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1 Introduction

This paper falls within an overall program articulated in Downey, Hirschfeldt, Nies and Terwijn [8], and Downey
and Hirschfeldt [4], of trying to calibrate the algorithmic randomness of reals1). There are three basic approaches
to algorithmic randomness. They are to characterize randomness in terms of algorithmic predictability (“a random
real should have bits that are hard to predict”), algorithmic compressibility (“a random real should have segments
that are hard to describe with short programs”), and measure theory (“a random real should pass all reasonable
algorithmic statistical tests”).

This last intuition was clarified by Martin-Löf who identified “reasonable algorithmic statistical tests” with
c. e. open sets and suggested the following rather successful notion of randomness.

Definition 1 A computably enumerable sequence of open sets 〈Un : n ∈ ω〉 is a Martin-Löf test if and only
if for every n, µ(Un) ≤ 2n.

The intersection of the sets forming any particular Martin-Löf test, 〈Un : n ∈ ω〉, is a set of measure 0, any
real x /∈ ⋃

n ∈ ωUn is said to pass or withstand the test. A real is then Martin-Löf random or 1-random if it
passes all Martin-Löf tests. One of the reasons for the success of this definition is that it is relatively satisfying in
that there are equivalent natural definitions in terms of the other paradigms.

For example, Schnorr proved that a real α is 1-random iff there is a constant c such that for all n,
K(α � n) ≥ n − c (see [10, p. 238]). That is, using the notion of prefix-free complexity, a real is 1-random
iff its initial segments are incompressible. This also allows for a “natural” Martin-Löf random real. Let U be a
universal prefix free machine, then Ω = µ(dom(U)) =

∑
U(σ)↓ 2−|σ| is called Chaitin’s Omega and is 1-random.

∗ Corresponding author: e-mail: Rod.Downey@mcs.vuw.ac.nz
∗∗ e-mail: griffiths@member.ams.org
∗∗∗ e-mail: glaforte@uvw.edu
1) In this paper “real” will mean a member of Cantor space 2ω . We write 2<ω for the set of all finite strings of 0s and 1s (sometimes

written {0, 1}∗). The Cantor space is equipped with the topology where the basic clopen sets are [σ] = {σ�α : α ∈ 2ω}, for each
σ ∈ 2<ω . Such clopen sets have measure 2−|σ|. This space is measure-theoretically identical with the rational interval (0, 1), without being
homeomorphic to it. It is worth mentioning that our results do not depend on the base 2 – any other finite alphabet would give essentially the
same notions of randomness and triviality (see, for example, [17]). We assume that the reader is somewhat familiar with basic Kolmogorov
complexity, and the notion of a prefix-free machine, that is, a Turing machine M such that for all σ, if M(σ) ↓ , then for all strings τ
with σ ≺ τ , M(τ)↑. Prefix-free machines are used in the algorithmic information theory of reals. There is a minimal universal such machine
U, in the sense that for all M there is a constant cM such that, for all σ, KU(σ) ≤ KM(σ) + cM. Here KD(σ) denotes the Kolmogorov
complexity of a string σ relative to a machine D. That is the length of shortest string τ with D(τ) = σ, and ∞ if no τ exists. We let K(σ)
denote KU(σ). Our basic references are per Li-Vitányi [10], or Chaitin [2].
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Ω is a computably enumerable (c. e.) (or left computable) real in that there is a computable sequence of
rationals r0 < r1 · · · whose limit is Ω. (ri is the measure of the domain of U after i stages of some enumeration.)
A real is c. e. iff it is the measure of domain of a prefix-free machine and occupy the same distinguished place in
algorithmic randomness that c. e. sets do in classical computability theory. Recent work of Kučera and Slaman
([11]) has shown that, in some sense, Ω is essentially the only random c. e. real.

Additionally this prefix-free characterization allows us to compare complexities of reals by defining α ≤K β
iff there is a c such that for all n, K(α � n) ≤ K(β � n) + c. Although not a “reducibility” in the intuitive sense,
this pre-ordering and the degree structure induced by it is a natural object of study. On the c. e. reals, this degree
structure is a dense distributive uppersemilattice, with the top degree, that of Ω, join inaccessible, and the join
operation induced by arithmetical addition, [α] ∨ [β] = [α + β] (see [6]). Further results on ≤K can be found
in [8].

1-randomness has a lot of very attractive properties. For instance, it is not hard to construct an effective
enumeration U je of all Martin-Löf tests. Given such an enumeration, if we let Ve =

⋃
j∈ω U

j
j+e+1, then Ve is a

universal Martin-Löf test: that is, a real x ∈ ⋂
e∈ω Ve if and only if there is a j such that x ∈ ⋂

e∈ω U
j
e . Using a

universal Martin-Löf test, it is easy to show that there are c. e. Martin-Löf random reals. Such tests correspond to
universal machines.

So far we have examined the measure-theoretic and compression paradigms. However, if you asked most
people what they would regard as “random”, we think that they would suggest that the sequence should be
“unpredictable”. Schnorr (and from another point of view Levin) developed this compelling intuition into a
notion of randomness. In particular, knowing the first n bits of a real x should make it no easier to guess the
n+1st bit. Formalizing this intuition leads to the notion of an effective martingale:

Definition 2 A martingale is a function f : 2<ω �−→ R+ ∪ {0} such that f(σ) = 1
2

(
f(σ0) + f(σ1)

)
for all σ ∈ 2<ω. We say that the martingale succeeds on a real α, if lim supn F (α � n) = ∞. A martin-
gale f is effective if there is a uniformly computable increasing sequence f(σ)[s] of rationals such that, for
every σ ∈ 2<ω, lims→∞f(σ)[s] = f(σ). A martingale f is computable if there is in addition a uniformly
computable nonincreasing error function e such that for all σ ∈ 2<ω, lims→∞e(σ)[s] = 0 and for all s,
f(σ) − f(σ)[s] ≤ e(σ)[s].

The idea is that a martingale is a betting strategy, and no “effective” betting strategy should result in winning
infinite capital. An extension of the basic fairness criteria is the following basic averaging property.

Theorem 1 (Kolmogorov’s inequality) For any martingale F : 2<ω −→ R , any σ ∈ 2<ω, and any a ∈ R+,
µ([σ] ∩ { x : ∃mF (x � m) > a }) ≤ 2−|σ|F (σ)a−1.

Schnorr 14] showed that a real x is Martin-Löf random if and only if no computably enumerable2) martingale
succeeds on x. Thus all three paradigms have versions which coincide on the class of 1-random reals. An
extension of the basic fairness criteria is the following basic averaging property.

Of relevance to our investigation is the following weakening of the notion of a martingale. It is related to
Zvonkin and Levin’s notion of a semimeasure in [20].

Definition 3 A supermartingale is a function f : 2<ω −→ R+ ∪ {0} such that f(σ) ≥ 1
2

(
f(σ0) + f(σ1)

)
for all σ ∈ 2<ω. We say that the supermartingale succeeds on a real α, if lim supn F (α � n) = ∞.

In fact, however, in the context of betting strategies, the analogue of the notion of Martin-Löf test is that of
effective supermartingale. It is not difficult to construct a computable enumeration of all effective supermartin-
gales, 〈gi : i ∈ ω〉, by simply enumerating all computable real-valued functions on bit strings and stopping the
enumeration of any function while it threatens to fail the supermartingale condition. Schnorr (cf. Levin [9]) noted
that letting, for all σ ∈ 2<ω, f(σ) =

∑
i∈ω 2−igi(σ) makes f an effective supermartingale such that for all

effective supermartingales g, there is a constant c such that for all σ ∈ 2<ω, cf(σ) ≥ g(σ). Such an f is a
multiplicatively optimal effective supermartingale. Such an optimal martingale is a fortiori universal – if g is
any effective supermartingale that succeeds on a real x, then f also succeeds on x. Since a function f(σ) is a
supermartingale if and only if 2−|σ|f(σ) is a semimeasure in the sense of Zvonkin and Levin, the existence of
a multiplicatively optimal supermartingale is also a consequence of the existence of the universal semimeasure
in [20].

2) A function f is computably enumerable iff it is approximable from below. That is, there is a computable function g such that
lims g(σ, s) = f(σ) and g(σ, s) ≤ g(σ, s + 1).

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Math. Log. Quart. 50, No. 6 (2004) / www.mlq-journal.org 615

We will prove here that super-martingales are necessary here since there is no effective enumeration of all
computably enumerable martingales. As well, in spite of the fact that there is a universal effective martingale, we
prove that there is no multiplicatively optimal effective martingale.

Schnorr [14] pointed out that the fact that 1-randomness was equivalent to a notion involving effective martin-
gales. Since effective martingales correspond to computably enumerable betting strategies rather than computable
betting strategies, Schnorr argued that 1-randomness is too strong to capture the intuitive notion of effective ran-
domness. He suggested two alternative notions

Definition 4 (Schnorr [14])

(i) We say that a real α is computably random iff no computable martingale3)F : 2<ω −→ Q+ ∪ {0} succeeds.

(ii) A real α is a Schnorr random iff it passes all Schnorr tests, where a Schnorr test is a Martin-Löf test
{Un : n ∈ N}, but with µ(Un) = 2−n.

Whilst Lutz and others have used miniaturizations of these notions in computational complexity theory, our
understanding of these notions remains relatively poor. A major goal of the present paper is to add to this
understanding.

Many basic questions remain. It was a longstanding open question of van Lambalgen and others, for instance,
to give a machine characterization of Schnorr or of computable randomness. In [3], Downey and Griffiths gave
the first machine characterization of Schnorr randomness.

Theorem 2 (Downey and Griffiths [3]) We say that a prefix-free machine M is computable, if µ(dom(M)) is
a computable real. Then a real α is Schnorr random iff for all computable machines M, KM(α � n) > n−O(1).

In the same way as for 1-randomness, this allows us to compare the Schnorr complexity of reals. α ≤Sch β iff
for all computable machines M there is a computable machine M̂ such that KM̂(α � n) ≤ KM(β � n) + O(1),
where we regard the right hand side as infinite if some initial segment of β is not in the range of M.

In this paper, we give a the first test characterization of computable randomness, which could be turned into
a machine one also. This solves an open problem from Ambos-Spies and Kučera [1]. The characterization is
roughly, that a real is computably random iff it passes all “computably graded” tests, which are Martin-Löf tests
with kind of a road map to the maximum measure in them.

Next we turn to looking at the interesting notion of triviality for Schnorr complexity. Recall that a real is called
K-trivial if for all n, K(α � n) ≤ K(n) +O(1). Solovay [16] showed that noncomputableK-trivial reals exist.
Downey, Hirschfeldt, Nies and Stephan [7] gave a simple construction of such reals, and proved that theK-trivial
reals gave a natural requirement free solution to Post’s problem. Nies has later shown that the Turing degrees of
K-trivial reals form a Σ0

3 ideal in the degrees, and are all low.
In [3], Downey and Griffiths began the study of Schnorr trivial reals, where now we ask that α ≤Sch 1∞.

Downey and Griffiths proved that noncomputable Schnorr trivials exist.
We prove the following: No Schnorr trivial c. e. real is wtt-complete. Schnorr trivials can be Turing complete.

If α ≤tt β and β is Schnorr trivial, then α is too, and additionally, the tt-degrees of Schnorr trivials form an ideal
in the tt-degrees. Finally, we construct a c. e. Turing degree which contains no Schnorr trivial reals.

The relationship between Turing reducibility and Schnorr triviality remains murky. For one thing, we do not
even know whether a Schnorr trivial real must be ∆0

2. (This is the case forK-trivial reals, since they are all low.)
We conjecture that this is false: that in fact every real that is low for Schnorr is Schnorr trivial. It would then
follow from a result of Terwijn and Zambella [18] that there are 2ω distinct Schnorr trivials. We can prove that
for every low for Schnorr real α there is an infinite increasing sequence {nj : j ∈ ω } on which the real is trivial.
In other words, for every computable M, there exists a computable M′ and a number c such that that for all j,
KM′(α � nj) ≤ KM(1nj )+ c. ForK-triviality, this would be enough: since universal prefix-free machines exist,
there is an essentially machine-independent notion ofK-complexity. Given any universal prefix-free machine M,
for any such sequence, there exist constants c1, c2, c3 such that for every j ∈ ω,

KM(α � j) ≤ KM(α � nj)+c1 ≤ KM(1nj )+c2 ≤ KM(1j)+c3,

3) It is also possible to consider f ’s that map to the computable reals, but this gives rise to the same notion, a fact established by Schnorr.
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and this would make α K-trivial. In the present context, this is not sufficient – in fact, there can be no universal
computable machine. We therefore leave the question of there being any arithmetical bound for Schnorr trivials
open.

In an earlier draft of the present paper, we had proven that every high c. e. degree contains a Schnorr random
real, and, effectivizing a construction of Wang [19], that there were c. e. reals that were Schnorr random but
not computably random. Both of these results have been improved by Nies, Stephan and Terwijn [13] who
constructed Schnorr but not computably random c. e. reals in every high c. e. degree, and showed that every high
c. e. degree contains a computable random c. e. real.

Notation is standard and follows Soare [15].

2 Optimal and universal effective martingales

Above, we referred to Schnorr’s construction of a multiplicatively optimal universal effective super-linebreak
martingale. It is possible to construct a universal effective martingale, i. e., an effective martingale F such
that for every real x, limn→∞F (x � n) = ∞ if and only if there exists an effective martingale f such that
limn→∞f(x � n) = ∞. We describe the construction, also due to Schnorr. Let {Ve : e ∈ ω } be a uni-
versal

Martin-Löf test. Each Ve can be approximated by a computable enumeration Ve[s] of finite sets of prefix-free
strings, so that
Ve[s] ⊆ Ve[s+1] ⊆ Ve. For convenience, assume that at each stage s there is at most one e such that Ve[s] �=
Ve[s+1].
To construct an effective martingale F from {Ve : e ∈ ω }, we begin with F (σ)[0] = 0 for all σ ∈ 2<ω.
At stage s+ 1, for every σ such that σ ∈ Ve[s+1]− Ve[s], we let, for all τ ⊇ σ, F (τ)[s+1] = F (σ)[s] + 1, and,
for all τ ⊂ σ, we let F (τ)[s+1] = F (σ)[s] + 2|τ |−|σ|. It is straightforward to show that F is a martingale, and,
clearly, for every real x, limn→∞F (x � n) = ∞ if and only if x ∈ ⋃

e∈ω Ve.
Given an effective martingale, f , we can form a sequence of sets, Ufe =

⋃{ [σ] : f(σ) > 2e }. This is a
Martin-Löf test by Kolmogorov’s inequality. Suppose Uf = U j in our enumeration of all effective martingales.
Suppose f(σ) > 2j+1. Choose e largest so that f(σ) > 2j+e+1. Then j+e+2 > log f(σ). Also, for all e′ with
0 ≤ e′ ≤ e, [σ] ⊂ U jj+e′+1. This implies F (σ) ≥ e+1 > log f(σ) − j − 1. Of course, this implies that F is
a universal effective martingale. We can describe F as being logarithmically optimal since if f is an effective
martingale, there exists a c such that for all σ ∈ 2<ω, log f(σ) < F (σ) + c.

Recall that the construction of a multiplicatively optimal effective supermartingale depended on the existence
of an computable enumeration of all effective supermartingales. It is not hard to show that there can be no
computable enumeration of all effective martingales. (We have seen statements to the contrary in the literature,
and we can find no proof of the following result but suspect that it might have been known.)

Proposition 3 There is no effective enumeration of all effective martingales.

P r o o f. This is a straightforward diagonalization argument. Suppose M̂i, i ∈ ω, is an effective enumeration
of all c. e. martingales, with or without repetition. We can effectively eliminate all martingales that are the
constant-zero function to produce an enumerationMi, i ∈ ω, of the not-everywhere-zero c. e. martingales in this
list. We simply list M̂0(λ)[0], then M̂0(λ)[s], . . . , M̂s(λ)[s] for increasing values of s and select the least i such
that M̂i(λ)[s] > 0, and i has not yet been chosen, to appear next in our new enumeration.

We now derive a contradiction by defining a (nowhere-zero) effective martingale N such that for all i ∈ ω
there exists σ ∈ 2<ω such that |σ| = i and N(σ) �= Mi(σ). In fact N will be computable map from 2<ω to Q .
If |σ| > 0, we write σc for the string formed from σ by changing only the last bit from 0 to 1 or vice versa. For
any string τ �= λ we set τ− = τ � (|τ | − 1), that is, the string formed by removing the last bit of τ .

S t a g e 0 . Find t such that M0(λ)[t] = q0 > 0 and set N(λ)[0] = q0/2.

S t a g e s + 1 . Find t such that for some string σ of length s+1 we see Ms+1(σ)[t] = qn+1 > 0. Let
N(σ)[s+1] = min(N(σ−)[s], qn+1/2). Set N(σc)[s+1] = 2N(σ−)[s] − N(σ)[s+1]; notice this value is
strictly positive. Set N(τ)[s+1] = N(τ−)[s] > 0 for all other strings τ of length s+1.

For every nonempty σ ∈ 2<ω, N(σ−) = (N(σ) +N(σc))/2. Clearly, N is a strictly positive c. e. martingale
that is not equal to Mi for any i, giving the contradiction.
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In fact, the logarithmically optimal effective martingale is essentially the best one can do: Schnorr’s result
showing the existence of a multiplicatively optimal supermartingale fails for martingales. So, in fact, Proposi-
tion 3 follows from this stronger result.

Theorem 4 (Levin) There is no multiplicatively optimal effective martingale.

P r o o f. Suppose F : 2<ω −→ R is an effective martingale. We build a single martingale G such that for all
i ∈ ω there exists σ such that F (σ) �> i/G(σ). So F , an arbitrary martingale, cannot be optimal.

At stage 0, we set G(λ) = 1 and G(1n) = 1 for all n ∈ ω, and also G(1n0) = 1 for all n. The idea is that on
some extension τ of 1n0 we will ensure F (τ) ≤ G(τ)/(n + 1).

At stage s > 0 we work on strategies for n < s. Fix n < s. The strategy to defeat F with 1/(n+ 1) depends
on which of finitely many states the strategy lies in at stage s. Let σ0 = 1n0. Initially, when the strategy is
in state 0, if F (σ0)[s] < 1/(n + 1), we define G(σ00k) = 2k for k = 1+s−n, and G(τ) = 0 for all other
extensions of σ0 of length s+1. At the first stage s where F (σ0)[s] ≥ 1/(n+1), we fix k0 = s−n and wait until∑

τ∈T0
F (τ)[s] ≥ 2k0+1/(n + 1), where T0 is the set of strings of length n+k0+2 extending σ0. This wait is

finite since F is a martingale and F (σ0) ≥ 1/(n+1). At this stage G(σ00k0) = 2k0 . Choose σ1 to be whichever
of σ00k0+1 and σ00k01 gives the smaller value on F at stage s. In other words, F (σ1)[s] ≤ F (σc1)[s], where
τc is the string that results from switching the last bit of τ to the opposite value. Then set G(σ1) = 2k0+1, and
let G(τ)[s] = 0 for all other extensions τ of σ00k0 of length n+k0+1. Note that

∑
τ∈T0

F (τ)[s] − F (σ1)[s] ≥
2k0/(n+1). Inasmuch as any F (τ)[t] can only grow as t increases, if F (σ1) > G(σ1)/(n+1) = 2k0+1/(n+1),

then
∑

τ∈T0
F (τ) ≥ 3 · 2k0

n+ 1
· F (σ00k0) >

2k0+1

n+1
. This implies F (σ0) >

3
2(n+ 1)

.

The strategy now enters state 1, and repeats the process, with extensions of σ1 rather than extensions of σ0. In

general, at stage s in state m, if F (σ0) ≤ 2m+1
2

· 1
n+1

, we define G(σm0k) = 2km−1+l+1 for l ≤ s−km−1,

and G(τ) = 0 for all other previously undefined values on extensions of σ0 of length ≤ s+1. At the first stage s

where F (σ0) >
2m+1

2
· 1
n+1

, we let km = s−n and wait until
∑
τ∈Tm

F (τ)[t] ≥ 2m+1
2

· 2km+1

n+1
, where

Tm is the set of strings of length n+km+2 extending σ0. As before, this wait is finite since F is a martingale

and F (σ0) ≥ 2m+1
2

· 1
n+1

. At this stage G(σm0km) = 2km . Choose σm+1 to be whichever of σm0km+1 and

σm0km1 gives the smaller value on F at stage s. Then set G(σm+1) = 2km+1, and and let G(τ)[s] = 0 for all

other extensions τ of σm0km of length n+km+1. Note that
∑

τ∈Tm
F (τ)[s] − F (σm+1)[s] ≥ 1

2
2m+1

2
2km+1

n+1
.

Hence, if F (σm+1) > G(σm+1)/(n+ 1) = 2km+1/(n+ 1), then

∑
τ∈Tm

F (τ) ≥ 2km+1

n+1
+

1
2

2m+1
2

2km+1

n+1
>

2(m+1)+1
2

2km

n+1
.

Since |σm+1| − |σ0| = km, this would imply F (σ0) > (2(m+ 1) + 1)/2(n+ 1).
Since F (σ0) is finite, there must be some least m so that F (σ0) ≤ (2(m + 1) + 1)/2(n + 1). We have,

therefore, by the above argument, F (σm+1) ≤ G(σm+1)/(n+ 1), as required.

3 Computable randomness and computably graded tests

Schnorr, in [14], argues that because effective martingales can map to any c. e. values, Martin-Löf randomness
should be replaced by a wider notion, one obtained by substituting the notion of computability for computable
enumerability. Because Martin-Löf randomness can be characterized in terms of either martingales or test sets,
this can be done in two ways. The first is to define a real x to be computably random if no computable martingale
succeeds on x. With some work, this notion can be seen as involving the real passing all the members of a more
restricted class of test sets.
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Definition 5 A Martin-Löf test {Vn} is computably graded if there is a computable map f : 2<ω × ω −→ R

such that, for any n ∈ ω, σ ∈ 2<ω, and any finite prefix-free set of strings {σi}i≤I with
⋃I
i=0[σi] ⊆ [τ ], the

following conditions are satisfied:

1. µ(Vn ∩ [σ]) ≤ f(σ, n);
2. ΣIi=0f(σi, n) ≤ 2−n;

3. ΣIi=0f(σi, n) ≤ f(τ, n);

By combining conditions 1. and 2. it is immediately apparent that µ(Vn) ≤ 2−n for all n. Further, if condition
2. holds for any finite prefix free set {σi}, then it also holds for any infinite prefix free set of strings: the infinite
sum is just the supremum of the associated finite sums, so is also no greater than 2−n. Similarly, since 3. holds for
finite prefix free sets it also holds for infinite prefix free sets. If

⋃
i[σi] = [τ ], then we can summarize conditions

1.–3. in Definition 5 by the following:

µ(Vn ∩ [τ ]) ≤ ∑I
i=0 f(σi, n) ≤ f(τ, n) ≤ 2−n.

A real x withstands a computably graded test iff x /∈ ⋂
n Vn. The computably graded tests give an alternative to

the martingale characterization of the notion computably random.

Theorem 5 A real x is computably random if and only if it withstands all computably graded tests.

The equivalence follows immediately from the following:

Theorem 6

(i) From a computable martingale G : 2<ω −→ Q we can effectively define a computably graded test (Vn, f)
such that for every real x, if lim supj G(x � j) = ∞, then x ∈ ⋂

n Vn.

(ii) From a computably graded test (Vn, f) we can effectively define a computable martingale G : 2<ω −→ Q

such that for every real x, if x ∈ ⋂
n Vn, then lim supj G(x � j) = ∞.

P r o o f. Showing (i) is relatively simple. Given martingale G we may assume without loss of generality that
G(λ) = 1. Define test sets Vn via Vn = {[σ] : G(σ) ≥ 2n}.

Not only does Vn satisfy the property µ(Vn) ≤ 2−n but also µ(Vn ∩ [σ])/µ(σ) ≤ G(σ)/2n. That is, the
proportion of [σ] that intersects with Vn, which is the proportion for which the martingale G exceeds 2n,
is no greater than G(σ)/2n (a consequence of Kolmogorov’s inequality, Theorem 1). If we define a computable
function f : 2<ω × ω −→ Q by f(σ, n) = G(σ)µ(σ)2−n, then the inequality can be rewritten as
µ(Vn ∩ [σ]) ≤ f(σ, n). We also note that for any prefix-free set of strings {σi},

∑
i f(σi, n) ≤ 2−n, since∑

i f(σi, n) = 2−n
∑

iG(σi)µ(σi) ≤ 2−n. This inequality on G follows from the fact that the average
of G, weighted by µ(σi), is G(λ) = 1, if the strings σi partition the entire unit interval. This is clear if the
strings σi represent all 2l strings of a fixed length l, the general case follows from this restricted case.

The function f satisfies condition 3. in Definition 5 as a consequence of G(
⋃
i σi) =

∑
iG(σi)µ(σi).

Thus Vn and f satisfy 1., 2. and 3. in Definition 5, and furthermore if lim supj G(x � j) = ∞, then x ∈ ⋂
n Vn

since, for all n, if G(x � kn) ≥ 2n, then [x � kn] ⊆ Vn.

Establishing (ii) is more involved. We need a preliminary definition:

Definition 6 A function f : X −→ R is co-c. e. if there exists a computable approximation f : X×ω −→ Q

such that for all x ∈ X , lims→∞f(x)[s] = f(x) and, for all s ∈ ω, f(x)[s] ≥ f(x)[s+1].

Without loss of generality we may assume, for all n, that Vn+1 ⊆ Vn. Given Vn and f we define the com-
putable martingale G : 2<ω −→ Q via two intermediate functions: h : 2<ω × ω −→ R , a co-c. e. map, and
J : 2<ω −→ R, a co-c. e. martingale.

Lemma 3.1 (Schnorr [14]) From a co-c. e. martingale J : 2<ω −→ R we can effectively find a computable
martingale G : 2<ω −→ Q such that for all strings σ, G(σ) ≥ J(σ).

For a proof in English, see Downey and Hirschfeldt [4].

Thus once we construct our co-c. e. martingale J : 2<ω −→ R , such that for every real x, if x ∈ ⋂
n Vn, then

lim supj J(x � j) = ∞, we are assured of the existence of the necessary effective martingaleG.
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Let Pσ,s be the collection of all finite partitions of σ into a finite prefix-free set of strings of length at most
|σ|+ s (for example, {σ00, σ01, σ1} ∈ Pσ,2). Then Pσ =

⋃
s∈ω Pσ,s is the collection of all finite partitions of σ

into a finite prefix-free set of strings. We use an infimum over all partitions {σi : i ∈ I} in Pσ,s to define h: Let
h(σ, n)[s] = 2|σ| inf{σi : i∈I}∈Pσ,s

∑
i∈I f(σi, n). Then with h(σ, n) = lims→∞h(σ, n)[s], we have a co-c. e.

function and h(σ, n)[s] = 2|σ| inf{σi : i∈I}∈Pσ

∑
i∈I f(σi, n).

First, note that 2|σ|µ(Vn ∩ [σ]) ≤ h(σ, n) ≤ 2|σ|2−n as f satisfies conditions 1. and 2. Each partition
of σ into a finite prefix-free set, other than the singleton {σ}, is union of a partition of σ0 and a partition of σ1.
Thus the infimum in the definition of h gives us that, for each n,

h(σ, n) = min
(

1
2

(
h(σ0, n) + h(σ1, n)), 2|σ|f(σ, n)

)
.

We claim that 2|σ|f(σ, n) ≥ 1
2

(
h(σ0, n) + h(σ1, n)

)
. Otherwise, dividing both sides by 2|σ|, we would have for

all partitions { σi : i ∈ I } of σ (other than {σ}) the inequality f(σ, n) <
∑

i∈I f(σi, n). But this is not possible
by condition 3. on f . Thus, for each n, h(σ, n) = [h(σ0, n) + h(σ1, n)]/2, so that the function λσ . h(σ, n) is a
martingale. Hence, we have 0 ≤ 2|σ|µ(Vn ∩ [σ]) ≤ h(σ, n) ≤ 2|σ|f(σ, n) ≤ 2|σ|2−n.

Let J(σ) =
∑∞

n=0 h(σ, n). Clearly J(σ) ≤ 2|σ|
∑∞

n=0 2−n = 2|σ|+1. J , being a sum of martingales, is
obviously a martingale. Let σ = x � k, and suppose [σ] ⊂ Vn. Then

J(σ) ≥ ∑n
j=0 h(σ, j) ≥ 2|σ|

∑n
j=0 µ(Vj ∩ [σ]) = 2|σ|(n+ 1)2−|σ| = n+ 1.

Then since x ∈ ⋂
n Vn iff such a σ exists for all n, we have that x ∈ ⋂

n Vn implies lim supj J(x � j) = ∞.
To see that J is co-c. e., we must have an effective way of approximating J from above. Let

J(σ)[s] =
∑s
p=0 h(σ, p)[s] +

∑∞
p=s+1 2|σ|2−p.

This is computable as the first sum is a finite sum of computable rational numbers, and the second sum is simply
2|σ|2−s. Since h(σ, p)[s+1] ≥ h(σ, p)[s], and h(σ, s+1)[s+1] ≤ 2|σ|2−(s+1), J(σ)[s+1] ≤ J(σ)[s]. Thus J is
co-c. e., as required.

4 Schnorr trivial reals

A change in the notion of randomness that goes further than the shift from Martin-Löf randomness to computable
randomness involves a further restriction of the class of allowable test sets, leading to the notion of Schnorr
randomness. It was shown in Downey and Griffiths [3] that Schnorr randomness is closely related to another
pre-theoretic notion of randomness: one involving the difficulty of describing initial segments of a random real
via prefix-free machines with a computable domain. If M is a prefix-free machine, then µ(M) =

∑
M(σ)↓ 2−|σ| is

a c. e. real. A fundamental result involving such machines is the Kraft-Chaitin inequality, which says not only that
such a sum

∑
M(σ)↓ 2−|σ| ≤ 1 but also that any c. e. sequence of pairs 〈n0, τ0〉, 〈n1, τ1〉, . . . with the property

that
∑
i∈ω 2−i ≤ 1 can be used to define a prefix-free machine M and a prefix-free set { σi : i ∈ ω } such

that for all i, |σi| = ni and M(σi) = τi. If M is a prefix-free machine, then we define the M-complexity of a
string τ , KM(τ), to be the length of the shortest σ such that M(σ) ↓= τ . (If τ is not in the range of M, then its
M-complexity is ∞.) Schnorr and Chaitin showed that a real x is Martin-Löf random if and only if there is no
way for any prefix-free machine to describe its initial segments succinctly: for every prefix-free machine M there
is a c such that for every n, KM(x � n) > n − c. Downey and Griffiths [3] showed requiring the measure of
the domain of a prefix-free machine to be a computable real leads to an alternative characterization of Schnorr
randomness. Notice that no universal prefix-free machine can be computable, since such a machine must have
measure equal to a Martin-Löf random real, which must have degree 0′. Computable machines can be total,
however, in the sense that they can give every string as an output. We have an upper bound on the complexity
required of such machines:

Proposition 7 There is a computable machine, M, and a constant c ∈ ω such that for all finite strings σ,
KM(σ) ≤ |σ| + 2 log(|σ|) + c
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P r o o f. We describe the machine M and then we check that its domain is a computable real. We should like
M to be as close to the identity function as is possible for a prefix-free machine. M maps the string l(σ)�σ to σ,
where l(σ) is a special prefix-free coding of |σ|, consisting of the binary representation of |x| but with every bit
repeated, and then the ‘end indicator’ bits 01. For example, if σ = 1001, then |σ| = 4 and l(σ) = 11000001.
So l(σ)σ = 110000011001 and M(l(σ)σ) = σ. The length of l(σ) is of the order 2 log(|σ|), so M maps a
string of length order |σ| + 2 log(|σ|) to σ, and its range is 2<ω. The domain of M is prefix-free because the set
L = { l(σ) : σ ∈ 2<ω } is prefix-free.

This machine M gives the result, provided µ(M) is a computable real. Consider all strings σ with |σ| = n.
The the domain of M contains all possible extensions of l(σ) of length |l(σ)| + n, so their combined measure
is 2n2−|l(σ)|+n = 2−|l(σ)|. Hence µ(M) =

∑
τ∈L 2−|τ |. There are two strings of length 4 in L (0001 and

1101). There are two strings of length 6 (110001 and 111101) and four strings of length 8. Generally there
are 2i strings of length 2(i + 2) for each i ≥ 2. Thus µ(M) = 2−3 + 2.2−6 + 22 · 2−8 + 23 · 2−10 + · · · =
2−3 + 2−5 + 2−6 + 2−7 + · · · = 2−3 + 2−4 = 3/16.

Machine characterizations of randomness are interesting partly because they allow one to introduce natural
reducibilities between reals. These reducibilities can then be used to describe notions of extreme nonrandomness,
or triviality. In essence, triviality means there is always a (uniform) shorter way to describe initial segments of x.
The machine characterization of Schnorr randomness yields a natural reducibility and notion of triviality that is
different from the notions of K-reducibility and K-triviality given by considering all prefix-free machines.

Definition 7 x ≤Sch y if and only if for every computable machine M there exists a computable machine M′

and a constant c such that for every n, KM′(x � n) ≤ KM(y � n) + c. A real x is Schnorr trivial if x ≤Sch 1∞.

Unlike K-trivial reals, Schnorr trivial reals are not limited in the high-low hierarchy, a fact that follows from
the even stronger result below.

Theorem 8 There is a c. e. complete Schnorr trivial real.

P r o o f. As pointed out in [3], any computable machine M is equivalent to some machine M′ such that
µ(M′) = 1. This fact helps to simplify the proof. We call a computable machine M total if µ(M) = 1 and
{ 1n : n ∈ ω } ⊂ ran(M). It is not hard to approximate whether or not a machine is total in a Π0

2 man-
ner. To prove the result, we build a c. e. set A and function g ≤T A satisfying the following two sequences of
requirements

Re : if Me is a total machine, then there exist a computable machine M′
e and a c such that

for all n, KM′
e
(A � n) ≤ KM(1n) + c,

Ki if i ∈ K , then g(i) ∈ A,

where 〈Me : e ∈ N〉 is a computable enumeration of all Turing machines with µ(Me) ≤ 1. This clearly suffices
to establish the result.

For general background and notation involving priority arguments, we refer the reader to Soare [15]. The
requirement Re is essentially negative, since the main problem faced in ensuring it is to control the growth of
µ(M′

e). The main conflict involved in the construction is that arising between a negative requirement Re and the
infinitely many coding markers g(i) used by the Ki for i ≥ e. The idea is to progressively move each such g(i) to
a number large enough to guarantee that

∑
j≥iKMe(1g(j)) is so small that the total measure that must be added

to M′
e for the sake of keeping track of the different membership possibilities for all the g(j) is less than 2−i. What

makes this possible is that, if Me is a computable machine, one can wait for a stage such that 1 − µ(Me) is very
small, so that one has a very tight estimate on

∑{KMe(1k) : Me has not yet produced the string 1k }. At such
a point, it is easy to move g(j) for j ≥ i to these large numbers and ensure thereby that for all j ≥ i with g(j) so
defined,

∑
j≥iKMe1g(j) is small enough to allow future changes in µ(M′) to be computably bounded.

C o n s t r u c t i o n .

A number is fresh at stage s if it is larger than the length of any string in the range of any Turing machine
at stage s. It is also helpful to normalize each machine M so that if 1n ∈ ran(M)[s], then for all k < n,
1k ∈ ran(M)[s]. Since we are only interested in total machines, this makes no difference to the satisfaction of
any requirement. We use the priority tree 2<ω to control the construction.
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S t a g e 0 . A[0] = ∅, for all k, g(k)[0] = k, and all other functionals are undefined.

S t a g e s + 1 . We define an approximation to the true path, f [s], of length s+1 consisting of the nodes
accessible at stage s+1. For each e < s we perform the following pair of actions:

First, to satisfy Ke, if e ∈ K[s+1] −K[s], we enumerate g(e)[s] ∈ A.
Next, we allow α = f � e[s] to act if necessary as follows: If s+1 is the first stage since α was last initialized,

we declare all m ≤ s to be stable for α, let jα[s+1] = 1, and immediately end stage s+1. Let k be the least
number that is not stable for α at s. If

(a) 0 ≤ 1 − µ(Me)[s] < 2−2jα[s]−3,

(b) for all β such that β0 ⊆ α, k is stable for β at s, and

(c) 1g(k)[s] ∈ ran(Me),
then enumerate g(k)[s] ∈ A[s+1] and choose, for all m ≥ k, fresh numbers g(m)[s+1] in increasing order.
Declare k stable for α, set jα[s+1] = jα[s]+1, and let f(n)[s] = 0, so that α0 is accessible at stage s+1.
Otherwise, take no action for α, and let f(n)[s] = 1, so that α1 is accessible at s+1.

V e r i f i c a t i o n .

First, note that for all k, g(k)[s] is only moved finitely often. There are only a finite number of α ∈ 2<ω that
are accessible before stage k, and only such α will ever move k. For each such α, there is at most one stage s
at which k is the least number that is not yet stable for α and at which g(k)[s] is enumerated into A[s+1] by the
α-strategy. Hence each such α moves g(k)[s] only finitely often, and so g(k)[s] eventually stops moving. Since
g(k)[s+1] �= g(k)[s] implies g(k)[s] ∈ A[s+1], the action taken at the beginning of each stage guarantees that
K ≤T A.

Let f = lim infs→∞ f [s]. Fix e, letα = f � e, and let s0 be the least stage at whichα is accessible and is never
again initialized . If β0 ⊆ α, then eventually each number k > s0 must become stable for β. Also, eventually,
each g(k)[s] never changes value. Hence, if α1 ⊂ f , then either µ(Me) �= 1 or { 1n : n ∈ ω } �⊆ ran(Me), so
that the requirement is immediately satisfied. So, we may assume α0 ⊂ f . So, for every j > 0 there is a stage
s(j) such that jα[s] = j and jα[s+1] = j + 1. At each stage s(j),

(a) 1 − µ(Me)[s(j)] < 2−2j−3,

(b) g(s0 + j)[s(j)] ∈ A[s(j) + 1],

(c) for all m < g(s0 + j)[s], 1m ∈ ran(Me[s]),

(d) for all k ≥ s0 + j, 1g(k)[s(j)+1] /∈ ran(Me[s]), and

(e) for all k ≥ s0 + j and for all s > s(j), g(k)[s] �= g(k)[s(j)].
For each m ∈ ran(Me)[s], let σm[s] be the shortest, lexicographically least string such that Me(σn)[s] = 1m.
Clearly, lims→∞|σm[s]| = KMe(1n). We will use the Kraft-Chaitin theorem to construct a computable machine
M′ satisfying the requirement, by enumerating pairs 〈s, σ〉 into a c. e. set R. g(s0+1)[s(1)+1] is the least number
that we have to worry about. So, let τ− = A � (g(s0+1)[s(1)+1]), and, for each m ≤ |τ−], enumerate
〈KMe(1m) + 2, A � m〉 into R[s(1)]. Notice that this adds at most 2−2 to the measure of M′, since µ(Me) = 1.
Let m1 = |τ−|, and for each j > 1, let mj = max{m : 1m ∈ ran(M[s(j)]) }. Notice that

g(s0+j)[s(j)] ≤ mj < g(s0+j)[s(j)+1].

For each bit string σ with |σ| < j, let τσ[s(j)+1] be defined by τσ(g(s0 + k))[s+1] = σ(k) for all k < j and
τσ(m)[s(j)+1] = A(m) for all other m ≤ mj .

For each m ≤ mj , if 〈|σm[s(j)]| + 3, τσ[s(j)+1] � m〉 /∈ R[s(j)], then enumerate it into R[s(j)+1]. Note
that for each m ≤ mj , 〈|σm[s(j)]| + 3, A[s(j)+1] � m〉 ∈ R[s(j)+1]. Since limj→∞mj = ∞, this shows that
for allm,KM′(A � m) ≤ KMe(1m)+3. Ifm ≤ mj−1, then 〈|σm[s(j)]| + 3, τσ[s(j)+1] � m〉 is enumerated into
R[s(j)+1] only if σm[s(j − 1)] �= σm[s(j)]. If mj−1 < m ≤ mj , then 1m /∈ ran(M[s(j − 1)]). Hence, if S =
{m : 〈|σm[s(j)]| + 3, τσ[s(j)+1] � m〉 is enumerated into R[s(j)+1] }, then

∑
m∈S 2−|σm|−3 < 2−2(j−1)−6.

Since there are only 2j bit strings of length j, this means that the measure of the machine M′ is increased by
at most at most 2j · 2−2(j−1)−6 = 2−j−4 at stage s(j)+1. This shows M′ is computable. So M′ satisfies the
requirement.
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Because both complete Schnorr trivial reals exist, and computable Schnorr trivial reals exist, one might wonder
whether every c. e. degree contains a Schnorr trivial real. The following theorem yields a negative answer to this
question.

Theorem 9 There exists a c. e. set A such that for all sets B if B ≡T A, then there exists a computable
machine M′ such that for all c. e. machines M and numbers c there is an n such thatKM(B � n) > KM′(1n)+ c.

P r o o f. We must build a c. e. set satisfying the following sequence of requirements:

RΦ,Ψ : if Ψ(Φ(A)) = A, then there exists a computable machine M′ such that for each machine M
and each c there exists an n such that KM(Φ(A) � n) > KM′(1n) + c.

The strategy for a requirement RΦ,Ψ is composed of an infinite sequence of strategies for subrequirements

SΦ,Ψ,i : KMi(Φ(A) � n) > KM′(1n) + i,

that are only allowed to act on a sequence of stages at which Ψ(Φ(A)) = A appears more and more likely to
be the case. Each such substrategy has a large number m associated to it and picks a sequence of witnesses
x1, . . . , xm /∈ A such that for every 1 ≤ i < m, ψ(Φ(A);xi) < xi+1. Once these witnesses have been chosen,
we enumerate the pair 〈 logm−i−1, 1ψ(Φ(A);xm)〉 into a c. e. set defining M′. If there is no stage s and string σ
such that |σ| ≤ logm+i and Mi(σ) = Φ(A) � ψ(Φ(A);xm), then there is no need to ever take further action.
At any stage s where there is a string σ such that |σ| ≤ logm+i and Mi(σ) = Φ(A) � ψ(Φ(A);xm), we
enumerate the greatest xj /∈ A[s] into A[s+1]. If Ψ(Φ(A)) = A, Φ(A) must change on ψ(Φ(A);xj), so that
Mi will be forced to converge on at least m+1 different strings of length less than or equal to logm−i, thereby
adding (m+1) · 2− logm−i > 2i+1 ≥ 2 to the measure of Mi. By Kraft’s inequality, µ(Mi) ≤ 1, so this is not a
possibility.

The priority organization of the requirements involves interleaving the subrequirements needed for strategies
of type R, a task that is straightforward, although a little involved.

C o n s t r u c t i o n .

We use the tree of strategies 2<ω to control the construction, and adopt the convention that all uses with c. e.
oracles are nondecreasing in the stage and increasing in the argument. The priority arrangement of the require-
ments is accomplished by a list function L, defined recursively on the nodes in 2<ω and the natural numbers. For
all n ∈ ω, L(λ, n) = RΦ,Ψ, where n〈Φ,Ψ〉 under some standard enumeration of pairs of computable function-
als. For any σ ∈ 2<ω, if L(σ, 0) = RΦ,Ψ for some Φ and Ψ, then for every n ∈ ω, L(σ1, n) = L(σ, n+1),
L(σ0, 2n) = L(σ, n+1), and L(σ0, 2n+1) = SΦ,Ψ,n. Otherwise, L(σ0, n) = L(σ1, n) = L(σ, n+1). For each
σ ∈ 2<ω, σ has requirement L(σ, 0) assigned to it.

A node is initialized by having all its associated parameters undefined and associated sets set to ∅. A node α
with a requirement RΦ,Ψ assigned to it has a machine Mα assigned to it that is built by enumerating pairs 〈k, τ〉
into a c. e. set Wα. By the Kraft-Chaitin theorem, if

∑
〈k,τ〉∈Wα 2−k ≤ 1, this defines a prefix-free machine

Mα such that for every 〈k, τ〉 ∈ Wα, there is a string σ with |σ| = k such that Mα(σ) ↓= τ . A node α with a
requirement SΦ,Ψ,i assigned to it has parameter for a starting number sα[s], and a sequence of witness parameters
x(α, 1)[s], . . . , x(α, 2s

α+i+1)[s]. The construction of A and the necessary machines proceeds in stages.

S t a g e 0 . We initialize all nodes in 2<ω.

S t a g e s+1 . We define an approximation to the true path, f [s], of length at most s and allow each node
α ⊂ f [s] to act. If α ⊂ f [s], then we call s an α-stage. Let n = |α|. Let s− be the most recent stage at which
α ⊂ f [s−], or the most recent stage at which α was initialized, whichever is greater.

Suppose α has requirement RΦ,Ψ. In this case, we define the length-of-agreement function

lα[s] = max{ y : (∀x < y) (Ψ(Φ(A);x) = A(x))[s] }.
Let s0 be the stage at which α was last initialized.

A stage s is α-expansionary if lα[s] > max{ lα[t] : s0 < t < s and t is an α stage }.
If s is not α-expansionary, then initialize all nodes β such that α1 <L β and let f(n)[s] = 1, so that α1 is

accessible at stage s+1. If s is α-expansionary, then we let α0 be accessible at stage s+1 and initialize all nodes
β such that α0 <L β.
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Suppose α has requirement SΦ,Ψ,i assigned to it. If there exists a node α′ ⊂ α such that α′ has requirement
SΦ′,Ψ′,i′ for some Φ′, Ψ′, and i′, and β is the longest node such that β0 ⊂ α′ and β has requirement Rϕ′,Ψ′

assigned to it, and (〈sα, 1ψ(Φ(A);x(α′,2sα′
+i+1)〉 /∈ W β)[s], then immediately end stage s+1 and initialize all

γ ≥ α.
Otherwise there are several cases to consider. Let β be the longest node with requirement RΦ,Ψ assigned to it

such that β0 ⊆ α. If x(α, 1) ↑ [s], then let sα[s] = x(α, 1)[s] = s. If there exists some least j ≤ 2s
α[s]+i+1 such

that x(α, j) ↑ [s] and (x(α, j−1) < lβ)[s], then let

x(α, j)[s] = max{ϕ(A; y)[s] : y < ψ(Φ(A);x(α, j−1))[s] }+1.

Immediately end stage s+1 and initialize all γ ≥ α.
Suppose x(α, j) ↓ [s] for all j ≤ 2s

α+i+1. If lβ[s] > x(α, 2s
α+i+1) but lβ[s−] ≤ x(α, 2s

α+i+1), then

enumerate 〈sα[s], 1ψ(Φ(A);x(α,2sα+i+1))[s]〉 into W β[s+1]. Immediately end stage s+1 and initialize all γ ≥ α.
If there exists σ such that

(
Mi(σ) = Φ(A) � ψ(Φ(A);x(α, 2s

α+i+1))
)
[s] and |σ| < sα[s]+i, and j is greatest

such that (x(α, j) /∈ A)[s], then let (x(α, j) ∈ A)[s+1]. Immediately end stage s+1 and initialize all γ ≥ α.
This completes the construction.

V e r i f i c a t i o n .

Let the true path f be lim infs→∞ f [s]. Each α ⊂ f has some stage after which α ≤ f [s] for every sub se-
quent s. Once a node chooses a sequence of witnesses and is never again initialized, it only acts to change A or
initialize other nodes a finite number of times. It follows, therefore, by a straightforward induction, that every
α ⊂ f is initialized only finitely often.

Lemma 4.1 Suppose α ⊂ f and there exist Φ, Ψ, and i such that α has requirement SΦ,Ψ,i assigned to it, and
β is the longest node such that β0 ⊂ α′ and β has requirement Rϕ′,Ψ′ assigned to it, Then there is some stage t

such that for all s ≥ t and j ≤ 2|α|+i+1, x(α, j) ↓ [t] = x(α, j)[s], and (〈sα, 1ψ(Φ(A);x(α,2sα+i+1)〉 ∈W β)[s].

P r o o f. By induction on |α|, for all γ ⊂ α and Φ′, Ψ′, i′ such that SΦ′,Ψ′,i′ is assigned to γ, there is some
stage after which x(γ, j) ↓ with the same value for every j ≤ 2|γ|+i

′+1. Let t0 be the either this stage or the last
stage at which α is initialized. The requirement SΦ,Ψ,i can only be assigned to a node extending some β0 such
that β has requirement RΦ,Psi assigned to it. For such a β ⊂ f , lim sups→∞ lβ[s] = ∞. Hence, after t0, nothing
can prevent α from choosing all its witnesses x(α, 1), x(α, 2), etc., and nothing can cause these witnesses to later
diverge, once chosen.

Naturally, we just write sα and x(α, j) without reference to the stage for these final values. Note that for any
γ ⊂ α ⊂ f and j′ and j, x(γ, j′) < x(α, j).

By Lemma 4.1, the true path is infinite, and it follows, again by a straightforward induction, that every re-
quirement RΦ,Ψ is assigned to some node along it. It remains to be shown that all these requirements are satisfied
by the strategies of the associated nodes on the true path.

Suppose β ⊂ f with requirement RΦ,Ψ assigned to it. If it is not the case that Ψ(Φ(A)) = A, then there is
nothing to prove, so suppose that this is the case. In this case, β0 ⊂ f . Since requirements are only added to a list
L(γ, ·) when L(γ0, ·) and L(γ1, ·) are defined, each subrequirement SΦ,Ψ,i is assigned to some node included
in f . The following lemmas about β verify that the requirement is satisfied.

Lemma 4.2 µ(Mβ) is a computable real.

P r o o f. Clearly µ(Mβ) is c. e. We show that there is a nonincreasing computable function eβ[s] such that
lims→∞eβ[s] = 0 and for all s, µ(Mβ) − µ(Mβ)[s] < eβ[s]. If W β is finite, then there is nothing to
prove. Otherwise, set eβ[0] = 1. Given s > 0, we wait for the next stage t > s such that a new element is
enumerated into W β [t + 1]. Since at each t′ > s such that a new element is enumerated into W β[t′ + 1],
all subsequent enumerations into W β individually add some unique number less than 2−t

′
to µ(Mβ), it follows

that µ(Mβ) − µ(Mβ)[s] <
∑

t′>t 2
−t′ = 2−t. Hence setting eβ [t′] = eβ(s − 1) for all t′ with s ≤ t′ ≤ t

and eβ(t+1) = 2−t works as claimed. Notice that this also shows that µ(Mβ) < 20 = 1, so that Mβ is a
well-defined prefix-free machine. This suffices to prove the lemma.
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Lemma 4.3 If M is a prefix-free machine, then for all c there is a k such thatKM(Φ(A) � k) > KMβ (1k)+ c

P r o o f. By a suitable version of the padding lemma, there exist infinitely many i such that M is equivalent
to Mi. Choose such an i ≥ c. Let α ⊃ β0 be the unique node included in f such that SΦ,Ψ,i is assigned to α.
Suppose we have passed the stage after which α is last initialized, so that only strategies assigned to node γ ≥ α
act at any later stage. We show that

KM(Φ(A) � ψ(Φ(A);x(α, 2s
α+i+1))) > sα + i ≥ KMβ (1ψ(Φ(A);x(α,2sα+i+1))) + i.

If there exists a witness x(α, j) such that x(α, j) /∈ A, then suppose x(α, j) is added toA at stage s+1. Note that
x(α, j) > max {ϕ(A; y)[s] : y < ψ(Φ(A);x(α, j−1))[s] }, and all nodes γ > α are initialized at s+1. Hence
if s+ is any subsequent β-expansionary stage before x(α, j−1) is added to A, we must have

Φ(A)[s+] � 1ψ(Φ(A);x(α,j−1)))[s] = Φ(A)[s] � ψ(Φ(x(α, j−1))).

Thus if s1 < s < 2 < · · · < s2sα+i+1 is the sequence of stages such that x(α, j) ∈ A[sj+1] −A[sj ], there must
be a sequence of distinct strings σ0, σ2, . . . , σ2sα+i+1 such that for each j,

M(σj) ↓= Φ(A)[sj ] � ψ(Φ(A);x(α, 2s
α+i+1))

and |σj | ≤ sα + i. But then µ(M) ≥ 2s
α+i+1 · 2−sα−i ≥ 21 > 1, a contradiction. Hence not all witnesses can

be added, so that KM(Φ(A) � ψ(Φ(A);x(α, 2s
α+i+1))) > sα + i ≥ KMβ(1ψ(Φ(A);x(α,2sα+i+1))) + i.

The last two lemmas establish the result.

The following two corollaries are immediate:

Corollary 10 There is a c. e. degree containing no K-trivial real.

Corollary 11 There is a c. e. degree containing no Schnorr trivial real.

5 Schnorr reducibility and strong reducibilities

Theorem 12 No c. e. real α can be both wtt-complete and Schnorr trivial.

P r o o f. Suppose α is wtt-complete. We will construct a c. e. set D that forces α to change too often to be
Schnorr trivial. Using the method of standard proofs of Lachlan’s Non-diamond Theorem (see Soare [15, Chapter
IX]) we can assume that a wtt-reduction Γ such that Γ(α) = D is given in advance. More precisely, we define an
infinite sequence of constructions of c. e. sets De, each one using a p. c. functional Φe. Because for each c. e. De,
De is uniformly m-reducible toK ≤wtt A, we have a computable index g(e) for a p. c. functional ϕg(e) such that
ϕg(e)(A) = De. By the Recursion Theorem, for some e, ϕe = ϕg(e), so that we can take ϕg(e) = Γ.

We must satisfy, for all e ∈ ω, the following sequence of requirements

Re : there exists x such that KMe(α � x) ≥ KM(1x)+e.

The strategy is straightforward: we choose some (large) number m, and followers x1 < x2 < · · · < xm
to use in satisfying this requirement. We then enumerate 〈 − e+ logm, 1γ(xm)+1〉 into a c. e. set defining M
at some stage sm+1. In general, given sk, we wait for a stage s such that s > sk at which some σm
appears with |σm| < logm such that (Me(σ) = α � γ(xm)+1)[s], then we enumerate xk−1 into D. In
order for Γ(α; y)[s] to change value on a y ≤ xm, α[s] must change on some z < γ(xm). Now, since
Γ(α) = D, we must have some sk−1 > s such that α � γ(xk−1+1)[s] �= α � γ(xk−1)+1)[sk−1)]. Since
α is c. e., this means the approximation to α must increase by some amount greater than 2−γ(x,m). Hence, if
KMe(α � γ(xm)+1) < KM(1γ(xm)+1)+e = logm, there must exist a sequence σm, . . . , σ1 of distinct strings
of length less than logm such that for all k, Me(σk) ↓. But then µ(Me) > m2logm = 1. This contradicts Me

being a prefix-free machine.
The only difficulty involves choosing m and the witnesses x1 . . . , xm so that strategies for different require-

ments don’t interfere with each other. We use a finite-injury priority argument to achieve this.
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S t a g e 0 . We let m0[0] = 1, x0
1[0] = 0, x0

2 = 1.

S t a g e s+1 . First, choose e least so that me ↓ [s], xeme ↓ [s], se ↓ [s], Γ(α;xeme) ↓ [s], and there exists some
σ ∈ 2<ω such that |σ| < logme[s], (Me(σ) = α � γ(xeme)+1)[s], and µ(Me)[s] ≤ 1. If k is greatest such that
xek−1 /∈ D[s], then let xek−1) ∈ D[s+1]. For all e′ > e, undefine all functionals and parameters associated to the
strategy for Re′ .

Next, choose e least so that me ↓ [s], xeme ↓ [s], Γ(α;xeme) ↓ [s], but se ↑ [s]. Then enumerate the pair
〈 − e+ logme, 1γ(xe

m)+1〉 into the c. e. set defining machine M. Set se ↓ [s] = s+1.
Finally, choose e least so that me ↑ [s]. Let me ↓ [s] with value the least number greater than or equal to 2s+e

that has never yet been a value me′ [s′] for any e′ and s′ ≤ s. Let b be the least number greater than any yet
mentioned in the construction. For all j with 1 ≤ j ≤ me[s], let xej ↓ [s] = b+j.

This completes the construction.

Notice first that M is a computable machine, since at stage s, the set { e : me ↓ [s] } is finite. All values
me[s′] that are defined after stage s are greater than 2s, and they are all distinct. If we wait for a stage t > s
such that for all such e, either me[s] �= me[t], or 〈 − e+ logme, 1γ(xe

m)+1〉 is in the c. e. set that defines M, then,
µ(M)−µ(M)[s] ≤ ∑

m>s 2−m = 2−s. This gives a computable nonincreasing function with limit 0 that bounds
the error, so that µ(M) is computable.

Consider a fixed requirement Re and suppose that for all e′ < e, Re′ is satisfied, and the strategy for Re′ only
changesD and M finitely often. Once no strategy for any such Re′ ever acts again, the functionals and parameters
for Re are, once defined, defined permanently. Thus the actions taken in the third phase of the construction at
stage s+1 guarantee that me ↓, se ↓, and for all j with 1 ≤ j ≤ me, xej ↓ with final values. At stage se, xej /∈ D

for all j ≤ m. Now, me > 2e+1, −e+ logme > 1, and Γ is a total function. Hence, the action in the second
phase of the construction guarantees that KM(1γ(xe

m)+1) ≤ −e+logme. There can exist only me different
stages after this point at whichD is changed for the sake of the Re-strategy. As pointed out before the description
of the construction, if KMe(α � γ(xem)+1) < KM(1γ(xe

m)+1)+e, then the action taken in the first phase of the
construction at stage s+1 guarantees that there must exist a sequence σm, . . . , σ1 of distinct strings of length less
than logme such that for all k, Me(σk) ↓. But then µ(Me) > me(2logme

) = 1. By the Chaitin-Kraft inequality,
this is a contradiction since Me is a prefix-free machine.

A reducibility more closely related to randomness than wtt-reducibility is strong weak-truth-table reducibility,
studied in [5].

Definition 8 A is strongly weak-truth-table reducible to B, written A ≤sw B, if there exists a p. c. functional
Γ and a constant c such that Γ(B) = A and, for all n, the use γ(n) ≤ x+ c.

If A ≤sw B, then A ≤K B (see [5]). This fails for Schnorr reducibility.

Theorem 13 There are c. e. sets A and B such that B ≤sw A, but B �≤Sch A.

P r o o f. As usual, we need only consider prefix-free machines Me such that µ(Me) = 1, since any computable
machine is equivalent to such a one. We therefore build a computable machine M, and c. e. sets A, B, to satisfy
the requirements

Re : if µ(Me) = 1, then there exists an n such that KM(A � n) < KMe(B � n)−e.

To satisfy requirement Re, we will set aside a block of numbers {n, n+1, . . . , n+d}, where d is some number
greater than 2e+2. Note that 2 < 2e+2, so that d2 < 2d+2 − 2. Of the numbers in the block {n, . . . , n+d}, we
will allow no n+j for j > 0 to ever enter A, but we may possibly put n itself into A. Thus we enumerate two
axioms of the form 〈2+ log d, τ〉, one for each of the two possibilities for τ = A � n + j+1 with j ≤ d. This
adds 2(d+1)2−2− log d ≤ 2−1 + 2−1−log d < 1 to µ(M). We now wait for a stage s such that 1 − µ(Me)[s] <
2−e−2− log d. Since µ(Me) ≤ 1, there can be at most d ·2e+2 ≤ d2 < 2d+2−2 strings of length less than or equal
to e+2+ log d on which Me converges. However, the number of axioms required by Me to cover all possibilities
of members of the block {n, . . . , n + d} being in or out of B, for the d+1 strings, B � n, . . . , B � (n + d) is
21 + 22 + · · ·+ 2d+1 = 2d+2 − 2. Hence, at least one possibility is not in the range of Me restricted to strings in
its domain of length less than or equal to e+2+ log d. At this point, we choose such a combination of elements of
{n, . . . , n+ d} and enumerate them into B[s+1], simultaneously enumerating n into A[s+1]. Any new axioms
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for Me must cause convergence on strings of length greater than e+2+ log d. Since KM(n+j) = 2+ log d for
every j ≤ d, the requirement is satisfied. Also, the membership of all elements of {n, . . . , n + d} in B can be
calculated just by checking whether or not n ∈ A, so B ≤sw A. Not also that µ(M) is computable, since the
enumeration of its axioms do not depend on waiting for any condition to be satisfied.

We can combine all strategies by assigning them intervals {x0, . . . , x0+d0}, {x1, . . . , x1+d1}, . . . , where
x0 = 0 and xi+1 = xi+ di+1. Since for each i, any combination of the values xj for j < i could show up inA,
we must in general use 2i+1 axioms of the form 〈m, τ〉, 2i for each of the two possibilities for τ = A � xi+j+1
with j ≤ di. This means we must enumerate axioms of the form 〈2+2i+log di, τ〉 into M. In this case, the
axioms enumerated into M for the sake of requirement Ri will add exactly

2i(di+1)2−2−2i− log di ≤ 2−i−2 + 2−i−2− log di ≤ 2 · 2−i−2 < 2−i−1

to the measure of M, so that µ(M) =
∑

i≥0 2−i−1 = 1, as required for a computable machine. In order to
satisfy the requirement, we can therefore choose di to be the least number greater than 22+3i. Note again that
d2
i < 2di+2 − 2, since di ≥ 2. Then there can be at most d · 22+3i ≤ d2 < 2di+2 − 2 strings of length

less than or equal to 2+3i+ log di on which Me converges. We take action for Ri at the first stage s such
that 1 − µ(Mi)[s] < 2−2−3i− log di , enumerating the elements of an appropriate subset of {xi, . . . , xi+di} into
B[s+1] and enumerating xi into A[s+1. This satisfies requirement Ri permanently, which suffices to prove the
result.

Recall that A is truth-table reducible to B (A ≤tt B) if and only if A ≤wtt B via a reduction Γ such that
Γ(σ, n) ↓ for all σ ∈ 2<ω and n ∈ ω. It turns out that tt-reducibility is related to Schnorr-reducibility somewhat as
wtt-reducibility is to K-reducibility. This is not surprising, since the essential difference between a tt-reduction
and an ordinary wtt-reduction is that the former has a computable domain, and this is what distinguishes a
computable machine from an ordinary prefix-free machine.

Theorem 14 If y is Schnorr trivial and x ≤tt y, then x is Schnorr trivial.

P r o o f. We must show that for any computable machine M, there exists some computable machine Mx and a
constant c such that for every n ∈ ω, KMx(x � n) ≤ KM(1n) + c.

Suppose that the truth-table reduction is given by x = Γy with use bounded by the strictly increasing recursive
function γ(n). Given any computable machine M we first define another computable machine Mu such that for
all n, KMu(1u(n)) ≤ KM(1n). To define Mu simply follow the enumeration of axioms into M. Every time
〈σ, τ〉 enters M, then put the same axiom into Mu unless τ = 1k for some k. In that case put 〈σ, 1γ(k)〉 into Mu.
µ(Mu) = µ(M), so that Mu is also a computable machine. Evidently, Mu is as required.

Now as y is Schnorr trivial, there exists a computable machine My and a constant c such that for all k,
KMy(y � k) ≤ KMu(1k) + c. In particular, for all n, KMy(y � γ(n)) ≤ KMu(1γ(n)) + c ≤ KM(1n) + c.

Now we define a machine Mx with the same domain as My to show that x is Schnorr trivial. If My(σ) = τ ,
then let Mx(σ) = (Γτ�γ(n̂) � n̂) for the largest n̂ with γ(n̂) ≤ |τ |. Then, if My(σ) = y � γ(n), we have
Mx(σ) = (Γy�γ(n) � n) = x � n, so that KMx(x � n) = KMy(y � γ(n)) ≤ KMu(1γ(n)) + c ≤ KM(1n) + c.
Since the tt-reduction converges with any string as an oracle, µ(Mx) = µ(My), and so Mx is a computable
machine.

We would like to show that the Schnorr trivials form an ideal in the tt-degrees. All we need is the following
simple fact.

Question Suppose x and y are Schnorr trivial reals. Is x⊕ y Schnorr trivial ?

The result that K-degrees are closed downward under sw-reducibility has an analogous tt-version as well:

Definition 9 A is strongly truth-table reducible to B (written A ≤st B) if and only if A ≤tt B via a truth
table reduction Γ with a constant c such that for all n, the use γ(n) ≤ n+c.

Theorem 15 If A ≤st B, then A ≤Sch B.

P r o o f. Let A ≤st B via some st reduction Γ with use γ(n) bounded by n+c. Let ζ0, . . . , ζ2c−1 be the 2c

different elements of 2<ω of length c. Let M be any computable prefix-free machine. For every σ and τ such that
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M(σ) = τ , add 〈|σ| + c,Γτ
�ζj � |τ |〉 for each j < 2c to a c. e. set, thereby defining a machine M′ via the Kraft-

Chaitin Theorem. Since Γ is a tt-reduction, all these computations converge, and so this adds 2c ·2−|σ|−c = 2−|σ|

to µ(M′). Hence, µ(M′) = µ(M), making M′ a computable machine. Then, if M(σ) = B � n, we have, for some
string σ′ of length |σ|+c, M′(σ′) = (ΓB�(n+c) � n) = A � n, so that KM′(A � n) = KM(B � n)+c.

References
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