
Computably Enumerable Reals and Uniformly

Presentable Ideals∗

Rod Downey and Sebastiaan A. Terwijn
School of Mathematical and Computing Sciences

Victoria University
PO Box 600, Wellington

New Zealand

January 5, 2011

Abstract

We study the relationship between a computably enumerable real and its
presentations. A set A presents a computably enumerable real α if A is a
computably enumerable prefix-free set of strings such that α =

∑
σ∈A 2−|σ|.

Note that
∑
σ∈A 2−|σ| is precisely the measure of the set of reals that have a

string in A as an initial segment. So we will simply abbreviate
∑
σ∈A 2−|σ| by

µ(A). It is known that whenever A so presents α then A ≤wtt α, where ≤wtt
denotes weak truth table reducibility, and that the wtt degrees of presentations
form an ideal I(α) in the computably enumerable wtt degrees. We prove that
any such ideal is Σ0

3, and conversely that if I is any Σ0
3 ideal in the computably

enumerable wtt degrees then there is a computable enumerable real α such that
I = I(α).

1 Introduction

Although the larger part of computability theory has been concerned with the compu-
tational complexity of sets of numbers and strings, from the beginnings of the subject
(see e.g. Turing [16]) there has been an interest also in reals. Of particular importance
to computable analysis (see e.g. Weihrauch [17], Pour-El and Richards [13], Ko [9])
and algorithmic information theory (see e.g. Chaitin [6], Calude [2], Martin-Löf [11],
Li-Vitanyi [10]) is the collection of computably enumerable reals.

Following Soare [14], a real α is called computably enumerable (c.e.) if we can
effectively generate it from below. That is if there is a computable sequence of ra-
tionals {qi : i ∈ N} with qi+1 ≥ qi converging to α. If we can in addition effectively
compute the radius of convergence, then α is said to be computable, in which case we
can compute effectively the n-th bit of its dyadic expansion.

∗The research in this paper was supported by the Marsden Fund of New Zealand.

1

A driving force in the analysis of computably enumerable reals is algorithmic
information theory. A classic example of a computably enumerable real that is not
computable is Chaitin’s halting probability:

Ω =
∑
U(σ)↓

2−|σ|,

where U denotes a universal prefix-free Turing machine1.

Given a computably enumerable real, it is natural to ask how it can be generated.
That is, what kinds of effective sequences can be used to “present” the real. For
simplicity we consider only reals between 0 and 1. Two classical representations of
reals are Cauchy sequences and Dedekind cuts. Let α be a real, and L(α) = {q ∈
Q : q ≤ α} the Dedekind cut associated with α. Soare [14] investigated the relation
between L(α) and sets A with α =

∑
n∈A 2−n. That there are c.e. α for which such

A cannot be c.e. had already been noted by C. G. Jockusch. It is clear that α is a
c.e. real if and only if L(α) is a computably enumerable set of rationals. Some basic
equivalences were proven by Calude et al. [4]:

Theorem 1 (Calude et al. [4]) The following are equivalent for a real α.

(i) α is computably enumerable.

(ii) The lower Dedekind cut of α is computably enumerable.

(iii) There is an infinite computably enumerable prefix-free set A ⊆ 2<ω such that

α =
∑
x∈A

2−|x|.

(iv) There is an infinite computable prefix-free set A ⊆ 2<ω such that α =
∑
x∈A

2−|x|.

(v) There is a computable function f(x, y) of two variables such that

(a) for all k, s, if f(k, s) = 1 and f(k, s+ 1) = 0, then there exists k′ < k such
that f(k′, s) = 0 and f(k′, s+ 1) = 1.

(b) α = a1a2 . . ., where ai = lims f(i, s).

(vi) There is a computable increasing sequence of rationals with limit α.

Although the apparently-stronger (iv) is not explicitly stated in [4], it follows from
(iii), since we can always make the enumeration of strings in A nondecreasing in
length.

1Recall that a machine U is called prefix-free if, whenever U(σ) ↓, then for all σ @ τ , U(τ) ↑.
The prefix-free Kolmogorov complexity of a string ν relative to a machine N is defined as HN (ν) =
(µn)(∃σ)[|σ| = n ∧N(σ) = ν]. Prefix-free machine U is universal iff for all prefix-free M there is a
constant c such that for all ν KU (ν) ≤ KM (ν) + c. A real α is called random iff there is a constant c
such that, for all n HU (α �n) ≥ n− c. It seems that computable enumerable reals occupy the same
central place in algorithmic information theory that computable enumerable sets occupy in classical
computability theory. We refer the reader to Li-Vitanyi [10] for further details and motivation.

2

Prefix-free sets correspond to open (hence measurable) sets of reals: if A is prefix-
free then the set {X ∈ 2ω : ∃σ ∈ A(σ @ X)} is open in the usual topology on 2ω,
and its Lebesgue measure µ(A) is

∑
σ∈A 2−|σ|. Hence we can rewrite (iii) (and (iv))

as α = µ(A) for some computable enumerable (computable) prefix-free A.

Definition 2 For any A ⊆ 2<ω, we say A is a presentation of a c.e. real α if A is a
prefix-free c.e. set such that α = µ(A).

Downey and LaForte asked the following question: given a computably enumer-
able real α, what can be said about the possible presentations α might have? In
particular they asked: suppose that α is not computable. Does α necessarily have
noncomputable presentations? Surprisingly the answer is “no.”

Theorem 3 (Downey and LaForte [7]) There is a c.e. real α which is not computable,
but such that if A presents α, then A is computable.

The proof of Theorem 3 was a surprisingly difficult 0′′ or “infinite injury” priority
argument, an argument of a type hitherto not found in computable analysis. The re-
mainder of of Downey and LaForte [7] was devoted to trying to understand what sorts
of reals are “nearly computable” in the sense that they only have computable presen-
tations; and what can be said about the types of presentations that a real might have.
For instance, Downey and LaForte proved that such reals can have high c.e. degree.
They also showed that some classes of degrees do not contain such nearly computable
reals, namely they showed that such degrees could not be “promptly simple.” Finally,
Wu [18] used a 0′′′ priority argument to construct a nonzero computably enumerable
degree a such that no nonzero lesser degree contains a nearly computable real.

In the present paper, we turn to the question: What types of presentations can a
computably enumerable real have? In particular, if a computably enumerable real has
one noncomputable presentation, what others does it have?

As with several other questions arising from computable mathematics, the answer
seems to lie in strong reducibilities, specifically, weak truth table reducibility. Recall
that A ≤wtt B iff there exists a Turing reduction Γ and a computable function γ such
that ΓB = A, and for all x the maximum element queried in the computation ΓB(x) is
≤ γ(x). Wtt reducibility has proven useful in other parts of computable mathematics,
notably Calude and Nies [5] proved that Chaitin’s number Ω is wtt-complete but not
tt-complete, and Downey and Remmel [8], showed that the degrees of c.e. bases of a
c.e. vector space V are precisely the wtt-degrees below degwtt(V).

Theorem 4 (Downey and LaForte [7])

(i) Let α be a computably enumerable real, with α = .χA for some set A. Suppose
that B is any presentation of α. Then B ≤wtt A with use function the identity.

(ii) If A is a presentation of a c.e. real α and C ≤wtt A is computably enumerable,
then there is a presentation B of α with B ≡wtt C.

It is easy to see that if α is strongly c.e., in the sense that α = .χA for some c.e. set
A, then there is a presentation B of α with A ≤m B.2 It follows from Theorem 4 that

2Namely, choose a prefix-free domain containing exactly one string of every length, and enumerate
this string into B iff its length is enumerated into A.

3

such α have presentations in every c.e. wtt-degree below A. So we have two extremes:
A c.e. real can be only computably presentable, and at the other extreme a c.e. real
can have presentations of each c.e. wtt-degree.

We remark that it is easy to construct a presentation B of a c.e. real α such
that B 6≤tt α (Proposition 6), and hence weak truth table reducibility is the natural
reducibility in this context.

As noted in [7],

I(α) = {We : ∃A presentation of α. We ≡wtt A}

is an ideal3 in the c.e. wtt-degrees. It is not difficult to prove (Section 3) that any such
ideal is Σ0

3. Σ0
3-ideals in the c.e. wtt-degrees were studied by Ambos-Spies et al. [1].

They proved that these are exactly the ideals having an exact pair. The main goal
of the present paper is to completely classify the possible ideals that can be realized
as ideals of degrees of presentations. The answer is “anything that is not explicitly
ruled out can be realized.”

Theorem 5 Suppose that I is Σ0
3 and that I = {We : e ∈ I} forms an ideal in the

c.e. wtt-degrees. Then there is a computably enumerable real α such that I(α) = I.

One consequence of this result is that there are c.e. reals that have no greatest
degree of presentation etc. The proof of Theorem 5 is an infinite injury priority argu-
ment, which combines several ingredients. In particular, it combines an approximation
argument (for the Σ0

3 representation of I), a coding argument (for the members of I),
and infinitary negative requirements (like those used in [7]), and is of some technical
depth.

2 Some notation

In the following sections, we generally use standard notation from computability the-
ory. In particular, when we construct c.e. sets to be presentations of reals with various
computational properties, we generally follow the terminology of Odifreddi [12] and
Soare [15]. An important abbreviation that deserves special notice is the following:
We fix in advance an enumeration of all c.e. sets We as the output of some suitable
universal Turing machine such that exactly one pair 〈e, x〉 with x ∈ We is listed at
each stage s. We can then use “[s]” to relativize entire expressions involving com-
putable dynamic processes with the meaning that the state of each such process is
evaluated at stage s. By convention, all computations etc. at stage s are bounded by
s, and the word “fresh” refers to a number or string bigger than any previously seen
in the construction, and, in particular, will exceed all uses.

3 Presentations and ideals

First we show that Theorem 4 (i) does not hold for tt-reducibility:

3That is, it is closed downwards (by Theorem 4) and closed under joins: If B and C present α
then also {0σ : σ ∈ B} ∪ {1σ : σ ∈ C} of degree B ⊕ C presents α.

4

Proposition 6 There exist a c.e. real α and a presentation B of α such that B 6≤tt α.

Proof. We construct a c.e. real α and a prefix-free c.e. domain B presenting α such
that for every e, if ϕe is a tt-reduction, then there is a string σ such that

Re : σ ∈ B ⇐⇒ α 6|= ϕe(σ).

Let D = {0n1 : n ∈ ω}, so that D is a recursive prefix-free domain.

Stage 0. Let α[0] = 0, B[0] = ∅, σe,0 = 0e1.

Stage s > 0. Look at the smallest e for which Re has not yet been satisfied and
for which ϕe(σe)↓ [s]. If α[s] + 2−|σe| |= ϕe(σe) then instead of putting σe into B we
put the extensions σe0 and σe1 into B. If α[s] + 2−|σe| 6|= ϕe(σe) then put σe into B.
In both cases add 2−|σe| to α, and initialize all Ri with i > e by redefining σi to be
fresh strings from D.

Clearly B is c.e., and B is prefix-free because D is. Furthermore, µ(B) = α
because every time we add measure to B we add the same amount numerically to α.
Finally, if ϕe is a tt-reduction, then σe ∈ B ⇔ α 6|= ϕe(σe) because σe is kept out of
B precisely when α |= ϕe(σe). Because after every diagonalization the lower priority
σi, i > e, are picked fresh, they do not interfere with the action taken for Re. Hence
the construction is finite injury. �

As mentioned in the introduction, for a c.e. real α the family

I(α) = {We : ∃A presentation of α. We ≡wtt A}

forms an ideal. Let us determine the complexity of I(α). The statement “µ(We) = α”
is Π0

2 (“for all diameters ε there is a stage s such that µ(We)[s] and α[s] are closer
than ε”). Saying that We is prefix-free is Π0

1 (∀σ, τ ∈ We. σ 6@ τ). For a given c.e.
set A the set {We : We ≡wtt A} is Σ0

3 (see Odifreddi [12, p627]; roughly, we have to
say “there exists a wtt-reduction such that ∀x∀y ≤ x∃s > x such that at stage s the
reduction gives the right answers on y”). All in all, We ∈ I(α) if and only if there
exists d such that a Σ0

3 statement holds true of Wd. So we see that I(α) is a Σ0
3-

ideal. To see that this is optimal, note that for α computable we have by Theorem 4
that I(α) = {We : We computable}, and this set is Σ0

3-complete. I(α) is not always
Σ0

3-complete: For α = χK we already saw that I(α) = {We : e ∈ ω} is trivial (as an
index set). We now prove a result in the spirit of Rice’s Theorem, saying that this is
in fact the only case where I(α) is not Σ0

3-complete.

Theorem 7 I(α) is either {We : e ∈ ω} or Σ0
3-complete.

Proof. Let α = χA be a c.e. real. It is easy to see that I(α) = ω iff A is wtt-complete.
Suppose that A is not wtt-complete. We prove that I(α) is Σ0

3-complete. This can
be proved using the methods of Rogers and Kallibekov, see Odifreddi [12, p625-627].
We sketch the proof and leave the details to the reader. Let Inf = {e : We is infinite}.
We use that the weak jump {x : Wx ∩ Inf 6= ∅} of Inf is Σ0

3-complete. It suffices to
build sets Bx uniformly in x such that

Wx ∩ Inf 6= ∅ =⇒ Bx computable

Wx ∩ Inf = ∅ =⇒ Bx 6≤wtt A.

5

In the first case clearly the wtt-degree of Bx contains a presentation of α, while in
the second case it follows from Theorem 4 that this is not the case.

We have requirements

Pe : e ∈Wx ∧We infinite =⇒ (∀i ≥ e) [ω[i] ⊆ Bx]

that try to make Bx computable, and

Re : (Γe, γe) is total wtt-reduction =⇒ ∃z[Bx(z) 6= ΓAe (z)].

for making Bx 6≤wtt A, and give them the priority ordering P0 < R0 < P1 < R1 < . . .

Re is handled by Sacks’s coding strategy ([12, p512]): We maintain a length
of agreement function l(e, s) monitoring agreement between Bx and ΓAe . We code
K � l(e, s) into ω[2e+1]. Then, provided that the higher priority requirements are
finitary, Re is also finitary (and hence satisfied), since otherwise the whole of K would
be coded into Bx and still we would have Bx ≤wtt A, contradicting the incompleteness
of A.

Pe is handled directly by filling the rows above ω[2e] up to maxWe[s] at every
stage s whenever e is found to be in Wx.

If Wx contains no code of an infinite c.e. set then all Pe are finitary, hence every
Re succeeds and Bx 6≤wtt A. If on the other hand e ∈ Wx is a minimal code of an
infinite c.e. set then (∀i ≥ e)[ω[i] ⊆ Bx]. Since all higher priority requirements are
finitary, Bx ∩ ω[i] is finite for every i < e. Hence Bx is computable. �

We have seen that I(α) is a Σ0
3-ideal. Theorem 5 says that conversely every Σ0

3-
ideal in the c.e. wtt-degrees is of the form I(α) for some c.e. real α. The proof will
make use of the following lemma, that implies that every Σ0

3-ideal is generated by a
uniform collection of c.e. sets.

Lemma 8 (Yates [12, II.5.25]) Let {We : e ∈ I}, I ∈ Σ0
3, be any collection of c.e. sets

containing all the finite sets. Then there is a uniformly c.e. collection {Vf : f ∈ ω}
such that {We : e ∈ I} = {Vf : f ∈ ω}.

Proof. Suppose We ∈ C ⇔ ∃f∀n∃mR(e, f, n,m) for some recursive predicate R. For
every f construct a c.e. set Vf as follows. For every successive n, Vf looks for an m
confirming R(e, f, n,m), and if it finds such m it copies We by setting Vf,n = We,n. If
f is true then for all n the appropriate confirmation m will be found, and Vf equals
We. If f is false then for some n, Vf will search forever, so it is finite. It is now clear
that the collection of all Vf generates C. �

4 Proof of Theorem 5

Outline of the proof. By Lemma 8 we may suppose that the Σ0
3-ideal is given to

us by a uniform collection of c.e. sets U0, U1, U2, . . . We want to construct α such that
for all e:

Ce : code Ue into I(α) by constructing Ae ≡wtt Ue with α = µ(Ae),

Ne : We presents α =⇒We ≤wtt

⊕
i≤eAi.

First we describe the strategies for meeting these requirements in isolation, and then
we describe how we will combine the strategies (using a tree of strategies).

6

We will try to satisfy Ue ≤wtt Ae by permitting: Along with Ae we define a use
function ψe such that whenever a number x enters Ue we put (or at least try to put)
a string ψe(x) into Ae.

We will try to ensure Ae ≤wtt Ue by allowing a small string to enter Ae only for
the sake of coding Ue. So, assuming that ψe(x) ≥ x we will have Ae ≤wtt Ue with the
identity as use function.

Along with the construction we will define α by enumerating rational values in it
(see item (vi) of Theorem 1). α[s] will be the approximation of α determined by the
numbers put into it by stage s. The second part of Ce will be satisfied by ensuring
that there are infinitely many stages s with (α = µ(Ae))[s], so that indeed all the Ae
will present the same α.

For Ne, if α[s] and µ(We)[s] grow close we will try to make We computable by
restraining α[s]. We will monitor how close the two get by defining a monotone
unbounded sequence of numbers m(e)[s], and every time we see that |α − µ(We)| <
2−m(e)[s] we will try to keep α[s] from changing on short strings, thus allowing only
minor changes. Were we to completely succeed in this, then We would be computable
as follows: When asked if γ ∈We, run the construction until |α−µ(We)| < 2−m(e)[s],
with m(e)[s] >> |γ|. Then γ ∈We if and only if γ ∈We[s].

A coding strategy Ce can easily live with the action of a higher priority coding
strategy Ci simply by picking different coding locations. We describe how the other
strategies can be combined.

First we look at how Ne can deal with the outcome of a higher priority Ci. As
described above, when at stage s it holds that |α − µ(We)| < 2−m(e)[s], Ne tries to
restrain α[s] by trying to keep it from changing more than 2−m(e). (It will allow minor
changes in α to give lower priority requirements a chance of succeeding.) However,
the coding action of Ci may spoil this. Suppose that, despite the injuries of Ci,
at the end of the construction We presents α. Although we cannot argue anymore
that We is computable, we can still argue that it is computable in Ai, which is good
enough for us. To compute whether γ ∈ We, Ai compute s so large that µ(Ai)
changes no more than 2−|γ|+1 after s by the coding of Ui. Then, using that the
construction is recursive, compute a stage s such that |α−µ(We)| < 2−m(e)[s], where
2−m(e)[s] < 2−|γ|+2. Then α[s] is not changed more than 2−m(e)[s] by Ne, and α[s]
is not changed more than 2−|γ|+1 because of the coding of Ci, so µ(We)[s] cannot
change more than 2 · 2−m(e)[s] + 2−|γ|+1 < 2−|γ|. So γ ∈We if and only if γ ∈We[s].
Hence We is computable in Ai.

Second we look at how Ci can deal with the outcome of a higher priority Ne.
There are two relevant outcomes of Ne: The infinitary outcome is when at infinitely
many stages (which we will call e-expansionary stages) µ(We) grows closer to α. The
finitary outcome is when from a certain stage onwards, µ(We)[s] is bounded away
from α[s]. Suppose that x enters Ue at stage s. Then Ae wants to code this event
by enumerating a string δ. Suppose further that |α − µ(We)|[s] < 2−m(e)[s] < 2−|δ|.
Then Ae is not allowed to enumerate a string as short as δ, since this would cause
α[s] to change 2−|δ|, which is more than Ne allows. To get around this we use the
trick of Downey and LaForte [7, Theorem 8]. Namely, in the above situation we let
Ae announce that it wishes to enumerate δ, without actually doing so. Furthermore,

7

we make α slightly bigger, so little that the computability of We as described above
is not affected, namely that if µ(We) is to stay close to α then We cannot enumerate
a short string. Then there are two possibilities for We: Either it does not respond,
remaining forever more than 2−m(e)[s] apart from α, in which case it does not present
α and the outcome of Ne will be finitary. Or it responds by growing closer than
2−m(e)[s] to α again, in which case we repeat the procedure. If We keeps responding
to the small changes we make in α, by repeating enough times we will be able to
create enough space between Ae and α for δ to enter Ae. Note that it is important
that we do not allow Ne to let its value m(e) grow during this procedure. We will
refer to this strategy as the “drip feed strategy”, since we think of Ci succeeding by
feeding α changes small enough to be allowed by Ne, and doing this often enough to
be able to finally make its move.

The strategy for Ce becomes a little more complicated when it has to deal with
the outcome of more than one N -strategy. Suppose that Ce is below Ni, which in its
turn is below Nj . Suppose that we try to put δ into Ae using the drip feed strategy
described above. Then Ce will try to change α by an amount of 2−n in 2−|δ|+n steps,
where n = m(i), the maximum change in α that Ni allows for. Now while waiting for
Ni to respond to the first change, Nj may let its value m(j) grow, since it does not
know (or care) whether Ni is going to respond. When Ni finally does respond, m(j)
may have become so big that Nj does not allow a change of 2−n in α, thus frustrating
the drip feed strategy of Ce. The solution is to let Ni in turn use a drip feed strategy
to let Nj allow for a change of 2−n. If both Ni and Nj are infinitary, in the end all the
changes in α requested by Ce will be allowed for. After every successfully completed
drip feeding strategy, the N -strategies are allowed to let their m-value grow. This
works in general for any finite number of N -strategies above Ci, by recursively nesting
the drip feed strategies.

The tree of strategies. In general, of course, a requirement has to deal with the
outcome of all the higher priority requirements, not just one. We handle the combi-
natorics of this using the usual infinite injury framework of putting all the strategies
on a tree. We use 2<ω as a tree of strategies, assigning both Ce and Ne to every string
of length e. Define

g(e) =

{
0 if We presents α
1 otherwise.

The path defined by g is called the true path of the construction. At every stage s we
will have a finite approximation gs of g of length at most s such that g = lim infs→∞ gs.
For any string σ, a stage s is a σ-stage if s = 0 or s > 0 and σ v gs. A σ-strategy is
initialized if all its parameters are set to being undefined. For any two strings σ and
τ , σ <L τ if and only if there is a string ρ such that ρ0 v σ and ρ1 v τ . A σ-strategy
has higher priority than a τ -strategy if σ @ τ or σ <L τ . For the two σ-strategies,
Cσ has priority over Nσ.

To coordinate the drip feed strategies, we equip every node σ with a counter c(σ)
and let σ only act at stages where c(σ) = 0. The counter c(σ) will indicate how many
steps a drip feed strategy needs to be successfully completed. So, at the start of a drip
feed strategy initiated by some low priority coding requirement that wants to put a
short string δ into α, the counter c(σ) is set to 2−|δ|+n for some number n determined

8

by the restraint of the first infinitary N -requirement above it. Every time a package
of size 2−n passes N|σ| the counter c(σ) is decreased by 1. Every time the counter
reaches 0 we allow σ to act.

In order to enable the infinitary coding actions of low priority requirements to
interleave with the coding of high priority requirements, we equip the strategies with
lists Λ for bookkeeping which strings wish to enter α using a drip feed strategy. After
a drip feed strategy is successfully completed, the top element of Λ is removed. Every
string on Λ has to wait until it is on the top of the list before it can start a drip
feed strategy. (Such lists were not needed in the proof of Theorem 3 since there the
positive requirements were finitary.)

Construction. Every σ will build its own copy Aσ and try to satisfy C|σ| by building
a wtt-reduction ψσ from U|σ| to Aσ. The construction will feature several auxiliary
parameters and functions: For every σ we have lists Λ(Cσ) and Λ(Nσ), a counter
c(σ), functions l(σ) and m(σ) monitoring the length of agreement, and a restraint
function r(σ). The construction proceeds in stages.

Stage s = 0. Set α[0] = 0, g[0] = λ. For all σ, let Aσ[0] = ∅, and initialize all
σ-strategies, i.e. set all parameters to be ↑ (undefined).

Stage s > 0. The finite approximation g[s] (of length at most s) to the construc-
tions true path will be defined by the σ that are active at stage s. These σ are defined
by recursion, in increasing order. Given an active σ, the next (if any) active node is
determined by Nσ.

Action for the positive requirement Cσ. Let e = |σ|. First we pick suitable coding
locations for Ue inAσ: For every x ≤ s, if ψσ(x)[s−1]↓ then let ψσ(x)[s] = ψσ(x)[s−1].
If ψσ(x)[s− 1]↑ then pick for ψσ(x)[s] a fresh string of length bigger than x and not
extending any string previously enumerated into Aσ. For every x that enters Ue at
s do the following: Let ρ be the longest initial segment of σ such that ρ0 v σ and
r(ρ) > ψσ(x)[s]. (This means that ρ is the largest initial such that ψσ(x) has to use
the drip feed strategy to get into Aσ.) Add ψσ(x)[s] to the list Λ(Cσ)[s] and add
|ψσ(x)[s]| to Λ(Nρ)[s]. (Λ(Cσ) is the list Cσ uses to keep track of the strings it wants
to put into Aδ using a drip feed strategy. Λ(Nσ) is a list of numbers that Nσ uses
to bookkeep for which (sizes of) strings a request has been made by a lower priority
requirement to enter α.) If ρ does not exist, put ψσ(x)[s] into Aσ straightaway.

Let δ be the string on top of the list Λ(Cσ)[s]. Let ρ be the longest initial segment
of σ such that ρ0 v σ and r(ρ)[s] > |δ|. (The existence of such ρ is guaranteed by the
fact that δ is on Λ(Cσ).) See if |δ| is on the list Λ(Nρ)[s]. If so, do nothing. If not,
this means that δ has been successfully processed by Nρ, and hence, by recursion,
by all relevant N -strategies above σ. So in this case we put δ into Aσ and remove it
from Λ(Cσ), and we initialize all negative strategies τ ≥ σ (meaning that the restraint
value of these strategies becomes undefined).

We make α = µ(Aσ)[s] by putting, if necessary, either fresh strings (not extending
previous ones) into Aσ, or numbers into α.

Action for the negative requirement Nσ. Let e = |σ|. Define the following length

9

of agreement functions,

l(σ)[s] =

{
s if µ(We) = α[s]
min{n : |α− µ(We)|[s] > 2−n} − 1 otherwise.

m(σ)[s] = max{l(σ)[t] : t < s}.
so that we always have |α − µ(We)| ≤ 2−l(σ)[s]. A σ-stage s is σ-expansionary if
l(σ) > m(σ)[s].

If s is not σ-expansionary we let σ1 act at s, and we initialize all τ -strategies with
σ <L τ .

If s is σ-expansionary we initialize all τ -strategies, τ ≥ σ1. Whether σ0 is allowed
to act depends on the value of σ’s counter c(σ) (see two cases below).

If Λ(Nσ)[s] is empty we set r(σ) = l(σ)[s] and let σ0 act. Otherwise, let n be the
number on top of the list Λ(Nσ)[s]. If c(σ) ↑ [s − 1] then set c(σ) = 2−n+r(σ)[s] and
let σ0 act. If c(σ)↓ [s− 1] there are two cases:

I. c(σ)[s−1] = 0. This means that σ’s drip feed strategy for n has been successfully
completed. Remove n from Λ(Nσ)[s], set r(σ) = l(σ)[s], and let σ0 act.

II. c(σ)[s − 1] > 0. This means that at a previous stage t this counter was set to
some number 2−n+r(σ)[t], and r(σ) has not changed since. Let ρ be maximal
with ρ0 v σ and r(ρ) > r(σ)[s]. Since ρ acts its counter c(ρ) must be 0 at s.
See if r(σ)[s] is on the list Λ(Nρ)[s]. If so, do nothing. (In this case r(σ)[s]
is still waiting for its turn to start a drip feed strategy.) If not, r(σ)[s] was
removed from Λ(Nρ) when its counter c(ρ) became 0 at some stage ≤ s. So
we let c(σ)[s] = c(σ)[s− 1]− 1, and we put the next copy of r(σ)[s] on the list
Λ(Nρ)[s]. If there is no such ρ we add 2−r(σ)[s] to α.

This completes the construction.

Verification. Because the construction is recursive, α is a c.e. real, and every Aσ is
a c.e. prefix-free domain.

We prove by induction along the true path g that for σ on g we have Aσ ≡wtt Ue,
µ(Aσ) = α, and if We presents α then We ≤wtt

⊕
τvσ Aτ , where e = |σ|.

First note that always Aσ ≤wtt Ue: A string δ can only enter Aσ after ψe(x) has
been picked when |δ| > |ψe(x)| or δ = ψe(y) for some y. Since |ψe(x)| > x, if Ue
does not change below |δ| then also Aσ doesn’t. So Aσ ≤wtt Ue with use the identity
function.

Claim For ρ0 @ g, every number put on Λ(Nρ) is eventually removed from Λ(Nρ)
again.
Namely, since there are infinitely many stages at which ρ acts, and ρ can only act
when c(ρ) = 0 or when Λ(Nρ) is empty, infinitely often Λ(Nρ) is empty or its top
element is removed. Since any element on the list has only finitely many predecessors
on the list, every element is eventually removed.

Suppose that Cσ is never initialized after stage s, i.e. g[s] is never to the left of
σ. Note that τ @ σ can then only initialize σ’s negative strategy. We prove that

10

Ue ≤m Aσ via ψσ. Now suppose x enters Ue at σ-stage t > s. Let ρ v σ be maximal
with ρ0 v σ and r(ρ) > r(σ)[t]. If no such ρ exists ψσ(x) enters Aσ immediately.
Otherwise, ψσ(x) is added to the list Λ(Cσ) and |ψσ(x)| is added to Λ(Nρ). By
the above claim it is eventually removed from Λ(Nρ). But then it is also eventually
removed from Λ(Cσ), and put into Aσ at the same stage. Since no other strategy can
put ψσ(x) into Aσ we have x ∈ Ue ⇔ ψσ(x) ∈ Aσ.

Now we also have that µ(Aσ) = α because α = µ(Aσ)[s] at the end of Cσ’s action
at every σ-stage s.

We verify that Nσ is satisfied. Suppose that We ⊆ 2<ω is prefix-free and µ(We) =
α. Suppose that s is such that the σ-strategies are never initialized after stage s. Let
γ ∈ 2<ω. We compute whether γ ∈We as follows. Determine a σ-stage t ≥ s, |γ|+ 1
such that Aτ [s] � |γ|+1 = Aτ � |γ|+1 for all τ v σ, and such that l(σ)[t] > |γ|+1 and
r(σ) = l(σ)[t]. We can compute the latter because the construction is recursive and
lims l(σ)[s] = ∞ by the assumption that µ(We) = α. Furthermore, we may choose t
such that r(σ) = l(σ)[t], because σ0 will act infinitely often. By the definition of l we
have |α−µ(We)| ≤ 2−l(σ)[t]. Which things can change α[t], and what is the effect on
µ(We)?

• The coding strategies Cτ with τ v σ are done below |γ|+ 1 by choice of t.

• Since all τ ≥ σ1 are initialized at every σ-expansionary stage, the coding strate-
gies Cτ with σ <L τ cannot change α more than 2−t ≤ 2−|γ|−1 in total.

• The coding strategies Cτ with τ w σ0 may wish to change α[t] below r(σ). Note
that r(σ) = l(σ)[t]. But they have to use the drip feed strategy in order to do
this, meaning that they cannot disrupt the inequality |α − µ(We)| < 2−r(σ)[t]
by more than 2−r(σ)[t] ever, after which they have to wait until µ(We) grows
closer to α than 2−r(σ)[t] again. This means that µ(We) cannot change on any
string of length smaller than r(σ)[t], and in particular not on γ.

Summing up, µ(We)[t] cannot change more than

2−|γ|−1 + 2−r(σ)[t] < 2 · 2−|γ|−1 = 2−|γ|.

So γ ∈We ⇔ γ ∈We[t].

This completes the verification, and the proof of Theorem 5.

References

[1] Ambos-Spies, K., Nies, A., Shore, R. A., The theory of the recursively enumerable
weak truth-table degrees is undecidable, Journal of Symbolic Logic 57 (1992) 864–
874.

[2] Calude, C., Information Theory and Randomness, an Algorithmic Perspective,
Springer-Verlag, Berlin, 1994.

11

[3] Calude, C., Coles, R., Hertling, P., Khoussainov, B., Degree-theoretic aspects
of computably enumerable reals, in Models and Computability, (ed. Cooper and
Truss) Cambridge University Press, 1999.

[4] Calude, C., Hertling, P., Khoussainov, B., Wang, Y., Recursively enumerable
reals and Chaitin’s Ω number, in STACS ’98, Springer Lecture Notes in Computer
Science 1373 (1998) 596–606.

[5] Calude, C., and Nies, A., Chaitin’s Ω numbers and strong reducibilities, Journal
of Universal Computer Science 11(3) (1997) 1162–1166.

[6] Chaitin, G., A theory of program size formally identical to information theory,
Journal of the ACM 22 (1975) 329–340.

[7] Downey, R., and LaForte, G., On presentations of computably enumerable reals,
to appear in Theor. Comput. Sci.

[8] Downey, R. G., and Remmel, J. B., Classification of degree classes associated
with r.e. subspaces, Ann. Pure and Appl. Logic, 42 (1989) 105–125

[9] Ko, Ker-I, On the continued fraction representation of computable real numbers,
Theor. Comput. Sci, A, 47 (1986) 299–313,

[10] Li, M., and Vitányi, P., Kolmogorov Complexity and its Applications, 2nd edition,
Springer-Verlag, 1997.

[11] Martin-Löf, P., The definition of random sequences, Information and Control 9
(1966) 602–619.

[12] Odifreddi, P. G., Classical Recursion Theory Vol. II, North-Holland, 1999.

[13] Pour-El, M., and Richards, I., Computability in Analysis and Physics, Springer-
Verlag, Berlin, 1989.

[14] Soare, R., Recursion theory and Dedekind cuts, Trans. Amer. Math. Soc. 140
(1969) 271–294.

[15] Soare, R., Recursively enumerable sets and degrees, Springer, 1987.

[16] Turing, A., On computable numbers with an application to the Entschei-
dungsproblem, Proc. Amer. Math. Soc. 43 (1937) 544–546.

[17] Weihrauch, K., Computability, Springer-Verlag, 1987.

[18] Wu, G., Prefix-free languages and initial segments of computably enumerable
degrees, in: J. Wang (ed.), Computing and Combinatorics, Springer Lecture
Notes in Computer Science 2108 (2001) 576–585.

12

