
Splitting Theorems and the Jump Operator�R. G. DowneyyDepartment of MathematicsVictoria University of WellingtonP. O. Box 600WellingtonNew ZealandRichard A. Shore{Department of MathematicsWhite HallCornell UniversityIthaca NY 14853USAAbstractWe investigate the relationship of (jumps of) the degrees of split-tings of a computably enumerable set and the degree of the set. Weprove that there is a high computably enumerable set whose onlyproper splittings are low2.�We thank the referee for a thorough reading of the paper and very helpful commentsyResearch partially supported by the U.S. ARO through ACSyAM at the MathematicalSciences Institute of Cornell University Contract DAAL03-91-C-0027, the IGC of VictoriaUniversity and the Marsden Fund for Basic Science under grant VIC-509.{Research partially supported by NSF Grant DMS-9503503 and the U.S. ARO throughACSyAM at the Mathematical Sciences Institute of Cornell University Contract DAAL03-91-C-0027. 1

1 IntroductionAll sets and degrees will be computably enumerable unless otherwise stated.We say that A1 and A2 split A, written A = A1 t A2, if A1 [A2 = Aand A1 \ A2 = ;: Such a splitting is called proper if both A1 and A2 arenoncomputable. Ever since Friedberg [6] proved that any noncomputableset has a proper splitting, splitting theorems have been intimately relatedto the development of classical computability theory. We refer the reader toDowney and Stob [5] for a survey.The present paper is concerned with a question of Remmel who asked ifa high set could always be properly split into two sets one of which is high.This question is related to earlier work of Ladner [8] on mitotic sets (see alsoDowney-Slaman [4]), and later work of Lerman and Remmel [9] and Ambos-Spies and Fejer [2] on the universal splitting property. Recall that a set A iscalled mitotic if it has a proper splitting A1 tA2 = A with A1 �T A2 �T A,and A has the universal splitting property if for all C �T A; there is asplitting A1tA2 = A with A1 �T C. Ladner proved that not all computablyenumerable sets are mitotic, and, indeed, 00 contains a nonmitotic set.Ambos-Spies [1] proved that mitoticity could fail quite dramatically byconstructing a complete A such that for any splitting A1 t A2 = A, oneof A1 or A2 is low. On the other hand, Ambos-Spies's construction couldnot be used to solve Remmel's question since his set A, being complete, isof promptly simple degree while Downey and Stob [5] proved that if A haspromptly simple degree then there is a proper splitting A1tA2 = A such thatA1 �T A. Ingrassia and Lempp [7] provided a counterexample to a strongerversion of Remmel's question by constructing a computably enumerable setA such that for all nontrivial proper splittings A1 tA2 = A, A01; A02 <T A0:The goal of the present paper is to prove the following theorem.Theorem 1.1 There is a high computably enumerable set A such that ifA1 t A2 = A is a proper splitting of A, then both A1 and A2 are low2.Corollary 1.2 There is a high computably enumerable set A such that for2

all n � 1, if A1 tA2 is a proper splitting of A then A(n)i <T A(n) for i = 1; 2.We remark that Cooper, Lachlan and Slaman have claimed (personalcommunication) that for all nonlow computably enumerable sets A, there isa proper splitting A1 t A2 = A with A1 nonlow. Given this result, ours isthe strongest possible negative answer to Remmel's question. Moreover, ourresult together with that of Cooper et. al. completely answers all possibleversions of Remmel's question in terms of the jump classes.Our notation is standard and follows Soare [11]. As usual all computa-tions etc. are bounded by the stage number and uses are monotone in boththe argument and stage number. A number in brackets at the end of anexpression such as �Wei (y) [s] indicates that all computations and approxi-mations to sets are to be understood as de�ned at stage s.2 The Requirements and Construction2.1 The Requirements and IntuitionWe build a set A and a reduction � in stages to satisfy the following require-ments: Re : lims �A(e; s) = Tot(e):Ne : We t Ve = A! (We low2: _ :Ve �T ;):Here of course, Tot denotes the �02-complete index set fe : 'e totalg. Wedecompose the negative requirements Ne into further subrequirements of theformNe;i : We t Ve = A! (Ve �T ;: _ :[limsups!1`(�; s)!1! �Wei is total]):Here `(�; s) denotes the length of convergencemaxfx : 8y � x(We;s t Ve;s = As � 'i;s(y) ^ �Wei (y) # [s])g3

measured at the node � on the true path devoted to Ne;i: Note that this willmake We low2 if Ve is noncomputable since, as usual for an in�nite injuryargument, the true path, TP , is recursive in 000 and hence we can answer thequestion \Is �Wei total?" recursively in 000.The priority tree will have 3 types of nodes :� � nodes for the sake of Re with outcomes 1 <L f .� � nodes for the sake of Ne;i with outcomes 1 <L f .� � nodes living below � b1 also devoted to Ne;i via subrequirementsNe;i;j. Such an � will be trying to preserve a computation of the form�Wei (j) or trying to to demonstrate that Ve �T ;. These nodes haveoutcomes s <L g. The unique � node associated with � will be denotedby � (�). For the i and e associated with � , on the true path, an outcomes will demonstrate that �Wei (j) #. The outcome g demonstrates thatVe is computable.The action of a � node is as usual. We must build a �A2 approximationto Tot via �. We may as well assume that 'e(x) " [0] for all x. At stage 0,we will de�ne
A(e; x)[0] = he; x; 0i. As with the standard thickness lemma,the basic idea is that when we see 'e(y) # for all y � x, we will enumeratesome g �
(e; x) into A[s] allowing us to rede�ne �A(e; x) = 1. This will bethe only reason we will change the value of �A(e; x)[s]. (But not the onlyreason we might change
(e; x)[s].) If we succeed for almost all x then'e is total i� limx �A(e; x) = 1:Thus A will be high as ;00 will be �A2 . In the construction to follow,
(e; x)[s]can also be changed for the sake of the Nf;j;k of lower priority (which arede�ned precisely below). However, this action will be controlled by � (�)),and we will certainly ensure that lims
(e; x)[s] exists.Below the in�nite outcome of a � node, that is where the length of con-vergence looks in�nite in�nitely often, there will be a tree of � nodes each4

devoted to some k, that is some subrequirement Ne;i;k of Ne;i. These nodeswill be devoted to requirements of the formVe �T ; _ �Wei (k) # :The in�nite outcome for an � node is the g outcome which corresponds toa global win for � (�) in the sense that it will witness the fact that Ve(�) iscomputable. Naturally, below the in�nite outcome of an � node we will haveno nodes devoted to Ne.Associated with � will be a marker m(�; s) which represents an attemptto compute an initial segment of Ve based on the assumption that (� is on TPand) we fail to force convergence of �Wei (k): That is, m(�; s) will representthe size of the domain of �'s current recursive description of Ve. If we have �on the TP and m(�; s)!1 then Ve will be computable. The computationof m(�; s) and the actions of � described in more detail below.There are two types of actions associated with � corresponding to thetwo types of positive requirements it must deal with.A typical situation is the following. We have a node � devoted to Ne;i.Naturally, it is able to guess at the behavior of higher priority Rf nodes, andwill only use correspondingly � -correct computations. However, if limsups!1`(�; s) !1 we need to ensure either that We is low2 or that Ve is computable. Thuswe will need to deal with various �-nodes between � b1 and � as well as �nodes below �. (The point is that such nodes may be trying to put in�nitelymany elements into A whereas � is trying to preserve computations.) Sosuppose that we have� b1 � �1b1� �2bf � �3b1 � �:The way that � deals with these �-nodes between it and � is the following.We reach � (i. e. s is a � stage) and it is expansionary with `(�; s) > k. Wealso assume that `(�; s) > m(�; s) + 1 via � -correct computations. What �would now like to do is to preserve its computation from We,�Wei (k) # [s]:But it cannot really stop the �i from putting their numbers (which may wellbe below the use 'i(k)[s]) into A. What � tries to do is to lift the relevant5

�i-uses above 'i(k)[s]. If � succeeds, then the computation �Wei (k) # [s]becomes not only � -correct, but �-correct, and hence � can preserve thecomputation forever. On the other hand, if � fails, we must arrange thingsso that we can increase m(�; s) thereby computing a longer initial segmentof Ve. The trick is to control the number of elements to enter A.In more detail, initially, m(�; 0) = k. Now as above we reach � and eachof the �i with � b1 � �ib1 � � (in our case i = 1; 3) indicate that theydesire to change �A(e(�i); x(�i))[s] for some least x(�i). (This is the mainidea.) What � does is� lift m(�; s+ 1) = m(�; s) + 1,� request that a single number z �
(e(�i); x(�i))[s] enter A[s], and� lift
(e(�i); x0) above s for all x0 greater than x(�i). (Here we assumethat all the �A(e(�i); x00) for x00 < x(�i) have been dealt with and areeither permanently restrained or set to 1.)Now, since the entry of z allows us to correct �A(e(�i); x(�i)) = 1[s], �1and �3 are happy. Notice that since we lifted all the
(e(�i); x0) above sfor all x0 greater than x(�i), after stage s, the only numbers �1 and �3 willwish to put in will be numbers bigger than s > m(�; s). The relevance ofthis comes at the next � b1 stage s0. The single number z has entered Abelow 'i(m(�; s))[s] between stages s and s0. Since We and Ve are disjoint,z has either entered We or Ve but not both. If z entered Ve then � can nowsuccessfully restrain the �Wei (k) # [s0] computation since it is identical to the�Wei (k) # [s] computation. Now � can put �nite restraint on the �0 of lowerpriority, and the � of higher priority now only want to put numbers above sinto A. (The � above � were taken care of by the fact that we were dealingwith � -correct computations and `(�; s) > k; � between � b1 and � havehad their
(e(�i); x0) lifted above s.) Then the next time we hit � we simplyplay outcome s de�ning a restraint r(�; s) = 'i(k)[s].On the other hand, it is possible that z went into We. In this case, whenwe reach � we play outcome g. Now we note that the only numbers thatcan be put into A by nodes � above � are bigger than m(�; s+1): The only6

numbers below m(�; s+ 1) which enter A after stage s must therefore comefrom nodes � below � and can, like z above, only enter at stages at whichwe lift m(�; t) and hence as the single small number that enters betweensuccessive � stages. Assuming that g is the correct outcome, this single smallnumber must enter We each time. If we assume that m(�; s) !1 then wecan compute Ve � p by simply waiting for a � b1 stage with `(�; s) > m(�; s)and m(�; s) > p.The �nal point we need to notice is that it does not really matter whatnumber z �
(e(�i); x(�i))[s] is used. We could equally well use some numberrequested by some �0 below �bg. In this way we also get to meet the Rf ofpriority lower than � in case �bg � TP .We now turn to the formal construction.2.2 The Priority TreeDe�ne the priority tree as follows. If � is on the priority tree and j�j = 3e, �is devoted to Re. Put �b1 and �bf on the priority tree. � is a �-node ande(�) = e.Otherwise, we use two lists L1 and L2 to assign requirements to nodes.As usual the lists L1(�) = L2(�) = !: We use the convention that we donot change lists as we pass to the outcomes of a node unless speci�cally soinstructed.If j�j � 1 mod 3 assign Ne;i to � where he; ii is the least member ofL1(�). Put �b1 and �bf on the priority tree. Let L1(�b1) = L1(�bf) =L1(�) � fhe; iig. Let L2(�bf) = L2 � fhe; i; ki : k 2 !g. � is a � node,e(�) = e and i(�) = i.Finally, if j�j � 2 mod 3, �nd the least he; i; ki in L2(�) such that he; ii 62L1(�). Assign Ne;i;k to �. Put �bs and �bg on the priority tree. LetL2(�bs) = L2(�)� fhe; i; kig. Let L2(�bg) = L2(�)� fhe; i0; k0i : i0; k0 2 !g.Let L1(�bg) = L1(�) � fhe; i0i : i0 2 !g. � is an �-node, e(�) = e, i(�) = iand k(�) = k. 7

2.3 The ConstructionStep 1.At each stage of the construction, we put at most one number into A. Wedetermine this number by approximating TP by TPs as follows. We beginat � and say that s is a �-stage. Suppose that s is a �-stage. There are 3cases.Case 1. � is a �-node.If maxfq : 'e(�)(q0) # [s] for all q0 � qg > maxfq : 'e(�)(q0) # [t] for allq0 � q ^ t a � stageg; declare that s is a �b1 stage and that � desires thelargest number less than or equal to all
�(e(�); x), if any, with
�(e(�); x) >maxfr(�; s) : � < �g, and 'e(�)(x0) # for all x0 � x, but �A(e(�); x) = 0 toenter A.Otherwise say that s is a �bf stage.Case 2. � is a � -node.Let e = e(�): Determine the �-correct length of convergence. `(�; s) =maxfx : 8y � x(We;s t Ve;s = As � �i;s(y) ^ �Wei (y) # [s])g where thecomputations are �-correct. That is, (with the understanding that all objectsbelow have [s] appended) for all �b1 � �, with j�j � 0 mod 3, and any x,if(i)
(e(�); x) < u(�Wei (y))(ii)
(e(�); x) > maxfr(�; s) : � < �g,then �A(e(�); x) = 1.If the stage is �-expansionary we say that s is a �b1-stage. We requirethat the kth expansionary stage have �-correct length of agreement exceeding� maxfm(�; s) + 1 : � � �b1; such that e(�) = e; i(�) = i and � isdevoted to Ne;i;k0 for some k0 � kg.If s is not �-expansionary, we say that s is a �bf stage. Let r(�bf; s) be8

the last �b1-stage (or 0 if there is no such stage).Case 3. � is an �-node.Let e = e(�); i = i(�); k = k(�); and � = � (�). If `(�; s) � m(�; s), setTPs = �. Otherwise, see if for all �b1 � �, with j�j � 0 mod 3, and any x,if(i)
(e(�); x) < u(�Wei (k0)) for k0 � k,(ii)
(e(�); x) > maxfr(�; s) : � < �g,then �A(e(�); x) = 1,If so, let r(�; s) = u(�Wei (k)). Declare s to be a �bs-stage.If not then declare s to be a �bg-stage, and reset m(�; s+1) = m(�; s)+1.Step 2.Having determined TPs, we initialize all �-nodes � to the right of TPs.This entails returning m(�; s+ 1) to m(�; 0), and setting r(�; s+ 1) = 0.Step 3.Finally, put into A the smallest number z, if any, that any � node � (suchthat s is a �-stage) desires to put into A. For � � TPs, reset
(e(�); x)[s+1]for all e(�); x with
(e(�); x)[s] > z, and some �(e(�); x0)[s] with x0 � xcauses � to desire a number to enter A at stage s. For such e(�); x, set�A(e(�); x) = 1[s+ 1] if 'e(�)(x0) # for all x0 � x.Step 4.For each � -node � with �b1 � TPs, set r(�bf; s+ 1) = s+ 1. For each�-node � with �bg � TPs, set r(�bg; s+1) = s+1. (Note that if �bs � TPsthen r(�bs; s) was set in step 1, Case 3. Of course, r(�bs; s+1) = r(�bs; s).)End of Construction. 9

3 The Veri�cationWe verify the following by simultaneous induction on � � TP :(i) limfs:s is a �-stageg r(�0; s) <1 exists for all � 0 � �.(ii) If � is a �-node, then limx �A(e; x) = Tot(e). Moreover, �b1 � TPi� Tot(e) = 1:(iii) If � is a � -node, then �b1 � TP i� there are in�nitely many � -correct � -expansionary stages and hence �b1 � TP i� We t Ve = A and forall k and almost all � b1 stages s, �We(�)i(�) (k) #.(iv) If � is an � node then �bg � TP implies that Ve(�) is computable. If�bs � TP then �We(�)i(�) (k(�)) #.We assume (i)-(iv) for all � � �. Let s0 be a stage at which the hypothesesapply to all such � and we are never again to the left of �. There are 3 casesto consider.Case 1. � is a �-node. Then there is no restraint associated with � andhence (i) holds and (iii) and (iv) are irrelevant. Let e = e(�). To see that(ii) holds suppose �rst that Tot(e) = 0. Then, after some stage, � willstop desiring to put numbers into A in accordance with the �rst case ofthe construction. Hence �bf � TP . Next, suppose that Tot(e) = 1. Inthis case, in�nitely often when we reach � there will have been a changein Tot(e)[s] since the last �-stage t (i. e. maxfq : 'e(�)(q0) # [s] for all q0 �qg > maxfq : 'e(�)(q0) # [t] for all q0 � q ^ t a � stageg). According tocase 1 of the construction, all such stages will be �b1 stages. Furthermore,since the higher priority restraints come to a limit, for su�ciently large x,if s is a �b1 stage and � desires a number below
�(e(�); x), to enter Asince
�(e(�); x) > maxfr(�) : � < �g, and 'e(�)(x0) # for all x0 � x, but�A(e(�); x) = 0, then this desire cannot be restrained by any �. Thereforeat step 3 of the construction, either
�(e(�); x) itself, or some z <
�(e(�); x)will be enumerated into A. Finally, to see that the
(e(�); x)[s] come to alimit, note that we only gratuitously change
(e(�); x)[s] in step 3 of the10

construction when � desires to correct �e(�) on some x0 � x. But each timesuch a change is desired and made for some x0, we will set �A(e(�); x0) = 1during that stage. Of course, this can happen only �nitely often.Case 2. � is an � node. Straightforward.Case 3. � is a �-node. Let e = e(�); i = i(�); and k = k(�). By theconstruction of the priority tree, we can suppose that for all �-nodes � 0 � TP ,devoted to Ne;i;k0 for k0 < k, �0bs � �. It follows that after some stages1 > s0 each time we have a � (�)b1-stage, we must have the � -correctlength of agreement above m(�; s): We argue as in the intuitive discussion.First, suppose that at some stage s2 after s1, � imposes restraint. Now wesee that s2 must be a �-stage at which, for all �b1 � � with j�j � 0 mod 3and for any x, if(i)
(e(�); x) < u(�We(k0)) for k0 � k,(ii)
(e(�); x) > maxfr(�; s) : � < �g,then �A(e(�); x) = 1. It follows that no number of higher priority can injurethe �Wei (k)[s2]-computation. By �'s restraint, step 3 resetting, and the step2 initialization, no � of lower priority can injure the �We(k)[s2]-computation.Therefore �Wei (k)[s2] #= �Wei (k)[s2], m(�; s2) = m(�), and r(�; s2) = r(�).Thus we can suppose that there is no stage s2 after s1 where restraint isimposed by �. In this case, we claim that Ve is computable. We reason byinduction on stages after s1. Suppose that no number below m(�; s) will everagain enter Ve, and that s is some � b1 stage after s1. Now the computationup to `(�; s) is � -correct and we know that the length of agreement exceedsm(�; s)+1 � -correctly. We will not reset m(�; s0) until a stage s0 � s at whichwe visit �. Suppose that s0 is such a stage. At stage s0 we will incrementm(�; s0 + 1) to be m(�; s) + 1. At stage s0, at most one number will enter Aand, by construction, every � with �b1 � � desires to put a number into A.The action of putting z into A in case 3 will clearly lift all the
(e(�); x)for �b1 � � which are not permanently restrained and have
(e(�); x) <m(�; s0) abovem(�; s0)+1. Therefore no � with �b1 � � can ever later desireto put a number below m(�; s0+1) into Ve. Furthermore no � �L � can put anumber below m(�; s0+1) by � restraint. Finally, at most one number belowm(�; s0 + 1) can enter A from nodes below �bg, and since no later stage is11

a �bs stage, this small number must enter We and not Ve. Therefore, Ve isnow �xed on m(�; s0) + 1 and hence by induction, Ve is computable.To complete the proof, note that if Ve is noncomputable and �b1 is a� -node on the true path, then it can only be that �We(�)i(�) is total, since by(iv), for all � below �b1 on the True Path, and � (�) = �, �bs is on theTrue Path. 2

12

References[1] K. Ambos-Spies, Antimitotic recursively enumerable sets, Z. Math.Logik Grundlagen Math. 31 (1985), 461-467.[2] K. Ambos-Spies and P. A. Fejer, Degree theoretical splitting propertiesof recursively enumerable sets, J. Symbolic Logic 53 (1988), 1110-1137.[3] R. G. Downey, Localization of a theorem of Ambos-Spies and the strongantisplitting property, Archiv math. Logik Grundlag. 26 (1987), 127-136.[4] R. G. Downey and T. A. Slaman, Completely mitotic r.e. degrees, Ann.Pure Appl. Logic 41 (1989), 119-152.[5] R. G. Downey and M. Stob, Splitting theorems in recursion theory, Ann.Pure Appl. Logic 65 (1993), 1-106.[6] R. Friedberg, Three theorems on recursive enumeration, J. SymbolicLogic, 23 (1958), 308-316.[7] M. Ingrassia and S. Lempp, Jumps of nontrivial splittings of r.e. sets, Zmath. Logic. Grundlagen Math., 36 (1990), 285-292.[8] R. Ladner, Mitotic recursively enumerable sets, J. Symbolic Logic, 38(1973), 199-211.[9] M. Lerman and J. B. Remmel, The universal splitting property, II, J.Symbolic Logic 49 (1984), 137-150.[10] P. Odifreddi, Classical Recursion Theory, North-Holland, Amsterdam,1990.[11] R. I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag,New York, 1987. 13

