s from R0 at i via σi,t to
R2 at j′ via σj′,w.

Note that at stage w, R3 at σk,s defers to R2 at j′ via σj′,w, which is exactly
the first case above.

Thus, among these four requirements, the deferring actions of R3 at k, i.e.
extending, shifting upward and shifting downward, can happen at most finitely
many times. As R0,R1,R2 can be permanently active at at most finitely many
times, and eventually, the requests of R3 can be deferred to higher priority require-
ments at most finitely many times. This will guarantee that R3 can be satisfied
after a certain big stage.

This explanation can be extended to several requirements of arbitrary size easily,
where the most important point is to clarify the actions of extending and shifting the
deferrings, upward and downward. In general, if we have n many R requirements,
Case 4 (shifting downward) above can repeat a few times, and forming a sequence
of n − 1 deferrings, all waiting for a B-change to invalidate R0’s action, and the
shifting of deferrings upward is caused by changes of A. Once we have such a
B-change, we check which Re-requirement with the highest priority can use this
B-change at k to act and enumerate numbers into D (with pumping actions). In
this case, the deferring of Re to higher priority requirements is released, and Re has
opportunity to take action to get satisfied. Once B has an even smaller change (less
than k, of course), which can invalidate Re’s action just now, and providing Re′ to
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take action. So for Rn, after an A-permission is given, either it keeps in deferring
state, and it will be satisfied in a cone where some higher priority requirement is
satisfied, or after all the deferrings are released, it will eventually have a chance to
act (satisfied), or invalidated by a B-change (so the corresponding part of ∆(B) is
rectified).

Construction of D and T . We are now ready to present the construction. We
assume that at each stage, at most one element enters A �B, and we let cs be the
number entering A �B at stage s, if any. We always assume that cs < s.

Stage 0: Set D0 = {0}, T0 = ∅ and Γ not defined yet everywhere.

Stage s + 1: Having Ds, Ts, and also Γ(As � Bs) defined up to ds,s. We have
Ds = {d0,s < d1,s < · · · < ds,s} and Ts contains s non-terminal leaves, with the
rightmost one as σs,s, defined by induction on j < s as follows:

σ0,s = 1d0,s and σj+1,s = σj,ŝ0̂1dj+1,s−dj,s−1

and the other non-terminal leaves are of the form σj,ŝ1ds,s−dj,s for j < s.
Also we assume that for x ≤ ds,s, Γ(A �B)(x)[s] is defined.

There are two steps at stage s+ 1:

Step 1. Consider the enumeration of cs+1 into A �B. There are three cases.

Case 1: No number is enumerated into As+1 �Bs+1, i.e. cs+1 does not exist.
In this case, we let Ds+1 = Ds and extend Ds+1 = Ds ∪ {ds,s + 1}, i.e.

let ds+1,s+1 = ds,s + 1. Extend σj,s to σj,ŝ1 for all j < s and extend σs,s by
σs,ŝ1 and σs,ŝ0, to form tree Ts+1. Also extend the definition of Γ to include Γ
(A � B)(ds+1,s+1)[s + 1] = 0 with use ds+1,s+1 and set g(j, s + 1) = g(j, s) for all
j ≤ s and g(s+ 1, s+ 1) = s+ 1.

Case 2: cs+1 is enumerated into Bs+1. Let p = cs+1, for simplicity.
In this case, we re-route the construction through σp,ŝ1∗, which means that

enumerate all dk,s with p ≤ k ≤ s into Ds+1. Let

Ds+1 = {d0,s, . . . , dp−1,s, ds,s + 1, ds,s + 2, . . . , ds,s + (s+ 1 − p)}.
That is, for k with p ≤ k ≤ s+ 1, dk,s+1 = ds,s + (k + 1 − p).

Terminate all leaves on Ts extending σp,ŝ0. We form Ts+1 as follows: the
rightmost path of Ts+1, i.e. σs+1,s+1, is (σp,s � dp,s)̂1ds,s−dp,ŝ0ds+1,s+1−ds,s ,
and the other paths of Ts+1 are formed in the following pattern: (σs+1,s+1 �
dk,s+1)̂1ds+1,s+1−dk,s for k ≤ s+ 1.

Find the requirement Re (with the highest priority) whose previous action at i
say, is invalidated by the enumeration of p, if any, and declare that is not satisfied
yet. Check whether there is a requirement Re′ at some j defers to Re at i. If yes,
then find Re′ (at j′) with the highest priority, let it act, and defer those Re′′ at j′′

to Re′ at j′ where e′′ > e′ and p < j′′ < j′. Correspondingly, for these j′′, define
g(j′′, s + 1) = j′ and define Γ(A � B)(dj′′,s+1)[s + 1] = D(dj′′,s+1)[s + 1] with use
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bigger than σ(j, s). Also define Γ(A �B)(x)[s + 1] for other x < s+ 1 if it has not
definition, according to the rule of Γ.

Case 3: cs+1 is enumerated into As+1. Let p = cs+1, for simplicity.
In this case, we find Re with the highest priority that can act at i where i > p,

if any, and let Re act and declare that Re is satisfied.
If so, then di,s, . . . , ds,s are enumerated into D, and consequently,

Ds+1 = {d0,s, . . . , di−1,s, ds,s + 1, ds,s + 2, . . . , ds,s + (s+ 1 − i)}.
That is, for k with i ≤ k ≤ s+ 1, dk,s+1 = ds,s + (k + 1 − p).

For T , we re-route the construction through σi,ŝ1∗, and terminate all leaves
on Ts extending σi,ŝ0. We form Ts+1 as follows: the rightmost path of Ts+1, i.e.
σs+1,s+1, is (σi,s � di,s)̂1ds,s−di,ŝ0ds+1,s+1−ds,s , and the other paths of Ts+1 are
formed in the following pattern: (σs+1,s+1 � dk,s+1)̂1ds+1,s+1−dk,s for k ≤ s+ 1.

For those requirements Re′ , e′ > e, that are active at i′ > i say, defer Re′ at
i′ to Re at i, and we define g(i′, s + 1) = i. Define Γ(A � B)(dj′ ,s+1)[s + 1] =
D(dj′,s+1)[s + 1] with use bigger than σ(i, s). Also define Γ(A � B)(x)[s + 1] for
other x < s+ 1 if it has not been defined, according to the rule of Γ.

Step 2. For each e ≤ s+ 1, find whether Re is active at some i, i.e. via σ(i, s+ 1),
i ≤ s+ 1. If yes, declare that Re requests for A-permission below i to act.

End of stage s+ 1

End of construction

7. Verification

We now verify that the constructed c.e. set D and tree T satisfy all requirements.
It is obvious that D is a c.e. set and T is a computable tree.

Lemma 7.1. For all i, the coding of B can change di,− at most finitely many times.

Proof. It is obvious, if di,s 	= di,s+1, and it is because of the coding of B, then B

must have a change on j ≤ i and hence the coding of B can change di,− at most
i+ 1 many times.

Lemma 7.2. For each e:

(1) Re has at most finitely many permanently active i’s, and Re is satisfied.
(2) If the construction of T cannot be eventually re-routed into a cone with empty

intersection with Pe, then any deferring being made by Re will be released after
finitely many stages.

Proof. We prove it by induction on e. Suppose that (1) and (2) are true for all
e′ < e, we will prove (1) and (2) are also true for Re.

Let s0 be the least stage after which no Re′ , e′ < e, can be permanently active
at more i’s. By induction hypothesis, we can have a string σ′ in T such that after
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stage s0, σ′ is always on the rightmost path on T . Thus after stage s0, Re works
only above σ′. Note that at stage s0, Re at some i can be deferred to some Re′ ,
e′ < e, at some j with j > i. Let i be the largest such a number, and without loss
of generality, assume that after stage s0, A has no changes below i. According to
our assumption on σ′, these deferrings will keep going on forever.

We first show that (1) is true for Re. At any further stage s, we will check
whether some σj,s, j > i, is not in Pe,s, and if any, check whether A has permissions
to allow the construction of T to re-route through σj,s. Remember that before the
construction part, we explained about how to construct a p.r. functional ∆: when
∆(j) is defined at a stage t, we should have seen some σj′,t, (j′ > j), is not in Pe,t,
and the change of D(j) will actually provide a permission for the re-routing through
σj′,t. Note that this re-routing action could be deferred by some Re′ , e′ < e, and
by our assumption of stage s0, we know that this deferring will be released after
finitely many stages, and Re will eventually succeed in performing the re-routing
action, if B does not change to invalidate this. This shows that we either satisfy
Re by re-routing the construction of T to a cone with empty intersection with
[Pe], or we force a change of B below j′, allowing us to redefine ∆(B)(j). If Re

has infinitely many permanent active k’s, then as discussed before, ∆(B) would be
total and computes A correctly. As A >T B, ∆(B) cannot be total and computes
A correctly. This shows the existence of j > i such that either ∆(B)(j) is defined
but with ∆(B)(j) 	= A(j), or ∆(B)(j) is not defined at all. In the former case, Re

acts by re-routing the construction of T to a cone. As B has no change below j′,
i.e. below δ(j), T will work in this cone forever and Re is met. In the latter case,
there are two possibilities. One possibility is that after a certain stage w, ∆(B)(j)
becomes undefined and cannot have definition at any further stage. This means
that after some stage, Re cannot be active at any string above σj′,w, and hence
strings above σj′,w will be always in Pe, showing that [T ]\[Pe] is finite, and Re is
met. The other possibility is that Re can be active at infinitely many k’s. As we
already know that Re can be permanently active at only finitely many k’s, we know
that the changes of B will invalidate almost all of these, and hence the rightmost
path in [T ] is in [Pe], and hence, [T ]\[Pe] is finite, so Re is met.

Now we prove (2), by showing that at any stage s > s0, Re may wait for A-
permission to act at j, i.e. to re-route the construction of T through σj,s, and when
A has a permission at stage t, some Re′ , with e′ < e, at j′ > j, may defer Re

at j. According to our assumption on s0, this deferring will be released later by a
B-change, and we can show that after a stage big enough, all of these deferrings
will be released, allowing Re to re-route the construction of T through σj,s. This
action may also defer other R-strategies with lower priority, and if the construction
of T eventually comes back to Pe, Re’s action at j will be invalidated by changes
of B, which means that this deferring to other lower priority R-requirements will
be released eventually. (2) is true.

This completes the proof of Lemma 7.2.
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Lemma 7.3. For all i, lims di,s = di exists. As a consequence, B ≤T D, as we
specified before by constructing a p.r. functional Θ.

Proof. Fix i. We have seen in Lemma 7.1 that every change of B below i also
changes di,−. Another way of having di,s 	= di,s+1 is due to some actions of Re with
e < i by re-routing the construction of T to a cone above σj,s with j ≤ i. This action
is initiated by A-permissions below j, and hence below i (the re-routing actions can
be delayed by some Re′ for awhile (maybe forever) where e′ < e). So once A has
no more changing below (i + 1), after stage s say, there is no more possibility of
initiating further enumeration of σi,−. That is, all the possible changes of σi,− are
initiated by stage s. This means that σi,− can change at most i+ 1 many times by
actions of R-requirements during the construction.

There is no other way of changing σi,−. Hence, together with Lemma 7.1, σi,−
changes only finitely many times, and has a limit.

Immediately, by the description of Θ we mentioned before, B ≤T D.

Lemma 7.4. Γ(A �B) is total and D = Γ(A �B).

Proof. We prove the lemma by induction on x.
Fix x and assume that for any y < x, Γ(A�B)(y) is defined with Γ(A�B)(y) =

D(y). We need to show that Γ(A �B)(x) is defined with Γ(A �B)(x) = D(x).
Note that in the construction, when we define Γ(A�B)(x) for the first time, at

a stage s say, and x is already in Ds, then we just define Γ(A�B)(x) = 1 with use
γ(x)[s] = γ(x−1)[s], and keep γ(x) the same as γ(x−1). So once γ(x−1) becomes
fixed, γ(x) is also fixed.

So we assume that when Γ(A � B)(x) is defined for the first time at stage s,
x 	∈ Ds. Then x = di,s for some i ≤ s, and the A-part use and B-part use are
defined as i + 1. When Γ(A � B)(x) becomes undefined during the construction,
due to changes of A or B below the use, we choose another use γ(x) for Γ(A�B)(x)
only when A changes below i+ 1. [If B changes below i+ 1 first, we just keep the
use the same.]

Suppose that A changes below i + 1 at stage s′ say. If at this stage, no Re-
requirements, e ≤ i, acts by re-routing the construction of T via σj,s′ , where j ≥ i,
then just keep use the same, for both A-part and B-part. Otherwise, without loss of
generality, we assume that Re2 at j2 defers to Re1 at j1, with e1 < e2 and j2 ≤ i ≤
j1. Then we keep the A-part of the use as i+ 1, but increase the B-part of the use
as j1. If A changes below i+ 1 or B changes below j1, then Γ(A � B)(x) becomes
undefined again, and we check whether x is enumerated into D at this stage, and
if not, we check whether the deferring has been shifted upward or downward or
extended to an R-requirements with even higher priority. In the former case, as x
is now in D, we just define γ(x)[s + 1] the same as γ(x)[s]. In the latter case, the
A-part of the use will be kept the same, i.e. i+, and the B-part of the use will be
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changed to an even bigger number, depending on whether the deferring is extended
(the B-part of the use will be kept the same), or shifted upward or downward (the
B-part of the use could be increased). For this i, only requirements Re, with e < i,
can initiate these deferrings and for each e, after Re initiates such a deferring at
j, Re can have deferrings at j′ only when j′ < j [we can explain this in terms of
function g(i, t)], and hence, for this i, this deferring can happen at most finitely
many times, and γ(x) will have a fixed definition after these stages, Γ(A�B)(x) is
defined. In this process, x can be enumerated into D only when A changes below
i+ 1 or changes of B release the deferrings after several steps, and at each such a
step, Γ(A�B)(x) is undefined, and x can be enumerated into D only at these steps.

This shows that Γ(A�B)(x) is defined everywhere and hence is a total function,
and also Γ(A �B)(x) = D(x).

By induction, Γ(A �B) is a total function and Γ(A �B) = D.

This completes the proof of Theorem 1.4.
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