Algorithms and Theory of
Computation Handbook, Second
Edition

CRC PRESS
Boca Raton Ann Arbor London Tokyo

Contributors

0-8493-0052-5/00/$0.00+%$.50
(@© 2001 by CRC Press LLC

Contents

1 Parameterized Algorithms 1
Rodney G. Downey and Catherine McCasichool of Mathematical and Computing
Sciences, Victoria University, New Zealand; Institute of Information Sciences and Technol-

ogy, Massey University, New Zealand

1.1 Introduction 1
1.2 TheMainldea 2
1.3 Practical FPT Algorithms 5
1.3.1 Kernelization 0 5
1.3.2 Depth-bounded SearchTrees 11
133 Interleaving 14
1.3.4 lterative Compression, 15
1.4 Not-Quite-Practical FPT Algorithms 16
141 Color-coding 17
1.4.2 Bounded Width Metrics 18
1.4.3 Algorithmic Meta-theorems 22
1.5 Parameterized Intractability 26
1.6 Parameterized Approximation Algorithms 31
1.7 Conclusions e 35

0-8493-0052-5/00/$0.00+$.50 .
© 2001 by CRC Press LLC 1

1

Parameterized Algorithms

Rodney G. Downey and Catherine McCartin

School of Mathematical and Comé)uting Sciences, Victoria University, New
Zealand; Institute of Information Sciences and Technology, Massey University, New

Zealand

CONTENTS

1.1 INtrodUCHION. ..o 1
1.2 The Main Idea..... e 2
1.3 Practical FPT Algorithms. ... 5
1.4 Not-Quite-Practical FPT Algorithms...............ooooiiiiii ... 16
1.5 Parameterized Intractabilityo i 25
1.6 Parameterized Approximation Algorithms.......................... ... 31
1.7 CONCIUSIONS ... 35

1.1 Introduction

Since the advent of classical complexity theory in the early 1970’s, the twin notions
of NP-hardness antllP-completeness have been accepted as concrete measures of
computational intractability. However, a verdict P-hardness does not do away
with the need for solving hard computational problems, since the bulk of these prob-
lems are of both theoretical and practical importance.

The field of parameterized complexity theory and parameterized computation has
developed rapidly over the past twenty years as a robust approach to dealing with
hard computational problems arising from applications in diverse areas of science
and industry. The parameterized paradigm augments classical complexity theory
and computation, providing, on the one hand, systematic and practical algorithm de-
sign techniques for hard problems, and, on the other hand, more finely-grained com-
plexity analysis and stronger computational lower bounds for natural computational
problems.

The theory is based on the simple observation that many hard computational prob-
lems have certain aspects of their input, or expected solution, that vary only within
a moderate range, at least for instances that are of practical importance. By exploit-
ing such small associated parameters, many classically intractable problems can be
efficiently solved.

Apparent parameterized intractability is established via a completeness program,

0-8493-0052-5/00/$0.00+$.50
®© 2001 by CRC Press LLC 1

2 Algorithms and Theory of Computation Handbook, Second Edition

which parallels the traditional paradigm, but allows for stratification of problems into
a far more richly-structured hierarchy of complexity classes.

A number of approaches have been proposed to deal with the central issue of
computational intractability, including polynomial time approximation, randomiza-
tion and heuristic algorithms. The parameterized paradigm is orthogonal to each
of these earlier approaches, yet a range of fundamental connections has begun to
emerge.

The aim of this chapter is to survey the current state of the art in the field of pa-
rameterized complexity, canvassing main techniques and important results. We con-
centrate on the distinctive algorithmic techniques that have emerged in the field, in
particular those that lead to practical and useful algorithms for classically intractable
problems.

While there are a large number of applications of these ideas in many diverse
arenas, our plan is to present the ideas concentrating mainly on a small number of
problems, particularly ¥RTEX COVER and some variants (defined in Section 1.2.)
Our intention is to facilitate understanding of the principal techniques without the
need for lengthy explanations of a diverse range of problems. Even so, space limita-
tions mean that we cannot canvass all algorithmic techniques used in the field. The
use of bounded variable integer linear programming and general graph modification
techniques are two important omissions. Finally, we mention that implementations
of many of the techniques that we will introduce have performedh bettem prac-
tice than one might reasonably expect, but we have left out experimental discussions.
We refer the reader to the recently published special issue of the Computer Journal
[36], the monographs of Rolf Niedermeier [55] and Henning Fernau [45], and the
ACM SIGACT News article by Guo and Niedermeier [46] for discussions on these
points and for a tour of the wide range of applications.

1.2 The Main Ildea

It is generally accepted that solving &P-hard problem will necessarily entail a
combinatorial explosion of the search space. However ribisiecessarily the case
that all instances of aNP-hard problem are equally hard to solve, hardness some-
times depends on the particular structure of a given instance, or of the expected
solution. Instances dfiP-hard problems arising from “real life” often exhibit more
regular structure than the general problem description might, at first, suggest.

For example, suppose that we are concerned with solving computational prob-
lems to do with relational databases. Typically, a real life database will be huge, and
the queries made to it will be relatively small. Moreover, real life queries will be
guestions thapeopleactually ask. Hence, such queries will tend to be of low log-
ical complexity. Thus, an algorithm that works very efficiently for small formulae
with low logical depth might well be perfectly acceptable in practice. Alternatively,

Parameterized Algorithms 3

suppose that we are concerned with computational problems where the focus is to
recognize a particular substructure in the problem input. If the size of the expected
substructure is small, then an algorithm that works very efficiently for small solutions
may be acceptable in practice.

The main idea of parameterized complexity is to develop a framework that ad-
dresses complexity issues in this situation, where we know in advance that certain
parameters of the problem at hand are likely to be bounded, and that this might sig-
nificantly affect the complexity.

The basic insight that underpins parameterized complexity and parameterized com-
putation arose from consideration of two well-knowP-complete problems for
simple undirected graphs.

A vertex coverof G = (V, E) is a set of vertice¥’ C V that covers all edges: that
isV/'={wv1,...,w} is a vertex cover fo6 iff, for every edge(u,v) € E, eitheru eV’
orveV’. A dominating sebf G = (V,E) is a set of vertice¥’ C V that covers all
vertices: that i/ = {v1,..., v} is a dominating set fo& iff, for every vertexv eV,
eitherv e V' or there is some € V' such tha{u,v) € E.

VERTEX COVER
Instance: A graphG = (V,E) and a positive integec.
Question: DoesG have a vertex cover of size at mdst

DOMINATING SET
Instance: A graphG = (V,E) and a positive integec.
Question: DoesG have a dominating set of size at mé&8t

Although both of these problems are, classicalli>-complete, the parametkicon-
tributes to the complexity of these two problems in two qualitatively different ways.

DOMINATING SET: Essentially the only known algorithm for this problem is to
try all possibilities. The brute force algorithm of trying &lisubsets runs in time
O(n1) (we usen to denotgV| andmto denoteE|.)

VERTEX COVER: After many rounds of improvement, there is now an algorithm
running in timeO(1.286¢ + kn) ([26]) for determining if a grap!G = (V,E) has a
vertex cover of siz&. This has been implemented and is practicahfof unlimited
size andk up to around 400 [66, 39].

The table below shows the contrast between these two kinds of complexity.

These observations are formalized in the framework of parameterized complexity
theory [33, 34]. In classical complexity, a decision problem is specified by two items
of information:

1. The input to the problem.

2. The question to be answered.

4 Algorithms and Theory of Computation Handbook, Second Edition

n=>50 n=100 n=150
k=2 625 2,500 5,625
k=3 15,625 125,000 421,875
k=5 390,625 6,250,000 | 31,640,625
k=10 1.9x 1012 9.8x 1014 3.7 x 10°
k=20 1.8x 10%° 9.5x 10°1 2.1x 10%®

The Ratio’lzlﬁrn:L for Various Values ofi andk.

In parameterized complexity, there are three parts to a problem specification:
1. The input to the problem.
2. The aspects of the input that constitute the parameter.
3. The question to be answered.

The notion offixed-parameter tractabilitis the central concept of the theory. In-
tuitively, a problem is fixed-parameter tractable (FPT) if we can somehow confine
any “bad” complexity behaviour to some limited aspect of the problem, the parame-
ter.

More formally, we consider parameterized language be a subsdt C >* x X*.

If Lis a parameterized language dihgk) € L then we refer td as themain partand
k as theparameter

DEFINITION 1.1 Fixed Parameter Tractability (FPT)

A parameterized language L C 2* x 2* is fixed-parameter tractablg there is
an algorithm (or a K-indexed collection of algorithms) that correctly decides,
for input (1,k) € Z* x Z*, whether (1,k) € L in time f(K)-n®, where n is the size
of the main part of the input |, K is the parameter, C is a constant (independent
of both n and K), and f is an arbitrary function dependent only on k.

Usually, the parametédewill be a positive integer, but it could be, for instance, a
graph or an algebraic structure, or a combination of integer values bounding various
aspects of the problem. The parameter will often boundstheof some part of
the input instance or the solution. Alternatively, it can boundabmplexityof the
input instance in some well-defined sense. For example, in Sections 1.4.2 and 1.4.3
we introducewidth metricsfor graphs which precisely capture various notions of
complexity in graphs. A single classical problem can often be parameterized in
several natural ways, each leading to a separate parameterized problem.

In this chapter, we will concentrate mainly on the techniques for demonstrating
parameterizedractability. There is also a very well developed theory of param-
eterizedintractability, used to address problems likeoRINATING SET, which we
introduce in Section 1.5, but for which space limitations preclude a deeper treatment.
As we see in Section 1.5, there is a completeness and hardness theory, akin to that

Parameterized Algorithms 5

of NP-completeness, that can be used to demonstrate parameterized intractability,
based around a parameterized analog ONNETERMINISTIC TURING MACHINE
ACCEPTANCE

1.3 Practical FPT Algorithms

In this section we introduce the main practical techniques that have emerged in the
field of FPT algorithm design. We focus first on two simple algorithmic strategies
that are not part of the usual toolkit pblynomialalgorithm design, but which have
lead, in many important cases, to practical and useful algorithms for natural param-
eterized versions diP-hard problems. These two techniques, (i) Kernelization and
(ii) Depth-Bounded Search Trees, have formed the backbone of practical FPT algo-
rithm design. In Section 1.3.3 we show how these two techniques can be profitably
combined using the concept oiterleaving We also introducéterative compres-

sion, a relatively new technique that has been successfully applied to a range of pa-
rameterized minimization problems, where the parameter is the size of the solution
set.

1.3.1 Kernelization

Kernelization is based on an old idea, that of pre-processingdurcing the input

data of a computational problem. It often makes sense to try to eliminate those parts
of the input data that are relatively easy to cope with, shrinking the given instance
to some “hard core” that must be dealt with using a computationally expensive algo-
rithm. In fact, this is the basis of many heuristic algorithmsNd-hard problems,

in a variety of areas, that seem to work reasonably well in practice. In other words,
it is something that many practitioners, faced with a real-wdtRthard problem,
already do.

A compelling example of the effectiveness of data reduction, for a classically-
posedN P-hard problem, is given by Weihe [67]. He considered the following prob-
lem in the context of the European railroad network: given a set of trains, select a
set of stations such that every train passes through at least one of those stations and
such that the number of selected stations is minimum. Weihe modeled this problem
as a path cover by vertices in an undirected graph. Here, we formulate the problem
as domination of one set of vertices by another in a bipartite graph.

TRAIN COVERING BY STATIONS

Instance: A bipartite graphG = (VsUV,E), where the set of verticegs repre-
sents railway stations and the set of verti¢gsepresents train€ contains an edge
(s,t),s€ Vs,t €V, iff the traint stops at the statios

Problem: Find a minimum seV’ C Vs such thatv’ coversVr, that is, for every
vertext € Vir, there is soms € V' such tha{(st) € E.

6 Algorithms and Theory of Computation Handbook, Second Edition

Weihe employed two simple data reduction rules for this problem. For our problem
formulation they translate to the following:

REDUCTION RULE TCS1:

Let N(t) denote the neighbours ofin Vs. If N(t) € N(t’) then remove’ and all
adjacent edges a@f from G. If there is a station that covetsthen this station also
coverst’.

REDUCTION RULE TCS2:

Let N(s) denote the neighbours sfin V. If N(s) C N(s') then removes and all
adjacent edges af from G. If there is a train covered b, then this train is also
covered bys.

In practice, exhaustive application of these two simple data reduction rules allowed
for the problem to be solved in minutes, for a graph modeling the whole European
train schedule, consisting of around110° vertices and B- 10° edges.

This impressive performance begs the question: Why should data reduction be
of more concrete use in the parameterized paradigm? The answer comes from the
observation that a data reduction scheme for a parameterized problem can often give
upper bounds on the size of the reduced instance in teatedy of the parameter
Once such a reduction scheme is established, a trivial FPT algorithm manifests as a
brute-force search of the reduced instance. Thus, in the parameterized context, data
reduction can often lead directly to an FPT algorithm to solve the problem. This
contrasts with the classical context, where data reduction can clearly lead to a useful
heuristic, but without anprovable performance guarantee.

To illustrate the kernelization concept, we start with a simple data reduction scheme
for the standard parameterized version of Mig-hard VERTEX COVER problem
(introduced in Section 1.2.) As for subsequent examples given in this section, we
paraphrase the treatment given in [49].

K-VERTEX COVER

Instance: A graphG = (V,E).

Parameter:A positive integeik.

Question: DoesG have a vertex cover of size k?

Vertices with no adjacent edges are irrelevant, both to the problem instance and to
any solution. This leads to :

REDUCTION RULE VC1:
Remove all isolated vertices.

In order to cover an edge i, one of its endpoints must be in the solution set.
If one of these endpoints is a degree one vertex, then the other endpoint has the po-
tential to cover more edges than the degree one vertex, leading to:

REDUCTION RULE VC2:
For any degree one vertgxadd its single neighbourto the solution set and remove

Parameterized Algorithms 7

u and all of its incident edges from the graph.
The reduced instance thus consists of both a smaller graph and a smaller parameter,
(G> k) - (G/v K— l)

These two data reduction rules are applicable in any problem solving context. How-
ever, in the parameterized setting, where we are looking only for a small solution,
with size bounded by parametierwe can do more. Sam Buss [21] originally ob-
served that, for a simple grag$ any vertex of degree greater thamust belong to
everyk-element vertex cover db (otherwise all the neighbours of the vertex must
be included, and there are more tHaof these).

REDUCTION RULE VC3:

If there is a vertew of degree at least+ 1, addv to the solution set and remowe

and all of its incident edges from the graph.

The reduced instance again consists of both a smaller graph and a smaller parameter,
(G,k) — (G',k—1).

After exhaustively applying these three rules, we have a new, reduced, instance,
(G, K'), where no vertex in the reduced graph has degree greatek'tla@riess than

two. Thus, any vertex remaining can cover at miéstdges in this reduced instance.
Since the solution set can contain at midstertices, if the reduced graph is a YES
instance, then it must have at mést edges, and consequently at mkitvertices.

Thus, in a polynomial amount of time, we have reached a situation where we can
either declare our original instance to be a NO instance, or, by means of a brute force
search of the reduced instance, in ti@g/ %), k' < k, decide whether our original
instance admits a vertex cover of size at most

The important point is that the reduced instance can either be immediately de-
clared a NO instance or, otherwise, has size boundediyction of the parameter.

We formalise this idea in terms ofraduction to a problem kerngbr kernelization.

DEFINITION 1.2 Kernelization

Let L C 2" x Z* be a parameterized language. Let £ be the corresponding
parameterized problem, that is, £ consists of input pairs (l1,K), where | is
the main part of the input and K is the parameter. A reduction to a problem
kernel, or kernelization, comprises replacing an instance (1,k) by a reduced
instance (I',K'), called a problem kernel, such that

(i) K <Kk,
(i) |I') < g(k), for some function g depending only on Kk, and
(i11) (1,K) € L if and only if (I',K') € L.

The reduction from (1,k) to (I',K) must be computable in time polynomial
in |1].

The kernelization fok-VERTEX COVER described above uses rules that examine

8 Algorithms and Theory of Computation Handbook, Second Edition

only local substructures of the input (a vertex and its neighbourhood.) For a range of

problems, this approach proves adequate for producing a reasonably-sized problem

kernel. Another possibility is to consider tgbal properties of a problem instance.
Chenet al. [26] have used this second approach in exploiting a well-known the-

orem of Nemhauser and Trotter [54] to construct a problem kernel feRT¥Xx

CovER having at most Rvertices. This seems to be the best that one could hope for,

since a problem kernel of siZ@ — ¢) - k, with constant > 0, would imply a factor

2 — ¢ polynomial-time approximation algorithm foreBRTEX COVER. The existence

of such an algorithm is a long-standing open question in the area of approximation

algorithms forNP-hard problems.

THEOREM 1.1 Nembhauser and Trotter (1975)

For an n-vertex graph G = (V,E) with m edges, we can compute two dis-
joint sets C' CV and V' CV, in O(y/N-m) time, such that the following three
properties hold:

(i) There is a minimum size vertex cover of G that contains C'.

(i) A minimum vertex cover for the induced subgraph GIV'] has
size at least V'|/2.

(#1) If D CV' is a vertex cover of the induced subgraph GN'|, then
C=DUC is a vertex cover of G.

THEOREM 1.2 Chen et al. (2001)
Let (G= (V,E),K) be an instance of K-VERTEX COVER. In O(k-|V|+k3) time
we can reduce this instance to a problem kernel (G= (V',E’),K) with |V'| < 2k.

The kernelization begins by applying the three reduction rules described above,
VC1, VC2 and VC3, to produce a reduced instaf@e k'), whereG' contains at
mostO(k’?) vertices and edges, aktl< k. This reduction take®(k- |V|) time.

For the resulting reduced instan@®’, k') we compute the two se@ andV’ as
described in Theorem 1.1. Determining the two €4tandV’ involves computation
of a maximum matching on a graph constructed fi@hand can be achieved in time
o(Vk2-k?) = O(k3).

The setC’ contains vertices that have to be in the vertex cover, so we define a
new parametek” = k' — |C’|. Due to Theorem 1.1, we know that|¥f’| > 2k” then
there is no vertex cover of sidefor the original graphG. Otherwise, we let the
induced subgrapls[V'] be the problem kernel, having size at mokt Z 2k. By
Theorem 1.1, the remaining vertices for a minimum vertex cové& oén be found
by searching for a minimum vertex cover@{V’.

Recently, a third alternative to both local and global data reduction schemes has
been explored. In this third case, local rules are generalized to examiitearily
large substructuresContinuing with our running exampl&-VERTEX COVER, we
show that the local rule VC2, which entails the deletion of any degree-1 vertex and

Parameterized Algorithms 9

the admission of its sole neighbour into the vertex cover, can be generalized to the
crown reduction rule.

A crownin a graphG = (V,E) consists of an independent det V (no two
vertices inl are connected by an edge) and a ldetontaining all vertices iV
adjacent td. A crown inG is formed byl UH iff there exists a sizéH| maximum
matching in the bipartite graph induced by the edges betweadH, that is, every
vertex ofH is matched. It is clear that degree-1 vertice¥ jrtoupled with their sole
neighbours, can be viewed as the most simple crowf in

If we find a crownl UH in G, then we need at lea | vertices to cover all edges
in the crown. Since all edges in the crown can be covered by admitting at|Fhost
vertices into the vertex cover, there is a minimum size vertex cover that contains all
vertices inH and no vertices ih. These observations lead to the following reduction
rule.

REDUCTION RULE CR:

For any crownl UH in G, add the set of verticeld to the solution set and remove

| UH and all of the incident edges bJH from G.

The reduced instance thus consists of a smaller graph and a smaller parameter,
(G,k) — (G',k—[H|). For both instance and parameter the reduction may be signif-
icant.

We are now faced with two issues. How to find crowns efficiently? and how to
bound the size of the problem kernel that eventuates?

In [3] it is shown that finding a crown in a gragghcan be achieved in polynomial
time by computing maximum matchings@ The size of the reduced instance that
results is bounded above via the following theorem.

THEOREM 1.3 Abu-Khzam, Collins, Fellows, Langston, Suters,
Symons (2004)

A graph that is crown-free and has a vertex cover of size at most K can contain
at most 3K vertices.

Another strategy for employment of crown reductions makes use of the following
lemma from [29].

LEMMA 1.1 Chor, Fellows, Juedes (2004)
If a graph G= (V,E) has an independent set V' CV such that [IN(V")| < V'],
then a crown | UH with | CV' can be found in G in time O(N+m).

The following simple crown kernelization algorithm, given in [65], uses this strat-
egy to produce either a correct NO answer, or a problem kernel of size at kjost 4
for K-VERTEX-COVER.

We start by computing a maximal matchiMyin G. Since we have to pick one
vertex for each edge in the matching it follows that the size of a minimum vertex

10 Algorithms and Theory of Computation Handbook, Second Edition

cover ofG s at leas{M|/2. Thus, if[V(M)| > 2k, then we output NO. Otherwise, if
IV(M)] < 2k, then there are two possibilities:

SinceM is a maximal matching it must be the case a6) — V(M) is an inde-
pendent set is. If we assume thaG does not contain any isolated vertices then
each vertex iV (G) — V(M) must be adjacent to some vertex\ifM). Thus, if
V(G) —V(M)| > 2k then, by Lemma 1.1, we can find a croloH in G in time
O(n+m). The reduced instance (S[V — (I UH)],k—|H|).

If V(G)—V(M)| < 2kthen|V(G)|=V(M)|+|V(G)—V(M)| < 2k+ 2k =4k soG

is the required problem kernel of size at mokt 4

The three kernelizations given here fofV ERTEX-COVER make for a compelling
argument in support of data reduction in the parameterized context. In comparison
with polynomial approximation, kernelization achieves the conjectured best possible
result for this particular problem. In [3, 4] Abu-Khzam et al. report on experiments
solving large instances of the-VERTEX COVER problem in the context of com-
putational biology applications. A common problem in many of these applications
involves finding the maximum clique in a graph. However, KR€LIQUE prob-
lem isW[1]-hard and so not directly amenable to an FPT algorithmic approach. A
graphG has a maximum clique of sizeiff its complement grapl has a minimum
vertex cover of sizen— k. Thus, one approach to the Clique problem is to solve
the Vertex Cover problem on the complement graph with parametder. Results
from [3, 4] show that the kernelization techniques presented herg-{éERTEX
CoveR perform far better in practice than is suggested by the theory, both in terms
of running time and in terms of the size of the kernels that can be achieved. Imple-
mentations combining kernelization withdapth-bounded search trepproach (see
Sections 1.3.2 and 1.3.3) work effectively on real datéfop to around 1000 [3].

However, sinca-VERTEX COVER is considered to be the “success story” of pa-
rameterized computation, it is fair to ask whether or not the program works so well
in general. There are by now a plethora of kernelization algorithms in the literature,
solving a wide variety of problems with practical applications in diverse areas of sci-
ence and industry. Many of these yield sufficiently small problem kernels to be of
concrete practical use. In this regard, the benchmarkngar kernel, where the size
of the fully reduced instance is a (small) linear function of the parameter. Examples
of parameterized problems having linear problem kernels inclu@EOMINATING
SET andk-CONNECTED VERTEX COVER restricted toplanar graphs(for general
graphs<-CoNNECTEDVERTEX COVERhas so far only been shown to have an expo-
nentially bounded problem kernel ardDOMINATING SET is W[2]-hard so has no
problem kernel bounded by any function of the parameterkai@®REE BISECTION
AND RECONNECTION (see Section 1.6 for details of this problem from computa-
tional biology). In some documented cases, for example see [50], even though the
provable bound on the size of the kernel might be large, even an exponential function
of the parameter, the underlying data reduction still performs very well in practice.

We conclude this section by noting the following two caveats regarding kerneliza-
tion:

For some problems obtaining a problem kernel is trivial. The following example

Parameterized Algorithms 11

is given in [65]. We consider the-DOMINATING SET problem for cubic graphs,
where all vertices have degree three. No vertex in such a graph can dominate more
than four vertices, itself and three neighbours. Thus, we can safely answer NO when-
ever the input graph has more thanwvertices. Note that this problem kernel d€ 4
vertices and at mostkéedges is obtained without the applicationasfy reduction
rule at all. However, by the same argument we see that no cubic graph has a domi-
nating set of sizéess than 4. Thus, for any non-trivial problem instance, we have
k> n/4 and & > n. The bound obtained for the size of the kernel is at least as large
as the size of the instance itself.

In this case, a more sensible problem to consider arises from the ithearnding
above the guaranteérst introduced in [52]. Given a cubic gra@and parametek,
it makes more sense to ask if there is a dominating set ohgie k for G. Now, the
parameter contributes to the problem in a non-trival fashion, since it is has become a
bound on the distance of the solution from some guaranteed minimum.

Two of the three kernelizations given here fofV ERTEX-COVER result in prob-
lem kernels that we commonly call linear kernels, since the number of vertices in
the fully reduced instance is a linear function of the parameter. A more accurate de-
scription is to say that they apolynomial kernelssince the number of graph edges
in the reduced instance may be quadratic in the size of the parameter. Recent results
[15] suggest that some parameterized problems likely won’t admit any polynomial
kernel (i.e any problem kernel whose size is an arbitrary polynomial function of the
parameter), under reasonable complexity-theoretic hypotheses, even though they can
be shown to be FPT using some of the not-quite-practical FPT methods we introduce
later in Section 1.4. This suggests that, for such problems to have FPT algorithms
with provablyfast running times, these must be of rather unusual types.

1.3.2 Depth-bounded Search Trees

Many parameterized problems can be solved by the construction of a search tree
whosedepthdepends only upon the parameter. The total size of the tree will nec-
essarily be an exponential function of the parameter, to keep the size of the tree
manageable the trick is to find efficidmtanching ruledo successively apply to each
node in the search tree.

Continuing with our running example, consider the following simple algorithm
for thek-VERTEX COVER problem.

We construct a binary tree of heigkit We begin by labelling the root of the tree
with the empty set and the grah= (V,E). Now we pick any edgéu,v) € E. In
any vertex cover o5 we must have eitheus or v, in order to cover the edgg,v),
so we create children of the root node corresponding to these two possibilities. The
first child is labeled with{u} andG — u, the second wit{v} andG — v. The set of
vertices labeling a node represents a possible vertex cover, and the graph labeling a
node represents what remains to be covere@.inn the case of the first child we
have determined thatwill be in our possible vertex cover, so we deletéom G,
together with all its incident edges, as these are all now covered by a vertex in our

12 Algorithms and Theory of Computation Handbook, Second Edition

possible vertex cover.

In general, for a node labeled with a $of vertices and subgrapf of G, we
arbitrarily choose an edg@s,v) € E(H) and create the two child nodes labeled,
respectively,SU {u}, H —u, andSu {v}, H —v. At each level in the search tree
the size of the vertex sets that label nodes will increase by one. Any node that is
labeled with a subgraph having no edges must also be labeled with a vertex set that
covers all edges is. Thus, if we create a node at height at mio#t the tree that
is labeled with a subgraph having no edges, then a vertex cover of size at hasst
been found.

Tltlere is no need to explore the tree beyond hdight this algorithm runs in time
O(2¢-n).

In many cases, it is possible to significantly improve flik), the function of the
parameter that contributes exponentially to the running time, by shrinking the search
tree. In the case of-VERTEX COVER, Balasubramanian et al [11] observed that, if
G has no vertex of degree three or more, tleconsists of a collection of cycles. If
such aG is sufficiently large, then this graph cannot have a kivertex cover. Thus,
at the expense of an additive constant factor (to be invoked when we encounter any
subgraph in the search tree containing only vertices of degree at most two), we need
consider only graphs containing vertices of degree three or greater.

We again construct a binary tree of height at maosiWe begin by labelling the
root of the tree with the empty set and the gr&phNow we pick any vertex €
V of degree three or greater. In any vertex covelGoive must have eithev or
all of its neighboursso we create children of the root node corresponding to these
two possibilities. The first child is labeled witfv} and G — v, the second with
{W1,Wy,...,Wp}, the neighbours of, andG — {w1,w,...,wp}. In the case of the
first child, we are still looking for a sizk— 1 vertex cover, but in the case of the
second child we need only look for a vertex cover of &izep, wherep is at least 3.

Thus, the bound on the size of the search tree is now somewhat smallekthan 2

Using a recurrence relation to determine a bound on the number of nodes in this
new search tree, it can be shown that this algorithm runs in@g&* - n).

A third search tree algorithm fac-VERTEX COVER, given in [49] uses the fol-
lowing three branching rules:

BRANCHING RULE VC1.:

If there is a degree one vertedn G, with single neighbouu, then there is a mini-
mum size cover that containgby the argument given for rule VC2 in Section 1.3.1.)
Thus, we create a single child node labeled With andG — u.

BRANCHING RULE VC2:
If there is a degree two vertexin G, with neighboursv, andws, then either both
wi andw, are in a minimum size cover, ertogether withall other neighboursf
wy andws are in a minimum size cover.
To see that this rule is correct, assume that there is a minimum size cover contain-
ing v and only one of its neighbours. Replacwgvith its second neighbour would

Parameterized Algorithms 13

then also yield a minimum size cover and this is the cover that will be constructed in
the first branching case. Thus, if there is a cover that is smaller than the cover con-
taining bothw; andw, then this cover must containand neithem; norwsy. This
implies that all other neighbours of andw, must be in this cover.

BRANCHING RULE VC3:
If there is a degree three vertein G, then eithew or all of its neighbours are in a
minimum size cover.

Using a recurrence relation, it can be shown that if there is a solution of size at most
k then the size of the corresponding search tree has size bounded ahmbzb@k).

The basic method of finding efficient branching rules is to look fetracturein
the problem input which gives rise to only a few alternatives, one of which must
lead to an acceptable solution, if such a solution exists. In all of the examples given
here fork-VERTEX COVER, this structure consists of a vertex and its one or two
hop neighbourhood. The “smallest” search tree found so fak fefFERTEX COVER
has sizeO(l.ZSd‘) [26] and is achieved by more complex case analysis than that
described here, although the structures identified still consist simply of small local
neighbourhoods in the input graph.

We now briefly canvas two quite different examples of such structures which give
rise to efficient branching rules for two unrelated parameterized problems. Space
limitations mean that most of the problem details are left out, the intention is merely
to demonstrate the nature of the possibilities for search tree algorithms.

For the QOSESTSTRING problem [51], we are given a s8t= {s1,%,...,5} of
k strings, each of length over an alphabéeX, and the task is to find a string whose
Hamming distance is at modtfrom each of thes € S. The structure that we identify
is acandidate stringS. At the root node of the search tr8eis simply one of the
input strings. If any other string € Sdiffers froms in more than & positions, then
there is no solution for the problem. At each step we look for an input s#ritiat
differs from$ in more thand positions but less thand2positions. Choosing + 1
of these positions, we branch intb+ 1 subcases, in each subcase modifying one
position in§ to matchs.

For the MaxiIMUM AGREEMENT FORESTproblem [47], we are given two phy-
logeneticX-trees, Ty andT,, each an unrooted binary tree with leaves labeled by a
common set of specie§ and (unlabeled) interior nodes having degree exactly three.
The (labeled) topologies @ andT, may differ. The task is to find at moktedges
that can be cut fronT; so that the resulting forest “agrees with” the topologies of
bothT; andT,. One structure that we can identify here is callediaimal incompat-
ible quartet essentially a set of four leaf label®,= {I4,12,13,14}, that gives rise to
two different topologies in the restriction of each of the trees to those leaves labeled
by Q. Given any solution set of edgésfrom T; that gives rise to aagreement
forest F, we can obtain an “equivalent” set of eddé/sthat produce$ by cutting
at least one of a certain set of four edges induce®ly T;. Thus, after finding an

14 Algorithms and Theory of Computation Handbook, Second Edition

incompatible quartet, we branch into four subcases, in each subcase cutting one of
these edges.

Finally, we note that search trees inherently allow for a parallel implementation:
when branching into subcases, each branch can be further explored with no reference
to other branches. This has proven of concrete use in practicedfier&k COVER
[28]. Along with the idea introduced in the next section, this is one of two powerful
arguments in support of the use of the depth-bounded search tree approach to obtain
really practical FPT algorithms.

1.3.3 Interleaving

It is often possible to combine the two methods outlined above. For example, for the
K-VERTEX COVER problem, we can first reduce any instance to a problem kernel
and then apply a search tree method to the kernel itself.

Niedermeier and Rossmanith [56] have developed the technigirtenfeaving
depth-bounded search trees and kernelization. They show that applying kernelization
repeatedly during the course of a search tree algorithm can significantly improve the
overall time complexity in many cases.

Suppose we take any fixed-parameter algorithm that satisfies the following con-
ditions: The algorithm works by first reducing an instance to a problem kernel, and
then applying a depth-bounded search tree method to the kernel. Reducing any given
instance to a problem kernel takes at nf®gt|) steps and results in a kernel of size
at mostq(k), where bothP andq are polynomially bounded. The expansion of a
node in the search tree takiegl|) steps, wher® is also bounded by some polyno-
mial. The size of the search tree is boundedd§g*). The overall time complexity
of such an algorithm running on instangek) is

O(P(/I) + R(a(k)a).

The strategy developed in [56] is basically to apply kernelization at any step of the
search tree algorithm where this will result in a significantly smaller problem in-
stance. To expand a node in the search tree labelled by ingtigkgeve first check
whether or notl| > c- q(k), wherec > 1 is a constant whose optimal value will de-
pend on the implementation details of the algorithm|l I~ c- (k) then we apply
the kernelization procedure to obtain a new instafitd’), with |I’| < g(k), which
is then expanded in place @f k). A careful analysis of this approach shows that the
overall time complexity is reduced to

O(P(|1]) + k).

This really does make a difference. In [55] the 3FiHING SET problem is given
as an example. An instan¢k k) of this problem can be reduced to a kernel of size
k3 in time O(|1|), and the problem can be solved by employing a search tree of size
2.27¢. Compare a running time @(2.27¢- k3 + |I|) (without interleaving) with a
running time of0(2.27¢+ [1|) (with interleaving).

Note that, although the techniques kdrnelizationand depth-bounded search
tree are simple algorithmic strategies, they are not part of the classical toolkit of

Parameterized Algorithms 15

polynomial-time algorithm design since they both involve costs thagégpenential
in the parameter.

1.3.4 Iterative Compression

Iterative compression is a relatively new technique for obtaining FPT algorithms,
firstintroduced in a paper by Reed, Smith and Vetta in 2004 [59]. Although currently
only a small number of results are known, it seems to be applicable to a range of pa-
rameterized minimization problems, where the parameter is the size of the solution
set. Most of the currently known iterative compression algorithms geke@back set
problemsn graphs, problems where the task is to destroy certain cycles in the graph
by deleting at mosk vertices or edges. In particular, tikeGRAPH BIPARTISATION
problem, where the task is to find a set of at mogertices whose deletion destroys
all odd-length cycles, has been shown to be FPT by means of iterative compres-
sion [59]. This had been a long-standing open problem in parameterized complexity
theory.

To illustrate the concept, we again paraphrase the treatment given in [49]. The
central idea is to employ @ompression routine

DEFINITION 1.3 Compression Routine

A compression routinés an algorithm that, given a problem instance | and a
solution of size K, either calculates a smaller solution or proves that the given
solution is of minimum size.

Using such a routine we can find an optimal solution for a parameterized prob-
lem by inductively building up the problem structure and iteratively compressing
intermediate solutions. The idea is that, if the compression routine is an FPT algo-
rithm, then so is the whole algorithm. The manner by which the problem structure
is inductively produced will be normally be straightforward, the trick is in finding
an efficient compression routine. Continuing with our running example, we now
describe an algorithm fat-VERTEX COVER based on iterative compression.

Given a problem instandg&s = (V,E), k), we build the grapl© vertex by vertex.

We start with an initial set of verticeg’ = 0 and an initial solutiol€ = 0. At each
step, we add a new vertaxto bothV’ andC, V' — V' U{v}, C— CU{v}. We
then call the compression routine on the g&fV’],C), whereG|V'] is the subgraph
induced byV’ in G, to obtain a new solutiof’. If |C'| > k then we output NO,
otherwise we sef « C'.

If we successfully complete theth step wher&’ =V, we outputC with |C| < k.
Note thatC will be an optimal solution fof.

The compression routine takes a grdpland a vertex covet for G and returns
a smaller vertex cover fds if there is one, otherwise, it retur@unchanged. Each
time the compression routine is used it is provided with an intermediate solution of
size at mosk+ 1.

The implementation of the compression routine proceeds as follows. We consider

16 Algorithms and Theory of Computation Handbook, Second Edition

a smaller vertex covel’ as amodificationof the larger vertex coveZ. This modi-
fication retains some vertic&C C while the other verticeS=C\Y are replaced
with |§ — 1 new vertices fronv \ C.

The idea is to try by brute force all2 partitions ofC into such set¥ andS. For
each such partition, the vertices frofnalong with all of their adjacent edges are
deleted. In the resulting instan@ = G[V \ Y], it remains to find an optimal vertex
cover that is disjoint fron®. Since we have decided to take no vertex fi8into the
vertex cover, we have to take that endpoint of each edge that is Bofitleast one
endpoint of each edge @ is in S, sinceSis a vertex cover fo6'. If both endpoints
of some edge i’ are inS, then this choice dBcannot lead to a vertex covef with
SNC’ = 0. We can quickly find an optimal vertex cover 18f that is disjoint from
Sby taking every vertex that is not iBand has degree greater than zero. Together
with Y, this gives a new vertex cov& for G. For each choice of andsS, this can
be done in timeéd(m), leading toO(2/°/m) = O(2“m) time overall for one call of the
compression routine. With at masiterations of the compression algorithm, we get
an algorithm fork-V ERTEX COVER running in timeO(2mn).

Note that, in general, a compression routine will have running time exponential in
the size of the solution provided to it, it is therefore important that each intermediate
solution considered has size bounded by séfnre f(k), wherek is the parameter
value for the original problem.

The employment of an FPT compression routine in the manner described here for
K-VERTEX CovERwiIll work effectively for any parameterized minimization prob-
lem which ismonotonein the sense that NO instances are closed under element
addition. That is, given a problem instandek) that is a NO instance, any problem
instance(l’,k) with | C I’ is also a NO instance. If a problem is monotone in this
sense then we can immediately answer NO if we encounter an intermediate solution
that cannot be compressed to meet the original parameter bound. Note that many
minimization problems are not monotone in this sense. For example, a NO instance
(G=(V,E),k) for K-DOMINATING SET can be changed to a YES instance by means
of the addition of a single vertex that is adjacent to all verticés.in

Finally, as noted in [49], the employment of compression routines is not restricted
to the mode detailed here. For example, we could start with a suboptimal solu-
tion, perhaps provided by some type of parameterized approximation algorithm as
detailed in Section 1.6, and then repeatedly compress this solution until it is either
“good enough” or we are not willing to invest more calculation time.

1.4 Not-Quite-Practical FPT Algorithms

In this section we introduce two techniques that lead to “not-quite-practical” FPT
algorithms, color-coding and dynamic programming on bounded width graph de-
compositions. Both of these techniques have potential for practical application and

Parameterized Algorithms 17

have been extensively studied from a theoretical point of view. However, in contrast
to the methods introduced in the previous section, these approaches have so far lead
to only isolated practical implementations and experimental results.

We also introduce a series afgorithmic meta-theoremsThese are based on re-
sults from descriptive complexity theory and topological graph theory and provide us
with general FPT algorithms, sometimes non-constructive, pertaining to large classes
of problems. We view these theorems not as an end in themselves, but as being useful
“signposts” in the search for practically efficient fixed-parameter algorithms.

1.4.1 Color-coding

This technique is useful for problems that involve finding small subgraphs in a graph,
such as paths and cycles. Introduced by Alon et al. [10], it can be used to derive
seemingly efficient randomized FPT algorithms for several subgraph isomorphism
problems.

We formulate a parameterized version of theB8RAPH | SOMORPHISMproblem
as follows:

K-SUBGRAPH | SOMORPHISM

Instance: G= (V,E) and a graptd = (VH, E") with V7| =k.
Parameter:A positive integek.

Question: Is H isomorphic to a subgraph @&?

The idea is that, in order to find the desired set of vertites G, such thaG[V']
is isomorphic tdH, we randomly color all the vertices & with k colors and expect
that, with some high degree of probability, all verticesvihwill obtain different
colors. In some special cases of thes&RAPH | SOMORPHISMproblem, dependent
on the nature oH, this will simplify the task of finding/’.

If we color G uniformly at random withk colors, a set ok distinct vertices will
obtain different colors with probabilityk!) /k¥. This probability is lower-bounded
by e %, so we need to repeat the procestmes to have sufficiently high probability
of obtaining the required coloring.

We can derandomize this kind of algorithm usimgshing but at the cost of ex-
tending the running time. We need a list of colorings of the vertic&s such that,
for eachsubset/’ C V with |V’| = k there is at least one coloring in the list by which
all vertices invV’ obtain different colors. Formally, we requirekgperfect family of
hash functions fron{1,2, ..., |V|}, the set of vertices i, onto{1,2, ...k}, the set
of colors.

DEFINITION 1.4 k-Perfect Hash Functions

A K-perfect family of hash functions is a family € of functions from {1,2,...,n}
onto {1,2,...,K} such that, for each SC {1,2,...,n} with |§ =K, there exists an
he 57 such that h is bijective when restricted to S.

By a variety of sophisticated methods, Alon et al. [10] have proved the following:

18 Algorithms and Theory of Computation Handbook, Second Edition

THEOREM 1.4 Alon et al. (1995)

Families of k-perfect hash functions from {1,2,...,n} onto {1,2,...,k} can be
constructed which consist of 2°K . logn hash functions. For such a hash
function, h, the value h(i), 1 <i<n, can be computed in linear time.

We can cololG using each of the hash functions from duperfect family in turn. If
the desired set of vertic&& exists inG, then, for at least one of these colorings, all
vertices inv’ will obtain different colors as we require.

We now give a very simple example of this technique. The subgraph that we will
look for is a cycle of lengttk. We usek colors. If ak-cycle exists in the graph, then
there must be a coloring that assigns a different color to each vertex in the cycle.

For each colourind), we check every ordering,Cy, ..., ¢k of the k colours to
decide whether or not iealizesa k-cycle. We first construct a directed graghas
follows:

For each edgéu,v) € E, if h(u) = ¢; andh(v) = Ci;.1(modx) for somei, then replace
(u,v) with arc(u,v), otherwise deletéu,v).

In G, for eachv with h(v) = c¢1, we use a breadth first search to check for a cgcle
from v to v of lengthk.

A deterministic algorithm will need to check%®) - log|V| colorings, and, for each
of these k! orderings. We can decide if an ordering of colors realizesktbgcle in
time O(k- |V|?). Thus, our algorithm is FPT, but, arguably, not practically efficient.
The main drawback is that th€%) - 1og|V | bound on the size of the family of hash
functions hides a large constant in ¥ék) exponent.

More interesting examples of applications of color-coding to subgraph isomor-
phism problems, based on dynamic programming, can be found in [10].

1.4.2 Bounded Width Metrics

Faced with intractable graph problems, many authors have turned to study of vari-
ous restricted classes of graphs for which such problems can be solved efficiently.
A number of graphwidth metricsnaturally arise in this context which restrict the
inherent complexity of a graph in various senses.

The idea here is that a useful width metric should admit efficient algorithms for
many (generally) intractable problems on the class of graphs for which the width is
small. This leads to consideration of these measures from a parameterized point of
view. The corresponding naturally parameterized problem has the following form:

Letw(G) denote any measure of graph width.

Instance: A graphG = (V,E).
Parameter:A positive integek.
Question: Isw(G) < k?

One of the most successful measures in this context is the notitneenfidth
which arose from the seminal work of Robertson and Seymour on graph minors and
immersions [61, 62, 63]. Treewidth measures, in a precisely defined watréew

Parameterized Algorithms 19

like a graph is. The fundamental idea is that we can lift many results from trees
to graphs that are tree-like. Related to treewidth is the notigmattiwidthwhich
measures, in the same way, hpath-likea graph is.

Many generally intractable problems become fixed-parameter tractable for the
class of graphs that have bounded treewidth or bounded pathwidth, with the pa-
rameter being the treewidth or pathwidth of the input graph. Furthermore, treewidth
and pathwidth generalize many other well-studied graph properties. For example,
planar graphs with radiuk have treewidth at mostk3 series parallel multigraphs
have treewidth two, chordal graphs (graphs having no induced cycles of length four
or more) with maximum clique sizie have treewidth at mo#t— 1, interval graphs
G’ with maximum clique siz& have pathwidth at mogt— 1.

A graphG has treewidth at mod if we can associate a tréle with G in which
each node represents a subgrapldfaving at mosk + 1 vertices, such that all
vertices and edges & are represented in at least one of the nodds aihd for each
vertexv in G, the nodes o wherev is represented form a subtreeTof Such a tree
is called aree decompositionf G, of width k.

DEFINITION 1.5 [Tree decomposition and Treewidth]

Let G= (V,E) be a graph. A tree decompositionTD, of G is a pair (T, Z")
where

1. T=(1,F) is a tree, and

2. X ={Xli€l} is a family of subsets of V, one for each node of T, such
that

(i) Ua X =V,

(i) for every edge {v,\W} € E, there is an i €| with ve X and
we X, and

(iii) for all i,j,Kel, if | is on the path from i to K in T, then
XiNnX¢ C Xj.

The width of a tree decomposition ((1,F),{X|i € 1}) is maxe |X| —1. The
treewidth of a graph G, denoted by tw(G), is the minimum width over all
possible tree decompositions of G.

DEFINITION 1.6 [Path decomposition and Pathwidth]

A path decompositioanPD, of a graph G is a tree decomposition (P, 2") of G
where P is simply a path (i.e. the nodes of P have degree at most two). The
pathwidthof G, denoted by pw(G) is the minimum width over all possible path
decompositions of G.

Any path decomposition of is also a tree decomposition &, so the pathwidth
of G is at least equal to the treewidth Gf For many graphs, the pathwidth will be
somewhat larger than the treewidth. For exampleBladenote the complete binary
tree of heighk, having ¥ — 1 vertices, themw(By) = 1, but pw(By) = k.

20 Algorithms and Theory of Computation Handbook, Second Edition

Graphs of treewidth and pathwidth at mésare also calleghartial k-treesand
partial k-paths respectively, as they are exactly the subgraplkstofes andk-paths.
There are a number of other variations equivalent to the notions of treewidth and
pathwidth (see, for example, [14].) For algorithmic purposes, the characterizations
provided by the definitions given above tend to be the most useful.

The typical method employed to produce FPT algorithms for problems restricted
to graphs of bounded treewidth (pathwidth) proceeds in two stages.

1. Find a bounded-width tree (path) decomposition of the input graph that ex-
hibits the underlying tree (path) structure.

2. Perform dynamic programming on this decomposition to solve the problem.

The following Lemma encapsulates the two properties of tree decompositions on
which the dynamic programming approach relies.

LEMMA 1.2 Connected subtrees
Let G= (V,E) be a graph and TD=(T,Z") a tree decomposition of G.

(i) For allv eV, the set of nodes {i € |ve X} forms a connected
subtree of T.

(i1) For each connected subgraph G' of G, the nodes in T which
contain a vertex of G' induce a connected subtree of T.

In order for this approach to produce practically efficient FPT algorithms, as op-
posed to proving that problems are theoretically tractable, it is important to be able
to produce the necessary decomposition reasonably efficiently.

Determining the treewidth or pathwidth of a graph isNi®-hard problem. How-
ever, polynomial time approximation algorithms have been found [16]. There is a
polynomial time algorithm that, given a gra@with treewidthk, finds a tree decom-
position of width at mosO(k - log n) for G. There is a polynomial time algorithm
that, given a graple with pathwidthk, finds a path decomposition of width at most
O(k-log?n) for G.

Bodlaender [13] gave the firihear-time FPT algorithms (i.e. linear ifG|) for
the constructive versions of bokr TREEWIDTH andk-PATHWIDTH. Perkovic and
Reed [58] have improved upon Bodlaender’s work, althoughftfie’s involved
mean that the algorithms given in both [13] and [58] are not workable in practice.
However, there are far simpler FPT algorithms that produce tree and path decompo-
sitions having width at most a constant factor larger than the optimum [60, 63] (see
Section 1.6.)

For some graph classes, the optimal treewidth and pathwidth, or good approxima-
tions of these, can be found using practically efficient polynomial time algorithms.
Examples are chordal bipartite graphs, interval graphs, permutation graphs, circle
graphs, [18] and co-graphs [19].

Parameterized Algorithms 21

For planar graphs, Alber et al. [5, 7] have introduced the notionajerwise sep-
aration propertypertaining to the underlying parameterized problem that one might
hope to solve via a small-width tree decomposition. Hyerwise separation prop-
erty holds for all problems on planar graphs for which a linear problem kernel can
be constructed.

For problems having this property, we can exploit the layer structure of planar
graphs, along with knowledge about the structure of “YES” instances of the problem,
in order to find small separators in the input graph such that each of the resulting
components has small treewidth. Tree decompositions for each of the components
are then merged with the separators to produce a small-width tree decomposition of
the complete graph.

This approach leads to, for example, algorithms that sePMERTEX COVER
and, more interestinglyx-DOMINATING SET, on planar graphs in time®2V . .

The algorithms work by constructing a tree decomposition of wltk/'k) for the
kernelized graph, and then performing dynamic programming on this decomposition.

An algorithm that uses dynamic programming are@works by computing some
value, or table of values, for each node in the tree. The important point is that the
value for a node can be computed using only information directly associated with
the node itself, along with values already computed for the children of the node.

Extending the idea of dynamic programming to@esto dynamic programming
on bounded-width tree decompositioissreally just a matter of having to construct
more complicated tables of values. Instead of considering a single vertex at each
node and how it interacts with the vertices at its child nodes, we now need to consider
a reasonably sma#letof vertices represented at each node, and how this small set
of vertices can interact with each of the small sets of vertices represented at its child
nodes.

The most important factor in dynamic programming on tree decompositions is the
size of the tables produced. The table size is usu@llg), wherek is the width
of the tree decomposition areldepends on the combinatorics of the underlying
problem that we are trying to solve. We can trade off different factors in the design
of such algorithms. For example, a fast approximation algorithm that produces a
tree decomposition of widthk3 or evenk?, for a graph of treewidtk could be quite
acceptable it is small.

Cliquewidth first introduced in [31], is another graph width metric that has more
recently gained prominence in algorithm design. A graph that has cliquewidth
can be recursively constructed from single vertices with labelk|ia: {1,2,...,k}
using only thecomposition operationsf graph uniorG = G; UGy, vertex relabeling
G = (Gy)i—|, and cross-product edge insertion between labelGetyGy)i .

The series of composition operations (called-@xpressionthat produces such a
cliqguewidthk graphG gives rise to a decomposition Gfinto a tree of subgraphs of
G. This decomposition then leads to a linear-time dynamic programming algorithm
for many problems restricted to cliquewidkhgraphs. However, in contrast with
treewidth and pathwidth, there is no known FPT algorithm that constructs such a

22 Algorithms and Theory of Computation Handbook, Second Edition

decomposition for a given cliquewidthgraph. A polynomial time approximation
algorithm has recently been presented in [57].

We note that, even though findimgactbounded width graph decompositions, for
graphs with small width, does not yet appear to be feasible, in practice heuristics and
approximations have proven to be quite effective. In addition, many graphs derived
in practical applications are themselves constructedinductively, making them prime
candidates for these methods. For examples of dynamic programming algorithms on
various bounded width graph decompositions see, for example, [20].

1.4.3 Algorithmic Meta-theorems

Descriptive complexity theory relates the logical complexity of a problem descrip-
tion to its computational complexity. In this context there are some useful results
that relate to fixed-parameter tractability. We can view these results not as an end
in themselves, but as being useful “signposts” in the search for practically efficient
fixed-parameter algorithms.

We will consider graph properties that can be definedirst-order logic and
monadic second-order logic

In first order logic we have an (unlimited) supply imidividual variables, one
for each vertex in the graph. Formulas of first-order logic (FO) are formed by the
following rules:

1. Atomic formulas: x=y andR(xy, ...,X), whereR is ak-ary relation symbol
andx,y, X1, ..., X are individual variables, are FO-formulas.

2. Conjunction, Disjunctionif ¢ andy are FO-formulas, thep A v is an FO-
formula andg Vv y is an FO-formula.

3. Negation:If ¢ is an FO-formula, them¢ is an FO-formula.

4. Quantification:If ¢ is an FO-formula andis an individual variable, thefix ¢
is an FO-formula angtx ¢ is an FO-formula.

We can state that a graph has a clique of kigeing an FO-formula. Here, the binary
relationE(x;,X;) indicates the existence of an edge between vericasdx;.

I N\ EXLX)

1<i<j<k

We can state that a graph has a dominating set oksiméng an FO-formula,

IXe. X VY \/ (E(xi,y) V(X :y))
1<i<k
In monadic second-order logic we have an (unlimited) supply of both individual
variables, one for each vertex in the graph, aatariables, one for each subset of
vertices in the graph. Formulas of monadic second-order logic (MSO) are formed by
the rules for FO and the following additional rules:

Parameterized Algorithms 23

1. Additional atomic formulasFor all set variableX and individual variableg,
Xyis an MSO-formula.

2. Set quantificationif ¢ is an MSO-formula an is a set variable, thefX ¢
is an MSO-formula, anttX ¢ is an MSO-formula.

We can state that a graphkiscolorable using an MSO-formula,

k k
IX; ... X (Vx\/ XiX A VxVy(E(x,y) = N\ = (XxA XiY)))
i=1 i=1

The problems that we are interested in are special cases ofidbel-checking
problem

Let @ be a class of formulas (logic), and [@tbe a class of finite relational struc-
tures. The model-checking problem f@ron & is the following problem.

Instance: A structure« € 2, and a sentence (no free variablésy ®.
Question: Doess? satisfy¢?

The model-checking problems for FO and MSO are PSPACE-complete in general.
However, as the following results show, if we restrict the class of input structures then
in some cases these model-checking problems become tractable.

The most well-known result, paraphrased here, is due to Courcelle [30].

THEOREM 1.5 Courcelle 1990
The model-checking problem for MSO restricted to graphs of bounded treewidth
is linear-time fized-parameter tractable.

Detleef Seese [64] has proved a converse to Courcelle’s theorem.

THEOREM 1.6 Seese 1991

Suppose that F is any family of graphs for which the model-checking problem
for MSO is decidable, then there is a number n such that, for all G € %, the
treewidth of G is less than n.

Courcelle’s theorem tells us that if we can define the problem that we are trying to
solve as a model-checking problem, and we can define the particular graph property
that we are interested in as an MSO-formula, then there is an FPT algorithm that
solves the problem for input graphs of bounded treewidth. The theorem by itself
doesn't tell us how the algorithm works.

The automata-theoretic proof of Courcelle’s theorem given by Abrahamson and
Fellows [2] provides a generic algorithm that relies on dynamic programming over
labelled trees (see [35] for details of this approach.) However, this generic algorithm
is really just further proof ofheoreticaltractability. The importance of the theorem
is that it provides a powerful engine for demonstrating that a large class of problems
is FPT. If we can couch a problem in the correct manner then we know that it is

24 Algorithms and Theory of Computation Handbook, Second Edition

“worth looking” for an efficient FPT algorithm that works on graphs of bounded
treewidth.

The next result concerns classes of graphs havounded local treewidthThe
local tree width of a grapls is defined via the following function.

ltw(G,r) = max{tw(N;(v))|veV(G)}
whereN; (v) is the neighbourhood of radiusaboutv (includingv.)

A class of graphs# hasbounded local treewidth there is a functionf : N — N
such that, for allG € .# andr > 1, Itw(G,r) < f(r). The concept is a relaxation
of bounded treewidth for classes of graphs. Instead of requiring that the treewidth of
a graph overall is bounded by some constant, we require that, for each vertex in the
graph, the treewidth of each neighbourhood of radiabout that vertex is bounded
by some uniform function af.

Examples of classes of graphs that have bounded local treewidth include graphs of
bounded treewidth (naturally), graphstafunded degreelanar graphs, and graphs
of bounded genus

Frick and Grohe [44] have proved the following theorem.

THEOREM 1.7 Frick and Grohe 1999

Parameterized problems that can be described as model-checking problems
for FO are fized-parameter tractable on classes of graphs of bounded local
treewidth.

This theorem tells us, for example, that parameterized versions of problems such
as DOMINATING SET, INDEPENDENTSET, or SUBGRAPH ISOMORPHISMare FPT

on planar graphs, or on graphs of bounded degree. As with Courcelle’s theorem, it
provides us with a powerful engine for demonstrating that a large class of problems
is FPT, but leaves us with the job of finding practically efficient FPT algorithms for
these problems.

The last meta-theorem that we will present has a somewhat different flavour. We
first need to introduce some ideas from topological graph theory.

A graphH is aminor of a graphG iff there exists some subgrapB!' of G, such
thatH can be obtained fror@" by a series oédge contractions

We define an edge contraction as follows. ket (u,v) be an edge of the graph
GH. By G"/e we denote the graph obtained fra@%' by contractingthe edgee
into a new vertex,e which becomes adjacent to all former neighboursi @ind of
v. H can be obtained fror@" by a series of edge contractions iff there are graphs
Go, ...,Gn and edges; € G such thaiGy = G", G, ~ H, andGj 1 = Gj/g for all
i<n.

Note that every subgraph of a gra@his also a minor ofG. In particular, every
graph is its own minor.

Parameterized Algorithms 25

A class of graphsZ is minor-closedf, for every graphG € .%, every minor ofG
is also contained it%. A very simple example is the class of graphs with no edges.
Another example is the class of acyclic graphs. A more interesting example is the
following:

Let us say that a grapB = (V,E) is within k verticesof a class of graphs7 if
there is a se¥’ C V, with [V'| <k, such thaG|V — V'] € Z. If .Z is any minor-
closed class of graphs, then, for evéry 1, the class of graphs withikvertices of
F, W(F), is also minor-closed.

Note that for each integde> 1, the class of graphs of treewidth or pathwidth at
mostk is minor-closed.

Let.Z be a class of graphs which is closed under taking of minors, artl bet a
graph that is not in7. Each graplG which hasH as a minor is not in#, otherwise
H would be in.#. We callH aforbidden minorof .%. A minimalforbidden minor
of % is a forbidden minor of# for which each proper minor is it . The set of all
minimal forbidden minors of# is called theobstruction sebf .7 .

In a long series of papers, collectively entitled “Graph Minors”, Robertson and
Seymour [63] have essentially proved that any minor-closed class of ggaphast
have afinite obstruction set. Robertson and Seymour have also shown that, for a
fixed graphH, it can be determined whethét is a minor of a graplG in time
O(f(JH])-IG[3).

We can now derive the following theorem:

THEOREM 1.8 Minor-closed membership

If & is a minor-closed class of graphs then membership of a graph G in &
can be determined in time O(f(K)-|G|®), where K is the collective size of the
graphs in the obstruction set for F.

This meta-theorem tells us that if we can define a graph problem via membership in
a minor-closed class of grapl#s, then the problem is FPT, with the parameter being
the collective size of the graphs in the obstruction seforHowever, it is important

to note two major difficulties that we now face. Firstly, for a given minor-closed class
we have a proof of thexistenceof a finite obstruction set, but no effective method
for obtainingthe obstruction set. Secondly, the minor testing algorithm has very
large hidden constants (arount?9, and the sizes of obstruction sets in many cases
are known to be very large.

Thus, again we have a theorem that provides us with a powerful engine for demon-
strating that a large class of problems is, in fact, FPT, but the problem of finding
practically efficient FPT algorithms for such problems remains open.

26 Algorithms and Theory of Computation Handbook, Second Edition

1.5 Parameterized Intractability

The question arizes: What do we do with a problem for which we know of no FPT
algorithm? Good examples are the problentsMINATING SET or INDENDENT SET

for which we know of no algorithm significantly better than trying all possibilities.
For a fixedk, this takes time(nk*1). Of course, we woultlke to prove that there is

no FPT algorithm for such a problem, but, as with classical complexity, the best we
can do is to formulate some sort of completeness/hardness program. Showing that
K-DOMINATING SET is not FPT would also show, as a corollary, tRat NP

Any completeness programme needs three things. First, it needs a notion of easi-
ness, which we have: FPT. Second, it needs a notion of reduction, and third, it needs
some core problem which we believe to be intractable.

Following naturally from the concept of fixed-parameter tractability is an appro-
priate notion of reducibility that expresses the fact that two parameterized problems
have comparible parameterized complexity. That is, if problem (languagejuces
to problem (language, and problenB is fixed-parameter tractable, then so too is
problemA.

DEFINITION 1.7 Parameterized Transformation

A parameterized transformatiofrom a parameterized language L to a param-
eterized language L' (symbolically L <gpt L') is an algorithm that computes,
from input consisting of a pair (1,K), a pair (I’ K} such that:

1. (1,k) € L if and only if (I'K) e L,
2. K =g(k) is a computable function only of K, and

3. the computation is accomplished in time f(K)n®, where n is the size of the
main part of the input |, K is the parameter, € is a constant (independent
of both n and K), and f is an arbitrary function dependent only on K.

If A<gpt BandB <gpt A, then we say thah andB areFPT -equivalent.

Now we have two ingredients: easiness and reductions. We need the final compo-
nent for our program to establish the apparent parameterized intractability of com-
putational problems: the identification of a “core” problem to reduce from.

In classical NP-completeness this is the heart of the Cook-Levin Theorem: the
argument that a nondeterministic Turing machine is such an opaque object that it
does not seem reasonable that we can determine in polynomial time if it has an
accepting path from amongst the exponentially many possible paths. The idea of

*Strictly speaking, this is a parameterizedny-onegeduction as an analog of the classical Karp reduction.
Other variations such as parameterized Turing reductions are possible. The funcéinrbe arbitrary,
rather than computable, for other non-uniform versions. We give the reduction most commonly met in
practice.

Parameterized Algorithms 27

Downey and Fellows, introduced in the fundamental papers [33, 34], was to look at
the following parameterized version of nondeterministic Turing machine acceptance.

SHORT NON-DETERMINISTIC TURING MACHINE ACCEPTANCE

Instance: A nondeterministic Turing machine (of arbitrary fanoht)

Parameter:A positive integek.

Question: DoesM have a computation path accepting the empty string in at knost
steps?

In the same sense thhP-completeness of thg(n)-STEP NON-DETERMINISTIC
TURING MACHINE ACCEPTANCE whereq(n) is a polynomial in the size of the
input, provides us with very strong evidence thatNii&-complete problem is likely

to be solvable in polynomial time, usingH®RT NON-DETERMINISTIC TURING
MACHINE ACCEPTANCEas a hardness core provides us with very strong evidence
that no parameterized langualgefor which SHORT NON-DETERMINISTIC TUR-

ING MACHINE ACCEPTANCEfpT L, is likely to be fixed-parameter tractable. That
is, if we accept the idea for the basis of NP-completeness, then we should also accept
that the $IORT NON-DETERMINISTIC TURING MACHINE ACCEPTANCEproblem

is not solvable in time&(|M|°) for any fixedc. Our intuition would again be that all
paths would need to be tried.

We remark that the hypothesis BF®RT NON-DETERMINISTIC TURING MA-
CHINE ACCEPTANCEIs not FPT” is somewhat stronger thag:RP. Furthermore,
connections between this hypothesis and classical complexity have recently become
apparent. If SORT NON-DETERMINISTIC TURING MACHINE ACCEPTANCEIS
FPT then we know that theX®ONENTIAL TIME HYPOTHESIS which states that-
variable 39\ is not in subexponential time (DTIMER(")), fails. See Impagliazzo,
Paturi and Zane [48], Cai and Juedes [24], and Estivill-Castro, Downey, Fellows,
Prieto-Rodriguez and Rosamond [41].

The class of problems FPT-equivalent ta&T NON-DETERMINISTIC TURING
MACHINE ACCEPTANCEIs calledW[1], for reasons discussed below. The parame-
terized analog of the classical Cook-Levin theorem (that CNiFiS NP-complete)
uses the following parameterized version ofa3S

WEIGHTED CNF SAT

Instance: A CNF formulaX.

Parameter:A positive integeik.

Question: DoesX have a satisfying assignment of weidd?t Here theveightof an
assignment is the Hamming weight, that is, the number of literals set to be true.

Similarly, we can define WIGHTED NCNF SaT, where the clauses have only

variables and is some number fixed in advance. W6 HTED NCNF $AT, for any
fixedn > 2, is complete fokV[1].

THEOREM 1.9 Downey and Fellows [34] and Cai, Chen, Downey

28 Algorithms and Theory of Computation Handbook, Second Edition

and Fellows [22]
WEIGHTED NCNF SAT=gpt SHORT NON-DETERMINISTIC TURING MACHINE
ACCEPTANCE

The original theorems and classes were first characterized in terms of boolean cir-
cuits of a certain structure. These characterizations lend themselves toreasier
bershipproofs, we define them here for completedess

We consider a 3CNF formula as a circuit consisting of one input (of unbounded
fanout) for each variable, possibly inverters below the variable, and structurally a
largeandof smallor’s (of size 3) with a single output line. We can similarly consider
a 4CNF formula to be a largendof smallor's where “small” is defined to be 4. More
generally, it is convenient to consider the model digision circuit This is a circuit
consisting of large and small gates with a single output line, and no restriction on the
fanout of gates. For such a circuit, tdepthis the maximum number of gates on
any path from the input variables to the output line, andvleét is the “large gate
depth.” More precisely, the weft is defined to be the maximum number of large gates
on any path from the input variables to the output line, where a gate is called large if
it's fanin exceeds some pre-determined bound.

The weight of an assignment to the input variables of a decision circuit is the
Hamming weight, the number of variables made true by the assignment.

Let # = {Cy,...,Cy,...} be a family of decision circuits. Associated witf is a
basic parameterized language

Lz = {(G;,k) : Ci has a weighk satisfying assignmeht

We will denote byL z) the parameterized language associated with the family
of weftt, depthh, decision circuits.

DEFINITION 1.8 W[1] Downey and Fellows [33] We define a lan-
guage L to be in the class W[1] iff there is a parameterized transformation
from L to Lz, for some h.

We remark that, since publication of the original papers of Downey and Fellows,
hundreds of problems have been shown to\jé&|-complete and many have been
shown to b&V/[1] hard. We refer the reader to Downey and Fellows [35] for a list of
examples, as of 1998, and to Flum and Grohe [43] for some more recent examples.

Notice that, in Theorem 1.9, we ditbt say that WEIGHTED CNF AT is W[1]-
complete. The reason for this is that we do not believe that it is!

Classically, using a padding argument, we know that CME SF, 3CNF SAT.
However, the classical reductiolmesn’tdefine a parameterized transformation from
WEIGHTED CNF SaT to WEIGHTED 3CNF ST, it is not structure-preserving

TOther approaches to characterization of parameterized hardness classes have been proposed, notably that
of Flum and Grohe [43] using finite model theory. We refer the reader to [43].

Parameterized Algorithms 29

enough to ensure that parameters map to parameters. In fact, it is conjectured [33]
that there isno parameterized transformation at all fromeWeHTED CNF SAT to
WEIGHTED 3CNF SAT. If the conjecture is correct, then MMGHTED CNF SaT is

notin the clasaV[1].

The point here is that parameterized reductions are more refined than classical
ones, and hence we believe that we get a wider variety of apparent hardness be-
haviour when intractable problems are classified according to this more fine grained
analysis.

We can view an input formulX for WEIGHTED CNF SAT as a product of sums.
Extending this reasoning, we can defineEMWWHTED t-NORMALIZED SAT as the
weighted satisfiability problem for a formubé where X is a product of sums of
products of sums.. with t alternations. We can define BMGHTED SAT to be the
weighted satisfiability problem for a formulathat is unrestricted.

DEFINITION 1.9 W[t] For each t > 1, we define a language L to be
in the class W[t] iff there is a parameterized transformation from L to Lzt
for some h.

In [33] Downey and Fellows show that, for &l 1, WEIGHTEDt-NORMALIZED
SAT is complete folW[t]. Thus,W[1] is the collection of parameterized languages
FPT-equivalent to VBIGHTED 3CNF SaT, W[2] is the collection of parameterized
language$ PT-equivalent to VEIGHTED CNF AT, and for each > 2, W[t] is the
collection of parameterized languadeRT-equivalent to VEIGHTEDt-NORMALIZED
SAT.

These classes form part of the basic hierarchy of parameterized problems below.

FPT CWI[1] CW[2 C - CW[t] C W[SAT] C W[P] C AW[P] C XP

This sequence is commonly termed Wehierarchy. The complexity cla¥¥[1] can

be viewed as the parameterized analo!&f since itsufficedo establish likely pa-
rameterized intracability. We remark that a number of natural problems have been
found at various levels of this hierarchy. For exampl@NDNATING SET is com-

plete for the leveW([2].

The classe®V[SAT], W[P] and theAW classes were introduced by Abrahamson,
Downey and Fellows in [1]. The cla¥¥[SAT] is the collection of parameterized lan-
guaged-PT-equivalent to VEIGHTED SAT. The clasdV[P] is the collection of pa-
rameterized languagésPT-equivalent to VEIGHTED CIRCUIT SAT, the weighted
satisfiability problem for a decision circuit that is unrestricted. A standard trans-
lation of Turing machines into circuits shows th&tWEIGHTED CIRCUIT SAT is
the same as the problem of deciding whether or not a deterministic Turing machine
accepts an input of weiglkt It is conjectured that the containme&fffSAT] C W[P]
is proper [35].

AWIP] captures the notion @fternation AW[P] is the collection of parameterized
language$-PT-equivalent to RRAMETERIZED QUANTIFIED CIRCUIT SATISFIA-

30 Algorithms and Theory of Computation Handbook, Second Edition

BILITY, the weighted satisfiability problem for an unrestricted decision circuit that
appliesalternating quantifier¢o the inputs, defined here.

PARAMETERIZED QUANTIFIED CIRCUIT SAT

Instance: A decison circuitC whose inputs correspond to a sequesge..s of
pairwise disjoint sets of variables.

Parameter: rky,..., kn.

Question: Is it the case that there exists a skiesubset; of s;, such that for every
sizeky subset; of s,, there exists a sizke; subsets of s3, such that .. (alternating
guantifiers) such that, wheput, U. .. Ut, are set to true, and all other variables are
set to falseC is satisfied?

Many parameterized analogs of game problems are complete féhelasses,
such as the parameterized analog Gfd&RAPHY.

The classXP, introduced in [35], is the collection of parameterized langudges
such that thekth slice ofL (the instances of having parametek) is complete for
DTIME(nk). XPis provably distinct from=PT and seems to be the parameterized
class corresponding to the classical cl&36P (exponential time). It is conjectured
that all of the containments here are proper, but all that is currently known is that
FPT is a proper subset ofP.

If we compare classical and parameterized complexity it is evident that the frame-
work provided by parameterized complexity theory allows for more finely-grained
complexity analysis of computational problems. It is deeply connected with algo-
rithmic heuristics and exact algorithms in practice. We refer the reader to either
the survey by Flum and Grohe [42], or those in two recent issudhefComputer
Journal[36] for further insight.

We can consider many different parameterizations of a single classical problem,
each of which leads to either a tractable, or (likely) intractable, version in the param-
eterized setting. This allows for an extended dialog with the problem at hand. This
idea towards the solution of algorithmic problems is explored in, for example, [38].

The reader may note that parameterized complexity is addressing intractability
within polynomial time In this vein, the parameterized framework can be used to
demonstrate that many classical problems that admit a PTAS don't, in fact, admit
any PTAS with a practical running time, unledq1] = FPT (see end of Section
1.6.) It has been used to show that resolution is not automizable Wi[€s- FPT
(Alekhnovich and Razborov [8], Eickmeyer, Grohe andikgar [40].) It can also be
used to show that the large hidden constants (various towers of twao’s) in the running
times of generic algorithms obtained though the use of algorithmic metatheorems
(Section 1.4.3) cannot be improved upon (see [43].)

We finally note that there are alternative useful parameterized complexity hierar-
chies, such as th& andM-hierarchies, see e.g. Flum and Grohe [43].

Rather than further pursuing parameterized intractability and the rich area of pa-
rameterized structural complexity theory, we have concentrated this survey on the
collection of distinctive techniques that has been developed for fixed-parameter tractable
algorithm design. It would take a survey of comparable length to comprehensively

Parameterized Algorithms 31

tackle the area of parameterized intractability. We will simply refer the reader to
Downey and Fellows [35], Flum and Grohe [43], or to survey articles such as Downey
[32] for further details.

1.6 Parameterized Approximation Algorithms

We close this chapter with discussion of a relatively new topic, parameterized ap-
proximation, introduced independently by three papers presented at IWPEC 2006
(The 3rd International Workshop on Parameterized Complexity and Exact Algo-
rithms) [37], [27], [23].

There are various ways in which parameterized complexity and parameterized
computation can interact with approximation algorithms. The interplay between the
two fields is covered comprehensively in [53]. Here, we will consider only the most
natural extension of parameterized complexity in this direction. We first need to
introduce some definitions, we follow those given in [53].

Each input instance to aNP-optimization problem has associated with it a set
of feasible solutions. A cost measure is defined for each of these feasible solutions.
The task in solving the optimization problem is to find a feasible solution where the
measure is as good as possible.

Formally, we define amNP-optimization problem as a 4-tuplé, sol, cost goal)
where

e | is the set of instances.

e For an instance € |, sol(x) is the set of feasible solutions far The length of
eachy € sol(x) is polynomially bounded inx|, and it can be decided in time
polynomial in|x| whethery € sol(x) holds for giverx andy.

e Given an instance and a feasible solutiop, cost(x,y) is a polynomial-time
computable positive integer.

e goalis eithermaxor min.
The cost of an optimum solution for instarnces denoted by pt(x).

opt(x) = goal{costx,y) | Y € sol(x)}
If yis a solution for instance then theperformance ratiof y is defined as

ROGY) = cost(x,y)/opt(x) if goal=min,
77) opt(x)/cost(x,y) if goal = max

For a real numbet > 1, we say that an algorithm isc@approximatioralgorithm
if it always produces a solution with performance ratio at noost

32 Algorithms and Theory of Computation Handbook, Second Edition

One obvious parameter of an optimization problem instance is the optimum cost.
This leads to atandard parameterizatioaf an optimization problenX, where we
define the corresponding parameterized decision proileras

X<

Instance: An instancex of X.
Parameter:A positive integek.
Question: Is opt(x) < k?

We can defineX> analogously. For many problems, if we can sakeg or X,
via an FPT algorithm, then we can also actually find an optimum solution for any
instancex by repeatedly applying the algorithm to slightly modified versions.of
This strategy is known ggolynomial-time self-reducibilityln some cases, an FPT
algorithm that solve¥<, or X, will construct an optimal solution simply as a side
effect of deciding the answer to the question.

Many of the standard problems in the parameterized complexity literature are stan-
dard parameterizations of optimization problems, for exampl® ERTEX COVER,
K-CLIQUE, K-DOMINATING SET, K-INDEPENDENT SET. If such a standard pa-
rameterization is fixed-parameter tractable then this means that we have an efficient
algorithm for exactly determining the optimum for those instances of the correspond-
ing optimization problem where the optimum is smallWA1]-hardness result for a
standard parameterization of an optimization problem shows that such an algorithm
is unlikely to exist. In this case, we can ask the question: Is it possible to efficiently
approximatethe optimum as long as it is small?

We use the following definition for aRPT-approximation algorithnproposed by
Chen et al. [27].

DEFINITION 1.10 Standard FPT-approximation algorithm Let
X = (l,sol,cost goal) be an optimization problem. A standard FPT-approximation
algorithm with performance ratio for X is an algorithm that, given input (X,K)
satisfying

opt(x) <k if goal=min, (1.1)
opt(x) >k if goal=max '
computes a 'y € sol(x) in time f(K)-|x|°Y such that
cost(x,y) <k-c if goal= min, (1.2)
cost(x,y) > k/c if goal = max '

For inputs not satisfying (1.1) the output can be arbitrary.

One example of this type of approximability is given by ¥«SUBTREE PRUNE
AND REGRAFTproblem. The input to this problem is a pair of phylogen#titrees,
T1 and T, each an unrooted binary tree with leaves labeled by a common set of
speciesX and (unlabeled) interior nodes having degree exactly three. The (labeled)

Parameterized Algorithms 33

topologies ofT; and T, may differ. The task is to find at moktsubtree prune and
regraft operations that will transforiy intoTs,.

A single subtree prune and regrafSPR) operation oi; begins by “pruning” a
subtree ofT; by detaching an edge= (u,v) in T; from one of its (non-leaf) end-
points, sayu. The vertexu and its two remaining adjacent edgés,w) and(u, x) are
thencontractednto a single edgegw, x). Let T, be the phylogenetic tree, previously
containingu, obtained fromT; by this process. We create a new vert&by sub-
dividing an edge inl,. We then create a new tréé by adding an edgé between
U andv. We say thaff’ has been obtained fro, by a singlesubtree prune and
regraft (SPR) operation.

A related operation on the phylogenetic tfeis thetree bisection and recon-
nection(TBR) operation. A singléree bisection and reconnectigfBR) operation
begins by detaching an edge= (u,v) in T; from both of its endpointsy andv.
Contractions are then applied to either one or bothafidv to create two new phy-
logenetic trees (note that a contraction is necessary only in the case of a non-leaf
vertex.) LetT, andT, be the phylogenetic trees, previously containing, respectively,
u andv, obtained fronil; by this process. We create new verticésandv by sub-
dividing edges infl, andT, respectively. We then create a new til€eby adding an
edgef betweenu andv. We say thafl’ has been obtained frofy by a singletree
bisection and reconnectiofTBR) operation. Note that the effect of a single TBR
operation can be achieved by the application of either one or two SPR operations
and that every SPR operation is also a TBR operation.

In [47] it is shown that thex-TREE BISECTION AND RECONNECTIONproblem
can be solved via an FPT algorithm for the equivaleriIAXIMUM AGREEMENT
FORESTproblem, running in time(k* - n°). The algorithm employed in [47] uses
a kernelization strategy from [9] as a pre-processing step, followed by a search tree
strategy. Neither of the techniques used in [47] is applicable in the case &f the
SUBTREE PRUNE AND REGRAFT problem. It has long been conjectured that the
K-SUBTREE PRUNE ANDREGRAFT problem is fixed-parameter tractable, however,
proof of this conjecture is a long-standing open problem in the parameterized com-
plexity community.

The algorithm given in [47] can easily be adapted to give either a NO answer to
the K-TREE BISECTION AND RECONNECTION problem or, otherwise, a minimal
set of TBR operations that transformginto T,. Given two phylogenetic tree3;
and T, if there is a se§ of at mostk SPR operations that transforrig into T,
thenSis also a set of at mo#t TBR operations transformifig into To. Thus, in
this case, the algorithm given in [47] will return a soluti8nconsisting of at most
k TBR operations. This s& will translate into a set of at moskZPR operations
transformingTy into T,. If there is no sizé set of SPRoperations that transfornig
into Ty, then the algorithm given in [47] might still return a soluti8nconsisting of
at mostk TBR operations and again, this &will translate into a set of at mosk2
SPR operations transformirig into T,. However, in this case, there is no guarantee
of success.

This is currently the only example (known to us) of a problem that is not proven to
be FPT but that does have a standard FPT-approximation algorithm, although there

34 Algorithms and Theory of Computation Handbook, Second Edition

are other examples of FPT-approximation algorithms appearing in the literature. For
example, as recorded in [53; TREEWIDTH is FPT, in fact for every, if a tree de-
composition of a given grapB = (V, E) of width k exists, then this can be computed

in time linear in|V| [13]. The algorithm given in [13] is rather complex and not at

all workable in practice. However, there are far simpler FPT algorithms that produce
tree decompositions having width at most a constant factor larger than the optimum
[60, 63].

In the negative, for some parameterized problems, it is possible to show that there
is no standard FPT-approximation algorithm for any performance ratio, be it a con-
stant ratio, or, otherwise, some ratio that f&iaction of the parameter. k

Given a graphG = (V,E), anindependent dominating set ¥ anindependent
set of verticed/’ C V such thatv’ is a dominating set fofs. The corresponding
optimization problem is the MilMUM INDEPENDENTDOMINATING SET problem,
where the goal is to minimiz¢/’|. Downey et al. [37] prove that the standard
parameterization of this problemésmpletely inapproximable

THEOREM 1.10 Downey, Fellows, McCartin
If K-INDEPENDENT DOMINATING SET has a standard fpt-approximation al-

gorithm with performance ratio function f(K), for some computable function
f(k), then W[2] = FPT.

This particular problem is nahonotonewhere monotone here means that, if we
extend a feasible solution with additional vertices, then it remains feasible. Clearly,
we can arbitrarily add vertices ¥ such thal/’ remains a dominating set, but such
aV’ may no longer be independent. Thus, we can manufacture an instance where
the the optimum ik and where every feasible solution also has &izdt would
be more interesting to obtain inapproximability results for the monotone problem
K-DOMINATING SET.

Important progress on parameterized approximation, at the leWg[®f, has re-
cently been achieved by Eikmeyer, Grohe anditsgr [40]. They looked amulti-
plicative approximation ratios, proving the following:

THEOREM 1.11 Eikmeyer, Grohe and Griiber [40]

All known “natural” W[P] complete problems (including all the ones from
[35],[1]) have no FPT approxzimation algorithms with approzimation ratio
exp(log'k) for some constant y € (0,1) (y depending on the problem) unless
W[P] = FPT.

One illustration of an application of Theorem 1.11 is the problem MINEAR
INEQUALITY BY DELETION which has parametérand asks “Does the deletion of
k elements from a system of linear inequalities result in a system that is solvable?”
We end this discussion with a final negative result, which illustrates a direct con-
nection between parameterized complexity and classical approximation algorithms.

Parameterized Algorithms 35

We say that a problemd admits gpolynomial-time approximation scheme (PTAS)
if there is an algorithmA such that, for every instanceof X and everye > 0,
A produces g1+ €)-approximate solutiony € sol(x), in time |x|T(1/¢), for some
arbitrary computable functioh.

Such an algorithrd runs in polynomial time for every fixed value of but if € is
small then the exponent of the polynomiil’ (/¢) can be very large. Two restricted
classes of approximation schemes have been defined that avoid this problem. An
efficient polynomial-time approximation scheme (EPT&AS) PTAS with running
time of the formf(1/e) - |x/°. A fully polynomial-time approximation scheme
(FPTAS)is a PTAS with running time of the forrfiL/£)O® . |x|O(1),

Parameterized complexity affords evidence to show that, in some cases, an EPTAS
will not be forthcoming. The following theorem has been proposed independently
by Bazgan [12] and Cesati and Trevisan [25].

THEOREM 1.12 Bazgan (1995), Cesati and Trevisan (1997)
If an optimization problem X admits an EPTAS, then the standard parame-
terization of X is FPT.

We can use the contra-positive of Theorem 1.12 to show that an EPTAS likely
does not exist for a particul&tP-optimization problem.

COROLLARY 1.1
If the standard parameterization of an optimization problem is W[1]-hard, then
the optimization problem does not have an EPTAS (unless FPT =W[1].)

Note that the converse of Theorem 1.12 is not true. For examRpMERTEX
CoveRris FPT, as we have repeatedly shown throughout this article, M
VERTEX COVER is APX-hard, implying that it doesn’t have any type of PTAS at all
(unlessP = NP.)

1.7 Conclusions

Our aim in this chapter has been to introduce the reader to the distinctive algorithmic
techniques of parameterized complexity, in the hope that these might find a useful
place in the repertoire of a widening circle of algorithm designers. We have en-
deavoured to strike a balance between high-level, generalized, descriptions and tech-
nical details. Space limitations have inevitably meant that many technical details
have been omitted. There are many aspects of the parameterized paradigm which
we have not canvassed at all. In this regard, we enthusiastically refer the reader to
the recently published collection of parameterized complexity survey papers in the

36

Algorithms and Theory of Computation Handbook, Second Edition

Computer Journal [24], the monographs [43], [45] and [55], as well as the original
parameterized complexity text [35], for more extensive coverage of parameterized
complexity theory and parameterized algorithms.

(1]

(2]

(3]

(4]

K. A. Abrahamson, R. Downey and M. Fellowsixed Parameter Tractabil-
ity and Completeness IV: On Completeness fdP\Wand PSPACEAnalogs,
Annals of Pure and Applied Logic, 73 (1995), 235-276.

K. A. Abrahamson and M. R. FellowsFinite automata, bounded treewidth,
and well-quasi-orderingGraph Structure Theory, editors N. Robertson and P.
Seymour, Contempory Mathematics Vol 147, American Mathematical Society,
pp 539-564, 1993.

F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H. Suters
and C. T. SymonsKernelization Algorithms for the Vertex Cover Problem:
Theory and Experiment®roceedings of the 6th ALENEX 2004, pp 62-69,
SIAM 2004.

F. N. Abu-Khzam, M. A. Langston, P. Shanbhag and C. T. Sym&asilable
parallel algorithms for FPT problem#lgorithmica 45, pp269-284, 2006.

[5] J. Alber: Exact Algorithms for NP-hard Problems on Planar and Related

Graphs: Design, Analysis, and Implementatid?hD thesis, Universit
Tubingen, Germany, January 2003.

[6] J.Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermétixed pa-

rameter algorithms for dominating set and related problems on planar graphs.
Algorithmica 33, pp 461-493, 2002.

[7] J. Alber, H. Fernau, and R. Niedermei®arameterized complexity: exponen-

(8]

&

[10]

[11]

[12]

[13]

tial speed-up for planar graph problemBroc. 28th ICALP, Springer-Verlag
LNCS 2368, pp150-159, 2002.

M. Alekhnovich and A. RazborovResolution is Not Automatizable Unless
WI[P] is Tractable,in Proc. of the 42nd IEEE FOCS, 2001, 210-219.

B. Allen and M. Steel:Subtree transfer operations and their induced metrics
on evolutionary treesAnnals of Combinatorics, 5, pp. 1-13, 2000.

N. Alon, R. Yuster, and U. ZwickColor-coding.Journal of the ACM 42 (4),
pp 844-856, 1995.

R. Balasubramanian, M. Fellows, V. RamafAn improved fixed parameter
algorithm for vertex coveinformation Processing Letters 65 (3), pp163-168,
1998.

C. Bazgan:Sclemas d’approximation et complexiparangétrée Rapport de
stage de DEA d’Informatiqua Orsay, 1995.

H. L. Bodlaender:A linear time algorithm for finding tree decompositions of
small treewidthSIAM J. Comput. 25, pp 1305-1317, 1996.

Parameterized Algorithms 37

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

H. L. Bodlaender:A partial k-arboretum of graphs with bounded treewidth.
Technical Report UU-CS-1996-02, Department of Computer Science, Utrecht
University, Utrecht, 1996.

H. L. Bodlaender, R. G. Downey. M. R. Fellows, D. Hermelifrixed-
Parameter Tractability and Completeness VI: Foundations of Kernelization.
manuscript.

H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kldksproximating
treewidth, pathwidth, and minimum elimination tree heightAlgorithms 18,
pp 238-255, 1995.

H. L. Bodlaender and T. KloksEfficient and constructive algorithms for the
pathwidth and treewdith of graphd. Algorithms 21, pp 358-402, 1996.

H. L. Bodlaender, T. Kloks, and D. Kratschireewidth and pathwidth of per-
mutation graphsProceedings of the 20th International Colloquium on Au-
tomata, Langauges and Programming, A. Lingas, R. Karlsson, and S. Carlsson
(Eds.), Vol 700 LNCS, Springer-Verlag, pp 114-125, 1993.

H. L. Bodlaender and R. H. bhring: The pathwidth and treewdith of
cographsSIAM J. Disc. Meth. 6, pp 181-188, 1993.

R. B. Borie, R. G. Parker and C. A Tovegolving Problems on Recursively
Constructed Graphgo appear.

S. Buss: private communication, 1989.

L. Cai, J. Chen, R. G. Downey and M. R. Fellovan the Parameterized Com-
plexity of Short Computation and Factorizatioirch. for Math. Logic, 36
(1997), 321-337.

L. Cai and X. HuangFixed-parameter approximation: conceptual framework
and approximability resultsProceedings of IWPEC 2006, Lecture Notes in
Computer Science 4169, pp 96-108, 2006.

Liming Cai and D. Juede§&ubexponential parameterized algorithms collapse
the W-hierarchy,in Proceedings of ICALP 2001, Crete, Greece, Springer-
Verlag LNCS 2076 (2001).

M. Cesati and I. Trevisar©n the efficiency of polynomial time approximation
schemednformation Processing Letters, 64 (4), pp 165-171, 1997.

J. Chen, I.A. Kanj and W. JiaVertex Cover: Further Observations and Fur-
ther Improvementslournal of Algorithms 41, pp 280-301, 2001.

Y. Chen, M. Grohe and M. Grube©n parameterized approximabiliti2ro-
ceedings of IWPEC 2006, Lecture Notes in Computer Science 4169, pp 109-
120, 2006.

J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege and P. Taflolving large
FPT problems on coarse-grained parallel maching&surnal of Computer and
System Sciences 67, pp 691-706, 2003.

38

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Algorithms and Theory of Computation Handbook, Second Edition

B. Chor, M. R. Fellows, and D. W. Juedelsinear kernels in linear time, or
how to save k colors in &?) stepsProceedings of the 30th WG, LNCS 3353,
pp 257 - 269, 2004.

B. Courcelle:The monadic second-order logic of graphs I: Recognizable sets
of finite graphsinformation and Computation 85, pp 12-75, 1990.

B. Courcelle, J. Engelfriet and G. Rozenbektandle-Rewriting Hypergraph
Grammars.Journal of Computing and Systems Sciences 46(2), pp 218-270,
1993.

R. G. Downey,Parameterized Complexity for the Skeptitc,Computational
Complexity, 18th Annual ConferendeEE, 2003, 147-169.

R. G. Downey and M. R. Fellow§jxed Parameter Tractability and Complete-
ness I: Basic TheonSIAM Journal of Computing, 24 (1995), 873-921.

R. G. Downey and M. R. Fellow§ixed Parameter Tractability and Complete-
ness Il: Completeness for W[ITheoretical Computer Science A, 141 (1995),
109-131.

R. G. Downey and M. R. Fellow$2arameterized Complexi§pringer-Verlag,
1999.

R. G. Downey, M. R. Fellows and M. Langston, Two special issue$haf
Computer Journgl2008.

R. G. Downey, M. R. Fellows and C. McCartiRarameterized Approximation
Algorithms.Proceedings of IWPEC 2006, Lecture Notes in Computer Science
4169, pp 121-129, 2006.

R. Downey, M. Fellows and U. Steg€omputational Tractability: the View
from Mars, Bulletin of the European Association for Theoretical Computer
Science, No. 69, (1999), 73-97.

F. Dehne, A. Rau-Chaplin, U. Stege and P. Taill&olving Large FPT Prob-
lems on Coarse Grained Parallel Machindaurnal of Computer and System
Sciences 67 (4), pp 691-706, 2003.

K. Eickmeyer, M. Grohe and M. @ber, Approximation of natural W[P]-
complete minimisation problems is harth Proceedings of the 23rd IEEE
Conference on Computational Complexity (CCC’'08), pp.8-18, 2008.

Vladimir Estivill-Castro, Rodney Downey, Michael R. Fellows, Elena Prieto-
Rodriguez and Frances A. Rosamoiiijtting Up Is Hard To Do: the Pa-
rameterized Complexity of k-Cut and Related ProbleRiectronic Notes in
Theoretical Computer Science, Vol. 78 (2003), 205-218.

J. Flum and M. GroheRParameterized Complexity and Subexponential Time,
Bulletin of the European Association for Theoretical Computer Science 84,
October 2004

Parameterized Algorithms 39

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

J. Flum and M. GroheParameterized Complexity Theo8pringer, 2006.

M. Frick and M. Grohe:Deciding First-Order Properties of Locally Tree-
Decomposable Graph&roceedings of the 26th International Colloguium on
Automata, Languages and Programming, Lecture Notes in Computer Science
1644, pp 331-340, Springer-Verlag, 1999.

Henning FernauParameterized Algorithmics: A Graph-Theoretic Approach.
Habilitationsschrift, Universitat Tubingen, Tubingen, Germany, 2005.

J. Guo and R. Niedermeietnvitation to Data Reduction and Problem Ker-
nelizationACM SIGACT News 38(1), pp 31-45, Association for Computing
Machinery (ACM), 2007.

M. Hallett and C. McCartinA Faster FPT Algorithm for the Maximum Agree-
ment Forest ProblenTheory of Computing Systems 41 (3), 2007.

R. Impagliazzo, R. Paturi and F. Zan#hich problems have strongly exponen-
tial complexity? JCSS 63(4),: 512-530, 2001.

F. Huffner, R. Niedermeier and S. Wernick&chniques for practical fixed-
parameter algorithmsto appear in The Computer Journal, Oxford University
Press, 2007.

J. Gramm, J. Guo, F. Huffner and R. Niedermei@ata reduction, exact and
heurisitc algorithms for clique coveroceedings of 8th ALENEX, pp 86-94,
SIAM, 2006.

J. Gramm, R. Niedermeier and P. Rossmaritiked-parameter algorithms for
Closest String and related problemfdgorithmica 37, pp 25-42, 2003.

M. Mahajan and V. RamarParameterizing Above the Guarantee: MAXSAT
and MAXCUTJournal of Algorithms 31, pp 335-354, 1999.

D. Marx: Parameterized Complexity and Approximation Algorithtosppear
in The Computer Journal, Oxford University Press, 2007.

G. L. Nemhauser and L. E. Trotter Wertex packings: Structural properties
and algorithmsMathematical Programming 8, pp 232-248, 1975.

R. Niedermeierinvitation to Fixed-Parameter Algorithm&xford University
Press, 2006.

R. Niedermeier and P. Rossmaniti® general method to speed up fixed-
parameter tractable algorithmdnformation Processing Letters 73, pp 125-
129, 2000.

S.-1. Oum: Approximating rank-width and clique-width quickRroceedings
of 31st International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence, pp 49-58, 2005.

40

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Algorithms and Theory of Computation Handbook, Second Edition

L. Perkovic and B. ReedAn Improved Algorithm for Finding Tree Decom-
positions of Small Widthinternational Journal of Foundations of Computer
Science 11 (3), pp 365-371, 2000.

B. Reed, K. Smith and A. VettaFinding odd cycle transversal®perations
Research Letters 32, pp 299-301, 2004.

B. Reed: Finding approximate separators and computing treewidth quickly.
STOC '92: Proceedings of the twenty-fourth annual ACM symposium on the-
ory of computing, pp 221-228, 1992.

N. Robertson and P. D. Seymou@raph minors - a surveysurveys in Combi-
natorics, I. Anderson (Ed.), Cambridge Univ. Press, pp 153-171, 1985.

N. Robertson and P. D. Seymou@raph minors Il. Algorithmic aspects of
tree-width.Journal of Algorithms 7, pp 309-322, 1986.

N. Robertson and P. D. Seymo@raph minors | - XVappearing in J. Comb.
Theory Series B, 1983 - 1996.

D. Seese:The structure of models of decidable monadic theories of graphs.
Ann. Pure and Appl. Logic, Vol 53, pp 169-195, 1991.

C. Sloper and J. A. TelleAn overview of techniques for designing parameter-
ized algorithmsto appear in The Computer Journal, Oxford University Press,
2007.

U. Stege: Resolving Conflicts in Problems in Computational Biochemistry.
Ph.D. dissertation, ETH, 2000.

K. Weihe: Covering trains by stations or the power of data reducti®roceed-
ings of Algorithms and Experiments (ALEX98), R. Battiti and A. A. Bertossi
(Eds.), pp 1-8, 1998.

