LIMITWISE MONOTONIC FUNCTIONS AND THEIR
APPLICATIONS

RODNEY G. DOWNEY, ASHER M. KACH, AND DANIEL TURETSKY

ABSTRACT. We survey what is known about limitwise monotonic functions
and sets and discuss their applications in effective algebra and computable
model theory. Additionally, we characterize the computably enumerable de-
grees that are totally limitwise monotonic, show the support strictly increas-
ing 0’-limitwise monotonic sets on Q do not capture the sets with computable
strong n-representations, and study the limitwise monotonic spectra of a set.

1. INTRODUCTION

Early applications of computability theory for demonstrating that various pro-
cesses in mathematics were algorithmically unsolvable tended to be rather crude
codings of the halting problem into the relevant mathematical structure. A classical
example is the Novikov-Boone proof of the undecidability of the word problem in
finitely presented groups (see [3], [4], [5], [6], and [7] and [25]). In that proof, a
finitely presented group is constructed around a given description of the quadru-
ples of a Turing machine, as in the proof of the undecidability of the word problem
for finitely presented semigroups (see [27]), and then algrebra is used to make the
machines action faithfully represented in the group. As observed by Post (see [26]),
in many contexts it is enough to simple have the halting problem as a set and then
code, such as the proof of Gédel’s incompleteness theorem.

Computable model theory, and later reverse mathematics, pointed at encodings
which were more complex. In computable model theory, traditionally we assume
that we are given some structure whose elements are coded by the integers and
whose open diagram is computable. In particular, a computable linear ordering
would simply be (A : <), where the universe A is computable and the ordering <
is a computable relation on A x A. Orderings are a natural arena to find codings
other than the halting problem, since it is quite hard to code sets into them at low
levels since little is definable with one quantifier. One of the first applications of
more complex codings was due to Feiner (see [12]) who demonstrated how to code
a %9 set into a computable linear ordering via sizes of finite mazimal blocks, i.e.,
a finite collection of points, all adjacent, such that the left and right endpoints are
limit points. One of the classical applications of Feiner’s Theorem is to construct
a 0’-computable linear ordering not classically isomorphic to a computable one by
applying this result in relativized form and noting that there are sets S which are
2% -computable but not %9-computable.

Key words and phrases. limitwise monotonic function.

The first and second author’s research was supported by The Marsden Fund of New Zealand,
the latter via a Post-Doctoral Fellowship. The third author’s research was supported by a VIGRE
Fellowship and a Research Assistantship from the University of Wisconsin Graduate School.

1

2 DOWNEY, KACH, AND TURETSKY

Later, Lerman studied such codings where the finite maximal blocks were sepa-
rated by the order type (.

Definition 1.1. The strong (-representation of a set S = {ng <n; <mng <...}is
the linear order

C+no+C¢+n+¢+ne+....
A weak (-representation of a set S = {ng <mi; <ng <...}is a linear order
C“Fﬂf(o) +C+nf(1) +C+nf(2) + ...
for some (total) surjective function f.

Theorem 1.2 (Lerman [24]). A set S has a computable strong (-representation if
and only if S is AY. A set S has a computable weak (-representation if and only
if S is ¥9.

There are many many applications of the technique of coding higher level sets
into algebraic invariants of some algebraic object. They include applications in
(abelian) group theory, ring theory, logic, lattice theory, etc. Here we refer the
reader to [2] for such examples.

Beginning with the work of Khisamiev (see [20]), more subtle considerations came
into such codings when it was realized that not only the arithmetical complexity of
the set is important, but also the manner of the formation of the set. Khisamiev’s
intuition was that computability is concerned with dynamic enumerations, and this
fact has ramifications for objects in computable structures. Khisamiev’s example
was in abelian p-groups, and we will look at his example later, but the nature of our
concern is best illustrated by asking which equivalence structures are computable.
Note that if we have a computable equivalence relation =, then [z]=, the equivalence
class of x, has the following important property: it only gets bigger! That is, at the
stage that z enters the universe of the relation, we might discover that [x] has n
many elements. At later stages, the class can only gain elements. This phenomenon
is captured by limitwise monotonicity.

Definition 1.3. A function F' is limitwise monotonic if there is a computable
approximation function f(-,-) such that, for all x,

(i) F(x) = lim, f(z,s).

(ii) For all s, f(x,s) < f(z,s+1).

A set S is limitwise montonic if it is the range of a limitwise monotonic function.
It is a very easy argument we leave to the reader to prove the following:

Theorem 1.4 (Calvert, Cenzer, Harizanov, and Morozov [8]). An equivalence
structure £ with infinitely many classes is computable if and only if there is a
limitwise monotonic function F (with range w U {oo}) for which there are exactly
Hz : F(z) = k}| many classes of size k (for each k € wU {0}) in E.

Theorem 1.4 can be rephrased to say the computable isomorphism types of com-
putable equivalence structures are specified by limitwise monotonic functions.

It turns out that there are a number of applications of limitwise monotonicity
in the literature, and we will explore some of these in this paper. They include
quite a number of problems in linear orderings, trees, p-groups, computable spectra
of Ni-categorical structures, and general computable model theory in and around

LIMITWISE MONOTONIC FUNCTIONS AND THEIR APPLICATIONS 3

prime models. Many of these applications require that the notion be applied in
relativized form, and we will explore this, proving some general theorems about
such sets.

Because of the connection between limitwise monotonic sets and applications,
we will try to understand when it is possible to find a nonlimitwise monotonic set
below a given degree. We therefore introduce the following concept.

Definition 1.5. A degree a is totally limitwise monotonic if every set B <r ais a
limitwise monotonic set.

We prove the following result.

Theorem 1.6. A computably enumerable degree a is totally limitwise monotonic
if and only if a is non-high.

Thus, for example, if a non-high computably enumerable degree a can compute
a set, then there is a computable equivalence structure having classes of exactly
those sizes.

Additionally, we will look at the situation where limitwise monotonicity seems
not to be enough, but certain variations suffice, such as n-representations. Here we
will show that for the question of strong n-representations, the variation of limitwise
monotonicity introduced by Kach and Turetsky (see [19]) does not suffice.

Theorem 1.7 (Turetsky). There is a set S with a computable strong n-representation
that is not support strictly increasing 0’ -limitwise monotonic on Q.

In the last section, we introduce a new notion which we term the limitwise
monotonic spectrum of a set. The idea here is that we wish to recast the relationship
between limitwise monotonicity and degrees of unsolvability in a more abstract
setting. This leads to the following definition.

Definition 1.8. If S C w is any nonempty set, define LMSpec(.S) to be the set
LMSpec(S) := {a: S is a-limitwise monotonic}.

In addition to rephrasing existing results, we show if a < b, then there exists
a set S with a ¢ LMSpec(S) and b € LMSpec(S). While we do not develop this
subject further, we believe this may have wider applications.

2. LIMITWISE MONOTONIC FUNCTIONS AND SETS

As a first step towards understanding the limitwise monotonic sets, it is natural
to determine where they sit in the arithmetic hierarchy. It is also important to
recognize that being a limitwise monotonic set is not degree invariant.

Theorem 2.1 (Folklore).
(i) If A is a limitwise monotonic set, then A is 9.
(i) If A is X9, then A @ w is a limitwise monotonic set.

Proof. (i) Let f be a computable approximation function witnessing that A is a
limitwise monotonic set. Then n € A if and only if (3x)(3s)(Vt > s) [f(z,t) = n].

(i) Let A be 39, so that n € A if and only if (3s)(Vt) [R(n, s,t)]. For convenience,
we assume (Vn) [-R(n,0,0)]. Then

F(ns) 1) = {Qn if (v <) [R(n, s,),

2n +1 otherwise

4 DOWNEY, KACH, AND TURETSKY

witnesses that A ® w is a limitwise monotonic set. O

The latter is essentially an idea of Lerman (see [24]). As implicitly noted there,
this result generalizes to any nonimmune X9 set in place of w. Indeed, it is not
hard to show any X9 set containing a limitwise monotonic set is itself a limitwise
monotonic set.

It might be tempting to conjecture that every 9 set is a limitwise monotonic
set, but this is not true. Though every c.e. set is clearly limitwise monotonic, not
every d.c.e. set is a limitwise monotonic set. Recall a set A is d.c.e. if there are c.e.
sets B and C' with A =B — C.

Theorem 2.2 (Khoussainov, Nies, and Shore [22]). There is a AY set A, indeed a
d.c.e. set A, which is not a limitwise monotonic set.

Proof (Sketch). We construct a d.c.e. set A satisfying the requirements:
R : The function ¢, (-,-) does not witness that A is a limitwise monotonic set.

Towards meeting R, we pick a witness ng and put ng into A. We then wait for
vo(x,tg) = no for some x and stage to > ng. At such a stage tg, we remove all
elements between ng and ¢y currently in A, and allow only elements n larger than ¢
to enter A. We maintain this R restraint until a stage t; > tg and number n, > ng
is found with ¢g(z,t1) = n; and n; € A. At such a stage t1, we put ng + 1 into A.
We then repeat this process by taking all elements between n; and t; out of A,
releasing the previous A restraint, and allowing only elements n less than ¢y or
bigger than t; to enter A.

If for every ¢ we find a stage ¢; and number n;, then the values of g (z, s) tend
to infinity, satisfying Rg. Lower priority strategies R. can then play “behind”
this Rg restraint. If instead there is an i such that ¢; and n; are never found, then
limg po(z,s) € A, satisfying Ro. Lower priority strategies can then play “above”
this finitary restraint.

The interaction of strategies is straightforward as above, with each strategy
guessing whether higher priority strategies have a finitary or infinitary outcome. [

In the definition of a limitwise monotonic set, we imposed no restraint on the
number of times an element could appear in the range of F. One might think that
such a restraint would give a stronger notion, but this turns out not to be the case.

Theorem 2.3 (Harris [14]). If F is a limitwise monotonic function with infinite
range, then there is an injective limitwise monotonic function G with range(F) =
range(G).

Proof. Fixing a limitwise monotonic approximation f for F', we define a limitwise
monotonic approximation g for G. Indeed, we define

0 if m > s,
g(m,s) = ¢ f(n,t) otherwise, where (n,t) with t > s is least so that
f(n,t) # gz, s) for all x < m and f(n,t) > g(m,s —1).

As g is clearly computable (note n and ¢ must exist as range(F') is infinite) and
nondecreasing, it suffices to argue that G(m) = lim, g(m, s) exists for all m, that G
is injective, and that range(F') = range(Q).

Induction demonstrates the limit G(m) exists for all m. Indeed, if G(0), ...,
G(m — 1) all exist, fix a stage after which these limits are achieved. Then either

LIMITWISE MONOTONIC FUNCTIONS AND THEIR APPLICATIONS 5

g(m,s) < max{G(0),...,G(m — 1)} for all s (in which case G(m) exists) or there
exists an sp € w with g(m, sg) > max{G(0),...,G(m — 1)}. In the latter case, the
value of n used in defining g(m,s) can only change finitely often, from which it
follows that G(m) exists.

The injectivity of G follows from g being injective at every stage, i.e., that
g(m,s) # g(m/,s) if m #m'.

Finally, we argue range(F') = range(G). As range(G) C range(F) is immedi-
ate, we demonstrate that F(n) € range(G) for all n € w by induction on n. If
F(0),...,F(n — 1) € range(G), fix a stage so for which F(k) = f(k,s) for all
s > s9 and k < n and for which g(m,s) = F(k) for all s > so and m witness-
ing F(0),...,F(n — 1) € range(G). Then at stage sy (provided sy > n), either
g(z,s) = f(n,s) for some = < sg or g(sg, sp) will be defined as F(n) = f(n, so).
In the former case, either G(x) = F(n) or G(y) = F(n) for some y < z; in
the latter case, either G(sg) = F(n) or G(x) = F(n) for some z < so. Thus
F(n) € range(G). O

Because of its use in applications, it is natural to wonder which degrees compute
a Y9 set that is not a limitwise monotonic set. This motivates our notion of a totally
limitwise monotonic degree (recall Definition 1.5).

Theorem 2.4. A computably enumerable degree a is totally limitwise monotonic
if and only if a is non-high.

Proof (). We show if a is high, then it computes a nonlimitwise monotonic
set. Fixing a c.e. set A € a with enumeration {A;}sec,, as a is high there is
an A-computable function f# that is dominating with respect to the class of all
computable functions. Denote the use of f4 by g, so that g(n) is the use of the
computation f4(n). We build a set S <7 A (we witness this by S = I'4) that is
not a limitwise monotonic set by diagonalizing against all candidate approximation
functions {®; }ic,. We introduce the obvious requirements.

R; : The function ®; does not witness that S is a limitwise monotonic set.

The strategy to satisfy R; is similar to that in Theorem 2.2 except here we need
an A-permission to remove a witness ng put into S. As this A-permission may
never appear, there is a need to choose another witness n; and restart this process.
We build a computable function h, extending it whenever we need a permission.
That f# is dominating will guarantee that eventually a witness will receive an
A-permission.

Strategy for R;:

(1) Choose an integer ng and put ng in B via ['4:19(m0) (ng) = 1.

(2) Wait for a column x for which ¢;(xq, s) = no.

(3) For n < ny, if h(n) is not yet defined, define h(n) = f4=(ny).

(4) Wait for Asy1 | g(no) # As | g(no). While waiting, return to Step 1,
instead using a new integer ny41.

(5) If an A-permission is seen, remove ng and all later ny, from B via TAs19(m0) () =
0, and cancel all work for later ng.

(6) Keep no and all later ny out of B, and wait for ¢;(xg,s) to increase to
some np currently in B. When this occurs, return to Step 3 with n; in
place of ng.

6 DOWNEY, KACH, AND TURETSKY

Of course, if the strategy spends cofinitely many stages in Step 2 with some ny,
then R; is satisfied as ny € S and ny, & range(®;). If the strategy spends cofinitely
many stages in Step 6 for some ng, then ®;(z;) ¢ S. If the strategy sees Agq1 |
g(nk) # As | g(ng) for cofinitely many k, then R, is satisfied as ®;(z;) is not
defined (having an infinite limit). However, one of these must be the case, as if we
wait at Step 4 forever with infinitely many &, then h is not dominated by f4, a
contradiction.

As before, the interaction of strategies is straightforward, with each strategy
guessing whether higher priority strategies have a finitary or infinitary outcome. [

Proof (+<=). Fixing a nonhigh c.e. degree a and a c.e. set A € a with approximation
{A}scw, we show every B <p A (say B = ¥U4) is a limitwise monotonic set. We
approximate B by running ¥4 with the approximations to A. Let B, denote our
approximation at stage s, i.e., let By = WA4[s]. We enumerate a subset of Bj
recursively as follows:

by = minB;
b3, = min{b€ B, | (Vt < s)[b>bL]}.
Before continuing, we argue lim, b exists for all n.

Claim 2.4.1. For every n, the sequence {b }sc., converges to a finite limit.

Proof. Clearly, we have min B = lim, bj. Assuming lim, b;, exists, we show lim, b7 , |
exists. As limg b? exists by hypothesis, the set {b% }s¢,, is finite, so we may let b € B
be least such that b is greater than all these values. Let sy be a stage by which B
has converged on b and b), has converged. Then for any stage s > so, we have
by 1 =b. O

With this, we define a total function f = I'4. Using a witness to the failure of f
being a dominating function for the class of total computable functions, we demon-
strate B is a limitwise monotonic set. As preparation, let {®;};c. be an effective
listing of all partial computable functions for which ¢; ¢(n) | implies ¢; s(m) | for
all m < n.

Initially, we define I'4o(n) = 0 for all n with use Ay | ¥(b%). At stage s + 1, if
I'4s(n) is undefined, we define it by

4 (n) = max{y; s(n) : i <nand ¢; s(n) |} +1
with use Ag [¥(b3).

As a consequence of Claim 2.4.1, it follows that ¥ (bf) converges. Thus f is a
total A-computable function. As a is nonhigh, we may fix an index k such that yy
is a total computable function which f does not dominate. From this, as already
suggested, we construct a limitwise monotonic approximation h to B.

Construction: At stage s = 0, we define h(x,0) = 0 for all x.

At stage s+ 1, if ¢, has not converged on any new values since stage s, we define
h(z,s+ 1) = h(z, s) for all x. If pr(n) newly converges at stage s for some n < s,
then for every b € By with b < b, we choose a previously unused x and define
h(z,s + 1) = b. For every x with h(x,s) ¢ Bs, we define h(x,s + 1) = b3, for the
least m < n with b5, > h(x,s). For all other z < s, we define h(z,s+ 1) = h(z, s).

LIMITWISE MONOTONIC FUNCTIONS AND THEIR APPLICATIONS 7

Verification: We verify that h is a limitwise monotonic approximation to B. By
construction, the function h is total and computable. Define H(z) = limg h(z, s).
We verify that H(x) exists and that H witnesses that B is a limitwise monotonic
set.

Claim 2.4.2. The function H is total.

Proof. Fixing an integer z, we may suppose there is a stage so with h(z,sg) > 0
(else H(z) = 0). Let n be an integer such that ¢ (n) has not converged by stage so,
and ¢x(n) > f(n). Let s; > sg be the stage at which ¢ (n) converges. Then bf has
necessarily converged by stage s;. By our assumption that ¢ (n) converges before
v (m) for any m > n, we have h(z,s1) < b3t. Thus H(z) < bsl. O

Claim 2.4.3. The function H enumerates B.

Proof. For any b € B, choose a stage so such that Bs has converged on b, and an n
such that b > b. When ¢}, converges on any m > n, an x will be created such
that h(x,s) = b, and this will never change at later s. Thus H(x) = b.

For any ¢ ¢ B, choose a stage sy such that B, has converged on ¢, and an n such
that b%0 > ¢. When ¢y, converges on any m > n, any « with h(z, s) = ¢ will change
their value. Thus, for no = does H(x) = c. (]

This completes the proof. ([l

The hypothesis that a is c.e. in Theorem 2.4 is very much necessary as the
following result shows.

Theorem 2.5 (Hirschfeldt, R. Miller, and Podzorov [15]). There is a low A set
A which is not a limitwise monotonic set.

Proof (Sketch). In addition to the R, requirements of Theorem 2.2, we meet the
standard lowness requirements:

N 1 3% [Ud(e)[s] |] = Ti(e)l.

To allow N, to be met in the presence of the R, requirements of Theorem 2.2, we
use the fact that 4 is AS. More specifically, we allow R; for j < e to injure N,.
This would seem problematical since the action of R; may be infinitary. However,
this is not the case.

For example, consider a single higher priority R; requirement. If we are at
a stage where we see some computation W2 (e)[s] | and the use ¥ (e)[s] is less
than the number n; currently being used for R;, then N, can assert control of
A T p2(e)[s] and preserve the computation with impunity. On the other hand,
it might be that R; is pointing at some n; below the use ¥2(e)[s]. In this case,
what N, will do is assert control and restrain this portion of A with priority e. Of
course ; can later injure this, but when it does it must move to a new n;y; and
this will be large. It might happen that at some stage s’ > s, again N, might try
to preserve some new computation W7 (e) | [s’] and this new computation can be
injured by R; again. But once we pick yet another n;1 2, we note that R; will only
be concerned with numbers bigger than n;.1 > 12 (e)[s]. With no injury to R;
we can therefore restore the stage A [(¥2(e)[s])[s'] = A | ¥ (e)[s] and then this
computation U4 (e)[s'] = U4 (e)[s] with no possible future injury from R;.

In this way, with a finite injury argument we can meet all the N. O

8 DOWNEY, KACH, AND TURETSKY

The final result in this section is a basis theorem for I1{ trees. Its proof is not
illuminating, so we omit it.

Theorem 2.6 (J. Miller [19]). If P C 2% is a nonempty 119 class containing a
nonempty set, then P contains a limitwise monotonic set.

Thus, for example, there are limitwise montonic sets that are 1-random and that
are DNRs.

3. APPLICATIONS OF LIMITWISE MONOTONIC FUNCTIONS AND SETS

Though equivalence structures appear to be the simplest application of limitwise
monotonic sets to effective algebra, historically limitwise monotonic functions were
introduced by Khisamiev as a means of characterizing the computable reduced
abelian p-groups of length w (see [20]). There, these functions were termed s-
functions.

Theorem 3.1 (Khisamiev [20]). A reduced abelian p-group G of length w is com-
putable if and only if there is a limitwise monotonic function F such that u,(G) =

{z : F(x) =n}|.

Though the proof of Theorem 3.1 is more involved than Theorem 1.4, the idea
is very much the same. The height of an element z in the group G[s] is computable
from a computable presentation, and this height can only increase as s increases.
Conversely, it is easy to build G from a computable approximation f to the limitwise
monotonic function F'.

After Khisamiev’s work, other applications were discovered in effective algebra,
particularly within the context of linear orders. The simplest (infinite) orderings are
presentations of w. The simplest relation we could study on such orderings would
be a unary relation. This began with Downey, Khoussainov, J. Miller, and Yu
(see [11]) (which was circulated for a long time in preprint form), then Hirschfeldt,
R. Miller, and Podzorov (see [15]), and finally Knoll (see [23]).

Definition 3.2 (Hirschfeldt, R. Miller, and Podzorov [15]). A set A is order com-
putable if there is a computable copy of (w : <, A) in the language of linear orderings
with an additional unary predicate.

Observation 3.3 (Kach and Turetsky [19]). Every order computable set is a lim-
1twise monotonic set.

The proof of this observation is immediate. When we see some element n declared
to be in the set representing A in the computable copy of (w : <, A), then n can only
move to bigger things and has a limit. Since every c.e. set is limitwise monotonic,
the following result says that order computability is a significantly more refined
concept than limitwise monotonicity.

Theorem 3.4 (Downey, Khoussainov, J. Miller, and Yu [11]). Ewvery high c.e.
degree contains a c.e. set which is not order computable.

The last application we give of (unrelativized) limitwise monotonicity is within
computable model theory. Baldwin and Lachlan showed that for an uncountably
categorical but not countably categorical theory T, the countable models form
an elementary chain of length w + 1. An interesting line of research has been
determining whether, for a fixed set S C w+1, there is a theory T whose computable

LIMITWISE MONOTONIC FUNCTIONS AND THEIR APPLICATIONS 9

models (identifying a model with its position in the elementary chain) are precisely
those in S. Khoussainov, Nies, and Shore realized the subset (w + 1) — {0} via
limitwise monotonic sets.

Theorem 3.5 (Khoussainov, Nies, and Shore [22]). There is an uncountably cate-
gorical but not countably categorical theory T for which every model but the prime
model is computable (realizing the set (w+ 1) — {0}).

Proof (Sketch). The desired theory T is in the language of infinitely many binary
predicates {P;};c.. For each n € w, an n-cube is a collection of 2™ many elements
isomorphic to the structure with universe {x; }rcan satisfying P;(z,, z,) if and only
if x,(4) # 2 (i) and x,(j) = z(j) for all j < i. An w-cube is the union of a chain
of n-cubes for all n € w.

From a computable structure consisting only of finite n-cubes, it is possible to
approximate from below the maximal integer n to which a given element is part
of an n-cube. Thus any set S C w is a limitwise monotonic set if the structure
consisting of (exactly) one n-cube for each n € S is computable.

Conversely, given an approximation of an integer n from below, it is possible
to uniformly construct a computable presentation of an n-cube. Thus if S is a
limitwise monotonic set, the structure consisting of (exactly) one n-cube for each
n € S is computable.

It therefore suffices to fix a 39 set S that is not a limitwise monotonic set.
Let T be the theory of the model containing (exactly) one n-cube for each n € S.
Any non-prime model contains an w-cube, and is thus computable as any wrongly
constructed n-cubes can be grown into a fixed w-cube. On the other hand, the
prime model cannot be computable as S was chosen not limitwise monotonic. [

4. RELATIVIZED LIMITWISE MONOTONICITY

For many other applications of limitwise monotonicity in effective algebra and
computable model theory, the notion needs to be relativized. In many of these
cases, a relativized version of Theorem 2.2 is useful.

Definition 4.1. A function F' is a-limitwise monotonic if there is an a-computable
approximation function f(-,-) such that, for all x,

(i) F(z) = lim, f(z,s).
(ii) For all s, f(z,s) < f(x,s+1).

A set S is a-limitwise montonic if it is the range of a a-limitwise monotonic function.
Corollary 4.2. There is a A set A which is not 0'-limitwise monotonic.

Perhaps the most direct application of 0’-limitwise motonicity is to linear or-
derings. In the same spirit as (-representations (see Definition 1.1), we can define
the strong n-representation of an infinite set S and the weak n-representation by
replacing the order type ¢ with the order type 7. It is easy to see that the set of
maximal block sizes is a 0’-limitwise monotonic set if the n-representation is com-
putable, as 0’ can decide if a pair of points form an adjacency. Partially answering
a question of Downey (see [10]), Harris established the following.

Theorem 4.3 (Harris [14]). A set S has a computable weak n-representation if and
only if S is 0'-limitwise monotonic.

10 DOWNEY, KACH, AND TURETSKY

We will sketch the proof of Theorem 4.3. We begin with a result independently
proven by Harris and Kach.

Proposition 4.4 (Harris [14] and Kach [17]). A function F is 0'-limitwise mono-
tonic if and only if there is a computable function g(-,-) such that F'(n) = liminf, g(n, s).

Kach defined a set A to be a limit infimum set if there is a computable function g
as in Proposition 4.4 with A the range of liminf, g(-, s). Then Proposition 4.4 can
be rephrased as a set A is a limit infimum set if and only if A is a 0'-limitwise
monotonic set.

Proof of Proposition 4.4. Let f witness that F' is 0’-limitwise monotonic. By the
Limit Lemma, there is a computable function A such that f(n,s) = lim; h(n, s, t)
for all n and s. Fixing n, the idea is to view h(n,0,t), h(n,1,t), ..., h(n,t,t) as
approximations to F(n). We define g(n,t) to be the maximum value of h(n, j,t) for
j < i, where 4 is maximal so that h(n,i,t) = h(n,i,t — 1). It can be verified that g
is indeed a limit infimum approximation to F' with the property F(n) = G(n) :=
liminf; g(n, t).

For the reverse direction, let g witness that F' is limit infimum. Defining f(n, s)
by f(n,s) = min{g(n,t) : ¢ > s} yields an approximation function that is read-
ily verified to be a 0’-limitwise monotonic approximation to F' with the property
F(n) =limg f(n,s) where F(n) := liminf; g(n, t). O

Proof of Theorem 4.3. Via Proposition 4.4, we may fix a function g witnessing
that S is limit infimum. Then, for each n, we will build a block of size lim inf g(n, s)
in stages, putting a dense ordering between the blocks. The action at stage s + 1
depends on the relative sizes of g(n,s) and g(n,s + 1): if g(n,s +1) > g(n, s), we
can add to the outside of the current g(n, s) block so that it has size g(n, s+1); and
if g(n,s+1) < g(n, s), we can remove the outside points and incorporate them into
the adjacent interval of order type 1. Independent of the relative sizes, we work
towards making the endpoints limit points with the order type n between adjacent
blocks. |

Analyzing the proof a bit more carefully, it is easy to see that the maximal blocks
created appear in the same order (and thus with the same multiplicity) as given
by F. Using Theorem 2.3, Harris was thus able to characterize the sets S with a
computable unique n-representation, i.e., any order type where the function f in
Definition 1.1 (with the order type n replacing the order type () is injective.

Corollary 4.5 (Harris [14]). A set S has a computable unique n-representation if
and only if S is 0'-limitwise monotonic.

Another application of 0’-limitwise monotonicity in linear orderings concerns
shuffle sums. Recall that the shuffle sum of a set S is a linear ordering obtained by
taking the rationals and replacing each element by a block of cardinality a member
of S in such a way that the blocks representing the members of S occur densely.

Theorem 4.6 (Kach [17]). The shuffle sum of a set S is computable if and only
if S is O'-limitwise monotonic.

Proof (Sketch). Via Proposition 4.4, again fix a function g so that S is the range
of liminf, g(-, s). This time we build blocks of size g(n,s) densely at every stage.
Again, we increase or cut back the size of blocks depending on whether g(n,s)

LIMITWISE MONOTONIC FUNCTIONS AND THEIR APPLICATIONS 11

increases or decreases. The only complication is points which are removed cannot
be so easily incorporated as in Theorem 4.3. Instead, new blocks will recycle these
rejected points based on a priority ranking. O

Part of the interest for understanding which shuffle sums are computable stems
from an earlier result in computable model theory by Hirschfeldt, answering a
question of Rosenstein (see [29]).

Theorem 4.7 (Hirschfeldt [16]). There is a complete theory T in the language of
linear orders having a prime model and a computable model, but no computable
prime model.

Proof. By Theorem 2.2, fix a set S € X9 that is not 0’-limitwise monotonic. Let T
be the theory of the shuffle sum of the set S. Then the shuffle sum of S is the prime
model; however it is not computable as S was not 0’-limitwise monotonic. On the
other hand, the shuffle sum of S with (is computable and is a model of T'. O

The earliest application of 0’-limitwise monotonicity to linear orderings seems
to concern isomorphism types of initial segments (i.e., convex initial sets) of lin-
ear orderings. Initial segments of linear orderings can be extremely complex, as
witnessed, for example, by the initial segment of order type w{¥ of the Harrison
ordering w{® (1 + 7). Of interest here is how complex the classical isomorphism
type of an initial segment of a computable ordering can be to still be assured a
computable presentation. For example, Rosenstein asked whether every IIJ ini-
tial segment of a computable linear ordering is isomorphic to a computable linear
ordering (see [29]). Rosenstein had already demonstrated that this could not be
strengthened to II3 using index sets (like Feiner’s Theorem, see [12]). From the
other direction, Raw showed every X! initial segment of a computable linear or-
dering is isomorphic to a computable linear ordering (see [28]). This was improved
by Ambos-Spies, Cooper, and Lempp to every X9 initial segment of a computable
linear ordering has a computable copy (see [1]). Coles, Downey, and Khoussainov
closed the gap, answering Rosenstein’s question, by exhibiting a computable linear
ordering with a II$ initial segment not isomorphic to a computable linear order-
ing. The initial segment is an n-like linear order, i.e., the result of replacing every
element of the rationals with a finite block.

Theorem 4.8 (Coles, Downey, and Khoussainov [9]). For any set S C w, then
S € 29 if and only if there is a computable linear ordering L of the form £L = A+ B
with A an n-like linear order having mazimal blocks of sizes exactly those numbers
in S and B = w*.

The proof of Theorem 4.8 requires a reasonably nontrivial 11y priority argument
(see [9] for details). But, granted Theorem 4.8, we can deduce the following.

Theorem 4.9 (Coles, Downey and Khoussainov [9]). There is a computable linear
ordering with a 13 initial segment not isomorphic to a computable linear ordering.

Proof. By Corollary 4.2, there is a ¥ set S which is not a 0’-limitwise monotonic
set. By Theorem 4.8, there is a computable linear ordering £ = A+ B. Then A
is not computable (as an isomorphism type) as S was not 0’-limitwise monotonic.
However, the set A is 113, being the set of points having infinitely many points to
the right. O

12 DOWNEY, KACH, AND TURETSKY

The last application within the context of linear orderings involves the complex-
ity of subsets rather than the complexity of intervals. Kach and J. Miller used
relativizations of limitwise monotonic functions to each degree 0™ for n € w to
prove the following result.

Theorem 4.10 (Kach and J. Miller [18]). There is a computable non-well-ordered
intrinsically computably well-ordered linear order, i.e., there is a computable non-
well-ordered linear order for which no computable presentation has a computable
subset of order type w*.

Though the proof of Theorem 4.10 is rather involved, the major idea is that 0(27+1)
can approximate the value of F'(n) in the linear ordering - - - +w™ - F(n) +- - - +w?-
F(2) +w- F(1) 4+ F(0) in a monotonic manner.

Despite all the discussed applications of relativized limitwise monotonic func-
tions being in the context of linear orderings, Khisamiev first relativized limitwise
monotonic functions in the context of reduced abelian p-groups.

Theorem 4.11 (Khisamiev [21]). A reduced abelian p-group G of length less than w?
(say of length at most w-N) is computable if and only if there are functions Fy, Fi, ..., Fn_1
such that F; is 09 -limitwise monotonic and uy.i1n(G) = |{z : Fi(x) = n}|.

Proof (Sketch). If G has length less than w?, (nonuniformly) fix elements g1, g2, - . ., gn
with the height of g; being w -i. The oracle 02" is powerful enough to approxi-
mate the height of elements below g;, yielding a limitwise monotonic approximation
function. Appealing to Theorem 2.1, it follows (uniformly, though such uniformity
is unnecessary) there is such a sequence of function Fj. (I

5. BEYOND LIMITWISE MONOTONICITY

As with order computable sets, sometimes (relativized) limitwise monotonicty
fails to fully capture some algebraic phenomenon. A recent example of this was
demonstrated by Kach and Turetsky in their work on an old question going back
to Rosenstein (see [29]) and Downey (see [10]). Generalizing the notion of a strong
n-representation, an increasing n-representation of S is a linear order £ of the form
n—+ng+mn+mny+... where the n; enumerate S in increasing order (possibly with
repeats). It is not hard to show that not all 0’-limitwise monotonic sets S have
non-decreasing 7)-representations since such an S needs to be AY.

To analyze the question of what 0’-limitwise monotonic sets S have strong or
increasing n-representations, we introduce a new class of sets.

Definition 5.1 (Kach and Turetsky [19]). A function F : Q — w is support
(strictly) increasing if F(q1) < F(q2) (F(q1) < F(g2)) whenever ¢; < ¢ and
F(q1),F(g2) > 0, the range of F is unbounded, and the support of F' has order
type w.

A function F : Q — w is support (strictly) increasing limitwise monotonic on
Q if it is support (strictly) increasing and there is a computable approximation
function f: Q x w — w such that F(q) = limg f(q,s) and f(q,s) < f(g, s+ 1).

The intuition here is that most F(¢) will be zero, but once we see F(q) > 0 at
some stage (when f(g,s) > 0), then we “know” its relationship with all those ¢
with F(¢) > 0.

LIMITWISE MONOTONIC FUNCTIONS AND THEIR APPLICATIONS 13

Theorem 5.2 (Kach and Turetsky [19]). A set S has a computable increasing n-
representation (with only finitely many blocks of any size n > 1) if and only if S is
support increasing 0'-limitwise monotonic on Q.

Proof (Sketch). The forward direction is clear since given a 0’-oracle we know the
blocks (monotonically) and how to order them. Of course, within the construction
we might think that we have (distinct) blocks around ¢ and go. At a later stage,
we may see these blocks merge, causing us to have an “extra” column of F which
is positive. This is easily remedied by having h(qi, s) = h(ge, s) reflect the merged
size for all later s.

For the reverse direction, the construction proceeds as in Theorem 4.3. The only
difference is that whenever we see F'(q) > 0 for some new ¢ (i.e., we see f(q,s) > 0),
we create a new finite block within the linear order at the appropriate place. [

It would be nice if altering the domain to Q would have application in characteriz-
ing the sets with computable strong n-representations. Frolov and Zubkov (see [13])
and Kach and Turestky (see [19]) have shown that there is a support increasing 0’-
limitwise monotonic set on Q not having a computable strong 7-representation.
We finish this section by showing that being support strictly increasing 0’-limitwise
monotonic on Q is not necessary to have a computable strong 7-representation.

Theorem 5.3 (Turetsky). There is a set S with a computable strong n-representation
that is not support strictly increasing 0’ -limitwise monotonic on Q.

Proof. Let {f;(x, s)}icw be an enumeration of candidate total 0’-computable mono-
tonic approximations on Q. By the Limit Lemma, let { fl (x,8,t)}icw be an enumer-
ation of computable approximations to f; so that f;(x,s) = lim, fi(x,s,t). Note
that since the f; are total, the limit lim, f;(z, s, t) will always converge.

We construct a computable presentation of a strong n-representation and let S
be the set represented. We meet the following requirements:

R; : The set S is not the range of Fj.

The strategy to assure R; hinges on the fact that support strictly increasing limit-
wise monotonic functions cannot cope with two blocks in a strong 7-representation
merging. This fact is exploited to force a column to infinity.

Strategy for R;: Let <g be the natural ordering on Q.

(1) Choose a large number ng and create blocks By and B of sizes ng — 1 and
no in £ at an appropriate location. Restrain other strategies from changing
these blocks.

(2) Wait for a (least) pair (z,uo) to appear with f;(z, ug,t) = no.

(3) Wait for a (least) pair (xq,so) to appear with f;(zo,s0,t) = ng — 1 and
Ty <Q T-

(4) Merge By and B and any existing larger blocks into a single block of some
size mo and release any restraint on this block. Restrain any blocks from
forming of sizes between ny — 1 and my.

(5) Wait for an s} > so with f;(zo,s),t) = m} for some m}, > mg. If more
than one such s exist, choose the least.

(6) Release the restraint created at Step 4.

(7) Wait for a u; > ug with fz(x, u1,t) = ny for some ny > mg with n; the size
of a block in L.

14 DOWNEY, KACH, AND TURETSKY

(8) Create a block B; of size ny — 1 and restrain other strategies from changing
this block or the block found in the previous step. Return to Step 3 with
ny instead of ng.

Note that our actions in Step 4 and Step 8 can be undone — we can resume
densifying the interval between By and B to separate the blocks, and we can densify
the block B; to destroy it. Indeed, this capacity is essential, since there will be
times we will need to roll back the construction to an earlier point. If, on some pair
we chose, fi changes its value, we return to the step at which we chose it, undoing
all work done in the interim.

Thus, if at some stage t, fl(x, ug, t) # ng, we roll back the construction to Step 2.
If at some stage t, fi(xj, sj,t) # n; — 1, we roll back the construction to Step 3 in
the jth loop. If at some stage t, f,» (zj,8},t) # m}, we roll back the construction to
Step 5 in the jth loop, reestablishing the appropriate restraint. If at some stage ¢,
f; (x,uj,t) # n; (for j > 0), we roll back the construction to Step 7 in the jth loop.

Outcomes for R;: There are several possible outcomes for the strategy:

2: The strategy is infinitely often at Step 2, either because it waits at this step
forever, or because it is infinitely often rolled back to this step. In either
case, ng does not appear in the range of F; but does appear as a block size
in £, and thus F; does not enumerate S.

(3,j): The strategy is infinitely often at Step 3 in the jth loop, either because it
waits at this step forever, or because it is infinitely often rolled back to this
step. Further, none of outcomes 2, (3,j'), (5,j') or (7,j') with 5/ < j apply.
In this case, n; — 1 does not appear in the range of F; but does appear as
a block size in £, and thus F; does not enumerate S.

(5,j): The strategy is infinitely often at Step 5 in the jth loop, either because it
waits at this step forever, or because it is infinitely often rolled back to this
step. Further, none of outcomes 2, (3,j") with j/ < j, or (5,j') or (7,j)
with j’ < j apply. In this case, if Fj(z;) converges, then F;(z;) is between
n; —1 and m;. However, S will have no element between n; — 1 and m;,
and thus F; does not enumerate S.

(7,j): The strategy is infinitely often at Step 7 in the jth loop, either because
it waits at this step forever, or because it is infinitely often rolled back to
this step. Further, none of outcomes 2, (3,j') or (5,j') with j/ < j, or
(7,j") with j < j apply. Then if F;(z) converges, it does so to a value not
contained in S. Thus F; does not enumerate S.

oo: The strategy spends only finitely many stages at every step in every loop.
Since F;(z) > n; for all j, and n; < m; < n;y1, Fi(z) diverges.

The Tree: We order the outcomes of a strategy by:
oo >--->(7,1) > (5,1) > (3,1) > (7,0) > (5,0) > (3,0) > 2

As usual for infinite injury arguments, the true outcome of a strategy is the limit
infimum of the outcomes.
We arrange the strategies on a tree in the usual fashion. When a strategy 7 is
rolled back, we also roll back the work done by any strategies p directly below 7.
If strategy p is below some finite outcome of strategy 7, the strategy p chooses
a large ng and works with values larger than those used by 7. It is possible that p

LIMITWISE MONOTONIC FUNCTIONS AND THEIR APPLICATIONS 15

will be injured by a later merge step of 7. However, if we return to p, it will mean
we have rolled back 7 to before the merger, thus healing the injury to p.

If strategy p is below the infinite outcome of strategy 7, the strategy p waits for
the restraint of 7 to move to a sufficiently late interval that there is sufficient room
for p to work with values beneath the restraint. It chooses its ng smaller than the
restraint of 7, but larger than the current size of any blocks which existed when p
was initialized. When p wishes to perform a merger, it waits until 7 reaches a
Step 6. It then performs the merger as described, including merging larger blocks
that 7 previously used. If at some later point 7 is rolled back, the strategy p is
rolled back with it.

If p is below the infinite outcome of 7, it is possible that 7 will violate the
restraint of p (if 7’s n; is p’s my). In this case, p waits until 7 performs a merger,
and then reassigns my, to the value of this new block (so p’s my, is 7’s m;). Barring
roll back, 7 will never again violate this restraint.

In this fashion, strategies respect the restraints imposed by strategies directly
above them in the tree. Strategies pay no attention to restraints of any other
strategies.

Verification: Define the True Path inductively using the limit infimum of the tem-
porary outcomes.

Claim 5.3.1. If 7 is along the True Path, and 7 is active at stage ¢t and has a
restraint at stage t, then that restraint is not currently violated by some p directly
below 7.

Proof. If p is below some finite outcome of 7, it creates blocks of size larger than
the restraint of 7. If p is below the infinite outcome of 7, it respects the restraint
of 7 as discussed above. O

Claim 5.3.2. If 7 is along the True Path, and 7 is active at stage ¢t and has a
restraint at stage ¢, then that restraint is not currently violated by some p off the
True Path.

Proof. Note that the restraint is not violated at the stage it is originally imposed.

Assume p is not directly below 7, as that case is handled above.

If the True Path follows a finite outcome at the first place it and p differ, and p
is to the left of the True Path, then any activity by p between the stage at which
the restraint is imposed and the current stage has been rolled back.

If the True Path follows a finite outcome at the first place it and p differ, and p
is to the right of the True path, then p cannot act between the stage at which the
restraint is imposed and the current stage (as in order for it to act, 7 would have
to be rolled back, removing the restraint).

If the True Path follows an infinite outcome at the first place it and p differ,
then let o be the meet of 7 and p. Then p created blocks above the restraint of o,
while 7 imposes its restraint beneath that of o. O

Claim 5.3.3. If 7 is along the True Path, and 7 imposes a restraint, there will
come a stage t when either 7 will be rolled back to before it imposed this restraint, 7
will release this restraint and this release will never be rolled back, or the restraint
will never be violated after stage t.

16 DOWNEY, KACH, AND TURETSKY

Proof. Suppose that the restraint is neither rolled back nor released by 7. Then 7
will wait until the o above it stop violating the restraint. The strategy o can
only violate the restraint of 7 if 7 extends the infinite outcome of o, and if ¢ has
infinite final outcome, it can only be rolled back to any given step finitely many
times. Thus, eventually, ¢ will never again violate the restraint of 7. Since no
other strategies are capable of violating the restraint of 7, the restraint is never
again violated. O

Claim 5.3.4. For any block created in £, the limit infimum of its size is finite.

Proof. Let B be some block created by some strategy 7.

Suppose p is some other strategy. Let o be p meet 7. In order for p to affect B,
either p is o or p is below the infinite outcome of o, and either 7 is o or 7 is below
the finite outcome of o. But by our construction of how strategies below an infinite
outcome behave, p must have been initialized before B was created.

Thus there are only finitely many p that can affect B. Further, barring roll
back, each strategy will only affect a given block finitely many times. Thus either
one of these strategies is infinitely often rolled back, in which case B is constantly
returned to a given finite size, or the size of B stabilizes. O

Claim 5.3.5. There are blocks of arbitrarily large size in L.

Proof. Let T be a strategy along the True Path being initialized at stage ¢ such that
this initialization will never be rolled back. During initialization, 7 creates a large
block. Since 7 will never have its initialization rolled back, this block will never be
destroyed. It may be grown into a larger block, but by the above, some large block
will result. Thus £ has arbitrarily large blocks. [

Claim 5.3.6. Each strategy along the True Path meets its requirement.
Proof. Immediate from construction. [l

This completes the proof. ([l

6. LIMITWISE MONOTONIC SPECTRA

As seemingly all of the effective algebra results with limitwise monotonicity rel-
ativize, there is a connection between the degree spectra of a structure

DegSpec(S) := {a: S is a-computable}
and the limitwise monotonic spectra of a set.
Definition 6.1. If S C w is any nonempty set, define LMSpec(S) to be the set
LMSpec(S) :={a: S is a-limitwise monotonic}.

In this language, we can reinterpret some of the material in the preceding sec-
tions. Since every 9 degree has a limitwise monotonic set, we have the following.

Proposition 6.2 (Folklore). Ifa is 3.9, then there is an S € a with 0 € LMSpec(S).

Theorem 6.3 (Khoussainov, Nies, and Shore [22]). There exists a A set S, indeed
a d.c.e. set S, with 0 ¢ LMSpec(S).

Corollary 6.4 (Hirschfeldt, R. Miller, and Podzorov [15]). There ezists a low A3
set S with O ¢ LMSpec(S).

LIMITWISE MONOTONIC FUNCTIONS AND THEIR APPLICATIONS 17

We also demonstrate some new results.

Proposition 6.5. There is a set S and a minimal pair of degrees a and b with
a,b € LMSpec(S) and 0 ¢ LMSpec(S).

Proof. It suffices to fix a minimal pair of high degrees a and b. Then a,b €
LMSpec(#"” @w) by Theorem 2.1 (relativized) as (""" € £J and 29(a) = B = ¥9(b).
On the other hand, it must be the case that 0 ¢ LMSpec(0"’®w) as 0"'¢w ¢ ¥9. O

Proposition 6.6 (Zubkov). There are sets S and T with 0 € LMSpec(S), LMSpec(T)
and 0 ¢ LMSpec(SNT).

Proof. By Theorem 2.2, fix a set S that is X9 but not limitwise monotonic. Then
SOwdPand S® 0P w are limitwise motonic but their intersection is not. O

Proposition 6.7. The containment LMSpec(T) C LMSpec(S) does not follow from
S<rT.

Proof. By Theorem 2.2, there is a AY set that is not a 0-limitwise monotonic set,
yet (' is a O-limitwise monotonic set. O

Theorem 6.8. Ifa and b satisfy a < b, then there is a set S with b € LMSpec(S)
and a ¢ LMSpec(S).

Proof. We start by noting that we may restrict attention to the case when b €
AY(a). For if b ¢ A(a), then (with B € b) either the set B or B suffices. The
reason is both are clearly b-limitwise monotonic. If both are a-limitwise monotonic,
then both are X9(a) by Theorem 2.1. Being complements of each other, this implies
both are A(a), contrary to the hypothesis.

We treat the case when a = 0 and b € A (b # 0), with the more general
case following by relativization. The idea is to construct a b-computable limitwise
monotonic approximation function f(x,s) such that range(F) is not the range of
any limitwise monotonic function {®,}.e, via the following requirements.

Re : If range(®,) = range(F), where ®.(z) := lim, ¢ (n, s), then B = I'4.
The strategy to meet a single requirement in isolation is as one would expect.

(1) Choose a large integer z and put f(e, sg) = z with use B | sg, where sq is
the current stage. Keep F(y) # z for y > e.
(2) Wait for a column n with ¢.(n,ty) = 2.
(3) Put f(e,s1) =z + 1 with use B | s1, where s; is the current stage.
(4) Wait for ¢.(n,t1) = z + 1 for some ¢;.
(5) Release the F'(y) # z restraint and keep F(y) # z + 1 for y > e.
(6) Wait for a B | sp change. While doing so, repeat Step 3 through Step 6
with z 4 k replacing z+ 1 and z + k — 1 replacing z for incrementally larger
values of k.

(7) If B | si changes for some k, redefine f(e,s) = z + k — 1 for all s > sy.
Keep f(y,s) #z+k for y > e.

(8) If we(n,t) = f(y,s) for some y > e, return to Step 3 with y in place of e.
The key point is since b # 0, then by standard A permitting, eventually B will
change below sy, for some k after the stage this use is declared. Thus R, is satisfied.

As with Theorem 2.2, the strategies combine without any difficulty on a tree.
Lower priority strategies guess whether the outcome of higher priority strategies is
finitary (i.e., ®.(n) is finite) or infinitary (i.e., ®.(n) is infinite). O

18

DOWNEY, KACH, AND TURETSKY

7. OPEN QUESTIONS

We close with several questions (asked in numerous other places) that remain
open.

Question 7.1. For which sets S is the strong n-representation of S computable?

Question 7.2. Which reduced abelian p-groups are computable? In particular,

is there a reduced abelian p-group G of length w? for which there is no 0¢

2n)_

computable approximation function f(i,z,s) with u,.i; e 2)(G) > 07

Question 7.3. What more can be said about possible limitwise monotonic spectra?

(1]
2]

3

[4

5

6

[7

x =

9

(10]

(11]

[12]
[13]
(14]
(15]
[16]
(17]

(18]
(19]

20]
21]

(22]

REFERENCES

Klaus Ambos-Spies, S. Barry Cooper, and Steffen Lempp. Initial segments of recursive linear
orders. Order, 14(2):101-105, 1997/98.

C. J. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy, volume
144 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co.,
Amsterdam, 2000.

William W. Boone. Certain simple, unsolvable problems of group theory. I. Nederl. Akad.
Wetensch. Proc. Ser. A., 57:231-237 = Indag. Math. 16, 231-237 (1954), 1954.

William W. Boone. Certain simple, unsolvable problems of group theory. II. Nederl. Akad.
Wetensch. Proc. Ser. A., 57:492-497 = Indag. Math. 16, 492-497 (1954), 1954.

William W. Boone. Certain simple, unsolvable problems of group theory. III. Nederl. Akad.
Wetensch. Proc. Ser. A., 58:252-256 = Indag. Math. 17, 252-256 (1955), 1955.

William W. Boone. Certain simple, unsolvable problems of group theory. IV. Nederl. Akad.
Wetensch. Proc. Ser. A. 58 = Indag. Math., 17:571-577, 1955.

William W. Boone. Certain simple, unsolvable problems of group theory. V, VI. Nederl. Akad.
Wetensch. Proc. Ser. A. 60 = Indag. Math., 19:22-27, 227-232, 1957.

Wesley Calvert, Douglas Cenzer, Valentina Harizanov, and Andrei Morozov. Effective cate-
goricity of equivalence structures. Ann. Pure Appl. Logic, 141(1-2):61-78, 2006.

Richard J. Coles, Rod Downey, and Bakhadyr Khoussainov. On initial segments of com-
putable linear orders. Order, 14(2):107-124, 1997/98.

R. G. Downey. Computability theory and linear orderings. In Handbook of recursive mathe-
matics, Vol. 2, volume 139 of Studies in Logic and the Foundations of Mathematics, pages
823-976. North-Holland, Amsterdam, 1998.

Rod Downey, Bakhadyr Khoussainov, Jospeh S. Miller, and Liang Yu. Degree spectra of
unary relations on (w, <). In Logic, Methodology and Philosophy of Science, Proceedings of
the Thirteenth International Congress, pages 36—65. King’s College Publications.

L. Feiner. The strong homogeneity conjecture. J. Symbolic Logic, 35:375-377, 1970.

Andrey N. Frolov and Maxim V. Zubkov. Increasing n-representable degrees. Submitted.
Kenneth Harris. n-representation of sets and degrees. J. Symbolic Logic, 73(4):1097-1121,
2008.

Denis Hirschfeldt, Russell Miller, and Sergei Podzorov. Order-computable sets. Notre Dame
J. Formal Logic, 48(3):317-347 (electronic), 2007.

Denis R. Hirschfeldt. Prime models of theories of computable linear orderings. Proc. Amer.
Math. Soc., 129(10):3079-3083 (electronic), 2001.

Asher M. Kach. Computable shuffle sums of ordinals. Archive for Mathematical Logic,
47(3):211-219, 2008.

Asher M. Kach and Joseph S. Miller. Embeddings of computable linear orders. In preparation.
Asher M. Kach and Daniel Turetsky. Limitwise monotonic functions, sets, and degrees on
computable domains. J. Symb. Logic, to appear.

N. G. Khisamiev. The arithmetic hierarchy of abelian groups. Sibirsk. Mat. Zh., 29(6):144—
159, 1988.

N. G. Khisamiev. Constructive abelian groups. In Handbook of recursive mathematics, Vol. 2,
volume 139 of Stud. Logic Found. Math., pages 1177-1231. North-Holland, Amsterdam, 1998.
Bakhadyr Khoussainov, Andre Nies, and Richard A. Shore. Computable models of theories
with few models. Notre Dame J. Formal Logic, 38(2):165-178, 1997.

LIMITWISE MONOTONIC FUNCTIONS AND THEIR APPLICATIONS 19

[23] Carolyn Knoll. Degree Spectra of Unary Relations on (w, <) and (¢, <). M.S. in Mathematics,
University of Waterloo, http://hdl.handle.net/10012/4544, 2009.

[24] Manuel Lerman. On recursive linear orderings. In Logic Year 1979-80 (Proc. Seminars and
Conf. Math. Logic, Univ. Connecticut, Storrs, Conn., 1979/80), volume 859 of Lecture Notes
in Math., pages 132-142. Springer, Berlin, 1981.

[25] P. S. Novikov. Ob algoritmiceskoi nerazresimosti problemy toZdestva slov v teorii grupp.
Trudy Mat. Inst. im. Steklov. no. 44. Izdat. Akad. Nauk SSSR, Moscow, 1955.

[26] Emil L. Post. Recursively enumerable sets of positive integers and their decision problems.
Bull. Amer. Math. Soc., 50:284-316, 1944.

[27] Emil L. Post. Recursive unsolvability of a problem of Thue. J. Symbolic Logic, 12:1-11, 1947.

(28] Matthew James S. Raw. Complezity of Automorphisms of Recursive Linear Orders. PhD in
Mathematics, University of Wisconsin-Madison, 1995.

[29] Joseph G. Rosenstein. Linear orderings, volume 98 of Pure and Applied Mathematics. Aca-
demic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1982.

[30] Maxim Zubkov. On n-representable sets. In Computation and logic in the real world, pages
364-366. 2007.

DEPARTMENT OF MATHEMATICS, STATISTICS, AND OPERATIONS RESEARCH, VICTORIA UNIVER-
SITY OF WELLINGTON, P.O. Box 600, WELLINGTON 6140 NEW ZEALAND
E-mail address: Rod.Downey@ecs.vuw.ac.nz

DEPARTMENT OF MATHEMATICS, STATISTICS, AND OPERATIONS RESEARCH, VICTORIA UNIVER-
SITY OF WELLINGTON, P.O. Box 600, WELLINGTON 6140 NEW ZEALAND

E-mail address: Asher.Kach@msor.vuw.ac.nz

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, 480 LINCOLN DRIVE, MADISON,
WI 53706, USA
E-mail address: turetsky@math.wisc.edu

