
Completing pseudojump operators

R. Coles, R. Downey, C. Jockusch, and G. LaForte

October 25, 2006

Abstract

We investigate operators which take a set X to a set relatively com-
putably enumerable in and above X by studying which such sets X can
be so mapped into the Turing degree of K. We introduce notions of
nontriviality for such operators, and use these to study which additional
properties can be required of sets which can be completed to the jump by
given c.e. operators.

1 Introduction

The most natural example of a noncomputable set is the computably enumer-
able set K, the halting problem. The relativization of the construction of K
produces, for any a set X of natural numbers, the jump of X, X ′, which is the
set

{
e : Φe(X; e)

y}
. X ′ is computably enumerable in X, and X <T X

′. The
operation, X 7→ X ′, can be generalized by considering, for any index e, the eth
pseudojump operator, Je, which maps X to X⊕WX

e . Je is the eth way in which
one can possibly increase the degree of X’s information in the simplest kind of
uniform way, namely, by a ΣX1 -definition. When the index of the operator does
not explicitly need to be mentioned, we simply write capital letters such as V
and W for pseudojump operators, as we do for the c.e. sets of which they pro-
vide the relativizations. While the jump operator itself has been the object of
intense study throughout the history of computability theory, the explicit study
of relative computable enumerability as produced by operators stems from the
papers [3], [4] by Jockusch and Shore.

The fundamental theorem, Theorem 3.1 of [3], is a completion result for
pseudojump operators, asserting that for any index e there is a noncomputable,
computably enumerable set A such that A⊕WA

e ≡T K. Intuitively, this means
that any construction e of a computably enumerable set can be relativized in
such a way that, up to Turing degree, K itself has the properties of the result of
that construction relative to the set to which the construction is relativized. For
example, applying this theorem to the construction of a noncomputable c.e. low
set yields an incomplete c.e. set A relative to which K is low, in other words,
an incomplete high c.e. set. We consider here to what extent this basic result
can be generalized by requiring various properties of the set A which completes

1

a pseudojump operator V . This is equivalent to considering the class of sets
relative to which the degree of K is produced by the construction V .

Notice that if for all X, V X ≤T X, then only another Turing-complete
set can complete V , so that no other special properties of the degree of the
completing set can be demanded. On the other hand, natural constructions of
nontrivial c.e. sets do incorporate some feature guaranteeing noncomputability.
In this case, if V is such a construction, then, when relativized to any oracle X,
we are guaranteed X <T V

X . Thus, any such natural construction is strongly
nontrivial for the purpose of relativization. Of course, it is in general impossible,
given an index e, to determine what properties WX

e has, even when X is the
empty set, and it is in general quite likely that for some X, WX

e ≤T X, while
for some Y , possibly of the same degree as X, WY

e 6≤T Y . Because of these
considerations, we make the following definitions.

Definition 1. Let C be a class of subsets of ω. A pseudojump operator V is
uniformly nontrivial with respect to C if for all X ∈ C, X <T V X . If C is the
set of all reals, then V is strongly nontrivial.

In what follows, we first examine two finite injury priority arguments which
give rise to computably bounded injury. We consider the existence of incompara-
ble c.e. sets completing pseudojump operators, and the question of the existence
of sets not of c.e. degree completing pseudojump operators. With strong enough
hypotheses about uniform nontriviality, we show that each of these problems
has a positive solution.

Theorem 2. For any pseudojump operator V such that X <T V X for all
c.e. sets X, there exist Turing incomparable computably enumerable sets A and
B such that V A ≡T V B ≡T K.
Theorem 3. For any pseudojump operator V such that X <T V X for all d-
c.e. sets X, there exists a set d.c.e. set A such that V A ≡T K and the degree of
A is not c.e.

Because constructions involving pseudojump operators applied to c.e. sets
deal with sets which are explicitly given only by Σ0

2 definitions, both of these con-
structions are more complex than those in the classical theorems. Essentially,
the tightly-controllable computably bounded injury in the familiar construc-
tions case gives way to essentially noncomputable activity for the corresponding
requirements in the relative computable enumerability case because of the ad-
dition of a quantifier. These constructions give content to this somewhat vague
idea, and therefore have an added technical interest. It is partly for this reason
that we we give a direct construction proving Theorem 2, although this fact can
be derived from the stronger version of Jockusch-Shore’s completion theorem,
Theorem 4.1 of [3], together with the Sacks Splitting Theorem.

We still do not know whether the hypotheses of Theorem 3 can be weakened
to mere uniform nontriviality on c.e. sets. In fact, the relationship between dif-
ferent nontriviality hypotheses and the classes of degrees into which completing
sets must fall is still quite mysterious. We do illustrate how independent non-
triviality with respect to one class of sets can be from nontriviality with respect

2

to even another closely related class. The classes used for this illustration are
closely related classes from Ershov’s difference hierarchy.

Theorem 5. For every n > 0 there exists a pseudojump operator V and a
co-n-c.e. set A such that V A ≤T A but V X 6≤T X for all n-c.e. sets X.

Our final result is the most difficult and surprising result of this paper. We
show the impossibility of requiring cone-avoidance in a pseudojump completion
theorem, given what seems to be a natural nontriviality hypothesis. Thus,
the usual restraint functions for avoiding cones are not compatible with the
pseudojump completion theorem.

Theorem 6. There exist a non-computable, computably enumerable set C and
a pseudojump operator V such that

(1) for every e ∈ ω, We <T V
We , and

(2) for every e ∈ ω, if VWe ≡T K, then C ≤T We.

We leave open the question whether or not the condition in (1) can be
strengthened to guarantee that V is strongly nontrivial, as any natural operator
must be, rather than merely uniformly nontrivial for c.e. sets.

In what follows our notation is standard for priority constructions, as in [6].
One minor variation that we note explicitly to avoid confusion is that we often
relativize functions or entire expressions to a particular stage by writing [s] after
them.

2 Two finite injury constructions and the com-
pletion construction

We first show how two standard finite injury constructions can be combined
with the completion method of [3]. These are the Friedberg-Muchnik construc-
tion of two incomparable c.e. degrees and the Cooper-Lachlan construction of
a properly d.c.e. degree. In the both of these case the number of times higher
priority requirements inflict injury on lower ones can be bounded in advance
by a computable function, thereby making it possible to avoid “over-shooting”
0′ with the degrees so constructed. This turns out to be easy in the case of
the Friedberg-Muchnik construction, but in the second case, the necessity to
preserve computations for a potentially successful diagonalization attempt later
conflicts strongly with the coding of K into A⊕ V A. Because of this, what is a
relatively simple finite-injury construction has to be recast as an infinite-injury
argument somewhat reminiscent of the proof of the Sacks Density Theorem. As
we illustrate later in the case of the Sacks cone-avoidance method, it is not al-
ways possible to combine a finite injury method with a construction completing
a c.e. operator to 0′, particularly in the case where one must set restraints that
while eventually finite are not under the direct control of the construction.

The following result of Jockusch and Shore is proved in [3], Corollary 4.2.

3

Corollary 1. For any low c.e. set L and any pseudojump operator V , there is
a c.e. set A ≥T L such that V A ≡T K.

By the Sacks Splitting Theorem we can split K into two low sets, L1 and
L2 say. If we take a pseudojump operator V which is uniformly nontrivial with
respect to c.e. sets and apply Corollary 1 to V, L1 and L2, then we get two
c.e. sets A1 ≥T L1 and A2 ≥T L2 such that V A1 ≡T V A2 ≡T K. If A1 and
A2 are Turing comparable, then A1 or A2 is Turing complete, and so, for some
i, V Ai ≤T K ≤T Ai, which contradicts the hypothesis that V is uniformly
nontrivial with respect to c.e. sets.

Both to avoid direct dependence on [3], and as a warm-up for the more
complex constructions necessary to prove our other results, we present a direct
proof1 of this fact which avoids using lowness.

Theorem 2. For any pseudojump operator V with X <T V X for all c.e. sets
X, there exist Turing incomparable computably enumerable sets A and B such
that V A ≡T V B ≡T K.

Proof. The proof combines the method of proof of Theorem 3.1 of [3] with that
of the Sacks splitting theorem, We construct computably enumerable sets A and
B with K ≤T A⊕B to meet the following requirements for every n ∈ ω.
NA
n : (∃∞s)(n ∈ V A[s]) =⇒ n ∈ V A,

NB
n : (∃∞s)(n ∈ V B [s]) =⇒ n ∈ V B ,

PAn : n ∈ K if and only if γA(n) ∈ A,
PBn : n ∈ K if and only if γB(n) ∈ B,

Above, γA will be a V A-computable function, and γB will be a V B-computable
function. Hence the positive requirements PAn and PBn ensure that K ≤T V A

and K ≤T V B . The negative requirements NA
n and NB

n ensure that V A and
V B are ∆0

2, and hence Turing reducible to K. Furthermore, if the negative
requirements are satisfied and K ≤T A ⊕ B, it follows as above that A and
B are Turing incomparable. (If not, either A or B is Turing complete, and
so V A ≤T 0′ ≤T A or V B ≤T 0′ ≤T B, in contradiction to the nontriviality
hypothesis on V .)

To ensure that K ≤T A⊕B, we require that (∀k)[k ∈ K ⇐⇒ 2k ∈ A∪B], so
that K ≤m A∪B ≤T A⊕B. In fact, when a number k enters K, the number 2k
will enter exactly one of A, B, (where the lucky recipient is chosen to minimize
injury to the negative requirements, just as in the proof of the Sacks splitting
theorem). The positive requirements PAn and PBn will not interfere with this
because they will cause only odd numbers to enter A ∪B.

The proof will be a finite injury argument with the priorities as follows:

PA0 < PB0 < NA
0 < NB

0 < PA1 < PB1 . . .

We briefly discuss the strategies for satisfying the requirements. We discuss the
requirements for building A — the construction of B is a mirror image of that
of A.

1R. Molinari (unpublished) has independently given a similar argument.

4

The strategy for the requirement NA
n is to impose a restraint rA(n, s) to

preserve the computation (if any) witnessing n ∈ V A[s], where V A[s] abbre-
viates V As

s . Specifically, rA(n, s) is the use of the computation showing that
n ∈ V A[s], if n ∈ V A[s], and otherwise rA(n, s) is defined to be 0. This restraint
will be injured only finitely often, so NA

n will be satisfied.
For PAk we obtain γA(k) as lims γ

A(k, s), where γA(k, s) is computable. If
k ∈ Ks we ensure that γA(k, s) ∈ As+1. The values of γA(k, s) will always
be odd numbers exceeding rA(n, s) for all n < k. To avoid conflicts between
PAj and PAk for j 6= k, we never allow these two requirements to use the same
trace. Specifically, letR0, R1, . . . be a uniformly computable sequence of infinite,
pairwise disjoint sets of odd numbers. We will always have γA(k, s) ∈ Rk. It is
then easily seen that if γA(k) = lims γ

A(k, s) exists, then PAk is satisfied. The
existence of γA(k) will follow from the fact that lims r(n, s) exists for all n < k.

The only possibly subtle point in the argument is to check that γA(k) is a
V A–computable function. To ensure this, we choose γA(k, s) to be as small as
possible, subject to the above restrictions. Thus, γA(k, s) is defined to be the
least number z ∈ Rk such that z > rA(n, s) for all n < k. Now, since A is c.e.,
the limiting restraint rA(n) = lims r

A(n, s) is V A–computable, and from this it
follows that γA(.) is V A–computable. (Note: We do not require that γA(k, s)
be nondecreasing in s for fixed k, i.e. we allow the trace for PAk to drop back to
a smaller value when higher priority restraints decrease.)

The requirement that (∀k)[k ∈ K ⇐⇒ 2k ∈ A ∪ B] also threatens to injure
strategies for the negative requirements. To avoid infinite injury to these strate-
gies, we use the method familiar from the proof of the Sacks splitting theorem:
as each new number k enters K, we enumerate 2k into A if the highest prior-
ity requirement that would be injured by its entry is some NB

n ; otherwise, we
enumerate it into B.
Construction.

Let k0, k1, . . . be a computable enumeration of K without repetitions.
Stage 0. Let A0 = B0 = ∅, rA(n, 0) = rB(n, 0) = 0 for all n, and for each k

let γA(k, 0) and γB(k, 0) be the least element of Rk.
Stage s+1. Let rA(n, s), rB(n, s), γA(n, s) and γB(n, s) be defined as above.

Note that they depend only on As and Bs, the sets of numbers enumerated in
A and B respectively by the end of stage s of the construction, so they are now
defined. Let nA be the least number n ≤ s such that 2ks < rA(n, s) if there is
such an n, and otherwise let nA = s. Define nB analogously with B in place of
A. If nA ≤ nB , let

As+1 := As ∪ {γA(k, s) : k ∈ Ks}, Bs+1 := Bs ∪ {γB(k, s) : k ∈ Ks} ∪ {2ks}

If nB < nA, the definition of As+1 and Bs+1 is the same except that 2ks is
enumerated into As+1 rather than Bs+1.

Let A = ∪sAs and B = ∪sBs.
This completes the construction.
Verification

5

The sets A and B are obviously c.e. Since all values of γA(n, s) and γB(n, s)
are odd, we have that (∀k)[k ∈ K ⇐⇒ 2k ∈ A ∪B], so K ≤T A⊕B.

We next prove the following facts by simultaneous induction on n:
(a) lims γ

A(n, s) and lims γ
B(n, s) each exist

(b) PAn and PBn are each satisfied
(c) lims r

A(n, s) and lims r
B(n, s) each exist

(d) NA
n and NB

n are each satisfied.
Assume that (a)-(d) hold for all m < n in order to prove that they hold for

n. Then (a) clearly holds for n from the definition of γA(n, s) and γB(n, s) and
the assumption that (c) holds for all m < n. From this and the construction it
follows that (b) also holds for n. For (c), we show that lims r

A(n, s) exists, and
the proof for rB is similar. Say that NA

n is injured at stage s+1 if As+1−As has
an element less than r(n, s). It is easily seen that if NA

n is not injured at s+ 1
and rA(n, s) 6= 0, then rA(n, s+1) = rA(n, s). Thus it suffices to show that NA

n

is injured at only finitely many stages. But if NA
n is injured at s, then As+1−As

has an element of the form γA(m, s) for some m ≤ n, or 2ks < rB(m, s) for
some m < n. Since by inductive hypothesis and the fact that (a) holds for n
there are only finitely many values of γA(m, s) over all m ≤ n and all s and
only finitely many values of rB(m, s) over all m < n and all s, it follows that
NA
n is injured only finitely often, so (c) holds. Essentially the same argument

also proves (d), which completes the induction.
It remains to show that γA(.) is V A–computable, and the analogous fact for

γB . Let rA(n) = lims r
A(n, s), and define rB(n) analogously. Note that rA(.)

is V A–computable. (If n /∈ V A, then r(n) = 0 since NA
n is satisfied. If n ∈ V A,

then r(n) is the use of the computation showing that n ∈ V A, and this can be
computed from A, and A ≤T V A.) Then γA(n) is the least element of Rn which
exceeds r(m) for all m < n, so γA(.) is A–computable.

It is reasonable to ask why we did not use the standard Friedberg-Muchnik
strategy to ensure the Turing incomparability of A and B in the above theo-
rem. The reason is that there is no apparent way for V A or V B to compute
the limiting value of the restraints imposed by the usual Friedberg-Muchnik re-
quirements. Thus, the incomparability requirements are replaced by the purely
positive requirement K ≤T A⊕B.

On the other hand, the direct use of a splitting strategy for K to ensure
A

∣∣
T
B is not necessary — one can use the hypothesis of nontriviality directly to

achieve permission to set restraints and diagonalize as in the proof of Theorem 3
below. However, the resulting A and B still have the property that A⊕B ≡T K.
This leaves open the following question:

Question 1. Does there exist a nontrivial pseudojump operator V such that for
all c.e. A and B, if both A

∣∣
T
B, and A⊕V A ≡T B⊕V B ≡T K, then A⊕B ≡T K?

There are many other natural questions concerning the existence of various
kinds of c.e. sets completing a given operator. We list a few of them in section
7 below.

6

We next solve the problem of completing a given pseudojump operator by a
set of non-c.e. degree. In fact, the simplest such kind of degree will always do
— a d.c.e. degree. We use as hypothesis nontriviality of the operator relative
to all d.c.e. sets.

Theorem 3. For every pseudojump operator V such that V X 6≤T X for all
d.c.e. sets X, there exists a d.c.e. set A such that V A ≡T K and the degree of
A is not c.e.

Proof. We construct a d.c.e. set A and a function γ ≤T V A to satisfy the
following requirements for all computable functionals Φ and Ψ and all n ∈ ω
Nn : (∃∞s)[n ∈ V A[s]] =⇒ n ∈ V A,
Pn : n ∈ K if and only if (∃ y < γ(n))[y ∈ A[2n]], and
RΦ,Ψ,e : Φ(We) 6= A or Ψ(A) 6= We.

As in Theorem 2, the function γ is the limit as s → ∞ of a computable
γ(n)[s].

The negative requirements Ni are met by imposing restraints. If i enters
V A at s, then Ni imposes the restraint r(i)[s] = s, and this restraint remains
in effect until (if ever) i leaves V A. We make the usual convention that every
computation existing at stage s has use less than s, so this restraint suffices
to preserve i ∈ V A if A does not change below its value. Furthermore, it will
be technically useful to choose the restraint to be s rather than the use of the
computation establishing that i ∈ V A. The values of the γ(i)[s] are chosen to
be greater than r(j)[s] for all j ≤ i, as in Theorem 2. However, a new feature of
the current theorem (as will be seen below) is that a value of γ(i)[s] can be put
into A and then removed from A. Of course, such a value γ(i)[s] is not suitable
at the value of γ(i)[t] for any t > s since it cannot again be put into A. Thus,
we will define γ(i)[s] to be the least number in ω[2i] which exceeds r(j)[s] for all
j ≤ i and is not in ∪t≤sA[t].

The usual strategy for satisfying a requirement RΦ,Ψ,e ensuring that A is not
of c.e. degree is based on diagonalization. One chooses a witness x which has
never been in A, and then waits for a stage s at which the length of agreement
between Φ(We)[s] and A[s] has increased beyond x, and that between Ψ(A)[s]
and We[s] has increased beyond φ(x)[s]. At stage s + 1, one adds x to A,
thereby creating a disagreement between Φ(We;x)[s] = 0 and A(x)[s + 1] = 1,
meanwhile restraining A from changing otherwise on ψ(φ(x))[s]. If at some
stage t > s a change in We below φ(x)[s] causes Φ(We;x)[t] = 1, then one
removes x from A, an action that restores the values of Ψ(A) � φ(x)[s] = We �
φ(x)[s] 6= We � φ(x)[t]. Since We is c.e., the change between s and t on the
use φ(x) is irreversible, and hence Ψ(A) 6= We. This win is preserved by the
restraint ψ(φ(x))[s].

The success of the strategy described for Rn requires restrainingA on ψ(φ(x))[s]
so that the removal of x from A at stage t will restore the original computation
and so that the win is preserved if x is put back into A. As in Theorem 2,
the diagonalization requirements Rn are unable to impose restraints directly
because the imposition of such restraints could increase the values of γ markers

7

in a way that could not be calculated by A⊕V A. Instead, as in Theorem 2, the
requirement Rn is aided by the restraints imposed by negative requirements.
Specifically, we attempt to meet Rn as follows (ignoring for the moment the
other diagonalization requirements). Initially, Rn is waiting for a witness. Sup-
pose Rn is waiting for a witness at the beginning of stage s + 1 and for some
sufficiently large i and some x ∈ ω[2〈e,i〉+1], x /∈ A[t] for all t ≤ s, x > r(j)[s]
for all j < i, l(n)[s] > x, and r(i) > ψ(φ(x))[s]. (The meaning of “sufficiently
large” will be clarified later.) Put the least such x into As+1, and say that Rn is
waiting for agreement (via x, i and s). (The enumeration of x into A may cause
i to leave V A and hence the restraint r(i) to drop below ψ(φ(x)), but we must
live with this possibility.) This action is based on the assumption that, for all
j < i, r(j) and γ(j) will not change in the future. (If this assumption should be
seen to be incorrect at some later stage, then Rn returns at that stage to the
state of waiting for a witness.) Now suppose that Rn is waiting for agreement
via x, i and s at stage t and that Φ(We;x)[t] = 1. This can happen only if We

has changed below φ(x)[s] since stage s, since Φ(We;x)[s] = 0. In this situation,
we remove x from A at t+1 and we also remove from A all z ≤ ψ(φ(x))[s] such
that z ∈ A[t] \ A[s]. These z’s may include numbers of the form γ(j)[t+ 1] for
j ≥ i. This causes r(i)[t + 1] to be greater than ψ(φ(x))[s] = ψ(φ(x)[t + 1]),
for the same reason that the corresponding fact held at s. Hence, at the end of
stage t+ 1 all γ markers below r(i) have the form γ(k)[t+ 1] for some k < i. It
follows that Rn is met unless for some k < i, some γ(k) or r(k) changes after
stage t+ 1. Note that Rn puts only finitely many numbers into A via any fixed
i. Thus, the negative requirements Ni should be satisfied, and the restraints
r(i)[s] should have finite limits as s→∞.

Suppose that Rn is not met. One can then reach a contradiction by in-
ductively computing V A(i) from an A-oracle. Suppose that V A(j) has been
computed for all j < i. From this it is easy to compute the limiting value of
r(j)[s] for all j < i using an A-oracle. Let bi exceed all these limiting values.
Using an A-oracle, search simultaneously for the following:

(a) A stage z such that i ∈ V A[z] via an A-correct computation
(b) A stage r and a number x > bi with x ∈ ω[2〈e,i〉+1] such that x /∈ At

for all t ≤ r, x /∈ A, i /∈ V A[r], Ar, A agree below ψ(φ(x))[r], and l(n)[r] > x.
(Here l(n)[r] is the least y such that it is not the case that both Φ(We)[r] and
A[r] agree below y and Ψ(A)[r] and We[r] agree below φ(y)[r].)

Of course, if z is found as in (a), then i ∈ V A. Suppose now that r and x
are found as in (b). Then we claim that i /∈ V A. To prove this, assume that
i ∈ V A. Suppose for the moment that there is a stage s with x ∈ A[s+ 1] and
consider the least such s. Then s ≥ r, since x /∈ ∪t≤rAt. Since Rn is not met,
We must change below φ(x)[r] after s and hence after r. But this implies that
Ψ(A) 6= We, since Ψ(A) was A-correctly defined and agreed with We[r] on all
arguments less than φ(x)[r], and the change in We is irreversible. This implies
that Rn is met, which is a contradiction. Thus, it suffices to show that there is
a stage s with x ∈ A[s + 1]. If not, observe that x meets the criteria for being
added to A at all sufficiently large stages at which Rn has no witness in A. If Rn
has a witness which is permanently in A, it is clearly met. Otherwise, consider

8

a stage s after which no x′ < x is added to A and at which Rn has no witness
currently in A. Then x is added to A at s+ 1 as needed to complete the proof
that i /∈ V A if r is found as in (b).

Finally, we observe that one of the searches in (a) and (b) above must be
successful. If i ∈ V A, clearly (a) is successful. If i /∈ V A, then any sufficiently
large r, x satisfy (b). (Here we are using the previous remark that Rn puts
only finitely many numbers into A for each fixed i.) Thus, i ∈ V A if search (a)
succeeds first, and i /∈ V A if search (b) succeeds first. It follows that V A ≤T A,
which contradicts the nontriviality of V on d.c.e. sets. This contradiction shows
that Rn is met.

It follows by a small extension of the above argument that if Φ(We) and
Ψ(A) are total, then Rn changes its state only finitely often as it permanently
succeeds on some fixed witness. However, without these totality assumptions,
there is no reason to think that Rn changes its state only finitely often. However,
infinitary action of Rn can cause difficulty for the negative requirements Ni, the
positive requirements Pi and the other diagonalization requirements Rm.

The difficulties just alluded to are all resolved by the standard device of
using a tree T of strategies. We assume that the reader is familiar with such
arguments. The nodes of the tree are just the finite binary strings so T = 2<ω.
Every node α ∈ T of length n is associated with the diagonalization requirement
Rn. Let Rα be the version of Rn associated with the node α. If α, β ∈ T and
β_0 ⊆ α, then Rα assumes that Rβ changes state infinitely often. If β_1 ⊆ α,
then Rα assumes that Rβ changes state only finitely often. The state transitions
are arranged so that if Rα changes state infinitely often, then it is infinitely often
waiting for a witness. It will be an important feature of the construction that
if β ⊇ α_0, then β acts only when α is waiting for a witness. We write α <L γ
if α(i) < γ(i) for the least i (if any) with α(i) 6= γ(i). In this case, we say that
α is to the left of γ, or γ is to the left of α. If α is to the left of γ and Rα
acts, then γ is “initialized”, which means that x(γ), i(γ), and s(γ) all become
undefined.

All witnesses for Rβ will be elements of ω[2〈β,i〉+1] for some i, where β ∈ T
is identified with its numerical code.

We now consider the interaction of two diagonalization requirements Rβ and
Rα. Suppose that Rα is associated with the triple (Ψ,Φ,We). A potentially very
bad sort of interaction is the following. Suppose that at stage s+ 1 Rα places a
witness x into A. Then Rβ later removes a witness y from A, with y < ψ(φ(x)[s]
and y ∈ A[s + 1]. Later still, Rα wishes to remove x from A and to restore A
so that it agrees with As below ψ(φ(x)[s]. This is of course impossible because
the removal of y from A is irreversible. The handling of this depends on the
relationship between α and β. If β_0 ⊆ α, then Rα acts only when Rβ is
waiting for a witness. Since Rβ is waiting for a witness at s+ 1, no number in
A[s + 1] is removed from A by Rβ after stage s + 1, so the situation described
above does not arise. If β_1 ⊆ α, then α is assuming that Rβ acts only finitely
often. Hence it is safe to initialize α whenever Rβ acts, and in particular when
Rβ removes y from A. (In this case α abandons the witness x.) Similarly,
if β <L α, α is initialized when β removes y from A. If α <L β, then β is

9

initialized when x is added to A by α. If α_0 ⊆ β, then β is assuming that α
will remove x and waits for it to do so before removing y. If α_1 ⊆ β, then
β is safely initialized when α puts x into A. Finally, if α = β, the situation
does not arise because Rα does not put a witness into A if it currently has a
witness in A which entered since the last time it was initialized. Thus, it is
possible to restore A on given intervals, as far as witnesses are concerned. A
similar argument applies to γ-traces, since they are removed from A only when
associated witnesses are removed.

Another potentially serious difficulty is that a fixed Rα can act infinitely
often and thus prevent the satisfaction of a negative requirement Nj . This is
prevented by requiring that Rα can add a number x to A via i only if i is greater
than |α| and also greater than the the last stage at which Rα was initialized
by any other node. If i ∈ V A[s], then the only numbers below the use of this
computation allowed to enter A at stage s + 1 are those of the form γ(j)[s],
where j < i and γ(j)[s] 6= γ(j)[s+1], and witnesses x for Rα with |α| ≤ i. Once
γ has settled down below i, each such Rα can be initialized only by other nodes
and puts at most one number into A between consecutive stages at which it is
initialized. Once it is initialized i times (if ever) by other nodes, it can never
injure Ni. This makes it straightforward to show that Ni is injured only finitely
often and in fact gives a computable bound on the number of times which it is
injured.

A final difficulty involves the positive requirements. Here the bad scenario
is as follows. Suppose a number j enters K and the corresponding trace γ(j)[s]
enters A. Then, as described above, it is possible that γ(j)[s], will be removed
from A for the sake of some diagonalization. This in itself is no problem, as γ(j)
takes a new large value which can be added to A. The problem arises if γ(j)
later decreases in value (which can happen when restraints drop), but its former
value γ(j)[s] is no longer available because it has been previously added to and
removed from A. In this case, the new value for γ(j) may be larger than γ(j)[s],
and it is not immediately apparent how A⊕V A can compute the limiting value
of γ(j). (The problem is that the increase in size of γ(j) is caused in part by
the insertion and removal of γ(j)[s] from A, and these events leave no trace in
A or V A.) This is overcome by a counting argument closely related to the fact,
mentioned above, that there is a computable bound on the number of times
that a given negative requirement Ni is injured. This will give a computable
bound f(i) on the number of elements of ω[2i] which ever enter A, and this
in turn will make it possible to show that an upper bound on lims γ(j)[s] is
A⊕V A-computable. (Specifically, we can take this upper bound to be the least
z such that there are more than f(i) numbers which are in ω[2i] which are less
than z and greater than the limiting restraints r(j) for each j ≤ i.)
Construction

As mentioned above, we use the tree of strategies T = 2<ω for our construc-
tion. Our notation is standard, as found in [6], XIV, except as noted below.
We order the diagonalization requirements by means of some fixed computable
indexing of computable partial functionals and a standard function for coding

10

the ordered triples, and assign requirement Rn to each node α ∈ T of length n.
For each n ∈ ω, if n = 〈Φ,Ψ, e〉, we define the length of agreement function for
Rn, l(n)[s] = max

{
x : (∀y < x)[Φ(We; y) = A(y) and Ψ(A) � φ(We; y) = We �

φ(We; y))[s]]
}
.

At any point in the construction, each diagonalization requirement Rα may
have associated with it the parameters x(α), i(α) and s(α). Whenever any of
these parameters is defined, all three will be defined. We write x(α)[s] for the
value of x(α) at the end of stage s, and similarly for the other parameters. The
parameter x(α) is the current witness for α. This witness was chosen at stage
s(α) + 1, and i(α) ∈ V A[sα]. We say that Rα is waiting for a witness when
x(α) is undefined. Suppose that α is working on the requirement RΦ,Ψ,e. We
say that Rα is waiting for a W -change when x(α) ↓∈ We, and is finished when
x(α) ↓/∈We.

We have restraint functions r(j)[s] for the negative requirements that ensure
V A ≤T K. We also have a sequence of trace functions γ(k)[s] for the positive
requirements. For the purpose of setting restraints it is convenient to increase
the use of each convergent computation V A(i) by setting it equal to a stage at
which the computation converges without any possibility of interference. To do
this, we use the ideas of the Soare-Lachlan hat-trick. We let, for every stage t, at
be the least y such that A[t] � y 6= A[t+1] � y or t if A does not change at stage
t + 1. We then define V̂ A(i)

y[s] if and only if there exists a t ≤ s(V A(i)
y[t],

A[s] � at = A[t] � at), and vA(i) < at.
Since A will be a ∆0

2 set, V̂ A = V A in the limit. We define the use v̂A(i) to be
the least t such that (V A(i)

y[t] ∧ A � t = A[t] � t). Note that if i ∈ V A, this use
is computable from A, since we merely have to wait for A to achieve its correct
values on every number less than the first stage at which V A(i) converges A-
correctly. The construction at each stage s is divided into substages at which all
calculations take place with the current value for A — in other words, elements
enumerated or removed at one substage are taken into account at all later ones.

Stage 0: For all i, we let r(i)[0] = 0, and γ(i)[0] be the least element of ω[2i].
Initialize all α ∈ T . (These are considered to he initialized by the empty node.)

Stage s+ 1:
Case 1. s is even. In this case, we perform all enumeration necessary to

correct our intended reduction of K to A ⊕ V A. If n ∈ K[s] and ¬
(
∃x <

γ(n)[s])[x ∈ A[s] ∩ ω[2n])
]
, then enumerate γ(n)[s] into A[s + 1], and, for all

α ∈ T if i(α) ↓≥ n or |α| ≥ n, initialize α. Go to the final substage (substage
s) to set restraints and update values of γ.

Case 2. s is odd. In this case, we work on the diagonalization requirements.
We define an approximation to the true path g[s] at stage s of length at most s
by recursion. For any node α ∈ T , s is an α-stage if and only if α ⊂ g[s]. Let
α = g[s] � n. At substage n we take action for α and define g[s] � n+1.

Substage n (n < s). Let Rn be the requirement RΦ,Ψ,e, and let α = g[s] � n.
Apply the first applicable subcase below. In Case 2B, let t be the greatest stage

11

such that t < s and α changed states at t, or t = 0.

Subcase 2A: Let m be the least integer ≤ s such that m = s or r(m)[s] 6= r(m)[s − 1]
or γ(m)[s] 6= γ(m)[s− 1]. If m ≤ |α| or m < i(α) ↓, then initialize α and
go to substage n+ 1.

Subcase 2B: The node α is waiting for a witness, and there is no stage u such that
t ≤ u < s and α_0 was accessible at u. Then define g[s] � n + 1 = α_0
and go to the next substage (without taking any action for α). (This gives
nodes β ⊇ α � n_0 the opportunity to act.)

Subcase 2C: α is waiting for a witness, and there exist x < s and i < s such that
x ∈ ω[2〈α,i〉+1], x /∈ ∪t≤sAt, x < l(n)[s], x > r(j)[s] for all j < i, i is at
least as large as the last stage at which Rα was initialized by some other
node, and r(i) > φ(ψ(x))[s]. Then choose the least x such that this holds
for some i, and choose the least possible i for this x. Set x(α)[s+ 1] = x,
enumerate x into A[s + 1], and let Rα be in the state of waiting for a
W -change. Also, set i(α)[s + 1] = i, and s(α)[s + 1] = s. Let g[s] = α
and let α initialize all β ∈ T such that α <L β. Go to the final substage,
substage s.

Subcase 2D: α is waiting for a witness. Define g[s] � n + 1 = α_1 and go to the next
substage (without taking any action for α).

Subcase 2E: The node α is waiting for a W -change, and x(α) ≥ l(n)[s]. Define g[s] �
n+ 1 = α_1 and go to the next substage (without taking any action for
α).

Subcase 2F: The node α is waiting for a W -change, and x(α) < l(n)[s]. Then remove
from A all z < r(i(α))[s(α)−1] such that z ∈ A[s]−A[s(α)]. Let g(s) = α.
Declare α to be finished. Let α initialize all β ∈ T such that α <L β. Go
to the final substage.

Subcase 2G: The node α is finished. Define α � n + 1 = α_1 and go to the next
substage (without taking any action for α).

Substage s. This is the final substage. A[s+1] has already been determined
by the previous substages. If g[s] has not already been completely defined, let
it be g[s] � s. For each i, if i ∈ V̂ A[s + 1], let r(i)[s + 1] be v̂(i)[s + 1], and
otherwise let r(i)[s+ 1] = 0. For each m, let γ(m)[s+ 1] be the least z ∈ ω[2m]

such that z > r(i)[s+ 1] for all i ≤ m and z /∈ ∪t≤s+1A[t].
We initialize all β such that g[s] <L β at s. Unless stated otherwise, all

parameters, functionals and states remain the same at s+1 as at s. Go to stage
s+ 1.

This completes the construction. First, note that A is d.c.e. To see this,
it suffices to show that no number y can be removed from A and subsequently
re-enter A. Each y has the form x(α)[s] or γ(n)[s] for at most one α or n, and it
has at most one of these forms. Suppose that y = x(α)[s] and y is removed from

12

A at stage s+1. Then Subcase 2G will apply to α at all α-stages t > s+1 until,
if ever, α is initialized. When Subcase 2G applies, α is finished so x(α) does
not enter A. If α is initialized, y is never subsequently the value of x(α) and so
does not enter A again. If y = γ(n) is removed from A at stage s+ 1, then it is
because some x(α)[s] is removed from A at the same substage of s+ 1. Then y
never subsequently re-enters A by an argument analogous to the preceding case
where y = x(α).

Lemma 2.0.1. (i) For each n, lims γ(n)[s] exists.

(ii) Each negative requirement Nn is met.

Proof. We prove the above two statements by simultaneous induction on n.
First, prove (i) for n, assuming that (ii) holds for all m < n. If γ(n)[s] 6=
γ(n)[s + 1], then either n ∈ K[s + 1] \ K[s] or there exists m < n such that
r(m)[s] 6= r(m)[s+1]. But since we are assuming that Nm is met for eachm < n,
it follows that there are only finitely many s such that r(m)[s] 6= r(m)[s+1] for
some m < n.

Next, we prove (ii) for n, assuming that (i) holds for all m ≤ n. We say that
Nn is injured at stage s+ 1 if some number less than or equal to r(n)[s] enters
or leaves A at stage s + 1. It suffices to show that Nn is injured only finitely
often. If Nn is injured at stage s+ 1 where s is even, then γ(m)[s] enters A at
s+ 1 for some m ≤ n. Since (i) holds for all m ≤ n there are only finitely many
such stages. Say that Nn is injured at stage s+1 by β if some number less than
or equal to r(n)[s] enters or leaves A at stage s+ 1 because of the action of Rβ .

Note that if i(β)[s] > n, then β does not injure Nn at stage s + 1. Hence
no β of length greater than n ever injures Nn. Also, if β is initialized by other
nodes more than n times, then i(β)[s] > n for all sufficiently large s, so β injures
Nn at most finitely many times. Suppose that β is initialized at most n times
by other nodes, and choose s1 so large that β is not initialized by other nodes
at any stage s > s1, and also no γ(m)[s], m ≤ n, enters A at any stage s > s1.
Finally suppose that r(m)[s] = r(m)[s1] for all s > s1 and all m < n. Such an
s1 exists because (i) holds for m ≤ n and (ii) holds for all m < n. If β injures Nn

after s1, then choose s2 > s1 such that β injures Nn at s2 + 1. Then x(β)[s2] ↓
and i(β)[s2] ≤ n. It follows that β is never initialized after s2 (by other nodes,
or enumeration of γ-values or changes in r-values). Hence β acts at most once
after s2 (as it keeps the same witness after s2 and acts at most twice on any
given witness). Thus β injures Nn at most finitely many times. In summary,
there are most finitely many β which ever injure Nn, and each of these β injures
Nn only finitely many times. Thus Nn is injured only finitely often at stages
s+ 1 with s odd, and hence it is injured only finitely often altogether.

It follows from Lemma 2.0.1 that V A ≤T K. To show that K ≤T V A, we
need the following lemma, which is a quantitative version of Lemma 2.0.1.

Lemma 2.0.2. There are computable functions f and g with the following
properties.

13

(i) There are at most f(n) stages s such that γ(n)[s] 6= γ(n)[s+ 1].

(ii) There are at most g(n) stages s such that Nn is injured at s+ 1.

Proof. The proof is parallel to that of Lemma 2.0.1. The functions f and g are
defined by simultaneous induction. In defining f(n), we assume that g(m) has
been defined for all m < n. In defining g(n), we assume that f(m) has been
defined for all m ≤ n and that g(m) has been been defined for all m < n.

To define f(n) recall from the proof of Lemma 2.0.1 that if γ(n)[s] 6= γ(n)[s+
1], then either n ∈ K[s + 1] \K[s] or there exists m < n such that r(m)[s] 6=
r(m)[s + 1]. If r(m)[s] 6= r(m)[s + 1], then either Nm is injured at s + 1, or m
enters V A at s+1 are remains there until, if ever, Nm is injured. It follows that
we may take f(n) = 1 + 2

∑
m<n g(m).

To define g(n), first note that if Nn is injured at stage s+1 with s odd, then
some γ(m)[s] enters A at stage s+ 1. There are at most

∑
m≤n(f(m) + 1) such

stages since γ(m)[s] takes on at most f(m)+1 values as s varies. For each β let
nβ be the number of stages s such that i(β)[s] ≤ n and β is initialized at s+ 1.
Note that nβ = 0 if |β| > n. Suppose |β| ≤ n. Then nβ ≤ n+1+

∑
m≤n f(m)+∑

m<n g(m). To see this, note that there are at most n+1 stages s such that β
is initialized by some other node at s+ 1 and i(β)[s] ≤ n, and the other terms
correspond to initialization of β by γ and r changes, respectively. If s0 and s1
are stages such that there is no s with s0 ≤ s < s1 and, for some β of length at
most n, i(β)[s] ≤ n and β is initialized at s+ 1, then there are at most 2 stages
s such that s0 ≤ s < s1 and Nn is injured at s+1 (corresponding to adding and
removing a fixed witness). As there 2n+1 − 1 binary strings of length at most
n, we may take

g(n) =
∑
m≤n

(f(m) + 1) + 2n+2(n+ 1 +
∑
m≤n

f(m) +
∑
m<n

g(m))

.

We can now show easily that K ≤T V A. Let f be as in Lemma 2.0.2. Let
r(n) = lims r(n)[s], where this limit exists by Lemma 2.0.1. Then r ≤T V A.
Let h(n) be the least number z such that in ω[2n] there are are at least f(n)+1
numbers y < z. Then h ≤T V A and there is a number y ∈ ω[2n] such that
r(n) < y < h(n) and y 6= γ(n)[s] for all s, and thus, for all s, y /∈ A[s]. Clearly,
n ∈ K if and only if there exists y < h(n) such that y ∈ ω[2n] ∩ A. It follows
that K ≤T A, and so K ≡T V A.

We turn now to the verification that the diagonalization requirements Rn
are met. We say that α is on the true path if it is the leftmost node of length
|α| which is accessible infinitely often.

Lemma 2.0.3. Suppose that α is on the true path. If α changes state infinitely
often, then α_0 is on the true path, and otherwise α_1 is on the true path.

Proof. Suppose first that α changes state infinitely often. Then α is waiting for
a witness at infinitely many α-stages. (Otherwise, it could change only from

14

“waiting for W” to “finished” at all sufficiently large α-stages.) Whenever α
arrives in the state “waiting for a witness”, it makes α_0 accessible at the next
α-stage. Hence α_0 is accessible infinitely often and is on the true path. Now
suppose that α changes state only finitely often. Then, by construction, α_1 is
accessible at every sufficiently large α-stage. It follows that α_1 is on the true
path.

Lemma 2.0.4. For each n, the requirement Rn is met.

Proof. Let n be given, and let α be the node of length n on the true path.
Assume for a contradiction that Rn = RΦ,Ψ,e is not met.

Consider first the case where the witness x(α)[s] is defined with a fixed value
x(α) for all sufficiently large s. Let s be minimal with x(α)[s + 1] = x(α), so
that α acts via Subcase 2C at stage s+ 1 and x(α) ∈ A[s+ 1] \A[s]. Note that
x(α)[t] = x(α) for all t > s. Since Rn is not met, l(s) > x(α) for all sufficiently
large s. Since there are infinitely many α-stages, there is an α-stage s1 > s
with l(s) > x(α). For the least such s1, x(α) is removed from A at stage s1 +1,
and some number enters We below φ(x(α))[s] after stage s. We claim that A[s]
and A agree below r(i(α))[s] and hence below ψ(φ(x(α)))[s]. The claim implies
that Rn is met because ψ(A) and We disagree below φ(x(α))[s], as in the basic
module.

As a first step to proving the above claim, we show that A[s] and A[s1 + 1]
agree below s and hence below r(i(α))[s]. At stage s1 + 1, all elements of
A[s1] \ A[s] are removed from A, so to obtain the claimed agreement between
A[s] and A[s1 + 1] it suffices to show that no numbers y ∈ A[s] less than or
equal to s are removed from A at any stage t+1 such that s ≤ t < s1. Suppose
that such a number y were removed from A at stage t+1, where s+1 ≤ t < s1.
Then t is odd and some unique β causes y to be removed from A at stage t+ 1.
It cannot be that β <L α or β_1 ⊆ α, since in either case α would be initialized
at t + 1, contrary to the fact that x(α)[t] = x(α) for all t > s. Suppose now
that α <L β. Then β is initialized at stage s+ 1, so every number added to or
removed from A by β after stage s+ 1 is bigger than s+ 1. Suppose now that
β_0 ⊆ α. Then α cannot act at stage t+1 because β is not waiting for a witness
at stage t + 1. The only remaining case is where α = β, but this can be ruled
out because α does not act at any stage t+ 1 such that s+ 1 < t+ 1 < s1 + 1.
This completes the proof that A[s] and A[s1 + 1] agree below s.

It remains to be shown that A[s1 + 1] and A agree below r(i(α))[s]. This
is done by showing by induction on t > s1 that A[t] and A[s1 + 1] agree below
r(i(α))[s]. The base step is immediate, and the inductive step for t + 1 odd is
similar to the proof in the previous paragraph and so is omitted. Suppose now
that t + 1 is even and A[t] and A[s1 + 1] agree below r(i(α))[s]. Hence A[t]
and A[s] agree below r(i(α))[s]. It follows that r(i(α))[s] ≤ r(i(α))[t]. Hence
if γ(m)[t] ∈ A[t + 1] − A[t], then m < i(α)[t] in which case α is initialized at
t+ 1, contrary to our hypothesis. This completes the proof that A[s1 + 1] and
A agree below r(i(α))[s], and hence the proof the Rn is met if x(α) is defined
with a fixed witness at all sufficiently large stages.

15

We now show that Rn is met if α is waiting for a witness at infinitely many
stages. This part of the proof uses the nontriviality of V on the d.c.e. sets.

We claim first that α is initialized only finitely often by other nodes. α
is initialized only finitely often by nodes β <L α since there are only finitely
many such nodes which are ever accessible, and each such β is accessible only
finitely often. The only other nodes which can initialize α are nodes β such that
β_1 ⊆ α. The are only finitely many such β and β_1 is on the true path for
each such β. Hence by Lemma 2.0.3, each such β changes state only finitely
often. But each such β initializes α only when it has just changed state. Hence
each such β initializes α only finitely often.

We next observe that for all i, ω[2〈α,i〉+1] ∩ ∪sA[s] is finite. Given i, let s0
be a stage such that α is not initialized by any other node after s0, no number
z ≤ i enters K after s0, and γ(m)[s] = γ(m)[s0] for all s ≥ s0 and m ≤ i.
Suppose that s ≥ s0 and x(α)[s] ∈ A[s + 1] \ A[s]. (If there is no such s, the
desired conclusion is immediate.) Then α is never initialized after s, and so acts
at most once after s. The desired conclusion follows.

We now complete the proof that Rn is met. Recall that we have assumed
that it is not met, and we may also assume that α is waiting for a witness at
infinitely many α-stages, since otherwise α has a fixed witness at all sufficiently
large stages and hence Rn is met, as shown above. We reach a contradiction by
showing that V A ≤T A. Let i0 exceed the final stage at which α is initialized by
other nodes. We calculate V A(i) using an A oracle for i ≥ i0 by induction on i.
Note that there are only finitely many stages s with x(α) ↓ and i(α) ≤ i. We
give ourselves V A(i) for i < i0 and assume inductively that we have calculated
V A(j) for i0 ≤ j < i. From these we can calculate r(j) := lims r(j)[s] for each
j < i.

We must calculate V A(i) from an A-oracle. Search simultaneously for a
stage s such that V A(i)[s] ↓ via an A-correct computation and for a stage t ≥ i0
and a number y ∈ ω2〈α,i〉+1 such that y > r(m)[t] for all m < i, for all u ≤ t,
y /∈ Au, i /∈ V A[t], and A[s] � ψ(φ(y))[s] = A � ψ(φ(y))[s], and x(α)[t] ↑. If the
search for s succeeds first, then clearly i ∈ V A. We claim that if the search for t
and y succeeds first, then i /∈ V A. We first note that there is no stage s > t with
x(α)[s] = y. (Otherwise consider the first such stage s and note that Rn is met,
as y enters A at s + 1, and then We must subsequently change below φ(y)[s],
so that Ψ(A) and We must disagree below φ(y)[s].) Thus, for all s, y /∈ As. It
follows that y meets the criteria (except possibly for minimality of i) for being
chosen as x(α)[s+ 1] at every sufficiently large stage s at which α is eligible to
choose a witness, and there are infinitely many such s because α is initialized
infinitely often. Hence there are infinitely many stages s with i(α)[s] ≤ i. This
is a contradiction because for each j there are only finitely many stages s with
i(α)[s] = j. Finally, if i ∈ V A the first search must succeed, and if i /∈ V A the
second search must succeed.

16

3 Pseudojump operators on co-n-c.e. sets

Although the hypothesis that the operator V be nontrivial on all d.c.e. sets in
Theorem 3 seems to be the most natural one, it may be possible to weaken it:

Question 2. Given a pseudojump operator V such that V X 6≤T X for all c.e.
sets X, need there exist a set A of properly d.c.e. degree such that A⊕V A ≡T K?

We can show that, in general, mere nontriviality on the class of c.e. sets
does not ensure nontriviality on other classes, as we show with our next result.

Theorem 4. There exists a pseudojump operator V and a co-c.e. A such that
V A ≤T A but VW 6≤T W for all c.e. sets W.

Proof. We construct a co-c.e. set A and an A-computable function ΓA to satisfy
the following requirement for each i, j ∈ ω :

N〈i,j〉 : VWi 6= WWi
j

Each requirement N〈i,j〉 is assigned one witness x = 〈i, j〉. The basic strategy
for satisfying such a requirement is to wait for a stage s such that x ∈ WWi

j [s]
with use φj(Wi;x)[s], then let x ∈ VWi [s + 1] with use v(x)[s] = φj(Wi;x)[s].
If we do this at every such stage s, there are two possible outcomes for the
strategy. If x ∈WWi

j , then x ∈ VWi −WWi
j permanently after some stage s. If

x 6∈ WWi
j , then x ∈ WWi

j − VWj , since Wi must have changed permanently on
each use v(x)[s+ 1], as these are all values of φj(Wi;x)[s]. Either way, N〈i,j〉 is
satisfied. Of course, if there exist infinitely many s such that x ∈ WWi

j [s], but
x 6∈WWi

j , then v(x) will increase at infinitely many stages.
To achieve, V A ≤T A, we also must build an A-computable function ΓA such

that V A = ΓA. Initially we have A[0] = ω and traces γ(x)
x[0] for all x ∈ ω. At

each stage s we set, for each x ≤ s such that γA(x)
x[s], ΓA(x)

y[s] = 0, with
use γA(x) some large number. While x 6∈ V A[s] we maintain ΓA(x)

y[s] = 0.
Suppose at some later stage we find that, A �φj(x) [s] agrees with Wi �φj(x) [s],
where x = 〈i, j〉. We then must correct ΓA since ΓA(x)[s] = 0 yet V A(x)[s] = 1.
To do this we extract γ(x)[s] from A and define ΓA(x)[s + 1] = V A(x)[s + 1].
Of course, if there exist infinitely many s such that x ∈WWi

j [s], but x 6∈WWi
j ,

then v(x) will increase at infinitely many stages, and there are in this case
infinitely many stages at which new uses for x ∈ VWi are set from V . However,
provided we ensure that the V -use at s, v(Wi;x)[s], has length greater than
γ(x)[s], we will have a permanent disagreement between A and Wi in the use of
any subsequent axioms for V since Wi[s + 1] �φj(Wi;x)[s] 6⊆ A[s + 1] �φj(Wi;x)[s].
Thus none of these subsequent uses can effect x ∈ V A, hence ΓA(x) converges
permanently after s with the correct value.

This strategy clearly succeeds in the presence of a single N〈i,j〉 requirement;
however, we must modify this strategy when dealing with more than one neg-
ative requirement. The problem is that after extracting γ(x)[s] from A some
higher priority requirement may extract γ(y)[t] from A for some y < x, causing

17

x to enter V A[t+ 1] because of some axiom enumerated for x in V at an earlier
stage having a use agreeing with an initial segment of A[t+ 1]. We would then
be powerless to correct ΓA. We prevent this in a natural way by choosing new
traces γ(z)[t] for all z > y whenever we extract γ(y)[t] from A, setting the new
values γ(z)[t+ 1] greater than the longest string v(Wi; y)[t] currently used in a
V -axiom for y. We can now give the formal details.
Construction.

For convenience, we assume all use functions from c.e. oracles are nonde-
creasing in the stage and increasing in the argument. We write v(W ;x)[s] for
the use of x ∈ VW if x ∈ VW [s]. Of course, in this case, we are the ones defining
v(W ;x), in contrast to the case of vA and vB in the previous theorems. Recall
that witness x = 〈i, j〉 is assigned to requirement N〈i,j〉.

Stage s = 0 : Let A[0] = ω and γA(0)
y[0] = 0.

Stage s+ 1 : At this stage, we have already defined A[s], and, for all x ≤ s,
γA(x)[s]

y,
For each x = 〈i, j〉 ≤ s+ 1 in turn, we perform the following actions.
If x ∈WWi

j [s+1]−VWi [s] then let x ∈ VWi [s+1] with use v(Wi;x)[s+1] =
max{γA(x)[s] + 1, φj(Wi;x)[s+ 1]}.

If γA(x)[s] ∈ A[s] and there exists some t ≤ s such that A[s] �v(Wi;x)[t]=
Wi[t] �v(Wi;x)[t], then remove γA(x)[s] from A and reset ΓA(x)[s+1] = V A(x)[s+
1] with use γA(x)[s + 1] = γA(x)[s]. For all z > x, reset ΓA(z)[s + 1] =
V A(z)[s+1] with use γ(z)

y[s+1] equal to the least number never yet mentioned
in the construction greater than both every γ(y)[s + 1] for y < z and every
v(Wi′ ; y)[s+ 1] for y = 〈i′, j′〉 ≤ z. Go immediately to stage s+ 2.

If x = s + 1 then let γ(x)
y[s + 1] equal to the least number never yet

mentioned in the construction greater than both every γ(y)[s+1] for y < z and
every v(Wi′ ; y)[s+ 1] for y = 〈i′, j′〉 ≤ x. Go to stage s+ 2.

This completes the construction.
Verification.

Note that for every x, γA(x)[s] is nondecreasing in the stage. For all x ∈ ω
we let γ(x) = lims γ(x)[s]. By construction, γA(x)[s+ 1] 6= γA(x)[s] if and only
if there is some z < x such that γA(z)[s] ∈ A[s]−A[s+1]. By a straightforward
induction on x, then, γ(x)[s] can only change value a finite number of times.
Hence γA(x)

y.
Let x = 〈i, j〉. Choose a stage s0 such that γ(y) = lims γ(y)[s] = γ(y)[s0]

for all y ≤ x and s > s0, and Wi �γ(x)[s0]= Wi[s0] �γ(x)[s0]. Without loss of
generality, we may assume that φj(Wi;x)[s] > γ(x)[s0] for every s > s0. If
x ∈ WWi

j , then there is a stage s1 > s0 such that x ∈ WWi
j [t] for all t ≥

s1. By construction, x ∈ VWi [s1 + 1] and, hence, since v(Wi;x)[s1 + 1] =
φ(Wi;x)[s1], we must have x ∈ VWi −WWi

j . If x 6∈WWi
j , then since each value

of v(Wi;x)[s] > φj(Wi)[s], x 6∈ VWi , hence x ∈ WWi
j − VWi . Hence Nx is

satisfied.
We now show ΓA = V A. Assume as inductive hypothesis that for all y < x

there is a stage ty such that for all t > ty, V A(y)[t] = V A(y) = ΓA(y)
y[t] =

18

ΓA(y), A[s] �γ(y)[t]+1= A[ty] �γ(y[ty]+1. Note that γ(y)[t] = lims γ(y)[s].
Choose the least stage tx ≥ tx−1 such thatA[tx] �γ(x−1)[tx]+1= A �γ(x−1)[tx]+1

and γ(x)[tx]
y∈ A[tx]. Such a stage exists by the inductive hypothesis and

the definition of trace values. By choice of tx we must have for all t ≥ tx,
γ(x)[t] = γ(x)[tx]. There are two possibilities.

First, suppose there is a stage s+1 > tx such thatA[s] �v(Wi;x)[t]= Wi[t] �v(Wi;x)[t]

for some t ≤ s. Then γ(x)[s] is removed from A at stage s+1 and ΓA(x)
y[s+1] =

V A(x)[s+ 1]. By construction, and inductive hypothesis, γA(x) must attain its
final value at stage s + 1, and ΓA(x)[s + 1] = ΓA(x). Because any axiom enu-
merated in V for x after stage s+ 1 has length at least γ(x)[s+ 1], we have for
all s′ > s, that V A(x)[s′] = V A(x)[s+ 1]. Because any axiom enumerated in V
for x after stage s + 1 has length at least γ(x)[s + 1], and γ(x)[s + 1] ∈ Wi, A
disagrees with Wi on all later axioms in V for x. Also for every y > x, γ(y)[s+1]
is reset larger than any vWi(x)[t] for t ≤ s + 1, so that no change on such a
trace can cause A to agree with Wi on one of these previous uses. Hence, if
x 6∈ V A[s+ 1], then x 6∈ V A[t] for all stages t > s. If x ∈ V A[s+ 1], then since
all γ(y)[s+ 1] are reset larger than vA(x)[s+ 1] if this value is defined, we must
have V A(x)[s + 1] = V A(x). Therefore V A(x) = ΓA(x)

y as required, and this
value can never change after stage s.

Otherwise, suppose there are no stages s ≥ tx and t ≤ s such thatA[s] �v(Wi;x)[s+1]=
Wi[s+1] �v(Wi;x)[s+1]. Then γ(x)[tx] ∈ A and A[s] never agrees with any axiom
in V for x at any s > tx. Then ΓA(x) = 0 = V A(x) as required. This establishes
the result.

It is not hard to extend this result to higher levels in the difference hierarchy.

Theorem 5. For every n > 0, there exists a pseudojump operator V and a
co-n-c.e. set A such that V A ≤T A but V X 6≤T X for all n-c.e. sets X.

Sketch of Proof. We sketch the result for n = 2, and then make brief comments
indicating the proof of the general case.

Fix an n > 0. Given an enumeration of the n-c.e. sets, Xi, i ∈ ω, we must
construct a co-n-c.e. set A to meet the following requirement for all i, j ∈ ω:

N〈i,j〉 : V Xi 6= WXi
j .

The strategy for requirement N〈i,j〉 is exactly the same as that in the proof
of Theorem 4 above. The previous strategy for building the reduction ΓA = V A,
however, faces the following problem: Let x = 〈i, j〉. Once x enters A, γA(x)[s]
is removed from A, and we move all traces for y > x to avoid any further
interference. If this causes x 6∈ V A[s + 1], we reset ΓA(x)[s + 1] = 0. Since A
must actually be co-2-c.e., however, x may return to V A at some t > s because
Xi returns to a previous state and x ∈ WXi

j [t]. If this happens, however, we
cannot correct ΓA(x) by merely restoring γA(x) ∈ A[t+ 1], since this in general
will restore x ∈ V A[t+1] and γA(x)[t+1] = ΓA(x)[s] = 0. Notice that increasing
the use γ(x) at s + 1 would not solve this problem, since we might then have
to go through the same sequence over and over again at later stages, inasmuch
as x can enter and leave VWi infinitely often. This will result in γA(x)

x in the

19

limit. Hence, we must ensure that A disagrees with Wi permanently after some
finite sequence of changes on VWi(x), and we can only achieve this by keeping
our traces bounded. We can do this most simply by using two traces for x,
γA(x, 1) < γA(x, 2), using larger trace to deal with the first change in VWi(x)
and the smaller one to deal with the second change. More precisely, we begin
at stage 0 with γA(1, x)[0] 6∈ A and γA(2, x)[0] ∈ A. If, at some s > 0, A agrees
with Xi on the use of some computation x ∈ VWi [t], then we extract γA(2, x)[s]
from A to correctly define ΓA(x)

y[s+1] = V A(x)[s+1]. As before, we want the
use vA(x)[s] to be greater than γA(2, x)[s] in the hope of winning a permanent
disagreement between A and all future states of Wi at which x ∈ V Xi . Now Xi

can return to a previous configuration on the initial segment Xi �γA(2,x) [s] via
γA(2, x)[s] leaving Xi. As discussed above, if x later enters WXi

j [t] at some stage
t > s with use φj(Xi;x)[t] > φj(Xi;x)[s], it is not enough to simply enumerate
γA(2, x)[s] back into A because some other axiom for x in V may apply to A
causing V A(x)[t + 1] = 1 yet ΓA(x)

y[t + 1] = 0 whether γA(2, x)[t] is in or
out of A In this case we can to use the second trace, γA(1, x)[s], to correct the
definition of ΓA(x). Therefore we enumerate both γA(1, x)[s] and γA(2, x)[s]
into A, and since γA(1, x)[s] is smaller than γA(2, x)[s] we can rectify ΓA(x).
More importantly, we will now have a disagreement between A and all future
axioms for x in V via γA(2, x)[s] ∈ A − Xi since Xi is a 2-c.e. set. If some
higher priority requirement performs some trace activity after we have begun
some activity for x, then this will result in permanent A-changes below γA(x, 1),
so that we can simply throw away any work done for defining ΓA(x) and begin
again with a new sequence of traces for x. Because will only need to change the
value of traces finitely often, we can succeed in building ΓA in the presence of
the requirements N〈i,j〉.

Notice that A is of the form W ∪ A∗, where W is a c.e. set consisting of
the traces γA(1, x)[s] used to correct ΓA(x) for the last time, and A∗ is a co-2-
c.e. set consisting of traces γA(2, x)[s] used to create a permanent disagreement
between A and Xi on all axioms in V for x after a certain stage.

The only difference between the proof of the full result and that of the case
n = 2 is the need for n traces for each x. We use γA(x, n)[s] to guarantee a
disagreement between A and Xi on all axioms for x in V that are enumerated
after Xi changes for the last time on γA(x, n), and γA(x, 1), . . . , γA(x, n− 1) to
ensure that we always have the freedom to correct ΓA(x). In this case A will
be some W ∪ A∗ where W is a c.e. set consisting of traces γA(1, x)[s] used to
correct ΓA(x) for the last time, and A∗ is a co-n-c.e. set consisting of traces
γA(2, x)[s], . . . , γA(n, x)[s]. The details are straightforward, so we leave them
to the interested reader.

4 Cone avoidance and pseudojump completion

Theorem 6. There exist a non-computable, computably enumerable set C and
a pseudojump operator V such that

20

(1) for every e ∈ ω, We <T We ⊕ VWe , and
(2) for every e ∈ ω, if We ⊕ VWe ≡T K, then C ≤T We.

The proof consists of a 0′′′-priority argument using a tree of strategies. We
construct an auxiliary computably enumerable set B to approximate for each
computably enumerable W whether or not K ≤T W ⊕ VW . Since B will be
computably enumerable, B ≤T K. (In fact, B ≡T K.)

We have to satisfy the following three types of requirements

NΦ,Ψ,k: (Φ(Wk ⊕ VWk) = B&Ψ(K) = VWk) =⇒ C ≤T Wk,

Pj: C 6= Wj , and

Ri,l: VWi 6= WWi

l .

A construction satisfying all these requirements is given in Section 5. The
central technique of the proof is the ensuring of cooperation between a strategy
σ to which some requirement Pj is assigned and a higher priority strategy τ to
which some requirement NΦ,Ψ,k is assigned. Because of the complexity of the
full construction, we discuss first a basic module which ensures cooperation be-
tween just one pair of strategies. The actual construction, however, incorporates
several technical devices to overcome the various obstacles which arise in this
simplest case, as well as in the coordination of strategies for many requirements.
Because of this, after our first informal sketch of the key idea, we proceed to
describe in some detail the problems which arise in implementing it. In this way
the technicalities involved in the full construction can be motivated before they
arise.

4.1 Basic strategies for the requirements

The basic strategy for satisfying a requirement P = Pj is the familiar diagonal-
ization strategy: a witness c is assigned to P at some stage s0, large enough so
that c 6∈ C[s0]. If at some s > s0, c enters Wj [s], then we add c to C[s + 1],
thereby ensuring that either Wj

⋂
C 6= ∅, or Wj

⋂
C 6= ∅ (if s never appears).

The strategy for satisfying a requirement R = Ri,l is a relativized version of
this basic diagonalization strategy: a witness x is assigned to R at some stage
s0, large enough so that x 6∈ VWi [s0]. If at some s > s0, x enters WWi

l [s],
then we add x to VWi [s+1], by enumerating the axiom 〈x,Wi �φl(Wi;x)[s] 〉 into
V [s+1]. It is straightforward to check that this strategy satisfies the requirement
R essentially as in the unrelativized case for P, although if x 6∈ WWi

l , R may
require attention infinitely often. While this introduces problems, we refrain
from discussing in more detail the interaction with these kinds of requirements
for a while in the sequel. For the purposes of intuition, it suffices for the moment
merely to remember that these requirements force us to add axioms of the form
〈x,W〉 to V at various stages in the construction.

In its crudest form, the strategy for the requirement N = NΦ,Ψ,k is relatively
straightforward. Suppose we have some way to approximate whether or not

21

Φ(Wk ⊕ VWk) = B&Ψ(K) = VWk , so that if this condition holds, it will
appear more and more likely at infinitely many stages s, as measured by the
increase in some length-of-agreement function lN[s]. We satisfy the requirement
by constructing a functional Γ = ΓN, extending our construction at each such
stage s. For every c < s such that Γ(Wk; c)

x[s], we set Γ(Wk; c)[s] = C(c)[s]
with use γ(Wk; c) equal to the amount of Wk used in checking that the lN has
increased at s. We then restrain C from ever changing on any c < s until Wk

changes on γ(Wk; c)[s]. As long as our approximation has the property that
there are infinitely many stages s at which Wk is stable on these γ(Wk; c)[s],
this procedure will succeed in satisfying N.

These two strategies clash very badly in these crude forms. After all, there
is in general nothing to keep N, when it has higher priority, from imposing
infinite restraint on requirement P, keeping us from ever enumerating any c into
Wj

⋂
C. The key allowing escape from these restraints is the fact that we are

in control of B as well as C, giving us the potential of forcing Wk to change on
γ(Wk; c)[s] when c needs to enter C by enumerating a relatively small number
into B and hence changing the approximation to B given by Φ(Wk ⊕ VWk) at
s.

More precisely, we link the two strategies together as follows: when we choose
some c at stage s for the purpose of satisfying Pj , we simultaneously choose an
element b 6∈ B[s] which is greater than the current length of agreement for
N. If a stage s′ arrives such that lN[s′] > b, we set Γ(Wk; c)[s′] = 0 with use
γ(Wk; c)[s′] = s′, and we restrain V below the use φ[s′] = φ(Wk⊕VWk ; b)[s′]. If
at some later stage s′′ > s′, c enters Wj , we then attack with b by enumerating
b ∈ B[s′′], while continuing to restrain V below the old use φ[s′]. Notice that
this means that no axiom 〈x,W〉, with x < φ[s′] can be enumerated into V
after s′. Therefore, by the usual convention that the stage number s′ bounds
all the computations existing at s′, any axiom 〈x,W〉 has |W| < s′. Hence,
if x < φ[s′], x can neither enter nor leave VWk after s′, without Wk changing
below γ(Wk; b), and, of course, φ[s′] < s′ in any case. Therefore, at any stage
t > s′, either

(a) (Wk ⊕ VWk)[t] �φ[s′]= (Wk ⊕ VWk)[s′] �φ[s′], or
(b) Wk[t] �γ(Wk;b)[s′] 6= Wk[s′] �γ(Wk;b)[s′].

Because Φ(Wk ⊕ VWk ; b)[s′] = 0 6= 1 = B(b), as long as (a) remains true
Φ(Wk ⊕ VWk) 6= B, so that N is satisfied finitarily through diagonalization. In
this case we can play another strategy for P, which merely has to respect the
finite restraint involved, and so is guaranteed to win. On the other hand, once
(a) fails to hold at some t, (b) becomes true, so that γ(Wk; c)

x[t], and c can
then be freely added to C[t] and Γ(Wk; c) can be corrected permanently.

Of course, Wk may change below the original use s′ of γ at some t > s′ while
c 6∈Wj [t]. However, as long as such a change does not disturb the computation
Φ(Wk ⊕ VWk ; b)[s′], we can continue to reset γ with the same value, and win
via the same linked strategy. Hence, as long as our method of approximation is
good enough to eventually become stable, we can define Γ(Wk; c) permanently.

22

4.2 A technical obstacle

When sketched in such a broad fashion, the basic strategy seems relatively
simple. Its implementation, however, faces a series of technical obstacles, the
first of which arises in defining the approximation to the truth of the condition
Φ(Wk ⊕ VWk) = B&Ψ(K) = VWk . For while this approximation can only
be true if VWk is a ∆0

2 set, the representation of V which we have available
to us when approximating the condition is essentially a Σ0

2 one. Most immedi-
ately, this seems to leave open the disturbing possibility that for every b ∈ ω,
Φ(Wk ⊕ VWk ; b) = B(b), but at infinitely many stages s, Φ(Wk ⊕ VWk ; b) does
not converge, since some y < φ(Wk ⊕ VWk ; b) is an element of VWk [s] at ev-
ery sufficiently large stage s, but fails to be in VWk . A natural solution to
this problem, is to use the Lachlan-Soare “hat trick” method of true stages.
This replaces the ordinary approximation VWk [s] with a modified approxima-
tion V̂Wk consisting of only those elements of VWk with axioms of length less
than wk[s], the least element recently enumerated into Wk. This ensures that
infinitely often, at so called Wk-true stages, longer and longer substrings of our
approximation to VWk actually agree with VWk . This will ensure in turn that
any true computation Φ(Wk ⊕ VWk ; b) will appear at every sufficiently large
Wk-true stage.

Unfortunately, this use of the hat trick complicates our basic strategy. Sup-
pose we believe that Φ(Wk ⊕ V̂Wk ; b)[s]

y= 0. It may be that some element
x < φ(Wk ⊕ V̂Wk ; b)[s] is actually in VWk [s] by some axiom 〈x,W〉 ∈ V [s]
with Wk �|W|= W. If |W| > wk[s], then x 6∈ V̂Wk [s], so that the computa-
tion Φ(Wk ⊕ V̂Wk ; b)[s] will change without any later change occurring in Wk

below s. This will defeat our purpose in setting γ(Wk; c) = s. The natural
solution is to restrain V below the use φ(Wk ⊕ V̂Wk ; b)[s] and wait for the next
N-expansionary stage s′. Since we restrain any elements below this use from
entering V after stage s, we only need worry about elements that entered at
stage s itself, or before stage s. If wk[s′] < |W|, for some such 〈x,W〉 ∈ V [s],
then x 6∈ VWk if x 6∈ V̂Wk , since wk[s′] injures its axiom. If, on the other hand,
some new x ∈ V̂Wk , x ∈ VWk , and we restrain again and wait for the next ex-
pansionary stage s′′, since the situation at s no longer looks good. Once we get
stability at successive stages s and s′, we can set γ(Wk; c)[s′] = s′ and proceed
with our strategy as before.

Because the available approximation to VWk is not ∆0
2, we are clearly in

danger of introducing infinite restraint again at this point in the construction,
simply because we may always have a change in VWk below the use at s before
the stage s′ appears. If we merely drop all restraint at such a stage, we will
face almost the same difficulty as before, since Φ(Wk ⊕ VWk ; b) might actually
converge, while appearing not to at infinitely many stages. It is for this rea-
son that we require the second condition, Ψ(K) = VWk , in the condition for
requirement N, since this gives a ∆0

2 representation of VWk . Thus, if we need
to satisfy requirement N, we will eventually be working with Φ(Wk ⊕Ψ(K); b),
which will be well-behaved in just the way that Φ(Wk ⊕ VWk ; b) need not be.

23

We can now give a more detailed description of our basic module. Suppose
there are infinitely many N-expansionary stages. (Otherwise, we eventually stop
acting for requirement N.) We define Γ(Wk; c) in steps as follows:

Step 1. Choose b 6∈ B and c 6∈ C at stage s−1.

Step 2. Wait for a stage s0 such that b < lN[s0]. Impose restraint at s0 + 1 on
V below φ(Wk ⊕ V̂Wk ; b)[s0].

Step 3. At the next expansionary stage s1 > s0, if both

Ψ(K)[s1] �φ(Wk⊕bVWk ;b)[s0]
= V̂Wk [s0] �φ(Wk⊕bVWk ;b)[s0]

, and

Wk[s1] �φ(Wk⊕bVWk ;b)[s0]
= Wk[s0] �φ(Wk⊕bVWk ;b)[s0]

,

then set γ(Wk; c)[s1 + 1] = s1 + 1. Otherwise, return to step 2.

Step 4. At each N-expansionary stage s2 > s1, if γ(Wk; c)
x[s2] and either

(a) K has changed below max
{
ψ(K; y)[s1] : y < φ(Wk ⊕ V̂Wk ; b)[s1]

}
,

or

(b) Wk has changed below φ(Wk ⊕ V̂Wk ; b)[s1],

then drop all restraint and return to step 2. Otherwise, s1 still looks good
at s2. If γ(Wk; c)

x[s2], set γ(Wk; c)[s2 + 1] = s1 + 1, if c 6∈ C[s2 + 1]; and
set γ(Wk; c)[s2 + 1] = 0, if c ∈ C[s2 + 1].

As pointed out above, if Φ(Wk ⊕ VWk) = B and Ψ(K) = VWk , this process
must eventually terminate, since we never again return to Step 2 after some stage
at which Wk and K have stabilized on the total use involved in the computation
Φ(Wk⊕Ψ(K); b). It is straightforward to verify that this defines γ in such a way
that the basic strategy for linking requirements can still work: an attack with
b at some stage s−2 > s1 will ensure γ(Wk; c)

x[s2] at the next N-expansionary
stage s2, permitting c to be added to C[s2]. We have essentially, then, three
outcomes for the basic strategy: If we eventually define some use γ(c), then
either c ∈ C because of a permanent win on requirement Pj , or c 6∈ C because
c 6∈ Wj . Both of these outcomes impose some finite restraint on lower priority
requirements. If, on the other hand, the use tied to b is unstable, this causes
infinite restraint, which drops back to 0 infinitely often, because b witnesses that
NΦ,Ψ,k is satisfied. This is the typical situation in an 0′′′-priority construction,
with the higher priority requirement won by infinitary action at the lower.

4.3 The priority arrangement

We next describe how we intend to organize the action of strategies. We use
the familiar tree-of-strategies technique for organizing our construction. In the
discussion that follows, we assume familiarity with the 0′′′-priority method using
this technique. We use the notation of Soare, [6]. We face two main problems

24

here. The first problem involves the mechanism used to impose restraint for
the many type-P strategies below one type-N strategy; the second problem
involves coordinating the activity of many type-N strategies above a given type-
P strategy.

A strategy τ for some higher priority requirement NΦ,Ψ,k has in general a
great number of elements b assigned to lower priority requirements below it
which are waiting for an appropriate time to initiate an attack. Whenever some
such b causes a return to Step 2 in the procedure for defining some γ(Wk; c),
this action should immediately introduce a new restraint on all requirements
below the strategy σ for Pj to which b and c are assigned. However, we have no
reason to think that the particular lower priority strategy σ to which b and c are
assigned will act at this stage, since its activity depends on the state of many
intermediate strategies. If we allow σ to act whenever τ would like it to, we will
injure all these intermediate strategies. Because there are in general infinitely
many such b and c, we cannot afford to do this without infinitely injuring all
strategies below τ .2 We solve this problem by using a proxy for σ at any such
stage s. Notice that if the approximation to the true path fs <L σ, σ will be
initialized at s, so we need not consider this case. On the other hand, if σ <L fs,
then some ξ with bσ < bξ acts at s, and, since the use tied to bσ appears bad,
the use tied to bξ appears bad as well. Thus we can let the least such ξ stand
in for σ, giving it a τ -infinitary outcome at this stage and tying the use of both
cσ and cξ to bξ, since the τ -ξ strategy has been protected at this stage.

The immediate problem with this procedure is that it threatens to make
our functional Γ undefined in the long run, since as the approximation to the
true path moves right, we tie γ(cσ) to greater and greater bξs. Clearly, when
the path branches back to the left, we must give up the current σ-proxy and
choose a new one. In this way, we will eventually tie γ(cσ) to some fixed b,
namely bξ, where ξ is the least type-P strategy which must respect τ such that
σ ≤ ξ ⊆ f . The obstacle to merely redefining the σ-proxy whenever the path
moves left, is that γ(cσ) may look good at the τ -expansionary stage where this
happens, so that we have no justification for changing the use. In other words,
we may have the following situation: some original use for γ(cσ) is tied to bσ at
a σ-stage s0. At a later stage, s1, this use looks bad, so we tie γ(cσ) to some
bξ0 and make ξ0 the σ-proxy. Now at stage s2 > s1, fs2 <L ξ0, causing bξ0 to
become undefined. There will be some appropriate ξ ⊆ fs2 , but, if γ(cσ) is not
undefined at s2, then we cannot reassign its value to ξ, and, even if we did, we
have no reason to think that ξ itself has permission from τ to set new restraints
at this stage. Notice, however, that because σ ≤ ξ <L ξ0, γ(cξ) must also have
looked bad at stage s1, hence, and ξ0 must have become the ξ-proxy then as
well. Because ξ0 is initialized at s2, we now have bξ0 available to us to use in
any manner we choose. We keep ξ from acting immediately at stage s2, and
instead enumerate bξ0 into B and set a link from ξ to τ , performing an attack
for the sake of correcting our use on ξ and σ. At the next τ -expansionary stage,

2It is possible to approach the proof in this way, using a complex technique involving
“toplinking” and “scouting reports”, as in the density theorem of Downey-Lempp, [2], but
this results in an even more difficult construction.

25

γ(cσ) and γ(cξ) must diverge, and we can reset the σ-proxy to be ξ and allow
a τ -infinitary outcome at ξ, setting restraints to protect both strategies.

Our second problem arises from the fact that we are attempting to diagonal-
ize against every computably enumerable set. Because of this, a given type-P
strategy can have in general many different infinitary outcomes, each of which
depends on a different use associated to a different type-N strategy being even-
tually unstable. The fact that we have no control over the order in which these
instabilities may occur is what causes a problem here. In fact, it is this that is
the most significant obstacle to the construction. Suppose σ is a type-P strategy
and τ0 and τ1 are two type-N strategies which σ must respect. In other words,
σ believes it must define both γτ0 and γτ1 . There are four possible outcomes for
the σ strategy: the two that impose finite restraint, and an infinitary outcome
for each of the type-N strategies. Suppose τ0 has higher priority than τ1, and
let bτ0 and bτ1 be the attackers to which the uses for γτ0(cσ) and γτ1(cσ) are
tied. Since τ0 has higher priority, we must initialize τ1 to set a higher restraint
whenever we get a change in the use tied to bτ0 . This involves picking a new bτ1
and a new cσ, injuring the σ-strategy. Below this τ0-infinitary outcome, we no
longer have to respect τ0’s requirement, so that we have freedom to try again
using a new σ′ that only respects τ1’s requirement. But σ′ cannot attempt to
coordinate its strategy with τ1 itself, since σ′ can only be allowed to act when
the τ0 use tied to σ looks bad. Coordination with τ1 involves making an attack
on τ1 and waiting for success at the next τ1-expansionary stage . Since we have
no means to ensure that the τ0-use at σ will look bad at such a stage, we would
be forced to wait for the next such stage in order to protect τ0. (σ′ cannot at-
tack with σ’s τ0-attacker without introducing infinite injury from below.) But
by this stage, the permission from τ1 will in general have gone away.

We solve this problem by forcing both τ1 and τ0 to automatically give per-
mission whenever σ′ acts. As in the case of the need to reset the σ-proxy, we do
this by introducing an auxiliary attack in order to correct our uses. We associate
to the τ0-attacker of σ, bτ0 , a pair of τ0-correctors, b(τ0, τ1) and b(τ0, τ0), with
bτ0 < b(τ0, τ0) < lτ0 . We set the uses γτ1 and γτ0 for σ′ using these correctors.
When the use tied to τ0 looks bad, and we wish to allow σ′ to act, we first
attack τ1 by enumerating b(τ0, τ1) into B. At the next τ1-expansionary stage,
we attack τ0 by enumerating b(τ0, τ0) into B, and linking over τ1. At the next
τ0-expansionary stage, σ′ is free to act as if neither τ0 nor τ1 existed. This
involves using up the two correctors, so that new ones have to be chosen at the
next σ-stage. This procedure only happens when the use tied to the τ0-attacker
at σ changes, and this attacker is itself not given up in the process of correct-
ing for σ′. Thus, the infinitary outcome of σ is correct in the sense that τ0’s
requirement need never be reassigned below σ, because instability in the use
tied to the attacker bτ0 witnesses its satisfaction. Of course, we must reassign
τ1’s requirement to some τ ′1 below this τ0-infinitary outcome of σ, since this
procedure does injure τ1 by “artificially” increasing all of τ1’s uses to protect it
from τ0 and σ′.

Notice that τ1 does not need a pair of correctors at σ, since an attack on
τ0 by any node turns τ1 off for the duration of the attack. However, because

26

we have to introduce correctors to perform the auxiliary attacks anyway, we
also use these correctors in the construction below when we need to reset the
σ-proxy, rather than keeping track of what attacker was used to set the use
at a lower priority proxy. This means that even when τ is the lowest priority
requirement which σ must respect, we introduce an auxiliary corrector b(τ, τ)
solely for this purpose. Since b(τ, τ) will be less than any attacker or corrector
for lower priority strategies, this will work in a natural way.

There is one slight technical difficulty with our correcting strategy. It is not
clear what action we should take when the use tied to bτ0 looks good, but the
use tied to the associated corrector b(τ0, τ0) looks bad. The 0′′′-method is based
on the fact that σ′ below the τ0-infinitary outcome at σ does not explicitly
respect τ0, and hence does not have a τ0-infinitary outcome. Since we can only
let σ′ act when the use tied to bτ0 looks bad, we would be prevented from using
such an outcome to set restraints for protecting the use tied to b(τ0, τ0) in any
case. What we are forced to do to get around this problem is to use the next
greatest node which does have a τ0-infinitary outcome as another kind of proxy
for σ′. In the case we have described, this will be the next type-P strategy
below the τ1-infinitary outcome at σ. This strategy has a τ0-attacker which is
greater than b(τ0, τ0), and hence has a τ0-use which looks bad whenever the use
tied to b(τ0, τ0) looks bad. Its τ0-infinitary action will therefore set restraints
which are sufficient until the τ0-infinitary action at σ occurs again, setting an
even better restraint. Of course, in order to allow this strategy to act, the
coordinated σ-τ1 strategy must be injured, and we must attack with b(τ1, τ1),
giving a false τ1-infinitary outcome at σ. But when this occurs, we get a true
τ0-infinitary outcome just below this, allowing us to reassign τ1’s requirement. If
this happens infinitely often, this new version of τ1 will succeed in satisfying the
requirement. Intuitively this procedure makes sense because the coordinated
σ-τ0 strategy, and hence σ′ which depends on it, has higher priority than the
coordinated σ-τ1 strategy which is injured each time we perform this procedure.
If this procedure takes place infinitely often at σ, then this actually injures τ1
itself, but it gives a τ0-infinitary outcome on the true path and therefore enables
τ1’s requirement to be satisfied.

4.4 Interference from the nontriviality requirements

We have so far avoided discussing in detail an important aspect of our con-
struction, namely the effect which a strategy for some requirement Ri,l (that
is, VWi 6= WWi

l) has on the coordinated strategy for requirements NΦ,Ψ,k and
Pj . Recall that the strategy for Ri,l involves enumerating some number xRi,l

into VWi , possibly at infinitely many stages. Whenever some new axiom is enu-
merated into V for the sake of enumerating xRi,l into VWi , we run the risk of
unintentionally enumerating xRi,l into many other relatively computably enu-
merable sets VW , without any change in the oracle W . Enumeration of this
kind into VWk directly injures the NΦ,Ψ,k strategy which seeks to define Γ(Wk)
by means of Φ(Wk ⊕ VWk). When the strategy for Ri,l affects VWk in this way

27

only finitely often, there is essentially no problem; it is dealing with the infinite
injury that can occur when Wk and Wi turn out to be the same set which causes
problems in the construction.

There are three possibilities, depending on the relative priorities involved.
If Ri,l has higher priority than NΦ,Ψ,k, then the strategy for NΦ,Ψ,k can merely
approximate the eventual status of xRi,l in the usual way for 0′′-priority ar-
guments, initializing all lower-priority strategies guessing that xRi,l ∈ VWk .
If Ri,l has lower priority than Pj , then the coordinated strategy for Pj and
NΦ,Ψ,k is explicitly designed to force the strategies for Ri,l to respect the use
of Φ(Wk ⊕ VWk ; b), when b is the current NΦ,Ψ,k-attacker for Pj . There is a
slight technical problem here arising from our procedure of using proxies. The
Ri,l-strategy can have lower priority than the coordinated strategy for Pj and
NΦ,Ψ,k, yet fail to be initialized after a change in the relevant use because it does
not lie below any infinitary outcome for a strategy which can serve as proxy for
this coordinated strategy. In this case, we must restrain Ri,l by preventing it
from acting with its current witness if that witness is below the relevant use.
When this happens, we force the Ri,l strategy to choose a new witness, although
we do not otherwise initialize it. This may injure this strategy infinitely often,
but only through infinitary activity arising from a higher priority coordinated
strategy. Thus, if this strategy for Ri,l lies on the true path, we are assured that
some infinitary outcome for a higher priority strategy lies below it on the true
path, and hence its requirement can be satisfied. This situation is very much like
the situation of the false τ1-infinitary outcome caused by the corrector b(τ0, τ0)
described at the end of the last section.

When the Ri,l-strategy lies between the the NΦ,Ψ,k-strategy and some Pj-
strategy which must respect NΦ,Ψ,k, however, a kind of injury can occur which
is more difficult to deal with. Suppose τ is some NΦ,Ψ,k-strategy, σ some Pj-
strategy, and α some Ri,l-strategy such that τ ⊆ α ⊆ σ. Recall that the problem
occurs when xα < φ(bστ) at stage s. This means that a σ-attack changing B’s
value on bστ can be affected when xα enters VWk . If this entry occurs because
of the appearance in Wk of a number greater than γτ (cσ), the attack will fail,
and this is exactly what may happen if α has acted at any stage after γ(cσ) was
last set.

We avoid this problem in the natural way by introducing a pair of outcomes
0 and 1 at α, with 0 indicating that xα 6∈ VWi and 1 indicating that xα ∈ VWi .
This by itself, however, is not enough. The problem is that there is in general
no relationship between VWi(xα), which determines α’s ultimate outcome, and
VWk(xα), on which the success of the linked σ-τ strategy may depend. Thus,
even if σ only acts when xα 6∈ VWi , Wk can come to resemble an old version
of Wi on some initial segment much longer than the even-older use γ(cσ) and
thereby allow xα to enter VWk without this entry being detectable at σ.

The key to solving this problem is the recognition of the fact that it can only
occur infinitely often when both of the sets Wi and Wk are the same, although
with different enumerations. This is because α only ever enumerates axioms that
agree with Wi on longer and longer apparent initial segments. We can therefore
avoid this problem by embedding a further action at α to check whether the

28

sets Wk and Wi are tending to agree with each other. In fact, however, we
can achieve the same result by the device of replacing the ordinary enumeration
{Wk} indexing the computably enumerable sets by an enumeration {W ∗

k } of
these sets without repetitions. The existence of such an enumeration is an old
result due to Friedberg. We can now know in advance whether Wi and Wk are
the same set. Since the effect of α on any strategy for a requirement involving
a different set W ′ is guaranteed to be finite, we can therefore initialize every
strategy below α whenever such an injury to a coordinated strategy involving a
different set occurs. This also makes it possible to more conveniently treat the
case α ⊆ τ , since we can initialize τ finitely often for each such α when injury
occurs in this way.

5 The full construction

5.1 Preliminary definitions and the priority tree

We use a priority tree T which is isomorphic to a subtree of <ωω. Using stan-
dard coding functions for triples and pairs, as well as standard indexing for
computable functionals and a listing without repetitions of the computably
enumerable sets, we order the requirements in a priority listing. We assign
requirements recursively along each path in T and we simultaneously define T .
To achieve this we define a listing function, L(ρ, k), listing, for each ρ ∈ T the
requirements that still need to be satisfied at ρ. The requirement L(ρ) = L(ρ, 0)
is assigned to ρ. A natural notational abbreviations is the writing of Lρ for the
functional λxL(ρ, x). We also define L(ρ) < L(ρ′) whenever k < k′ such that
L(ρ) = L(∅, k) and L(ρ) = L(∅, k′). We define L by recursion on ρ ∈ T and
m ∈ ω, after first making some preliminary definitions.

A node is said to be of type N if it has some requirement NΦ,Ψ,k assigned to
it. A node is said to be of type P if it has some requirement Pj assigned to it.
A node is said to be of type R if it has some requirement Ri,l assigned to it.

Let ρ ∈ T . Suppose τ is a node of type N such that τ_〈∞〉 ⊆ ρ. If σ ⊆ ρ,
σ has type P, and σ_〈τ〉 ⊆ ρ, then σ has a τ -infinitary outcome at ρ. A node
ρ respects τ_〈∞〉 ⊆ ρ if there do not exist any τ0 ⊆ τ and σ such that σ has a
τ0-infinitary outcome at ρ.

Nodes τ of type N have outcomes of the form ∞ and 1, where ∞ < 1.
Nodes α of type R have outcomes of the form 0 < 1.
Nodes σ of type P have outcomes 〈win〉, 〈τ〉, and 〈fin〉, where τ is a node

(of type N) included in σ such that σ respects τ_〈∞〉. We order the outcomes
using the inclusion ordering on the nodes τ and the additional rule that 〈win〉 <
〈τ〉 < 〈fin〉 for any τ .

We can now define the function L. Let λ be the empty string.

• For every m ∈ ω, L(λ, 3m) = Nm, L(λ, 3m+1) = Pm, and L(λ, 3m+2) =
Rm.

29

• If β 6= λ, β = β_0 O for some outcome O, and β0 has type N, or R, then
for every m ∈ ω, L(β,m) = L(β0,m+ 1).

• Suppose β 6= λ, β = β_0 O for some outcome O, and β0 has type P. There
are two possibilities:

Case 1. If O = 〈τ〉 for some τ ⊆ β0, then for every m ∈ ω, L(β,m) =
L(τ,m+ 1).

Case 2. Otherwise, for every m ∈ ω, L(β,m) = L(β0,m+ 1).

As usual, we have an approximation to the true path fs defined at each s > 0.
For any node β ∈ T , s is a β-stage if β ⊆ fs; s is an active β-stage if β was
allowed to act at stage s. If s is an active β-stage, then we use s−β to denote the
last previous β-stage. When β is clear from the context, we merely write s− for
s−β . Whenever fs <L β, we initialize β at s, meaning that we undefine all of β’s
parameters and functionals, and start over completely with a new version of β.
At stage 0 we initialize all nodes in T . We then take action as follows at each
stage s+ 1.

5.2 A node τ of type N

Suppose τ has requirement NΦ,Ψ,k assigned to it. Our first task is to make
explicit how we intend to approximate the truth of the condition Φ(Wk⊕VWk) =
B&Ψ(K) = VWk .

For each τ -stage t let

wτt =

{
µw(w ∈Wk[t]−Wk[t−]), if Wk[t]−Wk[t−] 6= ∅, and
t, otherwise.

Let V̂Wk
τ [t] =

{
x : ∃〈x,W 〉 ∈ V [t] (|W | < wτt ∧ Wk[t] �|W |= W)

}
. In other

words, V̂Wk
τ [t] consists of just those elements of VWk [t] with axioms smaller than

wτt . A stage t is said to be a τ -true stage, if t is a τ -stage andWk �wτ
t
= Wk[t] �wτ

t
.

This means that no element w < wτt is ever enumerated into Wk at any stage
after t.

Let s be a τ -stage. We define the set Sτ [s] of apparent τ -true stages at s to
be the set of τ stages t < s such that for all t′ ≤ s, if t < t′ and t′ is an active
τ -stage, then wτt < wτt′ . When a fixed τ is under consideration, we usually write
wk,t for wτt and V̂Wk for V̂Wk

τ , and we call τ -true stages Wk-true stages.
At each τ -stage t, we define the τ -length-of-agreement at t, lτ [t], to be the

least x such that for every y < x, Φ(Wk⊕ V̂Wk ; y)[t] = B(y)[t] and for every z <
φ(Wk ⊕ V̂Wk ; y)[t], V̂Wk(z)[t] = Ψ(K; z)[t]. We define the maximum previous
τ -length-of-agreement at t by mτ [t] = max

{
lτ [s] : s < t

}
. A τ -stage t is

τ -expansionary whenever lτ [t] > mτ [t].
The strategy for satisfying N also depends on keeping track of the stage t at

which an eventual computation reaches its final state. Suppose lτ [t] > b. Let

30

φ(t) = φ(Wk ⊕ V̂Wk ; b)[t],

φ+(t) = max({φ(t)}
⋃{

v : ∃x < φ(t) 〈x,Wk[t] �v 〉 ∈ V [t]
}
, and

ψ(t) = max
{
ψ(K; y)[t] : y < φ(t)

}
.

Then t looks good for b with respect to τ at s if and only if there exists some
t0 ≤ t such that

1. t0 ∈ Sτ [s],

2. (Wk ⊕ V̂Wk)[t0] �φ+(t0)= (Wk ⊕ V̂Wk)[t] �φ+(t0)= (Wk ⊕ V̂Wk)[s] �φ+(t0),

3. lτ [t0] > b,

4. for every t′ such that t0 ≤ t′ ≤ s, K[t0] �ψ(t0)= K[t] �ψ(t0)= K[s] �ψ(t0),

5. for every x < φ(t) and t′ such that t0 ≤ t′ ≤ s, if t′ is τ -expansionary,
then x ∈ V̂Wk [t0] if and only if x ∈ VWk [t′].

As discussed in 4.2, the reason for condition 5 is to ensure that no x < φ(t0)
can enter V̂Wk later when it was actually already in VWk . This could produce
a change in V̂Wk that would be undetectable by a later Wk-change. If Ψ(K) =
VWk , every such x will eventually be counted as in at a true stage t0 with a use
below wτt0 . Note that 4 implies Ψ(K)[t0] �φ(t0)= Ψ(K)[t] �φ(t0)= Ψ(K)[s] �φ(t0).
When τ and s are clear from the context, as they often will be, we merely say
t looks good for b.

Let s− be the greatest stage τ -expansionary stage before s. If σ extends
τ_〈∞〉, and some witness cσ is eventually chosen permanently by σ, then τ has
the task of eventually defining some γτ (σ) (to be used to define Γτ (Wk) = C.)
It is because σ’s witness cσ changes over time to protect lower priority type-N
requirements that we define γτ (σ), rather than γτ (cσ). (Since the enumeration
of potential witnesses is increasing, this procedure succeeds in ensuring the
totality of Γ.) For each σ ∈ T , if there exists a greatest stage t such that
s− ≤ t < s and γ(σ)

y[t], then let γ−(σ)[s] = γ(σ)[t] and t−(σ)[s] = t.
A node σ ⊇ τ_〈∞〉 may have an incorrect use because of the unpredictable

activity of some α of type R such that α < τ . Suppose there exists some α < τ
such that L(α) = Rk′,l′ , k 6= k′, and VWk(xα)[s−τ] 6= VWk(xα)[s]. Then we say
τ discovers an error at s.

There are four cases to consider. We take the first one that applies.

Case 1. If τ discovers an error at s, then initialize all β ≥ τ and proceed
immediately to stage s+ 2.

Case 2. If s is not τ -expansionary then let τ_〈fin〉 act at stage s+ 1.

Case 3. If s is τ -expansionary, and there is some σ ⊇ τ_〈∞〉with a link in
place from σ to τ then we let σ act at stage s+ 1.

Case 4. Otherwise, let τ_〈∞〉 act at stage s+ 1.

31

We also have to define the functional γτ .

Setting γτ : If s is τ -expansionary (Cases 3 and 4), at the end of stage s + 1,
if any type P node σ <L fs, σ respects τ_〈∞〉, and γτ (σ)

x[s], then there
will be some σ-proxy ξ(σ)

y[s]. If fs <L ξ(σ)[s], or if s− looks bad at
s for bξ(σ)

τ [s], then redefine ξ(σ)[s + 1] to be the least ξ ⊆ fs such that
bστ ≤ bξτ < lτ [s].

• If there exists some τ0 ⊆ τ such that ξ(σ)[s + 1]_〈τ0〉 ⊆ fs or if
ξ(σ)[s− + 1] 6= ξ(σ)[s+ 1], then γτ (σ)

x[s+ 1].

• Otherwise, if s− looks good at s for bξ(σ)
τ [s] and γτ (ξ(σ))

y[s+ 1], let
γτ (σ)

y[s+ 1] = γτ (ξ(σ))[s+ 1].

• Otherwise, if s− looks good at s for bξ(σ)
τ [s] and γτ (ξ(σ))

x[s+ 1], let
γτ (σ)

y[s+ 1] = γτ (ξ(σ))
y[s+ 1] = s+ 1.

5.3 A node σ of type P

Suppose σ has some P = Pj assigned to it. For each τ_〈∞〉 which σ must
respect, σ has a τ -attacker, bστ , and for each τ_0 〈∞〉 ⊆ τ_〈∞〉 which σ must
respect with τ0 ⊆ τ , σ has a (τ0, τ)-corrector, bσ(τ0, τ).

Let s− be the greatest active σ-stage since σ was last initialized, or the stage
at which σ was last initialized, if no such stage exists.

σ discovers an α-error at s+ 1 if α < σ, L(α) = Ri,l, and there exists either
some τ < α such that L(τ) = NΦ,Ψ,k or some β < α such that L(β) = Rk,l′ ,
k 6= i, and VWk(xα)[s−] 6= VWk(xα)[s] or VWi(xβ)[s−] 6= VWi(xβ)[s].

We act according to the first case that applies below.

Case 1. There exists some α < σ such that σ discovers an α-error at stage
s+ 1. Then initialize all β ≥ α, and go to stage s+ 2.

Case 2. There exists some least τ_〈∞〉 which σ must respect such that s− does
not look good for bσ(τ, τ)[s] at s, and either σ is not currently attacking,
or σ is currently performing a τ0-correction for some τ0 which τ ⊆ τ0. (In
other words, at most a lower priority correction is taking place.) There
are three subcases.

Subcase 2a. s− does not look good for bστ [s] at s. Then σ initiates a
τ -correction. Let τ1 be greatest such that σ must respect τ_1 〈∞〉,
τ ⊆ τ1, and γτ1(σ)

y[s]. Enumerate bσ(τ, τ1)[s] ∈ B[s + 1], let
bσ(τ, τ1)

x[s + 1], and set a link from σ to τ1. For all τ ′ such that σ
must respect τ ′_〈∞〉 and τ ⊆ τ ′, let bστ ′

x[s + 1] and let, for all ρ,
bσ(τ ′, ρ)

x[s+1]. Let cσ
x[s+1]. End stage s+1 and proceed to stage

s+ 2.

32

Subcase 2b. s− looks good for bστ [s] at s and there exists some τ0 such
that σ must respect τ_0 〈∞〉 and τ ⊆ τ0. Then σ initiates a τ0-
correction. Let τ1 be greatest such that σ must respect τ_1 〈∞〉,
τ0 ⊆ τ1, and γτ1(σ)

y[s]. Enumerate bσ(τ0, τ1)[s] ∈ B[s + 1], let
bσ(τ0, τ1)

x[s + 1], and set a link from σ to τ1. For all τ ′ such that
σ must respect τ ′_〈∞〉 and τ0 ⊆ τ ′, let bστ ′

x[s + 1] and let, for all
ρ, bσ(τ ′, ρ)

x[s + 1]. Let cσ
x[s + 1]. End stage s + 1 and proceed to

stage s+ 2.
Subcase 2c. s− looks good for bστ [s] at s and τ is greatest such that σ

must respect τ_〈∞〉. Let cσ
x[s + 1] and let σ_〈fin〉 act at stage

s+ 1.

Case 3. σ is currently performing a τ -correction, and there does not exist any
τ_0 〈∞〉 which σ must respect such that τ0 ⊆ τ and s− does not look good
for bσ(τ0, τ0)[s] at s. There are two subcases.

Subcase 3a. There is some greatest τ1 such that σ must respect τ_1 〈∞〉,
τ ⊆ τ1, and γτ1(σ)

y[s]. Then we continue the τ -correction. Enumer-
ate bσ(τ, τ1)[s] ∈ B[s+ 1], let bσ(τ, τ1)

x[s+ 1], and set a link from σ
to τ1. (For all τ ′ such that σ must respect τ ′_〈∞〉 and τ ⊆ τ ′, let
bστ ′

x[s + 1] and let, for all ρ, bσ(τ ′, ρ)
x[s + 1]. Let cσ

x[s + 1].) End
stage s+ 1 and proceed to stage s+ 2.

Subcase 3b. There is no τ1 such that σ must respect τ_1 〈∞〉, τ ⊆ τ1,
and γτ1(σ)

y[s]. Then we end the τ -correction. If the τ -correction
was begun because some τ0 ⊆ τ experienced a stage s which looked
good for bστ0 , but bad for bσ(τ0, τ0) (as in subcase 1b. above), then
we let bστ

x[s+ 1]. We let σ_〈τ〉 act at stage s+ 1.

Case 4. σ is not currently attacking or correcting, and there is some least τ
such that bσ(τ, τ)

x[s]. Let cσ[s + 1]
x. Then σ sets a link from σ to τ .

End stage s+ 1 and proceed to stage s+ 2.

Case 5. σ was visited by a link from τ which was set because bσ(τ, τ)
x. s

is τ -expansionary, and we say that any b such that mτ [s] ≤ b < lτ [s]
is an available τ -attacker. For each τ0 ⊆ τ , such that bσ(τ0, τ)

x[s], let
bσ(τ0, τ)[s + 1] be the next available τ -attacker. Once all of these are
assigned, let bστ [s + 1] be the next available attacker, and, finally, let
bσ(τ, τ)[s + 1] be the next available τ -attacker. If bσ(τ, τ)

x[s + 1] (i.e.,
there are not enough available τ -attackers), then σ sets a link from σ to
τ . If bσ(τ, τ)

y[s + 1], let ξ(σ)[s + 1], the σ-proxy, be σ. End stage s + 1
and proceed to stage s+ 2.

Case 6. σ is not currently attacking or correcting, and for every τ such that σ
respects τ_〈∞〉, bσ(τ, τ)

y[s] and s− looks good for bσ(τ, τ)[s]. If cσ
x[s],

then let cσ[s] be some number greater than any yet mentioned in the
construction. If cσ

y[s] and (cσ 6∈ Wj)[s], then do nothing. In either case,
let σ_〈fin〉 act at s+ 1.

33

Case 7. cσ
y[s] and (cσ ∈Wj − C)[s]. There are two subcases.

Subcase 7a. If there is no node τ such that τ_〈∞〉 ⊆ σ and γτ (σ)
y[s],

then let cσ ∈ C[s+ 1]. Let σ_〈win〉 act at stage s+ 1.

Subcase 7b. Otherwise, suppose τ is greatest such that τ_〈∞〉 ⊆ σ and
γτ (σ)

y[s]. Let bστ [s] ∈ B[s+ 1], bστ [s+ 1]
x, and set a link from σ to

τ . End stage s+ 1 and proceed to stage s+ 2.

If σ was not already currently attacking, then we say σ begins an attack
at s.

Case 8. C[s]
⋂
Wj [s] 6= ∅. Then σ_〈win〉 acts at stage s+ 1.

5.4 A node α of type R

Suppose α has some R = Ri,l assigned to it.
Let s− be the last previous active α-stage since α was last initialized, or the

stage at which α was last initialized if no such active α-stage exists.
Suppose σ < α, σ has type P, and both α and σ respect τ_〈∞〉 , where

L(τ) = NΦ,Ψ,k. Let sσ be γτ (σ)[t] for the greatest t ≤ s such that γτ (σ)[t]
y).

σ restricts α at s+ 1 because of τ if there is some b such that b = bστ [s+ 1]
or there is some τ0 ⊆ τ such that b = bσ(τ0, τ)[s + 1], and xα(s) < φ(Wk ⊕
VWk ; b)[sσ].

α discovers an error at s + 1 if there exists either some τ < α such that
L(τ) = NΦ,Ψ,k or some β < α such that L(β) = Rk,l′ , k 6= i, and VWk(xα)[s−] 6=
VWk(xα)[s] or VWi(xβ)[s−] 6= VWi(xβ)[s].

We act according to the first case below that applies.

Case 1. xα[s]
x. Choose xα[s + 1] greater than any number yet mentioned in

the construction, immediately initialize all β > α, and let α_〈0〉 act at
stage s+ 1.

Case 2. α has discovered an error at s + 1. Then initialize all β ≥ α. Go
immediately to stage s+ 2.

Case 3. xα 6∈ VWi [s], and xα 6∈ Ŵl

Wi

[s−] or xα 6∈ Ŵl

Wi

[s]. Let α_〈0〉 act at
stage s+ 1.

Case 4. xα 6∈ VWi [s] (and xα ∈ Ŵl

Wi

[s−] and xα ∈ Ŵl

Wi

[s]). There are two
possibilities.

Subcase 4a. If there exists a σ which restricts α from acting at s, then
let xα

x[s+ 1] and let α_〈0〉 act at stage s+ 1.

Subcase 4b. Otherwise, let 〈xα[s],Wi � φl(Wi;xα)[s]〉 ∈ V [s], and let
α_〈1〉 act at stage s+ 1.

Case 5. xα ∈ VWi [s]. Let α_〈1〉 act at stage s+ 1.

34

6 Verification

The verification of the construction splits naturally into three main parts. First,
we must show that when σ must respect τ_〈∞〉, the coordinated σ-τ strategy
is protected from injury by lower priority strategies. From this it will follow
that Γτ is correct and that σ witnesses satisfaction of its requirement if neither
is initialized infinitely often. We will also be able to show that the true path
is infinite. Second, we must show that if Φ(Wk ⊕ VWk) = B and Ψ(K) =
VWk , then Γτ is a total function, where τ is greatest such the τ ⊆ f and
L(τ) = NΦ,Ψ,k. This makes it possible to show that the type-N requirements
are satisfied. Finally, we must show that for each requirement Ri,l, the greatest
α on the true path with L(α) = Ri,l is only prevented from acting finitely often.
From this it follows that α witness satisfaction of Ri,l.

6.1 The coordinated σ-τ strategy

To avoid needless repetition in the statement of the next three lemmas, we
stipulate that we are always considering some σ which must respect τ_〈∞〉,
with L(τ) = NΦ,Ψ,k. We let s be a σ-stage and b be either bστ [s] or bσ(τ0, τ)[s]
for some τ0 ⊆ τ . As in section 5.2, for any t, we write φ(t) for φ(Wk⊕VWk ; b)[t],
and φ+(t) for the maximum of φ(t) and all |W| such that 〈x,W〉 ∈ V [t], x < φ(t)
and there is some v with Wk �v= W.

Lemma 6.1.1. Suppose α < σ, γτ (σ)
y[s] = s0 + 1, and there is a t ≤ s such

that xα[t] < φ(s0). Then, xα(t) ∈ VWk [s0] if and only if xα(t) ∈ VWk [s].

Proof. Otherwise, let s be least such that there exist σ, τ , t, and s0 such that this
fails. Let x = xα(t). If L(α) = Ri,l and i 6= k, then either α or τ is initialized at
some s′ with s0 < s′ < s, so σ is initialized then too, a contradiction. From this
it follows that α initializes σ whenever VWk changes value, unless α_〈0〉 ⊆ σ. In
this case, x 6∈ VWk [s], since α only picks a new witness without being initialized
when the old one is out, by 5.4, subcase 4a. If x ∈ VWk [s0], then s0 > |W| for
all 〈x,W〉 ∈ V [s0]. But then Wk[s0] �s0 6= Wk[s] �s0 and s0 can no longer ever
look good for b by (5) in the definition of looking good, since x < φ(s0).

Lemma 6.1.2. If γτ (σ)
y[s] = s0 + 1, then

(Wk ⊕ VWk)[s] �φ+(s)= (Wk ⊕ VWk)[s0] �φ+(s0) .

Proof. Otherwise, choose s0 least for which this fails (for some σ, τ , etc) and
let s be least for s0. Note that Wk[s] �φ+(s)= Wk[s0] �φ+(s0), since otherwise
there exists some τ -expansionary stage s1 such that s0 < s1 < s, s0 does not
look good at s1, and Wk[s1] �s0 6= Wk[s0] �s0 . In this case, we would have
γτ (s) ≥ s1 +1 > s0 +1, a contradiction. Hence, there must be some x such that
x ∈ VWk [s] �φ+(s0) −VWk [s0] �φ+(s0). Let s1 > s0 be the least stage such that x
entered VWk at s1 + 1 and remained in VWk at the next τ -expansionary stage.
By Lemma 6.1.1, x = xα[s0] for some α > σ. Since s0 was a τ -expansionary

35

stage, σ extends τ_〈∞〉. σ prevents α from acting at stage s1 + 1 unless α
does not respect τ_〈∞〉. Hence there must be some σ_1 〈τ1〉 ⊆ α such that
τ1 ⊆ τ . Suppose 〈x,W〉 ∈ V [s1 + 1]− V [s1]. Since x < φ(s0), s1, and a fortiori
s0, cannot look good for bστ at the least τ -expansionary stage s2 ≥ s1 + 1.
Hence, if γτ (σ)

x[s1 + 1], there is nothing more to prove. Note that ξ(σ)[s1 + 1]
was visited between s0 and s1. Since α was not initialized between s0 and s1,
σ1 ≤ ξ(σ)[s1 + 1] or ξ(σ)[s1 + 1] ⊆ σ1. If ξ(σ)[s1 + 1] ⊆ σ1, then ξ(σ)[s1 + 1]
was visited at stage s1 + 1. Now, ξ(σ)[s1 + 1]_〈τ0〉 cannot have been visited
at s1 + 1 for any τ0 ⊆ τ , since otherwise σ1 cannot respect τ . However, since
x < φ(s0), and σ ≤ ξ(σ)[s1 + 1], φ must have increased since the last stage t at
which any such ξ(σ)[s1 +1]_〈τ0〉 ⊆ ft. But then, at the next ξ(σ)[s1 +1]-stage,
ξ(σ)[s1 + 1] must initiate a τ0-correction for some τ0 ⊆ τ . But then no node
extending ξ(σ)[s1 +1] can act until some ξ(σ)[s1 +1]_〈τ1〉 acts for some τ1 ⊆ τ .
(Consider the case τ = τ0 = τ1 to get the intuition.) This contradicts the choice
of σ1. So σ1 ≤ ξ(σ)[s1 + 1]. γτ (σ1) ≤ γτ (ξ(σ)[s1 + 1], and, by 5.3, Subcase 3b,
γτ (σ1)

x[s1]. Hence γτ (σ)
x[s1], so that ξ(σ)[s1 + 1] = σ1. Since σ_1 〈τ0〉 ⊆ fs1 ,

γτ (σ)
x[s1 + 1], as required.

Lemma 6.1.3. Suppose σ puts up a link to τ at stage s+1 as part of an attack
or a correction. If s+ is the next τ -expansionary stage, γτ (σ)

x[s+].

Proof. σ enumerated an attacker b into B at stage s+ 1. Since b < lτ [s+], and
B(b)[γτ (σ)[s]] 6= B(b)[s+], this follows immediately from Lemma 6.1.2.

We can now show that the true path is infinite.

Lemma 6.1.4. f is infinite, and each ρ ⊆ f is only initialized finitely often.

Proof. By induction, let ρ ⊆ f and choose s0 such that ρ is never initialized
after stage s0. If ρ ⊆ fs, then some ρ_O ⊆ fs, unless ρ is a type P node which is
attacking, correcting, or waiting to be assigned available attackers. Each attack
or correction must eventually end by Lemma 6.1.3. Eventually all available
attackers must also be assigned, since otherwise some τ_〈∞〉 acts infinitely
often, but lτ [s] has a finite limit. So there is some ρ_O ⊆ f . ρ_O can only
be initialized after s0 if some α ≤ ρ causes an error to be discovered. There are
only finitely many such α, and each can only produce finitely many errors, since
our enumeration of computably enumerable sets is without repetitions. This is
sufficient for the Lemma.

Because f is infinite, it is routine to check using the definition of L that for
every requirement Q of the construction, there is some greatest ρ ⊆ f such that
L(ρ) = Q. We can now show that each requirement of type P is satisfied.

Let σ be the greatest node included in f such that L(σ) = Pj . Note that
σ_〈fin〉 ⊆ f , or σ_〈win〉 ⊆ f , since otherwise σ cannot be greatest on the true
path with L(σ) = Pj . If σ_〈win〉 ⊆ f , then C

⋂
Wj 6= ∅, so Pj is satisfied. So

suppose σ_〈fin〉 ⊆ f . First, note that 5.3, Subcase 2b cannot apply infinitely
often, for, if ξ is the next type-P node included in f , bξτ > bσ(τ, τ). Whenever
a stage looks bad for bσ(τ, τ), it must therefore look bad for bξτ as well, so

36

that ξ_〈τ0〉 ⊆ f for some τ0 ⊆ τ . But then, since τ_〈∞〉 ⊆ σ, σ cannot be
greatest such that L(σ) = Pj . Hence, eventually cσ is defined permanently. By
Lemma 6.1.3, an attack once started would eventually come to an end, with
σ_〈win〉 ⊆ f . From all this, it follows that σ must act under 5.3, Case 6 at
almost every σ-stage. But then cσ 6∈Wj and cσ 6∈ C, so that Pj is satisfied.

6.2 Hat-trick lemmas and type N requirements

Let τ be a node such that L(τ) = NΦ,Ψ,k. We first list a few technical facts
about the hat trick. The significance of true stages lies in the following fact.

Lemma 6.2.1. If there exist infinitely many τ -stages and u is any natural
number, then there exists a least τ -true stage t(u) such that for all t ≥ t(u), if
t is a τ -true stage, then V̂Wk [t] �u= VWk �u.

Proof. The lemma follows straightforwardly from the definitions.

Lemma 6.2.2. If there are infinitely many τ -stages, Φ(Wk ⊕ VWk) = B, and
Ψ(K) = VWk , then there exist infinitely many τ -expansionary stages.

Proof. There are infinitely many τ -true stages, and, by Lemma 6.2.1, every
relevant computation eventually appears cofinitely often at such stages. Hence
the limit of lτ tends to infinity on the sequence of τ -true stages. This is sufficient
to verify the claim.

Lemma 6.2.3. Suppose Φ(Wk ⊕ VWk) = B, Ψ(K) = VWk , and b ∈ ω. Then
there exists a stage t0 such that if t and s are any τ -expansionary stages with
t0 ≤ t ≤ s, then t looks good for b with respect to τ at s.

Proof. Choose σ ⊆ f such that bστ ≥ b, and choose t−1 such that for every
t ≥ t−1, σ ≤ ft. Once Ψ(K) and Wk become stable on the total use involved
in Φ(Wk ⊕ VWk ; b) and the computation converges, V̂Wk �φ(t) must always be
the same set at any τ -expansionary t. φ+ must eventually get the same value
on every τ -expansionary stage, since those elements that are in VWk below
the use are eventually in this set permanently with some fixed use from Wk.
But then any τ -true stage t0 > t−1 after this point will have the properties
required, since the initialization that takes place for the sake of bστ ensures that
V̂Wk �φ(t0)= VWk �φ(t0) at every subsequent τ -expansionary stage.

Lemma 6.2.4. Suppose τ ⊆ f is greatest such that L(τ) = NΦ,Ψ,k, Φ(Wk ⊕
VWk) = B, Ψ(K) = VWk , and σ must respect τ_〈∞〉. If σ < f , then there
exists some s0 such that for all s > s0, γτ (σ)

y[s] = γτ (σ)[s0].

Proof. Note that τ_〈∞〉 ⊆ f , and there exist infinitely many available τ -
attackers. Let ξ(σ) be the least node on the true path such that σ ≤ ξ(σ).
Since there are only finitely many σ′ < ξ(σ), eventually all such nodes which
require τ -attackers or τ -correctors receive them. This follows because no τ0 ⊆ τ
can cause these attackers and correctors to become undefined infinitely often

37

without some τ0-infinitary outcome appearing on the true path below τ , which
contradicts the choice of τ . (Recall, σ < f .) Eventually, then, bστ and b

ξ(σ)
τ are

chosen permanently. Once bξ(σ)
τ is chosen permanently, there must exist some

stage t0 as in Lemma 6.2.3, after which every τ -expansionary stage looks good
for bξ(σ)

τ . By definition, eventually ξ(σ)[t] = ξ(σ) at every τ -expansionary stage,
and hence eventually γτ (σ) = γτ (ξ(σ)), and this value remains fixed forever
after the stage t0 which always looks good for bξ(σ).

If Φ(Wk ⊕ VWk) 6= B, or Ψ(K) 6= VWk , then NΦ,Ψ,k is trivially satisfied.
Suppose τ ⊆ f is greatest such that L(τ) = NΦ,Ψ,k, and suppose Φ(Wk⊕VWk) =
B, and Ψ(K) = VWk . By Lemma 6.2.2, ρ_〈∞〉 ⊆ f . By Lemma 6.2.4, any
σ < f such that σ must respect τ must eventually have a stable use γτ (σ)
defined. After this point, σ can no longer receive a τ0-infinitary outcome for any
τ0 ⊆ τ . Thus every σ ⊆ f must respect τ_〈∞〉. C is acomputably enumerable
set, the set of witnesses chosen by σ with f <L σ which never enter C is an
computably enumerable set, and the set of numbers never chosen as witnesses
is a computable set. No σ that respects τ can ever enumerate a number into
C without γτ (σ) being undefined, by 5.3, Subcase 7a. If σ does not respect τ ,
yet τ_〈∞〉 ⊆ σ, then there must exist some σ0 ⊆ σ such that σ0 does respect
τ and σ_0 〈τ0〉 ⊆ σ for some τ0 ⊆ τ . By Lemma 6.1.3, σ cannot act at s unless
γτ (σ0)

x[s]. Hence, letting γτ (σ) = γτ (σ0) ensures that we can correctly define
a functional Γτ (Wk) = C.

6.3 Satisfaction of type R requirements

Let α be the greatest node on the true path f such that L(α) = Ri,l.

Lemma 6.3.1. There exists some stage s0 such that for all s > s0, xα[s] =
xα[s0].

Proof. If xα[s] changes value infinitely often, there must exist some τ_〈∞〉
which α must respect and some σ < α that prevents α from acting because of τ
infinitely often. This follows since there are only finitely many σ < α that ever
act. Since α respects τ , L(τ) < L(α), and since α is the greatest node with L(α)
assigned to it on f , there can exist no τ0 ⊆ τ and σ0 such that τ0 ⊆ τ ⊆ σ_0 〈τ0〉 ⊆
f . Hence, every such σ respects τ , and no such σ can have γτ (σ) undefined
infinitely often. There are 2|α| computably enumerable sets consisting solely of
numbers less than |α|, yet α has only |α| nodes included in it. Therefore, there
is some σ0 such that α ⊆ σ0 ⊆ f , and L(σ0) = Pj for some Wj ⊆ {0, 1, . . . , |α|}
with a witness cσ0 which is eventually chosen permanently. cσ0 6∈ Wj , since
cσ0 > |α|. On the other hand, σ_〈τ〉 <L σ0, since σ0 respects τ . This implies
that bσ0

τ is greater than any of σ’s correctors associated with τ and greater than
bστ . σ0 can therefore serve as the σ-proxy. But then σ_0 〈τ0〉 ⊆ fs at infinitely
many stages s for some τ0 ⊆ τ , since some corrector or attacker associated with
σ has a use which is unbounded on τ -expansionary stages, otherwise it would
stop interfering with α. Since σ_0 〈win〉 6⊆ f , this is a contradiction.

38

Using Lemma 6.3.1, choose s0 so that for every s ≥ s0 for every s ≥ s0,
xα[s] = xα[s0]. Let x = xα[s0]. Note that α ≤ fs for all s ≥ s0. No node
other than α ever puts any axiom of the form 〈x,W〉 into V , and x ∈ VWi only
if some 〈x,W〉 ∈ V and W is Wi restricted to the use of some computation
φl(Wi;x)[s]. Hence, if x 6∈WWi

l , x 6∈ VWi .
Suppose on the other hand that x ∈WWi

l . Let s1 ≥ s0 be the least stage such
that for every stage s after s1, x ∈ WWi

l [s]. Since xα[s] never changes after s0,
no σ can prevent α from acting after s1. Hence 5.4, Subcase 4b must eventually
apply at some stage after s1. In this case x ∈ VWi , since it is enumerated with
a correct Wi-axiom. Hence if x ∈ WWi

l , x ∈ VWi . This shows Ri,l is satisfied
and finishes the proof of Theorem 6.

7 Further questions

Here we list just a few of the natural questions that are suggested by the general
problem of completing a pseudojump operator. From a technical standpoint,
probably the most interesting involve removing restrictions to computable enu-
merability or n-computable enumerability in our results. For instance the best
possible strengthening of Theorem 6 would be one constructing an operator that
was nontrivial on all sets and forced all of its completions into some upper cone.

Question 3. Does there exist a noncomputable C ⊆ ω and a pseudojump op-
erator V such that

(1) for every A ⊆ ω, A <T A⊕ V A, and
(2) for every A ⊆ ω, if A⊕ V A ≡T K, then C ≤T A?

Any such result faces the immediate problem of constructing V by enumer-
ation, yet forcing it to be nontrivial on every possible oracle. Our method for
proving Theorem 6 is not easily strengthened to demand nontriviality of V on
∆2

0 sets or even merely d.c.e. sets, since we face the problem of coordinating
the nontriviality requirements that forced us to use an enumeration of the c.e.
sets without repetition. Some other questions raised by Theorem 6 involve what
properties we can demand of C. For instance, can we even ensure that C itself
completes the operator V ? It is not hard to see that the C constructed there
has low degree. Must this always be the case? More generally, we can ask about
the relationship of such cones to the jump operator:

Question 4. Given a Σ0
2 A with 0′ ≤T A, does there exist a non-computable,

computably enumerable set C with C ′ ≤T A and a pseudojump operator V such
that

(1) for every e ∈ ω, We <T We ⊕ VWe , and
(2) for every e ∈ ω, if We ⊕ VWe ≡T K, then C ≤T We?

There are also various questions involving the relationship of the completions
of a pseudojump operator to the usl structure of the c.e. degrees. For example:

39

Question 5. Given a pseudojump operator V nontrivial on the c.e. sets, must
there exist a noncomputable, c.e., cappable C such that C ⊕ V C ≡T K?

We remark that such a construction would have to be nonuniform by an
argument similar to M. Simpson’s proof of the Sacks Jump Theorem (see [6],
p. 115), using Shore’s noninversion theorem for the jump operator, [5]. On
the other hand, it is easy to see that there must always be a noncappable C
completing a given operator, by applying Corollary 1 to a low promptly simple
degree.

The fact that we can find an operator that cannot avoid a particular upper
cone suggests various other questions about completion and cones of degrees.
An extreme case is the following:

Question 6. Does there exist a c.e. C <T K such that for every V nontrivial
on c.e. sets there exists a c.e. A ≤T C such that A⊕ V A ≤T K?

Even if the answer to question 1 should turn out to be negative, there remains
the problem of producing even the simplest nontrivial linear order with sets that
both complete the same operator.

Question 7. Given a nontrivial pseudojump operator, V , must there always
exist a pair of c.e. sets A <T B such that A⊕ V A ≡T B⊕V B ≡T K?

Investigating the relationship of minimal degrees to pseudojump operators
is another natural area of investigation. By Cooper, [1], there can be no high
minimal degree below 0′. Hence we cannot expect to complete every operator
with a set of minimal degree. We might hope for something weaker, however:

Question 8. For all nontrivial V must there exist a C such that for all D with
C ≤T D there exists a set of minimal degree A with A⊕ V A ≡T D.

As pointed out, such a C would have to be strictly above 0′. This also raises
the possibility of investigating the range of pseudojump operators above 0′ in
general. This seems to require some new idea for coding into the completing
set, however.

References

[1] Cooper, S. B., Minimal degrees and the jump operator, J. Symbolic Logic
38 (1973), pp. 249-271.

[2] Downey, R., and Lempp, S., Contiguity and distributivity in the computably
enumerable Turing degrees

[3] C. Jockusch and R. Shore, Pseudojump operators I: the r.e. case, Trans.
AMS 275 (2), Feb. 1983, pp. 599-609.

[4] C. Jockusch and R. Shore, Pseudojump operators II: transfinite iterations,
hierarchies, and minimal covers, J. Symbolic Logic 49, 1984, pp. 1205-1236.

40

[5] Shore, R., A non-inversion theorem for the jump operator, Ann. Pure and
Appl. Logic 40 (1988) 277-303.

[6] Soare, R., Recursively enumerable sets and degrees (Springer, Berlin, 1987).

41

