
JUMPS OF MINIMAL DEGREES BELOW 0'

RODNEY G. DOWNEY, STEFFEN LEMPP AND RICHARD A. SHORE

ABSTRACT

We show that there is a degree a REA in and low over 0' such that no minimal degree below 0' jumps
to a degree above a. We also show that every nonlow recursively enumerable degree bounds a nonlow
minimal degree.

Introduction

An important and long-standing area of investigation in recursion theory has
been the relationship between quantifier complexity of the definitions of sets in
arithmetic as expressed by the jump operator, and the basic notion of relative
computability as expressed by the ordering of the (Turing) degrees. In this paper we
are concerned with an aspect of the general problem of characterizing the range of the
jump operator on various classes of degrees. The first such result was the completeness
or jump inversion theorem of Friedberg [3].

THEOREM (Friedberg Jump Inversion). Ifc > 0' then there is an a such that a' = c.

As a' is obviously at least 0' for every degree a, this result says that every 'possible'
degree c (that is, every degree not ruled out on trivial grounds) is the jump of some
degree a. A number of other important jump inversion theorems of this sort followed
Friedberg's. In particular Shoenfield [12] and Sacks [9] characterized the jumps of the
degrees below 0' and of the recursively enumerable degrees, respectively, as all
'possible' degrees.

THEOREM (Shoenfield Jump Inversion). Ifc ^ 0' and c is recursively enumerable
in 0' then there is a degree d ^ 0' such that d' = c.

THEOREM (Sacks Jump Inversion). Ifc^O' andc is recursively enumerable in 0'
then there is a recursively enumerable degree d such that d' = c.

Our concern in this paper is the problem of jump inversion into the minimal
degrees below 0'. The general problem for the degrees as a whole was solved by
Cooper [1].

Received 24 August 1994.

1991 Mathematics Subject Classification 03D25.

Research partially supported by NSF Grants DMS-9100114 (Lempp), DMS-9344740 (Shore), a
U.S.-New Zealand Binational Cooperative Research grant including NSF INT 90-20558 (Downey, Lempp
and Shore), ARO through ACSyAm at MSI, Cornell University, DAAL-03-91-C-0027 (Downey and
Shore), and IGC of Victoria University, Wellington (Downey).

J. London Math. Soc. (2) 54 (1996) 417-439

418 R. G. DOWNEY, S. LEMPP AND R. A. SHORE

THEOREM (Cooper Jump Inversion). If c ^ 0' then there is a minimal degree m
such that m' — c.

The natural conjecture at this point would have been that the Shoenfield jump
inversion theorem could be extended analogously, that is, if c ^ 0' is recursively
enumerable (r.e., for short) in 0' then there should be a minimal m ^ 0' with m' = c.
Cooper [1], however, refuted this by showing that no high degree m below 0' (that is,
no degree with m' = 0") can be minimal. The only known positive result at the time
was that there were minimal m < 0' with m' = 0'. (This follows from the existence of
a minimal degree below any r.e. degree a (Yates [18]) by taking a to be low (that is,
a' = 0').) Indeed, the minimal degrees d constructed in the proof of the Cooper jump
inversion theorem all had the property that m' = mv0' (where m is in GLx or
generalized lowj. Answering a question from Yates [19], Sasso [11] proved that this
is not always the case by constructing a minimal m < 0' with m' > 0'.

In the early 1970's Jockusch conjectured (see Sasso [11, p. 573], Yates [19, p. 235])
that the jumps of minimal degrees m < 0' are precisely the set of c ^ 0' with c r.e. in
0' and low over 0', that is, c' = 0". Jockusch and Posner [4] eventually proved the
(remarkable) half of this conjecture.

THEOREM (Jockusch and Posner [4]). Every minimal degree m is in GL2, that is,
(m V 0')' = m". In particular, every minimal m < 0' is low2, that is, m" = 0".

The other half of Jockusch's conjecture, that the jumps of minimal degrees m < 0'
include all those c ^ 0' r.e. in 0' with c' = 0", has remained an open problem.

In this paper we refute this attractive conjecture by exhibiting an entire upward
cone of such degrees which contains no jump of a minimal degree below 0'.

THEOREM 1.1. There is a degree a recursively enumerable in and above 0' with
a' = 0" such that a is not recursive in the jump of any minimal degree below 0'.

At a slightly earlier date a similar but (in terms of determining the range of the
jump on the minimal degrees below 0') somewhat weaker result was independently
obtained by Cooper and Seetapun (personal communication). Recently, Cooper has
claimed a full characterization of this class of degrees as the class of what he calls the
almost A2-degrees.

THEOREM (Cooper and Seetapun). There is a degree a r.e. in and above 0' with
a' = 0" such that ifd^O' and a is r.e. in d, then there is a \-generic degree below d.

We have not seen Cooper and Seetapun's proof but they have told us that it is a
0"'-argument like the proof of Lachlan's nonbounding theorem as presented in Soare
[16, Chapter XIV]. Our construction is of a considerably simpler type. Indeed, it is
really a finite injury argument relative to K (as one might expect in building a low r.e.
degree a relative to K). As we cannot actually deal with potential minimal degrees
d < 0' in a construction recursive in K, we use recursive approximation procedures for
K and A which turn the construction into a 0"-tree argument.

We also prove that the theorem fails if we try to replace upward cones by
downward ones.

JUMPS OF MINIMAL DEGREES BELOW 0 ' 419

THEOREM 2.1. If D is any r.e. set with 0' <TD', then there is a set M of minimal
degree with M ^TD and 0' <TM' ^ T D ' .

COROLLARY 2.3. Ifc > 0' is r.e. in 0', then there is a minimal degree m < 0' such
that 0' < m ^ c.

Thus the range of the jump operator on the minimal degrees below 0' cannot be
characterized simply in terms of the jump classes of degrees r.e. in and above 0'.

We finally include sketches of the proofs of two old unpublished related results by
the third author concerning cone avoiding by the jumps of minimal degrees below 0'.

THEOREM 3.1. If c is r.e. in and above 0' and c' = 0" then (uniformly in the
information) there is a minimal degree a < 0' with a' ^ c.

THEOREM 3.2. There are minimal degrees a0, ax < 0' such that a, U a| = 0".

1. An upward cone with no jumps of minimal degrees

In this section we shall prove that there is a degree a r.e. in 0' and low over K such
that no minimal degree m < 0' jumps above it.

THEOREM 1.1. There is a degree a r.e. in and above 0' with a' = 0" such that a is
not recursive in the jump of any minimal degree below 0'.

We let K = {<x, y} \ <f)x(y) {} be the complete r.e. set. Our plan is to define a Z2-set
A via a recursive approximation so that the degree of A © K is the a of our theorem.
There are two types of requirements that we must satisfy. The first is the standard
lowness requirement relativized to K, that is,

N:(A®K)' =TK'.

As usual, N is divided up into infinitely many requirements

Ne: preserve Q>e(A © K; e).

As our construction will be recursive, we can only expect to succeed modulo the K-
correctness of our computations (and, of course, the outcomes of requirements of
higher priority).

The second type of requirements, P, deal with the jumps of minimal degrees below
0'. We can list all candidates, A, for minimal degrees below 0' by taking a list of all
partial recursive {0, l}-valued functions A(x,s). If we let A(x) = lims _ ̂ A(x, s), we
have, by the limit lemma, a list which includes all sets recursive in K. One more
application of the limit lemma tells us how to represent sets recursive in A', the jump
of A. They are all those of the form Y = Xy limn _, ̂ F(A, y, n) for some partial recursive
functional Y of the appropriate form. Thus we can express the remaining conditions
of the theorem by the requirements PA r as A(x,.s) and Y(A,y,x) range over the
appropriate classes of partial recursive functionals:

r : If A and Y are total functions and Y = A, then there is a Z such that
0 <TZ < T A .

420 R. G. DOWNEY, S. LEMPP AND R. A. SHORE

We divide each requirement P^ r into two infinite sequences of subrequirements

where *P ranges over all partial recursive functionals (and ¥ is short for x¥{0)).
If the hypotheses of PA r hold, A and T are total and T = A, then our plan is to

define a recursive functional A so that setting A(A) = Z satisfies RA r ^ and S^ A y for
each functional *P. For each subrequirement we shall have a number y called the
killing point, which we shall alternately put into and take out of A to try to force
a win. (We shall explain the precise mechanics of this later. For now just note that the
killing point for the version of a requirement at node a will be (the code of) a.)
Roughly speaking, the plan for R = i?A r ^ is as follows: we put y into A and wait for
an n such that Y(A,y,ri) = 1. (If there is no such n, then T # A.) When we get such
an n, we use it by choosing a. follower x and setting Z{x) = 0 = A(A,JC) by an axiom
from A of length y(y, ri). We now wait for x to be realized, that is, for ¥(;c) = 0. At
this point, we remove y from A. If A changes on y(y, ri) we can redefine A(A, x) = Z(x)
to be 1 and win R. If not, we can put y back into A and try again for a new n and
x. The idea is that if we never get a win (Z(x) ^ *F(x)) we cycle through this scenario
infinitely often each time getting an n with T(A,y, ri) = 1 via a A-correct computation.
As we remove y from A infinitely often, y£AK. As y$AK requires that
limn _ ̂ F(A, y, ri) = 0, we have the desired failure of the hypotheses of PAr.

Note that if xeco[i] and the /th requirement is not an /J4 r t for any *F then
Z(x) = 0 by a trivial axiom < 0 , x , 0> which we put into A at stage 0.

The basic plan for satisfying S = SA r ^ is similar. We begin by putting y into A
and waiting for an n such that T(A,y, ri) = 1 that we can use. We also want a x¥-
computation, ^ (Z) { y(y, ri) = A [y{y, ri) of the A use from Z. At this point, we remove
y from A. If we should get a A change on y{y,ri) we would hope to be able to restore
Z[y/y(y, ri) to its previous value for a diagonalization y¥(Z)[y(y, ri) # A [y(y, ri). If we
cannot do this, we return y to A and try again for a new n with T{A,y,ri) = 1 and
T(Z) = A[y(y,ri). We shall have to argue that we can be prevented from eventually
restoring Z to one of these older desired values only if there are infinitely many n with
A-correct computations T(A,y,ri) — 1. As y£A we shall again have contradicted the
hypotheses of PA r.

The general structure of our argument is actually that of a finite injury argument
(modulo the approximations to K). Although this may seem surprisingly simple, we
are after all constructing (relative to Â) a low r.e. set. General considerations as in
Soare [16] then suggest that our argument should be a finite injury one (over K). As
the actual construction must be recursive, our approximation procedure produces a
standard tree structure for it.

We begin by listing all the requirements Ne, R^ r ^ and SA r y in an co-list Qt. As
usual, the tree structure will consist of sequences a of outcomes of the requirements
Qi for / < |a|. Such a node a will be devoted to requirement Q]a{. We say that a is
associated with PA r if Q]al is i?A r T or S^ r ^ for some *F. The possible outcomes of
a requirement RA r w or 5A r ^ are 0 and 1 depending on whether it believes y $ A or
ysA, respectively. A requirement Ne can have any element of co as its outcome. It will

JUMPS OF MINIMAL DEGREES BELOW 0 ' 421

be the use of <£e04K © K; e) if it is believed to converge and 0 otherwise. To specify
the actions and outcomes of the requirements more precisely we need to fix various
approximation procedures.

APPROXIMATIONS. We have already fixed K as the complete r.e. set. We also fix
some recursive one-one enumeration k{s) of K. As usual, Ks = {k(t) \ t < s). We
approximate A in the obvious way: AS(JC) = A(x,s). We follow the convention of
adding an 5 in brackets at the end of an expression to denote that we are using the
5th stage approximation to each set or functional in the expression. Thus K(x) [s] and
A(x)[.s] mean Ks(x) and As(x). More interestingly, T(A,y,ri) = l[s] means that
TS(AS, y, n) I = 1. If we wish to denote the state of affairs at substage i of stage s we
append ' [s, i\' to the relevant expression. We also adopt the standard conventions that
small Greek letters such as y(y, n) indicate the use of the functional denoted by the
corresponding capital Greek letters T(A,y, n) and that uses are nondecreasing in both
the input and stage of the approximation.

For each A and F we shall enumerate axioms into a functional AA r = A to define
Z = A(A). We can take the axioms to be of the form <cr,x,y>, where a is a binary
string and

A(A; x) = j o 3CT «<T, xj) eA&ugA)

fory = 0,1. This defines the obvious approximations to Z:

Z.{x) =joM<°,x,j>eA. &<r c A,).

Of course, we must make sure that axioms are enumerated so that A is consistent and
that A(A) is total if A and F satisfy the hypotheses of PA r.

The last approximation is the one to the I 2 set A that we are constructing. We
begin with A = 0 at stage 0. At various times during the construction we may put
a number y into A or take it out. Our approximations to, or beliefs about, A at any
point in the construction are the obvious ones: we believe that A(x) = 1 if the last
action we took was to put x into A and A(x) ~ 0 otherwise. Our final Z2 set A is
defined by A(x) = 1 if and only if there is a point in the construction at which we put
x into A and then never take it out. We can now describe our construction.

Construction, stage s

We begin each stage s of the construction by declaring the empty sequence 0 to
be accessible. Stage s will now have s substages each of which starts with some node
a being accessible. If a is the node accessible at the beginning of substage /, we remove
ft from A for every /? to the right of a. If permitted, we may now act for requirement
Qv In any case, we declare cCq to be accessible for some qeco. If i < s, we proceed to
substage /'+1. If /+ 1 = s, we finish stage s and move on to stage s+ 1. Our actions
at substage / depend on the form of the requirement Qv

Qt = Ne. Let r be the last tx-stage, that is, one at which a was accessible (0 if this
is the first a-stage). Let k{a, s) be the least number enumerated in K since stage r, that
is, k(a,s) = min(Ks — Kr). We say that there is an oc-believable computation of
Q>e{A © K; e) [if <!>e(A © K[k(a, s);e)[[s, i\. If there is such a computation with use u
we declare oCu to be accessible. If not, we declare of 0 to be accessible.

If Qt is of the form RA r T or SA> r q,, the killing point for a is a itself, that is, the
natural number coding the sequence a. The dependence of the action of a on higher

422 R. G. DOWNEY, S. LEMPP AND R. A. SHORE

priority requirements in terms of its enumerating axioms in A is expressed in terms
of its dependency set, D(<x, s) = {< /?, m> | /? ^ a A fi is associated with PA> r and has used
m at some point prior to substage |a| of stage s}.

We begin substage / by having a impose a global wait for r(A,/?,ra) to be
convergent for every </?,m>eZ)(a,s), that is, no node y ^ a associated with PA r can
act at any stage / ^ s unless r(A,/?,m) J, [/] for all (fi,m}eD(<x,s). If this condition is
not met, we proceed directly to the terminal Step 5 below of substage /. Otherwise,
our actions depend on whether Qi is R&rw or SA r T.

g t = /?A r y. Ste/? 1. If there is a marker JC such that a is satisfied by x, that is,
Z(x) I = 1 and ^(x) | = 0, then we proceed to Step 4 below. If not, we see if we can
satisfy a via some marked x, that is, we see if there is a marked x not controlled by
any ft < a such that Z(x)]. In this case we set Z(x) = 1 by enumerating an axiom
<AS \m, x, 1 > into A, where m is the maximum of the length of any previous axiom for
x in A and «(a, s) = max {y(/?, m) [s] | < /?, w> e Z)(a, 5)}. (Note that all such y(/3, m) are
defined by our global wait requirements.) If so, go to Step 4. Otherwise, let d be the
number of times a has been taken out of A and proceed to Step 2.

Step 2. If a is not in A, put a into A and impose a global wait for an n> d, with
F(A, <x,n)l = 1, that is, no action can be taken for any /? ̂ a associated with /*A r at
any stage / ^ s unless there is an n > d with F(A, a, ri) { = 1 [/] until a is removed from
A. If at any f ^ 5 we act for a requirement /? on the basis of such a computation
r(A,a, n) = 1, we say that a uses n at t. If this global wait condition is satisfied, we
proceed to Step 3. Otherwise, we go to Step 5.

Step 3. If there is an unrealized follower x of a we proceed to Step 4. If there is
a realized follower x of a which is associated with a number n > dand F(A, a, n) = l[s],
then we mark x, remove a from A and proceed to Step 4. If there is no such x but there
is an m > d not used by a such that F(A, a,m) = \[s], let n be the least such. We now
use n by associating it with a follower x e co[i] of a which is larger than any number
mentioned so far. We set Z(x) = 0 by an axiom of length

«(a, s) = max ({y(# m) [s] \(P,m)eD{a, s)} U {y(a, #1) [s]}).

We say that x is realized at t ^ s if ¥ t (
x) = 0, otherwise it is unrealized. In any case,

we now go to Step 4.

We have a tafce control of every x < 5 with x e co[i] which is not currently
controlled by any /? < a. (Of course, if S > a had control of x before, it no longer
does.) If xGco[i] is now controlled by some S < a (which is necessarily associated with
.PA r) , then S first took control of x at / ^ s and Z{x) is now undefined (that is, a £ Ag

for every <<r, x,j} now in A), we redefine Z(x) to be its value at the last <5-stage (0 if
there is none) via an axiom of length the maximum of that of any axiom previously
defining Z{x) and u(S, t, s), where u(d, t, s) = max {y(/?, m) [s] \(fl,m)e D'(S, t)} and
D'(S, t) = {< P, m> I /? ̂ S A /? is associated with the same /*A r as 8 and /? have used n at
some point prior to the end of substage \6\ of stage i). We now go to Step 5.

Step 5. If a is now in A, we let ofl be accessible. Otherwise, we let ofO be
accessible. This ends substage / of stage s.

JUMPS OF MINIMAL DEGREES BELOW 0 ' 423

Qt '• SA, r, *• Step 1. If a 15 satisfied, that is, there is an x controlled by a such that
y¥(Z;x)l 7̂ A(x)[5], we go to Step 4. Otherwise, we see if we can satisfy a, that is,
there is an n marked for a at some r < s such that Z(x) [s, i] is either undefined or equal
to Z(x)[r,i\) for every x < y/(y(a.,n))[r, i\. If so, a takes control of every
x < y/(y(a, n)) [r, i\ with JC e co[t] such that Qx is associated with PA r (no others can ever
even appear to be in Z) not controlled by some $ < a. (Of course, no /? > a controls
any such x from now on.) For each such x, we redefine Z(x) to be Z(x) [r, i\ by an
axiom of length u(<x,s). (The relevant y(fi,n) are all defined by our global wait
requirements. Moreover, our procedures for redefining Z{x) (in Steps 4) guarantee
that Z(x) l[s, i\ for all x controlled by some /? < a.) We now go to Step 4. If we cannot
satisfy a, we let d be the number of times a has been removed from A and proceed
to Step 2.

Step 2. If a is not in A, put a into A and impose a global wait for an n > d with
F(A, OL,n) = 1. If this condition is now satisfied we got to Step 3. Otherwise we go to
Step 5.

Step 3. If there is an n marked for a such that ^(Zjx) is undefined for some
x < y(<x, n) [s], go to Step 4. If not and there is an unmarked n > d such that
F(A,<x,n) = \[s] and x¥(z)[y(y,n) = A[y(<x,ri)[s,i\ then a uses and marks the least
such n. We remove a from A and proceed to Step 4.

Step 4. If x is controlled by some fi ^ a and Z(x) | [s, i\, we redefine Z(x) as we
did for R^r^-

Step 5. If a is now in A, then a l is accessible. Otherwise, oCO is accessible. This
ends substage i of stage s.

End of construction.

We must now verify that the construction defines a set A which satisfies all the
requirements Af and PAr. We begin by showing that there is a leftmost path/on the
tree T of nodes a which are ever accessible, and that (A © K)' is determined by the
outcome along/. Remember that an infinite path/on T is the leftmost path on 7 if
Va <=/(a is the leftmost node on level |a| of T which is accessible infinitely often).

LEMMA 1.2. There is a leftmost path f on T and the outcomes along fare the true
ones.

(i) If Qi is -̂ A r * or S* r * and a =f\U tnen 0(.eAof{a) = 1.
(ii) / / Qt = Ne', then <S>e{A 0 K; e)\ of® = 1 •

Proof. We proceed by induction on the length of a c / . Clearly a = 0 is the
leftmost sequence of length 0 accessible infinitely often. Suppose by induction that
|a| = i and a is the leftmost node of length i accessible infinitely often. Let s0 be such
that no node ft < L a is accessible at any 5 ^ sQ.

(i) If Q(is i ? 4 r j or SAr y and a is accessible at s, then oC\ is accessible if a is in
A and ofO is accessible otherwise. As OLEA if and only if it is in A from some point on,
oCA(ot) is clearly the left-most immediate successor of a which is accessible infinitely
often.

424 R. G. DOWNEY, S. LEMPP AND R. A. SHORE

(ii) Suppose that Qt = Ne. We say an a-stage s is K-true if Ks [k(a, s) = K[k(a, s).
There are clearly infinitely many such stages. The outcomes of a at such stages are
what really matter.

SUBLEMMA 1.2.1. If there is a K-true a-stage sx ^ s0 at which there is an a-
believable computation of Q>e{A © K; e) with use u, then this computation is A® In-
correct, that is, {A © K)\u = (A (g) K)[u[s,i\ and ecu is accessible at every a-stage
s ^ s1.

Proof. First note that the a beliefs about A(fi) for /? < u and /? 4> a are correct
and return to their correct state at every a-stage s ^ sv For /? < L a, this holds by our
choice of s0. For fi > L a, it holds by our removing /? from A at the beginning of
substage / of every a-stage. For fi c a, it holds by induction. On the other hand, as
long as a"u is accessible, we cannot change A(f?) for any ft <Lau. As Ks\u never
changes by the definitions of a .K-true a-stage and a-believability, we see that the
current computation at s is a-believable at every a-stage. Of course, any ft 2 av for
v ^ u is itself bigger than u and so irrelevant. Thus A(fi) is never changed at s ^ sl for
fi < u and f$ => a and so the computation is A © K correct as well.

Note that we have now proved that a has a leftmost successor which is accessible
infinitely often. If the hypotheses of Sublemma 1.2.1 hold then oCu is accessible at all
sufficiently large a-stages. If not, a'O is accessible at every K-true a-stage. Thus there
is a leftmost pa th /on T whose outcomes for nodes RA r T and »SA r ^ are correct, that
is, (i) holds. We conclude the verification of Lemma 1.2 by establishing the following.

SUBLEMMA 1.2.2. If <&e(A © K;e){ with use u, then au is accessible at all
sufficiently large a-stages.

Proof. The proof of Sublemma 1.2.1 shows that it suffices to prove that the
correct computation is a-believable at some a-stage s ^ s0 by which Ks [u = K\u and
k{a, s) > u. It also shows that the a beliefs are correct at all such stages for all /3 4> <*•
Let S <=/be of length u and suppose that S is accessible at ^ ^ s0. By our results so
far, ((i) holds), we know that i4|>M[j1,j1] = A\u. If s is the first a-stage after sls then
no changes have been made on A(ff) for /? < a and so A \u[s, i\ = A \u and the true
computation of <£>e(A ® K;e)l is a-believable as required.

COROLLARY 1.3. (A © K)' = K'.

Proof. Clearly K' ^ {A © K)'. It thus suffices to show that we can compute
{A © K)' from K'. Now, by Lemma 1.2, there is a leftmost pa th /on T. By definition,
/ ^ K'. As Lemma 1.2 also shows that <&e(A © K;e)[of{i) = 1 where Qt = Ne we
have the desired reduction.

We now wish to show that the requirements PA r are met. If the hypotheses of PA r

fail then there is nothing to prove. Note, however, that in any case no subrequirement
of PA r has an effect on any a on the true path/which is associated with any other
PA, r (at least not after a stage after which no node to the left of a is ever accessible).

JUMPS OF MINIMAL DEGREES BELOW 0 ' 425

Suppose, therefore, that the hypotheses of PA r are met. We prove by induction along
/ t h a t the outcome of a <=/associated with PA r satisfies the subrequirements of PA r .
We must also show that A(A) = Z is total.

LEMMA 1.4. Suppose the hypotheses of PA r are met and a af is associated with

0) VQ\a\ = ^A, r, v then there is a stage t0 such that at every s ^ t0 either (as defined
in Step 1) a « already satisfied, or we satisfy a at s, or a has an unrealized follower.

(u) IfQ\a\ — $A, r, * tnen there is a stage t0 such that at every s^ t0 either (as defined
in Step 1) a is already satisfied, or we satisfy a at s, or there is an n marked for a and
an x < y((x,n)[s] such that ^ (Z ; *) is undefined.

Proof We suppose that the hypotheses of PA r are met and proceed by induction
o n a c / First, note that (i) and (ii) imply that from some point on no action is taken
for a, except possibly in Step 4 to redefine Z(x) for those JC which a controls. More
specifically, no more numbers are used or marked or followers appointed by a; Z(x)
is not changed from its last value by a for any x; and no more global waits are
imposed by a. All global waits for F(A, a, n) { are eventually met by the hypotheses
of PA r . Any global wait for any n with F(A, <x,ri)[= 1 imposed in Step 2 is permanent
only if a is never removed from A (and so a e A). Thus, by the hypotheses of PA r , any
such condition is also eventually permanently met. Of course if ft < L a, then /? is
accessible only finitely often and the same conditions eventually hold for /? as well.
Suppose, therefore, that s0 is a stage after which no /? < L oc is ever accessible but all
these conditions always hold for ft < a.

We divide the proof into cases according to whether <xeA or not.

CUE A. In this case, there is a stage s1 ^ s0 after which a is never removed from
A. Let d be the number of times a is removed from A. By the hypotheses of i>A r , there
is eventually a permanent current computation of F(A, a, «0) = 1 for some n0 > d, sx,
say by s2 $s sv Similarly, for any finite set F we must eventually have F(A, oc, n) J, for
every n e F. Thus a must be accessible infinitely often at stages s ^ s2 when all global
wait conditions are satisfied.

It is now clear that if the conclusions of Lemma 1.3 do not hold, then we shall
eventually associate some follower x with n0 and later mark it (if QM = RA r y) or use
and mark n0 (if QM = SA r y). In either case, we would remove a from A for the
desired contradiction.

<x$A. When a is accessible after s0 and not in A and all global wait conditions
are met, we can be prevented from putting a into A only by satisfying a. Thus we may
assume that we put a into A and remove it infinitely often. By the hypotheses of PA r ,
there must be an n0 such that F(A, a, n) = 0 for every n ^ n0. Consider now the noth
time we put a into A, say at stage sx ^ s0. We impose a global wait for an n ^ n0 such
that F(A, <x,n)= 1. Note that we can now act for a (and so define Z(x) for any new
x at an s ^ sx for QM = RA r y) only when we have either a satisfied or an n ^ n0 with
F(A, <x,n) = 1 which we have used.

We now assume that Qw = RA r ^ and prove (i). As we remove a from A infinitely
often, we must eventually appoint and then mark an x ^ n0 at stages s3 ^ s2 ^ s1}

respectively. By our induction hypotheses and choice of s0, it follows that a retains
control of x and so Z(x) is, for all sufficiently large a-stages s, defined by axioms of

426 R. G. DOWNEY, S. LEMPP AND R. A. SHORE

length u(S, t, s) (plus a constant) for a fixed /. By our hypotheses in PA r, we have that
lims_ x u(S, t, s) exists and A is eventually constant on all the relevant uses. If a is not
already satisfied, we can be prevented from satisfying a by defining Z(x) = 1 at such
a point only by there being some axiom a defining Z(x) = 0 which was put into A at
some stage since JC was appointed and is now A-correct. As we have noted, any such
axiom contains the information needed either to satisfy a via some other x, or to give
a computation T(A, a, ri) = 1 for some n ^ n0. As this correct A-information is, in fact,
correct, we have the desired contradiction.

Finally, we assume that QM = SA r ^ and prove (ii). Consider the numbers x
controlled by some 3 < a at sx. For each such x we have that Z{x) is defined by an
axiom of length u(3, t, s) (plus a constant) for a fixed /. By our hypotheses on PA r, we
may choose a stage s2 ^ st after which u(S, t, s) is fixed, as is A [u(S, t, s) for each such
x. As we remove a from A infinitely often, there is a stage s3 ̂ s2 at which we mark
some n > n0. By our choice of n0, we have that F(A,a,n) = 0. Once A[y(a,n) has
reached its correct value, we can be prevented from satisfying a (if it is not yet
satisfied) only by there being an axiom a defining some Z(x) inappropriately. By our
assumptions, a was put into A at a stage at which we had a satisfied or an n ^ n0 with
F(A, <x,n) = 1 and this information was included in a. Thus this information (about
A) must be correct and we would either have a satisfied or have a correct computation
F(A, a, n) = 1 for n > n0 for the desired contradiction.

LEMMA 1.5. If the hypotheses of PA r are met then A(A) = Z (for the associated
functional A) is well defined and total.

Proof. As we only add a new axiom {a, xj} for x to A when all previous ones
are incorrect (a £ A) and any new axiom is always at least as long as any previous
one, A is consistent. Consider now any number x. If x$coli] for some / such that Qt

is an R^Krv, then Z{x) is set to be 0 by a trivial axiom. Suppose that xea>[i\
Qt = ^A.r.y a nd « c / i s of length /. It is clear from the construction that a eventually
takes control of x if it is not controlled by a higher priority requirement. As the
priority ordering is well ordered, there is a highest priority /? such that /? ever controls
x. Suppose that ft first takes control of x at t. It then controls x at every stage s ^ t.
Further, Z(x), if undefined, is redefined when a is accessible at s via an axiom of length
u(S, t,s). Our assumptions on PA r guarantee that lims _ ̂ u(S, t, s) exists and so Z(x)
is eventually defined by a fixed (necessarily A-correct) axiom.

LEMMA 1.6. If the hypotheses of P^r are met then Z = A(A) meets every
subrequirement Qt of the form R^r,w

 or ^A.r,* and so 0 <TZ <TA.

Proof. Let a be the initial segment of / of length / and let t0 be as in the
conclusions of Lemma 1.4.

(i) Qt = R^r y. No new followers are ever appointed after /0. If one of them, x,
is unrealized then ^(x) # 0 but Z(x) = 0 as we can never change the value of Z(x)
once it is defined. Thus *F ^ Z as required. Otherwise, there is a tx ^ t0 by which all
the followers are realized. At every a-stage s ̂ fl5 it follows that a must be satisfied,
that is, Z(x) { = 1[X| and *F(x) = 0[s] for some follower x of a. As Z{x) is eventually
constant by Lemma 1.4, ^(x) ^ Z(x) for one of these x. Again ¥ ^ Z are required.

(ii) Qi = ^A.r,*- N° numbers n are marked for a after t0. By our hypotheses on
PA r, it follows that y(<x, n) [s] is eventually constant for all n marked for a. If *F(Z; x)

JUMPS OF MINIMAL DEGREES BELOW 0 ' 427

is not defined for some x < y(a, ri) for a marked n, then ^(Z) # A. Otherwise, a is
satisfied at every sufficiently large a-stage by *P(Z; x) # A(x) for some x < y{<x, n) for
one of the marked n. As A(JC) and *F(Z; x) eventually stabilize for each such JC, there
is some x such that x¥(Z,x)l # A(x) as required.

2. Jumps of minimal degrees in downward cones

THEOREM 2.1. Let D be any r.e. set with D' >T0'. Then there exists a set M of
minimal degree with M ^TD and 0' <T M' ^ T D'.

Proof We shall construct M < T D by a full approximation construction along
the lines of, for instance, Lerman [5], Epstein [2] and Yates [18] with M = limg Ms. At
each stage s, we shall construct nested sequences of recursive trees Tx s ̂ . . . 2 Tk s for
certain paths a on the stage s priority tree. At stage s, if \a\ ^ s, |/?| ̂ e, and a is on
Tp s, then a will have ay-state for somey ^ e. Such a state is a string of length j+ 1
that codes guesses as to the 'arena' in which a must live. (We shall assume that the
reader has at least nodding acquaintance, if not familiarity, with the full
approximation technique. In particular, the notion of state will be somewhat similar
to the usual notion of e-state, in the sense that it will characterize whether the node
at hand is locally e-splitting. The notion of state will also need to encode additional
FI2 behaviour, namely the behaviour of diagonalization requirements of stronger
priority as they affect the trees we search to decide if splittings exist. Because of this
nonstandard notion of state, in the full construction we shall replace' state' by 'guess'
to avoid confusion. However, in the discussion of the basic modules we shall stick to
state since the need for more elaborate notions only becomes apparent when we look
at interaction between the requirements.) We shall meet the minimality requirements

Ne: <De(M) total => [(M ̂ T <De(M)) V (0 = T <De(M))]

for all partial recursive functionals Ae. Additionally, we need to ensure that 0'{ = K)
cannot compute the jump of M. In fact, we build a set V which is r.e. in M, and
satisfies the following requirements,

Re:Ae(K)*V.

Let Q = KD denote the standard enumeration of D' so that Kf° = Qg =
{e:{e}f'(e)l&e ^ s}. We briefly remind the reader of the manner by which one
satisfies the Ne. We assume that the reader is familiar with, for instance, the Sacks [8]
construction of a minimal degree below 0'. However, our construction will be a full
approximation one as follows. As with all known minimal degree constructions, in a
full approximation argument, one tries to get M on either an e-splitting (partial
recursive) tree or a tree with no e-splittings. For simplicity in the following discussion
we shall drop some of the tree notation and pretend that we are only constructing a
nested sequence To s ^ ... c Tss and are working to maximise e-states on Te s. In the
perfect set version a la Spector [17] and Shoenfield [14], one does this using recursive
total trees, and uses 0" as an oracle to achieve this in one step. In the present
construction, one can only work locally. With no permitting around, this simply
corresponds to waiting till one sees extensions T1? T2 of some node T which are e-
splitting at stage s. Clearly we need TX and z2 on tree Te s, TX and T2 having the same
(e— l)-state as T, and zt c Ms for some /. If we see such TX and T2 we can raise the state
of T to the high e-state vi, assuming it was in the low e-state vA0. [We reserve v for
states; a, ft, and y for nodes on the priority tree (and sometimes states); II,O,T,X for

428 R. G. DOWNEY, S. LEMPP AND R. A. SHORE

strings; and $ and S for uses corresponding to O and A, respectively.] So the idea is
to slowly build the trees Te s as subtrees of Te_x s so that lims Te s is achieved stringwise.
At each state s, this enables us to define a string, Ms, of length s, the leftmost common
path on To s,..., Ts s of length s. By the way we define e-states and by construction,
lims Ms(x) = M{x) will exist for all x. One can argue that M has minimal degree as
in Sacks [10], except that in a full approximation argument we use e-states as follows.
Let vV (for / = 0 or 1) be the well-resided e-state. By well-resided, we mean that for
almost all a on lims Te s, if a is an initial segment of M, then a has state v7. If this state
is / I then we simply go to some a a M on Te such that all x 2 a on Te have final e-
state vAl. From this parameter, as in the Sacks construction, we know that we can
inductively generate M from the tree of extensions on Te that achieve state vi and
Oe(M). Similarly, if / = 0, then there are no e-splittings on the 'well-resided tree', so
any computation <J>e s(Ms;x) with Ms of the correct e-state must agree with <S>e{M).
[Minimality will then follow by the fact that we meet the Re and hence M £ T 0]

We remark that in the present construction, the above is not quite correct, since
we shall construct at each stage s a path <xs (through the priority tree) that 'looks
correct', and Ms will lie on the trees Ty g for y ^ <xs, where <xs denotes the path of length
s that looks correct at stage s. As we shall see, this means that the trees are actually
determined also by the actions of the jump requirements. The idea, however, is
essentially the same.

Keeping M ^ TD in the above construction entails adding r.e. permitting. For this
theorem, we are able to use simple permitting. That is, we ensure that

Ds [x] = D[x] implies that Ms [x] = M[x], where E[x] = {z \ z e E& z ^ x}.

Such permitting really causes no problems with the e-state machinery. Remember,
we seek e-splittings xx, T2 extending x such that Ms 3 TX or Ms => xv Without loss of
generality, suppose that Ms => zv Then all that the minimality machinery requests is
that we refine the tree to cause either M 3 xx or M 3 T2 should M D I . The point is
that we can ensure this refinement while keeping Ms^>xv It follows that if <De(M) is
total then either Oe(M) =T M or #e(M) =T0.

What becomes more difficult is to ensure that M is nonlow by meeting the Re.
Now we are only able to diagonalize against an 'a-correct' version of V when
permitted by D.

Thus, we now turn to the satisfaction of the jump requirements, keeping
M' > T 0'. To meet these requirements, the reader should recall that the plan is to
build a set V which is If, making sure that \(K) # V. Let t(e,s) =
max{x:(Vy < x) [Ae S(Â S; y) = Vs(y)]}. Of course, V is built by enumerating axioms
relative to M. We meet these Re requirements via a Sacks encoding type strategy, only
here we desire to encode Q = KD into V via axioms about M. The idea is to try to
encode more and more of Q into more and more of V so that if \(K) = V, then K
will be able to compute Q, since K will be able to ascertain if a coding location c(i, s)
for ieQ is final, for a contradiction.

So the idea is that when f(e,s) > c(i—1,5) we choose a coding location c(i,s) for
coding whether 'ieQ\ For simplicity we shall not worry about the interaction with
the state machinery, but consider only the basic module. The idea in the basic module
is to pick some number d(i, s) (intuitively, the (lower bound on the) use of c(i, s)) so
that the following four conditions are satisfied:

(i) there exists a on Te s with a = Te Jx), say, so that one of 7^,(TA0) and Te Jf\)
is an initial segment of Ms; without loss of generality, assume this to be 7

JUMPS OF MINIMAL DEGREES BELOW 0 ' 429

(ii) \a\ = d(i,s);
(iii) ieKf' = Q. and «({/}f<0) < d{i,s);
(iv) d(i, s) > t, where t is the greatest stage, if any, where d(i, t) was previously

defined.
If such a number exists, we declare that d(i, s) is the axiom location for ' c(i, s)eV

at s\ We enumerate an axiom saying that

if Te s(Y0) c M, then c(i, s) e V.

Also Re will assert control of the construction in the sense that it will constrain M to
travel through Te s(z~Q) while the conditions above are maintained.

The key idea is that if / leaves Q (that is, ieQs — Qs for some least sx > s) it must
be that Ds [w({/}f <0)] * D

Sl ["({Of'(0)]- Hence, in particular, D permits below d(i, s) by
(iii) above. Therefore by (i) and (ii), we can cause M now to extend Te s{xX) [instead
of Te<s(z*0)], since we are Z)-permitted to do so. In such a case we shall abandon
Te s(

T"0) forever. [This abandonment makes it necessary to ensure that some strings are
set aside from other lower priority requirements, but this causes no special problems.
See the remarks below.]

Now <i(/, 5X) becomes undefined (and hence the parameter d(i, —) will need to be
redefined to a new number) and c(i, s) = c(i, s^ leaves Vs. The next axiom location for
c(i, s), if any, will be chosen so that the relevant analogues of (i) to (iv) all hold. Note
that if the cycle recurs infinitely often then c{i,s)$ V and i$Q.

The only problem that occurs with the cycle for / outlined above is the following.
The cycle could cause unbounded constraint on M because Ae(K) may not be total,
but could have unbounded use for some c = c(i,s). Imagine 3e s(c) -> oo. As with the
density theorem for the r.e. degrees, we might define coding locations c(i', s) for all
/' > / and eventually this might cause M to be recursive, although Ae(K; c)}, since
limsup/(e,s) = oo. To overcome this familiar problem, when we pick a coding
location c{i, s) for / at stage s if the Ae(Ks; c) [computation is later seen to have
incorrect A>use we cancel c(i', s) for all /' > / and pick c(i', t) anew later (where
c{i', i) > s) (we call this kicking). For all such c{i', s), we also declare d(i', s) to be
undefined; we do not cancel the corresponding Te S(T

A0) or Te Jj"\) but release them
to the construction.

The conclusion that Ae{K) # V remains correct, since using Se s and Ks, K can still
decide if a coding location is final.

Finally, in the full construction, we shall need to deal with various versions of the
Re and Ne above, working in a ' tree of strategies' type of setting. Coding locations
with the wrong guesses will need to be initialized and kicked as above. An Re

requirement at node a which is guessing that v is the well-resided V guess (note
' guess' not ' state') will need to wait till it sees the a and the z of guess v before it
enumerates an axiom involving an axiom location d(tx, i, s) for the coding location
c(cc, i,s). The reader should note that the trickiest part of the construction is to get the
correct environment within which each Re operates. Here, not only do we need to
guess the lim inf of the length of agreement associated with Re_lf but also the exact
behaviour of the various markers associated with this lim inf. We now turn to the
formal details.

REMARKS. AS we mentioned above, the reader should note that a single c(a, /, s)
has the potential of killing all of the three Ta save for one branch (making M
recursive) if we are not careful. If i$ Q but / is in Qs infinitely often, then the Re cycle

430 R. G. DOWNEY, S. LEMPP AND R. A. SHORE

could be repeated infinitely often for the sake of /. As above the action of the Re is
to kill TJaJ) and if we then killed one extension of Ta(a\\ —/)) and so forth, one could
kill all but one path on the tree. This is fine from the Re point of view, but has the
potential for making M recursive. To ensure that this problem is avoided we shall use
various control devices to guarantee that there will be enough available branches for
the relevant requirements when we play the appropriate outcome of Re. This is a little
messy but it is the point of the control functions count (a, s) and maxcount (a, s), and
the freezing machinery. The idea is to suppose that we wish to play an outcome o of
a, as its guess has just looked correct. At this stage we acknowledge that we want a
supply of strings available to the nodes guessing oCo when we pass oCo. We shall not
allow a, or any guesses extending oCo, to assign any strings until we see count (oCo, s)
exceed a previous bound maxcount (oCo, s), or we unfreeze the node because we see
many strings of the appropriate guess. We increment count (oCo,s) each time we
visit a and would like to play oCo. In this way, when we actually get to play oCo we have
many strings to assign to nodes guessing oCo.

The priority tree. We generate the priority tree PT by induction first on length
and then on the lexicographic ordering generated by the ordering < that we define
on outcomes. We also denote this lexicographic ordering on nodes by < . It is the
usual priority ordering. The left-to-right ordering a < L/? is defined as usual by a < /?
and a £ /?. On any path p a requirement is assigned to a node a <= p as follows.
Assign No to X, the empty string. We write e(X) = 0 and req (X) = JV0. Then X will
have outcomes 0 and 1, meaning that X"0 = 0 and X\ — 1 are on PT. The idea here
is that the outcome 1 corresponds to M lying upon a O-splitting tree and we set 1 < 0.
To each of the X outcomes we now assign a version of Ro so that req (0) = req (1) = Ro,
and e(0) = e{\) = 0.

Each version of Ro will sit atop an infinite tree of outcomes of Ro, the Ro tree,
coding the precise behaviour of the coding locations, axiom locations and Abuses. At
the top level will be the node a with the c(0)-outcomes of RO. Namely, a will have
outcomes (in < order)

The intended meaning of these outcomes is as follows:
<0, w>: c(a, 0) (= lims c(o, 0, s)) has unbounded A0(A^)-use (' u ' for ' unbounded');

<0, oo >: this corresponds to no win via c(a, 0), but we change d(a, 0, s) infinitely
often; in essence, this entails A0(K; c(a, 0)) = 0 and cycling through <0, d}
infinitely often;

(0,d): c(a,0) witnesses a win by a disagreement ('d' for 'disagreement');
<0,/>: no win via c(a,0) and we only change d(a,0,s) finitely often (T for

'finite').

REMARK. The reader should note that the outcomes <0, oo> and <0,/> do not
code a win for a but do code the behaviour of the action of a with respect to c(o, 0).
The idea is that we shall continue to try to satisfy Ro at each of these outcomes
generating an Ro tree as described below.

In general to define the Ro tree below a, suppose that we have defined x to be in
this tree. If T is of the form fi\i, u) or [£(i, d), then r represents a win for Ro and we
would assign A^ to T. If T is of the form //</, oo> or pt\i,f), then we again assign Ro

to T and give it outcomes </+1, «>,..., </+ ! , />. (See Diagram 1.)

JUMPS OF MINIMAL DEGREES BELOW 0 '

R0(0J) (0,u)(0,oo)(o,d)(0,f)

DIAG. 1. A portion of the priority tree.

For the full priority tree we assign Ne and Re in order as above with e in place of
0 for the highest priority requirement not yet (completely) assigned. Note that the
presence of Re trees means that there exist paths P on PT whose nodes are only
assigned to finitely many requirements. For such a path, almost all of the nodes will
be assigned to a fixed Re and will be of the form //<*', oo> or //</,/>. We shall need
to argue that none of these paths is the true path of the construction, and hence all
requirements get their chance to be met.

Parameters and terminology for the construction

c(a,i,s): The coding marker associated with UeD" at guess a at stage s;c(a, i,s)
is targeted for V. We attempt to code D' into V via these markers.

d(<x,i,s): The current axiom location for 'c(a,i,s) in Fat stage 5'.
count (a, s): A control function at guess a used to ensure that when we play an

7Ve-node a then there are many unused strings available for guesses below a.
maxcount (a, s): The reference control function that count (a, 5) must exceed

before we can play a.
a-freezing: While a node a is waiting to see enough strings to make it seem

reasonable to play outcome o, then we say that the node is frozen with outcome o.
req(a): The requirement assigned to a.
e(a): The index of the requirement req (a).
y(a): They for which a is used to code ic(a.,j,s)e V\
Finally, /(«(«), j) = max{x:Vy < *(*.,.(*,;;y) = Vs(y)))}.

The most complex requirements are the higher level Sacks coding requirements,
the Re. The reader should think of their action as that of an automaton.

Construction, stage s+\

In substages we shall generate a guess (that is, a node on the tree) ag+1 that looks
correct, and a collection of trees Tys+1 (for y c as+1 and req(y) of the form Ne). For
convenience, let Tx 0 = 2<eo. Initially, let all n on TyQ have e-guess X. We proceed in
substages / ̂ s+1. We shall append a superscript t to a parameter to indicate its
guess at the end of substage t. (At substage 0, the initial value of a parameter will be
its value at the end of stage s). We also suppose that we are told that s +1 is an a-stage
(a = 0Cg+1) at the end of each substage t (a = X initially).

432 R. G. DOWNEY, S. LEMPP AND R. A. SHORE

Our action will be to determine how to modify trees, guesses, etc., and to define
the outcome of a',+1. Our actions will be determined by s, t, and req(a). We shall
assume that if req (a) = Re, we are at the top of an Re tree. We often use the phrase
'initialize a'. This follows standard usage, and means cancelling the followers of a,
etc. Furthermore, if /? < L a initializes a (so that fi is visited at s+ 1, say) then we let
Ta s+1 be the full subtree of 7̂ s+1 extending Ms+l above Tfi s+1(z) with |T| = s+ 1 and
Ms+1 3 Tp s+l, with all guesses becoming initialized. Finally setting a value for ag+1

ends a stage.

CONVENTION. We shall also adopt the following convention that saves on
terminology. During the construction we can visit nodes v in one of two ways. One
way is to visit them at substage / of stage s such that for all V £ v we also visited v'
at the same stage. The other possibility is that we did not visit some V <=, v during
stage s but jumped directly to v because although V was not accessible, there was a
permitted action at v. In the latter case, we adopt the convention that visiting v either
ends the stage or we visit some v =D v via a permitted action. As we shall see when we
act in this way we do not appoint markers etc., but merely modify trees.

DEFINITION 2.2. We say that a (on PT) has a permitted action at substage t of
stage 5+1 if, for some j , we have

(i) c = cl(<x,j,s+ 1) is defined,
(ii) c e ^ s + 1 , and

("i) y*& + i (that is, O n /) [*

Substage t. Let a be the node eligible to act at substage /.

CASE 1: req (a) is Ne.

SUBCASE 1: there exist z, z0, zx such that z,z0, and zx are on T\ g+1 with
T = Tl

a s+l(n), zx = T^s^n^, z2 = T\ s+1(rj2), and
(i) T0 and zx e-split z,

(ii) T 0 <z -^
(iii) T0 £ Ms or TX ^ Ms,
(iv) T, T0, zl had e-guess a'O at the beginning of substage t,
(v) l*7ol> l̂ il > rnaxcount (a"l, 5) (the last stage at which a genuinely had outcome 1)

and
(vi) T is the shortest such string.
Action. For p 4> rj, let T^)+1{p) = 7^ s+1(/?). For /? 3 77 and / < 2, define T^]+l

via

Raise the e-guess of T to ofl. All else remains the same.
Set count (ofl, 5+1) = count (ofl, 5) + 1 . There are three subcases.

SUBCASE la: count (ofl, 5+ 1) < maxcount (ofl, 5) and there exists a j ? 2 a l with a
permitted action.

Action. Set oc£\ = ft and declare 5+1 to be an ofy-stage for all oCy c p. [For all
y with ofl c cCy^P, however, 5+1 not a genuine ofy-stage. A stage is a genuine
//-stage if we actually visit rj at one of its substages.]

JUMPS OF MINIMAL DEGREES BELOW 0 ' 433

SUBCASE lb: count (ofl, 5+1) < maxcount (of 1,5) but Subcase la fails to apply.
Action. Set ag+1 = ofO and declare 5+1 to be an of 0-stage. [This ends the stage.

Recall that a low count indicates we have not yet seen enough potential strings in the
good guess.]

SUBCASE lc: count(ofl,s+1) ^ maxcount (ofl, 5).
Action. Set maxcount (of 1,5 +1) = 5 + 1 and reset count (ofl,5 + 1) = 0. Declare

5+1 to be an ofl -stage and set ocs+* = ofl.

SUBCASE 2.: Subcase 1 does not hold, but there exists a permitted action at some
0 2 ofl.

Action. For the highest priority such fi (that is, the lexicographically least) let
a£i be /? and declare 5+1 to be an ofy-stage for all oCy s /?. [For all y with
ofl c: oCy g ft, however, 5+ 1 is not a genuine ofy-stage]. Otherwise nothing changes.

SUBCASE 3: otherwise.
Action. Nothing changes. Set as+* = ofO. Declare 5+1 to be an of0-stage.

CASE 2: req(a) is Re. We begin with the case that a is the top of an Re-tree. We
continue to consider Re until we play either an outcome (J, d} or an outcome (J, u)
for some/ We consider they in order, beginning withy = 0. Suppose thaty = 0 or we
have already considered j — \ and are considering / We can assume that we have
inductively generated a string cCyij) so that oCy(J) <= ag+1 and for a l l / <j, there exist
n, k with aCif(fjk) c cCy{j) and fce{oo,/}. [Fory = 0; y{f) = X] Finally, we let
Tl

n s+1 = T^ s+1 for all n extending a which are devoted to Re below a, that is, they all
use the same tree.

Pick the first subcase that applies and perform the action indicated. Here let s0 be
the last genuine oCy(jysta.ge at (the beginning of) which cCy(j) was not frozen.

SUBCASE 1: c = cl(a,j, s+1) is undefined.
Action. Pick a large fresh number c = ct+1(<xj\s+1) and set as+1 = a ^ = oCy(j).

SUBCASE 2: a has a permitted action at substage t of stage 5 + 1 .
Action. Let d = | T^ I+1(TY)| be the use of ' c e F<, ,+1 ' (where T\ S+1(T7) C M[+l);

abandon the part of T\ g+1 above T\ S+1(T7) by setting

«..+iw \Tl
as+l(T\\ -ifn0) if 17 2 T, say rj = T>0

(and so c $ K£g
x
+1); let Ml

s\\ be a path through T%]+1 extending Tl+l+1(xX\ - 0); declare
oCy{j) frozen with outcome u (if cCy{j) was already frozen with outcome u or if
Af [(c+1) was not defined at any time since stage 50) or with outcome 00 (otherwise);
and set a£ i = oCy(jf(J,u) or oCy(J)\j,00>, respectively.

SUBCASE 3: aAy(y) is frozen (with outcome 0 since stage 50, say).
Action. Check if there are at least s0 strings T such that

(i) r i s o n T\ s+1, say x = ^ s+1(v),
(ii) T c Ms+1,

434 R. G. DOWNEY, S. LEMPP AND R. A. SHORE

(iii) the e(?/)-guess of Tl
a g+1(v7) is <x(e(rj)) for all TV-strategies n c= a and all / < 2,

and

(iv) i(n..+ir1(*)i>*o-
If so then declare oCy(J) no longer frozen, and let oCy(j) have outcome o. If,

furthermore,
(v) oCy(j) was frozen with outcome oo, and

(vi) ctK,»i and ye fim (that is, {/H/)[*+lHX
then enumerate c into K£J+1 with use 7^ ,+1(v7), where T is the longest string satisfying
(i) to (iv) not used by a strategy c cCy{j) for F-enumeration and T\ S+I(v7) c M^+1.

Otherwise, that is, if (i) to (iv) fail, cCy(j) remains frozen with outcome o. In either
case, we set oc£} = oCy(jy(j,o).

SUBCASE 4: Af {(c+ 1) has not always been defined since stage s0.
Action. Declare oCy(j) frozen with outcome u and set a£J = oCy{jJ{j,u>.

SUBCASE 5: (?(/) has changed since stage s0, that is, there are stages 5 ,̂ s2 e [s0, s+\]
such that exactly one of {J}D(J) tal I and {j}D(J) [s2] j holds.

Action. Declare cCy(j) frozen with outcome oo and set a£x
x = oCy(J)\j, oo>.

SUBCASE 6:jeQs+1 and c$ KJ,i5+1.
Action. Declare a"y(/) frozen with outcome oo and set <x£i = cCy{j)\j, oo>.

SUBCASE 7: Af f(c+1) = FaT(c+1) has not always held since stage s0.
Action. Declare oCy(J) frozen with outcome d and set a£i = oCy(j)\j,d}.

SUBCASE 8: otherwise.
Action. Let oCy(J) have outcome/and set <xl

s
+

+\ = oCyijJij,/}.

This completes the action of oCy{j). We now initialize all strategies £, > L a ^ and
check whether

(i) oCy(J) is now frozen and there is a strategy /I < L a^^ or 3 <x£\ with a permitted
action (as defined in Subcase 2 above), or

(ii) there is a strategy /? < L a ^ with a permitted action.
If so then let the highest-priority such fi act next. Otherwise, let a£J act at the next

substage (if oCy(J) is not frozen now and Subcase 1 above did not apply) or end the
stage (otherwise).

End of construction.

Verification

The reader should note that M ^TD because we always maintain the simple
permitting invariant: Ms[x] = M[x] if Ds[x] = D[x]. [While we might refine the
underlying trees, we only change M due to a permitted action.] Let TP denote the true
path.

We need to argue that for all a £ TP, the following hold,
(i) The limit lims Ta s = Ta exists stringwise.

(ii) Let a = oc^a. If req (a~) = Ne, then for almost all a on Ta with a c M the
e(a~)-guess of a agrees with a.

JUMPS OF MINIMAL DEGREES BELOW 0 ' 435

(iii) If a £ TP, then there are infinitely many a-stages and a is initialized only
finitely often.

(iv) If req (a) = Re, then there are at most finitely many a' on TP with
req(a') = Re and Re is met by some such a'. Furthermore, if req (a) = req (a') then for
all rj with a ^ rj £ a' we have req (77) = Re.

(v) Let a be the shortest string on TP with req (a) = Re and let x be any such
string. Let xa a TP. Then a is of the form (J, >, and lims c(ocj, s) = c(<x,j) exists.

Furthermore the following hold.
(va) If a = (J, u), then the A>use of Ae(K; c(a,/)) is unbounded.
(vb) If a = <j\ co >, then A£K; c(<x,f>) = 0 and j$ Q, c(a,y) $ V, and d(<x,j, s) tends

to infinity as s does.
(vc) If a = <j, </>, then Ae{K;c{a,j')) # V{c{j)) and d{<xj,s) is reset only finitely

often.
(vd) If a = O',/>, then Ae(A ;̂ c(a,y)) is defined and equals V(c(j)), and d(<xj,s) is

reset only finitely often.

These are all fairly straightforward and are verified by simultaneous induction.
Let a c TP and let s0 be a stage such that we are never again to the left of a, and a
is not initialized after s0.

We begin with (i). If req (a) is Ree, then a is devoted to some subrequirement
attempting to produce a disagreement at some j in the Re tree below some a. Note that
all the a' in this tree work on the same Ta. Now a only modifies trees in Subcase 2,
where it deletes nodes, and redefines the tree. But whenever we do this we pick v at
the end of Subcase 3 much longer the next time. From this and the induction
hypothesis it follows that lims Ta s = lims Ta s exists stringwise. In the case that
req (a) = Ne, we see that (i) follows immediately for a since we were permitting, and
only raise guesses.

To see that (ii) holds, after stage s0, we know that a" and a will not be initialized,
and that req (a") = Ne. If a = a~1, then we only get to play a when we see a new
splitting (Case 1, Subcase 1), or there is a permitted action at some fi 3 a. In either
case, the only places where we shall change Ms will be on trees Ty for 7 2 a, and by
induction, these will only involve strings of e guess a. Note that the same can be said
of the case a = a~*0 since we shall not be to the left of a again.

Turning to (iii), we can suppose that there are infinitely many or-stages and all of
the above holds for a". If req (or) = Ne, then we know that a = a~A0 or a = a~Al. In
the former case, after some stage we shall set a new count which is never exceeded.
(Otherwise, we would move left of a.) This means that Ta s is never again reset and
all the nodes on it are of guess £ a~*0. Since (iii) holds for nodes £ a", it follows that
a" is given arbitrarily large numbers of strings of guess a". These strings constitute an
infinite collection with guess or*O = a. The case a = a'^l, is similar, only there we
know that infinitely often we see further strings with guess or. We only need to argue
that infinitely often count (a", s+1) is exceeded.

We remark that the same argument works for req (a") = Re via the freezing
machinery in place of the count machinery. Thus a node is frozen and waits in
Subcase 3. The result now follows from (ii) and the induction hypothesis applied
to cr.

To establish (iv) and (v) we argue exactly as in the basic module. The trees Ta for
a s TP are not initialized after a certain stage s0. Let a be the top of an Re tree with

436 R. G. DOWNEY, S. LEMPP AND R. A. SHORE

a £ TP. All its nodes /? => a are devoted to Re and Ta. Now the key point is that for
nodes in the /?e-tree of the form oCy(J) = <xj, if d = d(j, a, s) is defined, then whenever
j leaves Q at stage s +1 we will be able to cancel d via Subcase 2 as there will be a
permitted action at <x} and hence either s will be a genuine a^-stage, or s will be a /?-
stage for some ft to the left of, or below on1. In the latter case we will have picked d
after we visited /? and hence the action of /? will also move Ms from extending the
string corresponding to d at aj. The remaining details are to do a routine case by case
analysis of the subcases to show that our construction mirrors the basic module, with
the additional freezing delay put in to ensure that ft => a have enough strings to work
with. These details are by and large straightforward, and should probably be apparent
now to the reader, but we supply some as examples. First note that (va) holds since
we only play the outcome (J, u) when the K use of Ae(K; c(a,y)) has been seen to
increase. Since f(J, u) c TP, we know that c(<x,j) reaches a limit and hence the fact
that the use increases infinitely often implies that for the final c(<x,j) the use is
unbounded. Similarly for (vb), we must have that \(K; c(<xj)) equals 0. As with the
basic module, each time we unfreeze x we get to assign d(a,j, s) corresponding to the
same c(a.,j), and after this j will later leave Q, and hence (vb) follows since then the
Ae use has finite limit but {j}f(j) | by divergence. The other two cases are similar.
Finally, to see that (iv) holds, suppose that it fails. Then below a the only nodes on
the true path are ones of the form xa with e(x) = e = e(a), and ae{oo,/}. We claim
that /f can compute Q. To see this, once a will never again be initialized, any c(<x,j,s)
once defined will be fixed unless the K-use of c(a, /, s) changes for some / < j . We know
that all such uses reach a limit so for eachy, some incarnation of c(cc,j, s) is eventually
fixed. Furthermore, note that since K can figure out if the use at c is final, A^can figure
out if an incarnation of c{cn,j) is the final one. By induction, and the argument above
we see that (vb) or (vd) applies to all nodes on the true path above a. We can therefore
apply the argument of the basic module, and conclude that je Q if and only if
C(<XJ)EV.

The argument that M is minimal is totally routine. To see that all the Ne are met,
pick p on TP devoted to Â e, and look at its outcomes. First, since p is only initialized
finitely often, for almost all strings on Tp, it follows that p will be able to raise guesses
at will. Because of this the standard argument will work. We leave the details to the
reader.

We now immediately have the desired corollary showing that the range of the
jump operator on the minimal degrees below 0' cannot be characterized simply in
terms of the jump classes of degrees r.e. in and above 0'.

COROLLARY 2.3. Ifc > 0' is r.e. in 0', then there is a minimal degree m < 0' such
that 0' < m' ^ c.

3. Some related results on minimal degrees

We now sketch the proof of two related results on jumps of minimal degrees below
0'. We assume familiarity with the standard oracle construction of a minimal degree
below 0' introduced by Shoenfield [13] as in Lerman [5, IX.2] (whose notation we
adopt below) and the diagonalization method introduced by Sasso [11] using what
Lerman [5, V.3] calls narrow trees to construct a minimal degree a < 0' with 0' < a'
as in Lerman [5, V.3 and IX.2.11]. We also assume familiarity with the standard

JUMPS OF MINIMAL DEGREES BELOW 0 ' 437

method of recursively approximating the answer to a Zf question for low B, originally
introduced in Robinson [7] and in Soare [16, XI.3]. We use this method relativized
to 0'.

THEOREM 3.1. If c is r.e. in and above 0' and c' = 0" then {uniformly in the
information) there is a minimal degree a < 0' with a' ^ c.

Proof {Sketch). We replace the nonrecursiveness requirements in the oracle
construction of a minimal degree a < 0' by ones which guarantee that O^C) # A'. At
each stage s of the standard construction we would have a sequence of partial
recursive trees To_ s, . . . , Tn s such that Ti+l s is either Ext {Tt s, a) the full subtree of Tt s

above a for some a, or Sp{Tt s,i), the (partial recursive) /-splitting subtree of Tt s.
Instead, we now have a sequence in which T2i+1 s is either a full subtree of T2i s, or
Nar(Ext(r2 j s, a)), the narrow subtree of some full subtree of T2i s. (The narrow
subtree of T is the tree which eliminates the right hand branches above all nodes at
odd levels of T. Thus Nar(r)(<r) = T{a® 0n), where n = lh{a).) Moreover, T2i+2s is
either a full subtree of T2i+1 s or the /-splitting subtree of T2i+1 s.

It is easy to see that we can recursively in (the index for) T2i s calculate an x such
that if A is on T2is then x$A' if and only if A is on T2i+1 g, the narrow subtree of T2i s.
If, at stage s of our construction, we see that Ot(C;x)[s] = 0, then we would like to
let T2i+1 s+1 be some full subtree of T2i>s which forces A off T2i+1 s such as
Ext {T2i+1 s, 01). The problem is that, as the construction is recursive in 0' and C is only
r.e. in 0', this computation may prove false. We use the low oracle approximation
procedure to prevent us from acting infinitely often for this requirement.

At stage 5 we first redefine the trees To s , . . . , Tn s as in the standard construction
(to attempt to satisfy the minimality condition). We then see if there is a 2/ < ns for
which we do not think we have satisfied the requirement O,(C) # A'; O((C; x) = 0[s],
where x is calculated from T2i s as above; and our oracle approximation procedure
says that there is a stage with these properties at which the C computation is actually
correct. (If the approximation says ' no ' we speed up our enumeration of C and the
approximation until either we no longer have <I>f(C; x) = 0 or the approximation says
' yes'.) If so, we let T2i+1 s+1 be a full subtree ofT2i s (= T2i s+1) which forces A off T2<+1 g.
(As usual, «s+1 = 2i+ 1.) If not, we make no additional changes in the trees to get the
other Tttt+V

The only new element of the verification is the analysis of the effects of moving off
the narrow subtrees. The lowness of C over 0' (and the recursion theorem relative to
K) guarantees that our ^-recursive approximation is correct and so we act only
finitely often to satisfy the requirement 0>t{C) ^ A' and we eventually C-correctly
satisfy it. As this action is finite, the argument that the trees Tis are eventually
constant and the minimality requirements are satisfied proceeds as usual.

A nonuniform version of the above result can be deduced from the following.

THEOREM 3.2. There are minimal degrees a0, ax < 0' such that â U â = 0".

Proof {Sketch). Simultaneously build two sets A^A^ of minimal degree, as
above, but use the narrow subtrees in each construction to code the final result of
the other in an interleaved way as in Simpson [15]. Suppose that the sequences of trees
for Ao and A, at stage s are <r»,s , . . . , r°ns> and < r j s , . . . , T1) , respectively, and

438 R. G. DOWNEY, S. LEMPP AND R. A. SHORE

<xjiS = Pi{ai ps) fory = 0,1. We shall also use the narrow subtrees to code 0" into
A'o V A[in place of diagonalization. At each stage s of our construction we shall have,
for j = 0,1, a sequence of (partial recursive) trees (Po g,..., Pn g> and an initial
segment a.js of A} with strings aiUs for i^ns, such that T\ s(at} s) = (Xj s. In
particular, an }s = 0. Then Po g = id for every s while, for k $s 0, it follows that
^L+4+i,s wiM De either the ^-splitting subtree of 7^2fc+j s or a full subtree of rj

2fc+, g.
Alternating with these trees, we shall have trees P2k+j+2,s (for & ^ 0) which will be
narrow subtrees of some full subtree of P2k+j+1 s.

At stage s, we first find the least k such that P2k+j+1 is not defined at <x2k+)+hs * 01,
(for j = 0,1). If there is an i < k enumerated in 0" at s, we record this fact by
forcing Ax off the narrow subtree of r 2 i g. We let «g+1 = 2 /+ l and P2i+1 iS+1 =
Nar(Ext(T2<, <x2i x g*01)). No other trees are changed.

If no / < k is enumerated in 0" at stage s and 2k +y + 1 ^ ns, we let «g+1 = 2k +j+ 1
and set PHg+i,s+1 = Ext(P2k+JtS,z), where P2k+L S(T) = P2k+j+1 (a 2 f c + m * 0) and
Pn I ,s+i = E x t (7 2 ^ g, (x2k+j g * 01). All trees with smaller indices remain as at stage s.
In this case, we satisfy the kth minimality requirement for Aj as there are no k-
splittings on P2k+j g+1 above oc^s+1. We also record the fact in A1'1 that we switched
from a fc-splitting subtree by forcing ai_;s+i off the narrow subtree of T\l{jiS+v

If no / < k is enumerated and 2k+j+ 1 = ns + 1 we extend our sequences of trees
by setting «g+1 = ns + 1 and

Png+1 = Nar (Pn), T%+1 = Sp {T\:{, k).

Clearly the number of times a tree Pt s is changed is finite and so we can argue as
usual that the A} are of minimal degrees. We claim that we can compute 0" and
recover the sequence (of indices for) Pt = lim 7^ g from A'o © A[. Suppose we have
T°o,..., T°2i and T],..., P2i and have computed 0"\i and a stage s2i by which all of
these have settled down. We ask A[if A1 is on Nar(r 2 i) . If so, i$ 0", T2(+1 = Sp(T\^),
T\i+l = Nar(T2t) and all have settled down by s2<+1 = s2i. If not, we wait for a stage
s at which we forced Ax off Nar (r2 i) . At stage s, we set 7"2j+1 g = Nar (Ext (T\t, r)) for
some T (possibly 0). We again ask A'x if Ax is on T\i+1 g. If so, P2i+1 has reached its
limit fory = 0,1 as has 0"(i). If not, we find s' > s at which we force Ax off T\i+1 g.
As we can do this at most twice, we then have P2i+liS< = P2i+i and 0"(O = 0s(O- We
can now find r;

2j+2 by asking of A'o if AQ is on Nar (r2 t + 1) . If so, the r'2(+2 are already
fixed and if not they become fixed when we force Ao off Nar(T2(+1).

References

1. S. B. COOPER, 'Minimal degrees and the jump operator', J. Symbolic Logic 38 (1973) 249-271.
2. R. L. EPSTEIN, 'Minimal degrees of unsolvability and the full approximation construction', Mem.

Amer. Math. Soc. 162 (1975).
3. R. M. FRIEDBERG, 'A criterion for completeness of degrees of unsolvability', J. Symbolic Logic 22

(1957) 159-160.
4. C. G. JOCKUSCH JR. and D. B. POSNER, 'Double jumps of minimal degrees', / . Symbolic Logic 43

(1978)715-724.
5. M. LERMAN, Degrees of unsolvability (Springer, Berlin, 1983).
6. D. B. POSNER, ' A survey of non-r.e. degrees ^ 0 " , Recursion theory: its generalizations and applications

(Proceedings of the Logic Colloquium 1979, Leeds, August 1979) London Mathematical Society
Lecture Note Series 45 (eds. F. R. Drake and S. S. Wainer; Cambridge University Press, 1980)

7. R. W. ROBINSON, 'Interpolation and embedding in the recursively enumerable degrees', Ann. of Math.
(2) 93 (1971) 586-596.

8. G. E. SACKS, 'A minimal degree below 0", Bull. Amer. Math. Soc. (N.S.) 67 (1961) 416-419.
9. G. E. SACKS, 'Recursive enumerability and the jump operator', Trans. Amer. Math. Soc. 108 (1963)

223-239.

JUMPS OF MINIMAL DEGREES BELOW 0 ' 439

10. G. E. SACKS, 'On the degrees less than 0', Ann. of Math. (2) 77 (1963) 211-231.
11. L. SASSO, 'A minimal degree not realizing the least possible jump', J. Symbolic Logic 39 (1974)

571-573.
12. J. R. SHOENHELD, 'On degrees of unsolvability', Ann. of Math. (2) 69 (1959) 644-653.
13. J. R. SHOENFIELD, 'A theorem on minimal degrees', J. Symbolic Logic 31 (1966) 539-544.
14. J. R. SHOENFIELD, Degrees of unsolvability, North-Holland Mathematics Studies 2 (North-Holland,

Amsterdam, 1971).
15. S. G. SIMPSON, 'Minimal covers and hyperdegrees', Trans. Amer. Math. Soc. 209 (1975) 45-64.
16. R. I. SOARE, Recursively enumerable sets (Springer, Berlin, 1987).
17. C. SPECTOR, 'On degrees of recursive unsolvability', Ann. of Math. (2) 64 (1956) 581-592.
18. C. E. M. YATES, 'Initial segments of the degrees of unsolvability, Part II: Minimal degrees',

J. Symbolic Logic 35 (1970) 243-266.
19. C. E. M. YATES, 'Prioric games and minimal degrees below 0", Fund. Math. 82 (1974) 217-237.

R.G.D.
Department of Mathematics
Victoria University of Wellington
Wellington
New Zealand

E-mail: downey@math.vuw.ac.nz

R.A.S.
Department of Mathematics
Cornell University
Ithaca
New York 14853-7901
USA

S.L.
Department of Mathematics
University of Wisconsin
Madison
Wisconsin 53706-1388
USA

E-mail: lempp@math.wisc.edu

E-mail: shore@math.cornell.edu

