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Abstract. We solve a problem posed by Goncharov and Knight [Problem 4 in [GK02]].
More specifically, we produce an e↵ective Friedberg (i.e., injective) enumeration of computable
equivalence structures, up to isomorphism. We also prove that there exists an e↵ective Fried-
berg enumeration of all isomorphism types of infinite computable equivalence structures.

1. Introduction

A large part of classical algebra seeks to characterise structures up to isomorphism. To
do this, algebraists often develop elaborate theories of invariants. E↵ective algebra [AK00,
EG00] looks at algorithmically presented structures, and therefore it is natural to look at
these structures using a certain kind of e↵ective classification tool. A typical method would
be to use computable isomorphisms or some other kind of e↵ective isomorphisms. If we use
computable isomorphisms, then typically the classical isomorphism type splits into infinitely
many computable isomorphism types [EG00]. There is a large body of work seeking to relate
syntax to the complexity of the isomorphism types (see for example, Ash and Knight [AK00]
for more on this program).

A more general question is the following: “Can we measure the complexity of a classification
problem in e↵ective algebra?” By a classification problem we mean the following. Suppose
K is a class of “e↵ectively presented” mathematical objects, such as recursively presented
groups [Hig61] or computable Banach spaces [PER89]. Such a class K usually comes with a
natural notion of isomorphism. The classification problem for the class K asks:

Can we associate each structure in K with an invariant so that deciding isomorphism on
K becomes simpler than “brute-force”?

The problem is quite general with many terms being vaguely defined. As a consequence,
there have been many non-equivalent ways to approach the problem (see [GK02]). In their
seminal paper, Goncharov and Knight [GK02] put together all standard approaches (to date)
that are typically used to attack classification problems in e↵ective algebra (see also [FF12]).
One such approach is to measure the complexity of various index sets [GK02], or compare
classes under e↵ective reductions [FF12]. Such general methods are readily applied to various
common algebraic classes such as groups, integral domains, lattices, etc., see [GK02, HKSS02,
DM08, FF12]. In fact, often such applications are not restricted to computable members of
the classes and can be interpreted as classification results in the most general algebraic sense
(see e.g. [DM08, DM13, DM14]).

Goncharov and Knight [GK02] discuss another standard approach to understanding e↵ec-
tive classes and their classification. That is: How hard is it to list the isomorphism types?
In particular, for a class K, is there a uniformly e↵ective list K0,K1, . . . in which every iso-
morphism type from K is mentioned exactly once. Then the position n of K

n

in the list fully
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describes its isomorphism type. Such an enumeration is called a Friedberg enumeration. (Re-
call that Fridberg [Fri58] proved that there exists a computable one-one enumeration of all
c.e. sets without repetition.) If a class has such a Friedberg enumeration, then we can regard
it as “classified” in this well-defined sense, in spite of the actual isomorphism problem (viewed
for example, as an index set) being perhaps quite complex.

Goncharov and Knight [GK02] gave a general condition on a class which implies the class
does not possess a Friedberg enumeration. One model-theoretically simple set of structures
not covered by this metatheorem was equivalence structures. Because of this, Goncharov and
Knight [GK02] (Problem 4) asked whether there exists a Friedberg enumeration of computable
equivalence structures. This problem turned out to be rather di�cult to resolve.

What is so peculiar about computable equivalence structures? Why did the problem resist
solution? See Goncharov and Knight [GK02] and Lange, Miller and Steiner [LSM] for earlier
attempts. Why does it seem necessary to use complex priority techniques to attack this
problem? First, we shall address these questions, and then we will discuss our positive solution
to the problem and its consequences.

1.1. A simple class with hard properties. At first glance computable equivalence struc-
tures seem rather primitive. Indeed, countable equivalence structures are elementary from the
classical point of view. However, this seemingly elementary class possesses several remarkably
deep e↵ective properties. This is due to its relationship with the closely related notion of a
limitwise monotonic set. Limitwise monotonic sets have proved to be highly useful in di↵erent
seemingly distant parts of recursion theory [KKM13, KNS97, Har08, DKT11]. Recall that
a set S is called limitwise monotonic if it is the range (✓ N [ {1}) of a function g, where
g(n) = sup

s

f(n, s) for a computable f . For example the sizes of equivalence classes in a
computable equivalence structure are exactly the limitwise monotonic sets. This notion was
introduced by Khisamiev [Khi98] in the context of abelian groups. Equivalence structures al-
low us to study the notion in a more computability theoretic setting, where we do not have to
worry about the more complex group structure. Nonetheless, even in absence of any algebraic
structure, the property of limitwise monotonicity is still not very well understood from the
pure computability theoretic point of view (see [DKT11, KKM13]).

Being a computability-theoretic abstraction rather than an actual interesting structure on
its own, the class of computable equivalence structures resembles several important standard
classes (either locally or globally) that possess “full decompositions”, especially abelian p-
groups [Fuc70, Khi98], completely decomposable groups [Bae37, DM13], and special classes
of linear orders (such as ⌘-presentations and shu✏e sums [Dow98]). There are long-standing
open problems concerning computable presentations in each of these natural classes, and one
would hope that a better understanding of equivalence structures might help in approaching
these problems. Indeed, in each of the listed classes combinatorial methods tend to resemble
those used in computable equivalence structures. Some of these methods have already found
applications in these classes [Har08, KKM13, DMNa, DMNb]. Also, recently there has been
an increasing interest in various e↵ective properties of computably enumerable equivalent rela-
tions (CEERs). See e.g. Lachlan [Lac87], and see also [ALM+14] for a recent survey on CEERs.
Although we will not discuss CEERs further, we note that these results are very closely related
to numbering theory [Ers] that has been particularly popular in the Russian/USSR recursion
theory tradition.

The class of computable equivalence structures suggests some remarkably challenging prob-
lems, we briefly discuss one that has captured our imagination in the recent past. One can
easily classify computable equivalence structures that possess a unique computable presenta-
tion up to computable isomorphism [CCHM06]. Also, ;00 can see whether two computable
equivalence structures are isomorphic. What about those which have a unique computable
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copy up to ;0-isomorphism [CCHM06]? Remarkably, the question is still open. In fact, the
most recent result towards this problem [DMN15] uses a nonstandard ;000-construction of a
combinatorial complexity rarely seen in e↵ective structure theory (let alone computable equiv-
alence relations). The result illustrates how little we understand �0

2 isomorphisms in general.
On the other hand, we applied our techniques from [DMN15] to solve two open problems on
computable groups (see [DMNa]).

The reader might wonder as to the source of the computability-theoretic complexity. One of
the core di�culties in working with equivalence structures is the complexity of the isomorphism
relation in the class. Let E0, E1, . . . be an e↵ective listing of all computable equivalence
structures (allowing repetition). Although seemingly simple, the set {i : E

i

⇠= R} may be ⇧0
4-

complete for a fixed computable equivalence structure R [CCHM06]. This means that guessing
whether two computable presentations are isomorphic is in general ⇧0

4. This contrasts with
the situation in, say, c.e. sets where equality is merely ⇧0

2. Similarly, for e↵ectively closed sets
the upper bound is ⇧0

2 which makes it possible to produce their Friedberg enumeration [BC08]
without resorting to complex priority techniques.

1.2. A listing without repetition. It is clear that a Friedberg enumeration exists in each
of the following classes: vector spaces over a given field, algebraically closed fields of a given
characteristic, and well-orderings of a type less than any fixed computable ordinal [GK02].
Deeper results on Friedberg enumerations typically require significantly new ideas. As noted
in [GK02], such proofs are often indirect and tend to use some global properties of the class
rather than a construction. As a consequence, not much is known about Friedberg enumera-
tions for interesting classes. Goncharov and Knight [GK02] isolated a general condition that
implies that the classes of computable Boolean algebras, linear orders, and abelian p-groups
have no Friedberg enumeration (indeed, not even a hyperarithmetical Friedbeg enumeration).
It is also known there is no Friedberg enumeration of the class of torsion-free abelian groups
of rank 1 [LSM], but the class of computable algebraic fields possesses such an enumera-
tion [LSM]. See [GK02, LSM] for more results on 1-1 enumerations.

Goncharov and Knight [GK02] showed that the class of all computable equivalence struc-
tures with infinitely many infinite classes has a Friedberg enumeration, and noted that perhaps
there is no Friedberg enumeration of the class of all computable equivalence structures since
the natural invariants for this class look too complex (see [GK02], discussion after Propo-
sition 5.4.) More recently, Lange, R.Miller and Steiner [LSM] showed that there exists a
;0-computable Friedberg enumeration of all isomorphism types of computable equivalence
structures. However, the general question remained open. At this point the reader should be
convinced that the question of Goncharov and Knight looks quite challenging, especially given
the ⇧0

4-completeness of isomorphism. Nonetheless, we prove:

Theorem 1.1. There exists a Friedberg enumeration of the class of computable equivalence
structures, up to isomorphism.

We point out that the enumeration provided by Theorem 1.1 includes the isomorphism type
of all computable equivalence structures, including the finite equivalence structures. More
specifically, in Theorem 1.1, we prove that there exists a computable sequence (U

i

, E

i

)
i2!

such that for every i, U
i

is a c.e. initial segment of !, and E

i

is a partial computable binary
equivalence relation defined on all members of U

i

, such that every computable equivalence
structure is isomorphic to (U

i

, E

i

) for some i, and that for every i 6= j, (U
i

, E

i

) 6⇠= (U
j

, E

j

). We
also remark that Theorem 1.1 does not claim to know for which i is U

i

finite. The question of
whether we can enumerate all computable equivalence structures, while presenting the finite
ones by their canonical indices will be answered by our next main theorem, Theorem 1.2.
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The reader should prepare for a combinatorially involved proof that is contained in Section 2.
The good news is that we have to do anything significant only if the i

th structure E

i

in
the natural listing with repetitions is not isomorphic to E

k

, for any k < j, which can be
detected in a ⌃0

4 way. The usual priority tree techniques can in principle handle ⌃0
4-guessing.

Although our proof is not quite in the same league of complexity as the main result of [DMN15]
mentioned above, there are still interesting technical features in this proof. For instance, the
level of complexity we have to work with means that a single requirement will be spread over
infinitely many nodes of the priority tree, where each such node has to be assigned a ⇧0

3-
outcome. As we have already mentioned above, the ⇧0

4-completeness of isomorphism means
that the complexity of our guessing procedure (provably) cannot be simplified. The earlier
partial results ([GK02, LSM]) helped us to understand the general case, but the fact that
the techniques used by those authors were (quantifiably) simpler perhaps explains why the
general question has resisted attack for so long. Indeed, these results also support our strong
conjecture that the relatively high combinatorial complexity of our proof is unavoidable.

1.3. Enumerating only infinite structures. There has been a tendency among our col-
leagues to exclude finite structures from consideration in computable structure theory. Indeed,
perhaps one should not expect to get deep results on, say, finite groups using methods of e↵ec-
tive algebra. So the reader may ask whether there exists a Friedberg enumeration of infinite
computable equivalence structures. It may seem at the first reading that the proof of The-
orem 1.1 heavily relies on finite structures, and without finite structures the result perhaps
fails. Nonetheless, the theorem is still true if we exclude finite structures:

Theorem 1.2. There exists a Friedberg enumeration of the class of computable infinite equiv-
alence structures, up to isomorphism.

More specifically, we prove the existence of a computable sequence of equivalence relations
(E

i

)
i2! such that any infinite computable equivalence structure is ⇠= (!, E

i

) for some i, and
that for every i 6= j, (!, E

i

) 6⇠= (!, E
j

). An immediate corollary is a strengthening of our first
main theorem; recall that Theorem 1.1 provides a Friedberg enumeration of all computable
equivalence structures, without specifying which structures are infinite. Since it is clear that
there is a Friedberg enumeration of the class of finite equivalence structures up to isomorphism,
we can append it to the enumeration of Theorem 1.2 to obtain:

Corollary 1.3. There is a Friedberg enumeration of the class of all computable equivalence
structures, up to isomorphism. Furthermore, we can tell which members of this enumeration
are finite and which are infinite, and e↵ectively obtain the canonical indices for the atomic
diagram of the finite equivalence structures.

The proof of the second main result is contained in Section 3. It uses Theorem 1.1 and
essentially goes through defining an e↵ective injective functor from a special (large enough)
class of computable equivalence structures to the class of all infinite ones. Alternatively, in the
proof of Theorem 1.1 we could uniformly replace finite structures by their respective images
under the functor, and it would not introduce too much extra tension (we omit details). So it
is not necessary to have finite structures either in the main result itself or in its proof.

Before we get to the formal proofs, we note that the main result of the paper readily implies
the existence of a Friedberg enumeration of computable abelian p-groups of Ulm type 1,
in contrast with the results of [GK02] mentioned above. We suspect that our techniques
([DMNb]) may allow us to produce Friedberg enumerations of larger natural classes of abelian
p-groups (i.e., of a finite Ulm type), but we have yet to investigate this.
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2. Proof of Theorem 1.1

2.1. Preliminary analysis. Our goal is to prove that there exists a Friedberg enumeration
of the isomorphism type of computable equivalence structures. More specifically, we shall
prove that there exists a computable sequence (U

i

, E

i

)
i2! such that for every i, U

i

is a c.e.
initial segment of !, and E

i

is a partial computable binary equivalence relation defined on all
members of U

i

, such that every computable equivalence structure is isomorphic to (U
i

, E

i

) for
some i, and that for every i 6= j, (U

i

, E

i

) 6⇠= (U
j

, E

j

).

2.1.1. Notation and conventions. First of all, note that any structure
⇣
U, Ê

⌘
where U is a c.e.

initial segment of !, and Ê is a partial computable binary equivalence relation defined on all
members of U can be e↵ectively identified with the structure

L
k

q
card V

[k]
y
, where V ✓ ! is

a c.e. set. Here S

[k] stands for the k

th column of a set S ✓ !, and J↵K is an equivalence class
of size ↵. Obviously this definition is specially catered to allow for finite structures. It is also

clear that we can e↵ectively pass from an index for
⇣
U, Ê

⌘
to an index for the corresponding

c.e. set V , and vice versa, as well as the index for a (partial) computable isomorphism between
the two structures. For our purposes there is no di↵erence between these two approaches; we
will adopt whichever presentation that is more convenient.

Now using the approach above we fix the standard e↵ective listing (E
n

)
n2! of all computable

equivalence structures, allowing repetitions. More specifically take E

n

=
L

k

r
cardW

[k]
n

z
,

where W

n

is the n

th c.e. set. Our goal is to produce using this sequence, another sequence
(U

n

)
n2! in which isomorphism types are not repeated.

We will use the following notation thoughout the paper. If E is a computable equivalence
structure, then ej is its j

th equivalence class, or equivalently the j

th column under the enu-
meration as above. Since we are interested in isomorphism types, only sizes of the ej will
matter.

2.1.2. Some elementary simplifications. We will divide equivalence structures into five types:

(I) Finite equivalence structures.
(II) Finitely many finite classes and finitely many (with at least one) infinite classes.
(III) Finitely many finite classes and infinitely many infinite classes.
(IV) Infinitely many finite classes which are uniformly bounded in size, and any number of

infinite classes.
(V) Infinitely many finite classes with arbitrarily large finite sizes, and any number of infinite

classes.

It is clear that any equivalence structure belongs to exactly one of the five types. Note that
each isomorphism type in (I), (II), (III) and (IV) is specified by a finite parameter, and it is not
di�cult to see that the parameters (thus, the respective isomorphism type) satisfying the de-
sired properties can be e↵ectively listed. Thus there exist computable Friedberg enumerations
of the isomorphism types in each group (I) to (IV).

The only complicated group is (V), where its members cannot be specified by a finite
parameter. We aim to construct a Friedberg enumeration of this class. However due to
technical reasons, we shall also allow structures of type (I) and (III) to be enumerated along
with (V). The purpose of this is to utilize structures of type (I) and (III) as “junk collectors”;
any structure we build during the construction to represent an isomorphism type in (V) may
over the course of the construction become abandoned, and in this case we will turn the
partially built structure into one of type (I) or (III).
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Therefore, our construction will construct a Friedberg enumeration of the isomorphism
types in (I), (III) and (V). We can then produce the desired Friedberg enumeration of all
possible isomorphism types of computable equivalence structures by adjoining the missing
isomorphism types (II) and (IV) to the list.

It will also be convenient to assume that in our list all finite structures are actually non-
empty. This assumption does not a↵ect the construction significantly. (We may then simply
adjoin the empty structure to our enumeration if necessary).

2.2. The setup. From now on, we will refer to a structure of type (V) as unbounded. Recall
(E

n

)
n2! is the e↵ective listing of all computable equivalence structures induced by the standard

enumeration of c.e. sets. Note that guessing whether E

n

⇠= E

m

is ⇧0
4 in general, and it has

been shown by Calvert, Cenzer, Harizanov and Morozov [Theorem 3.13 in [CCHM06]] that
the problem can be ⇧0

4-complete for a single fixed E

n

, where E

n

is, and in fact must be
unbounded. Thus, in the construction we will have to deal with a ⌃0

4-guessing procedure.

2.2.1. Requirements and further preliminary remarks. In the construction, each computable
equivalence structure E

i

will have infinitely many strategies ⌧ associated with it. The task of
each ⌧ is to produce a computable isomorphic copy U

⌧

⇠= E

i

unless E
i

is bounded (not of type
(V)) or E

i

is isomorphic to some E

j

with j < i. Thus, each such ⌧ (associated with E

i

and
building U

⌧

) works towards meeting the requirement:

^

j<i

E

i

� E

j

and E

i

unbounded =) U

⌧

⇠= E

i

,

or, in other words, makes sure that E
i

appears in the list that we construct, and that there are
no obvious conflicts with higher priority strategies trying to copy other unbounded structures.

Since the guessing procedure for isomorphism is naturally ⌃0
4, there will be infinitely many

strategies ⌧ associated with E

i

. More specifically, recall that for every i it is ⇧0
4 to tell if

E

i

⇠= E

j

for some j < i. Let this predicate be 8kP (i, k), where P (i, k) is ⌃0
3. For each k

we will have a separate strategy ⌧ guessing whether P (i, k) holds. It is crucial that ⌧ has to
produce an isomorphic copy of E

i

only if it sees that P (i, k) fails, which is a ⇧0
3 event for the

given i, k.
We will see that the di↵erent ⌧s will collectively be able to take care of the global requirement,

saying that the enumeration must be Friedberg, in particular, that 8⌧,� [⌧ 6= � ! U

⌧

� U

�

].
We will also see that, depending on its true outcome, ⌧ may produce a copy of the associated
E

i

, as well as several (perhaps, infinitely many) distinct finite structures, or a single structure
of type (III); in the latter two cases the structures will be placed into the junk collector which
will be operating outside the tree of strategies. The junk collector will respect the global
Friedberg requirement and will also take care of the global onto requirement saying that all
isomorphism types structures of the prescribed ‘junk‘ types must eventually appear in the
global list that we construct. In fact, the junk collector will be further subdivided into finite
junk collector and infinite junk collector, with infinite junk potentially transformable into finite
junk.

2.2.2. Priority Tree. As we noted above, for every i it is ⇧0
4 to tell if E

i

⇠= E

j

for some j < i,
and recall P (i, k) is the ⌃0

3-predicate such that 8kP (i, k) holds i↵ E

i

⇠= E

j

for some j < i.
Each node on the tree will be assigned the task of guessing P (i, k) for some i and k, where i

stands for the computable equivalence structure E
i

. This is assigned the usual way; a node ⌧ is
assigned P (i, k) where |⌧ | = hi, ki. For convenience we write E

⌧

for the equivalence structure
associated with a strategy ⌧ , and we write k

⌧

for the respective integer k.
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The priority tree is a 1+!+2-branching tree. The outcomes ordered from left to right are:

init < pi20 < pi21 < · · · < pi3 < wait

The leftmost outcome init is a ⇧0
2 outcome, the pi2m are each ⇧0

2 outcomes that collectively
form the ⌃0

3 counterpart of pi3 which is the ⇧0
3 outcome. The waiting outcome wait is ⌃0

2.
We will formally describe the role of each outcome later. At this point we only note that the

⇧0
2-outcome init corresponds to the situation when E

⌧

has too few finite classes; in this case
we will initialise ⌧ infinitely often. The wait outcome guesses that E

⌧

is bounded, i.e. does
not have large enough finite classes. The other outcomes will guess at the predicate P and
some further properties needed to successfully copy E

⌧

. The pi3 outcome of ⌧ corresponds to
the fact that P (i, k) fails; in this case ⌧ has to copy E

⌧

into U

⌧

.

2.3. A single node in isolation. Fix ⌧ on the construction tree. We now describe the
actions and outcomes of ⌧ , when considered in isolation. Assume ⌧ is working for E

i

and
there are exactly k

⌧

� 1 many nodes � ⇢ ⌧ such that � works for E

i

and � ⇤ pi2j ✓ ⌧ for
some j. If ⇢ ⇤ o ✓ ⌧ for some ⇢ that works for the same E

i

and some other outcome o we will
simply assume ⌧ is always inactive and does nothing when visited. The strategy ⌧ will build a
structure U

⌧

(we suppress ⌧ and write U when the context is clear) which will be permanently
abandoned when ⌧ is initialised.

2.3.1. Initialisation. The strategy ⌧ will be initialised if outcome init of ⌧ is played. In
isolation, this case corresponds to the scenario when E

⌧

has no finite classes (note that this
can be detected in a ⇧0

2 way), or if we move to the left of ⌧ unless we are moving from a �⇤pi3
to a � ⇤pi2k outcome for some � ⇢ ⌧ . In this case the strategy abandons its current U

⌧

. If U
⌧

is abandoned then it joins the finite junk collector which will be processed by the finite junk
collector strategy to ensure there are no repetitions. We then restart with a new U

⌧

. After
each initialisation, all parameters of the strategy are set undefined. When ⌧ is active again
(if ever), it will set its U

⌧

equal to a structure with a single “large” finite class of size larger
than any number seen so far in the construction.

2.3.2. The parameter fin. The node ⌧ will also monitor the parameter fin(⌧, j). When the
context is clear we write fin(j) instead. This parameter will be used to copy E

⌧

into U

⌧

and guess whether E
⌧

is of the unbounded isomorphism type. Given the node ⌧ and a stage
s, define the sequence f1 < f2 < · · · < f

t

of length at most s inductively by the following.
Suppose f

k�1 has been defined (for k = 1 take f

k�1 = 0). Take f

k

to be the least such that
f

k

> f

k�1 and the class e
⌧,fk of E

⌧

currently has size larger than k and is furthermore the
oldest class in E

⌧

with index larger than f

k�1 and with size larger than k. The age of a class
is the number of stages it has not increased in size; so the oldest class is the one which has
not increased in size for the longest time. If every class with index larger than f

k�1 has size
at most k, then f

k

is not defined at stage s.
The parameter fin(j)[s] is defined to be equal to the sequence f1 < f2 < · · · < fh⌧,ji, if

all the terms exist at stage s. Otherwise we say that fin(j)[s] ". Note at every stage of the
construction fin(j) is a substring of fin(j+1) (if they are both defined), and fin(j) undefined
implies that fin(j+1) is undefined. We abuse our terminology and define the range of fin at
stage s to be the string f1 < f2 < · · · < fh⌧,ji for j the largest such that fin(j)[s] is defined.

We explain the use of fin. It is not hard to see that the property of being unbounded is
⇧0

3. In fact, the parameter fin is meant to guess whether E
⌧

is unbounded: The property of
E

⌧

being unbounded is equivalent to the ⇧0
3 property that fin(j) holds a stable value for each

j. This can be naturally incorporated into the outcomes of ⌧ . The ⇧0
2 outcome pi2j stands

for the fact that j is the least such that fin(j) does not have a limit, while the outcome pi3
stands for the fact that fin(j) is stable for every j.
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The reason for using h⌧, ji instead of h⌧i or j is to keep the infinite junk structures produced
by the di↵erent outcomes of di↵erent nodes non-isomorphic. When we copy E

⌧

into U

⌧

we
make sure that if j is currently largest such that f(j) has a stable definition, then U

⌧

would
have copied somewhere between h⌧, ji and 2h⌧, ji many finite classes of E

⌧

. As a consequence,
the true outcome ⌧ ⇤ pi2k will produce an infinite junk structure with somewhere between
h⌧, ji and 2h⌧, ji many finite classes. If furthermore we had that if h⌧, ji < h⌧ 0, j0i then
2h⌧, ji < h⌧ 0, j0i, then in this case the infinite junk structures produced by di↵erent strategies
or di↵erent outcomes will be necessarily non-isomorphic, as they would have a di↵erent number
of finite classes. It would also guarantee that the “infinite junk collector” has plenty of room
to satisfy the global requirements. We will use a modification of the pairing function: We
replace the standard pairing function h⌧, ji with 3h⌧,ji throughout the rest of the proof.

2.3.3. The isomorphism `. Let e
⌧,i

and u
⌧,i

be the i

th classes in E

⌧

and U

⌧

respectively.
To assist us in organising the copying strategy, we will define a potentially �0

2 isomorphism
`

⌧

: U
⌧

! E

⌧

, which will be total only if ⌧ ⇤ pi3 is the true outcome of ⌧ . (Note that the
totality of a �0

2 function is also ⇧0
3). Strictly speaking, ` will be a function mapping indices to

indices, and we identify u
i

with e
`(i). At the beginning we set `(i) " for all i. For convenience,

whenever we wish to change the approximation to `(i), we will first set `(i) " before re-defining
`(i) at a later stage. The final limiting value of `(i) is assigned the obvious meaning.

2.3.4. Action of ⌧ . During the construction, whenever the node ⌧ is visited, it will first check
if there is a least (in the index) unmapped class e

⌧,j

 the largest element in the range of
fin (unless we are waiting in step (i)), and if it exists, introduce a new class u

⌧,i

to match it.
This means that we will grow a new u

⌧,i

to be equal in size to e
⌧,j

and define `

⌧

(i) = j. If
(and only if) a new class is introduced in U

⌧

, we will also grow all classes u
⌧,i

for which `

⌧

(i)
is defined to have size equal to e

⌧,`(i). Next, ⌧ will process the following:

(i) For each nonempty class u
⌧,i

such that `
⌧

(i) ", we search for a corresponding e
⌧,j

not
yet mapped via `

⌧

and with size larger or equal to the size of u
⌧,i

.
– If `

⌧

(i) # for every class u
⌧,i

in U

⌧

, go to step (ii).
– If `

⌧

(i) " for some class u
⌧,i

in U

⌧

, and a large enough unmapped class in E

⌧

does
not yet exist, play outcome wait and go to the next stage.

– Otherwise for every class u
⌧,i

with `

⌧

(i) " is able to find some image, we take
the following actions, for each i. Define `

⌧

(i) = j (for the corresponding j). Play
outcome wait and go to the next stage.

(ii) If we are here, it means that every nonempty class u
⌧,i

has been mapped (i.e. `
⌧

(i) #).
Wait for dom(fin) to increase beyond the previous maximum. If this is the first stage
where dom(fin) is longer than any previous stage since the last ⌧ -initialisation, we
take outcome pi3 for this stage and go to (iii). Otherwise, play outcome wait at this
stage.

(iii) Check if there is some i < dom(fin) such that fin(i) has changed, or the ⇧0
2-predicate

Q(⌧, k
⌧

, i) such that P (⌧, k
⌧

) = 9iQ(⌧, k
⌧

, i) has “fired”. (A ⇧0
2-predicate fires means

that the ⇧0
2 predicate looks true for one more stage in some computable approximation

of the predicate; a ⇧0
2-predicate holds if and only if it fires infinitely often). Without

loss of generality, we assume that Q(⌧, k
⌧

, 0) never fires. Take i to be the least such,
if it exists. Take the appropriate action below and go back to step (i).

– If no such i < dom(fin) exists, do nothing.
– If i = 0, play outcome init and initialise ⌧ .
– If i > 0, we play outcome pi2(i � 1). Preserve each class u

⌧,k

for all k < i as
well as each class u

⌧,k

such that `
⌧

(k) is in the tuple fin(i� 1) or `
⌧

(k) < i. All
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other non-empty classes u
⌧,m

we grow to size s (or some suitably large number,
determined by the junk collector) and set `

⌧

(m) ".
The strategy we describe here for ⌧ assumes it acts in isolation. During the formal construction
(Section 2.6) we will follow a slightly modified form of the strategy described here due to
various technical reasons.

2.3.5. Analysis of the outcomes of ⌧ . The true outcome of ⌧ could be:

True outcome wait: Since we only play outcomes to the left of wait finitely often, it
is easy to see that in this case we must get stuck waiting forever in (i) or (ii). In either
case we will eventually stop adding new classes to U and stop growing existing classes
of U . Thus we end up producing a finite structure U .

If we get stuck in (i) then as we eventually stop introducing new classes or grow
existing ones, this means that almost every class in E

i

has size bounded by some
integer, so E

i

is not of the unbounded isomorphism type. If we are stuck in (ii) then
fin(i) cannot get a suitable current definition, let alone a stable definition for some i.
Again this means that almost every size in E

⌧

is bounded by h⌧, ii.
True outcome init: By convention, Q(⌧, k

⌧

, 0) never fires, so if init is the true out-
come then fin(0) fails to hold a stable definition. Hence there are fewer than h⌧, 0i
many finite classes of the di↵erent corresponding sizes in E

i

, so again E

i

is not un-
bounded. In this case we initialise ⌧ infinitely often, and consequently the strategy
produces infinitely many finite structures. We will ensure that these structures will all
be non-isomorphic.

True outcome pi2i: In this case either Q(⌧, k
⌧

, i+1) fires infinitely often or fin(i+1)
fails to hold a stable definition. In the former case, as P (⌧, k

⌧

) holds, we have more
evidence that E

⌧

is isomorphic to some E of higher priority, so we should not allow ⌧

to copy E

⌧

into our list. In the latter case there are fewer than h⌧, i + 1i many finite
classes of large enough finite sizes, so again E

i

is not unbounded, so in this case we
also do not want ⌧ to copy E

⌧

into our list.
Note that init is played finitely often, hence fin(i) must be eventually stable, so

that there are at least h⌧, ii many finite classes of various sizes in E

⌧

. After fin(i) is
stable we will eventually put all these classes into the range of `

⌧

. Furthermore `

⌧

is
always preserved on the classes which maps to classes in fin(i), on the classes which
maps to the first i many classes of E

⌧

, as well as on the first i many classes of U
⌧

. All
other classes in U

⌧

are increased in size each time we visit outcome pi2i. Thus U⌧

will
be an infinite junk structure with between h⌧, ii and 2i + h⌧, ii < 2h⌧, ii many finite
classes.

True outcome pi3: This means that all other outcomes are each visited finitely often.
Since outcome pi3 is played infinitely often, this means that we are never forever stuck
in (i) or (ii). In fact, dom(fin) grows arbitrarily large. Therefore, if Q(⌧, k

⌧

, i) fires
infinitely often for some least i > 0, ⌧ will not be denied the chance to infinitely often
play outcome pi2(i � 1). This implies that P (⌧, k

⌧

) does not hold, and every fin(i)
will hold a final stable definition. This means that E

⌧

is not isomorphic to any higher
priority E, and E is unbounded, and hence we should let ⌧ copy E

⌧

into our list. We
will argue in the verification that `

⌧

is eventually total and stable at every input and
onto, and consequently witnesses that U

⌧

⇠= E

⌧

.

The reader might now wonder if it is necessary to have the outcome init; after all, could
we not treat the outcome init as being part of the sequence of pi2i outcomes? For example,
in the case where (outcome init is true and) there are fewer than h⌧, 0i many finite classes in
E

⌧

, could we not simply make U

⌧

contain exactly, say, ⌧ many finite classes, and avoid doing
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the self-initialisation? The problem is that we cannot control exactly how many finite classes
E

⌧

contains; it could very well be that E
⌧

contains no finite classes at all. In that case, when
we define U

⌧

, no matter which classes of U
⌧

copies which classes of E
⌧

, we are going to have to
make U

⌧

⇠= I. If more than one node on the tree does this, then we will be forced to introduce
repetitions. Hence, the safe solution is to self-initialise whenever we detect this possibility,
and hence the necessity of outcome init.

2.4. Coordination between di↵erent ⌧ . As the outcomes of the requirements are of order-
type 1 + ! + 2, the true path of the construction will be ;000-computable, rather than being
the usual ;00-computable. Since it is now possible to visit left of the true path infinitely often,
we need to describe the e↵ect each node has on the strategies on its right. If ⌧ plays outcome
init then all nodes extending ⌧ ⇤o for an outcome o 6= init are initialised. If ⌧ plays outcome
pi3 then all nodes extending ⌧ ⇤ wait are initialised.

Now suppose ⌧ plays outcome ⌧ ⇤ pi2i. We will initialise every node extending ⌧ ⇤ wait or
⌧ ⇤ pi2j for j > i. However we clearly do not wish to initialise a node � ◆ ⌧ ⇤ pi3, since �

could be on the true path. We ensure that the next time we visit � again we will force � to
play outcome pi2i (and take the corresponding actions) at least once, even though the basic
strategy for � does not require it to do so. This ensures that if ⌧ ⇤ pi2i is on the true path,
then every � ◆ ⌧ ⇤ pi3 produces an infinite junk, unless � is initialised infinitely often due to
other reasons, and therefore does not copy any E into our list. On the other hand if � is on
the true path, then for each i, � is forced to play the outcome pi2i in this way only finitely
often, and the true outcome of � will still correctly reflect the outcomes of its basic strategy.

2.5. Coordination with junk collectors. We will now explain how we handle the “junk”
arising from the construction. These are structures built by the strategies during the construc-
tion which are not of the intended (unbounded) type. We call finite structures which are built
by some node ⌧ (or the INFJUNK strategy) but which later get permanently abandoned
due to initialisation finite junk. Structures of type (III) which are built by some node ⌧ , but
which are never abandoned by ⌧ are known as infinite junk.

In this subsection we also explain several important modifications to the basic strategy
of ⌧ ; the modifications are necessary for understanding the rest of the proof. The finite
junk collector FJUNK and the infinite junk collector INFJUNK are strategies that act
outside of the priority tree, and will get to act at the end of every stage. Since the nodes
on the construction tree will produce finite and infinite junk structures, the FJUNK and
INFJUNK strategies are there to ensure that all isomorphism types of type (I) and (III)
are listed. They will do so by adding to our list the missing structures of types (I) and (III)
which are not produced as junk by nodes on the priority tree.

We split these actions into infinitely many substrategies, FJUNK(F ) and INFJUNK(F )
indexed by the isomorphism type F of a finite equivalence structure, and these substrategies
will seek to place a structure of isomorphism type F or F � I respectively, where I is the
structure having infinitely many infinite classes.

2.5.1. Description of FJUNK(F ). Initially, when FJUNK(F ) is active for the first time, it
checks whether there already exists a finite structure of isomorphism type F in the construction
that is either permanently abandoned due to initialisation by some strategy on the tree, or
corresponds to outcome wait of some strategy and thus may (or may not) be truly abandoned.
If none of the above possibilities occur, it introduces a new finite structure of type F . We say
that this structure is the witness of FJUNK(F ).

FJUNK(F ) has to ensure that exactly one copy of type F appears in our list. Thus if
FJUNK(F ) is already holding a witness structure, we need to ensure that no node on the
construction tree can produce a structure of type F . There are three ways in which this may
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happen. We explain all three problematic situations and the modifications necessary to resolve
the conflicts.

First, a finite structure being built by ⌧ may be abandoned and permanently thrown into
the finite junk pool after FJUNK(F ) had already chosen its witness. To avoid this conflict
we adopt the following modification to the basic strategy of ⌧ :

Modification 1. If ⌧ permanently abandons its structure due to an initialisation, we grow this
abandoned structure F into a very large finite structure F

0. Formally, given a finite structure
F , we enlarge F by adding su�ciently many extra classes of size 1 to F to produce a structure
F

0 that is di↵erent from any finite equivalence structure considered so far by the construction.
Now add the enlarged abandoned structure to the junk pool by assigning it as a witness for
FJUNK(F 0). Note that FJUNK(F 0) has no current witness and has in fact never acted
before in the construction.

Second, a strategy ⌧ on the priority tree may be playing wait and might wait forever at
construction steps (i) or (ii). Again, the isomorphism type of the structure being built by ⌧

can be the same as F for some FJUNK(F ) that already has a witness.

Modification 2. When playing the wait outcome, ⌧ will first enlarge its structure U
⌧

and waits
with this enlarged finite structure. Since ⌧ cares about copying E

⌧

only if it is unbounded,
it makes no harm to enlarge U

⌧

this way. Now the strategy FJUNK(U
⌧

) (which has never
acted before) is temporarily suspended, since ⌧ is currently holding on to a structure of the
same isomorphism type.

If later on ⌧ finishes its wait then U

⌧

will grow and FJUNK(U
⌧

) will then start a new
structure as its witness. Since structures are always enlarged by adding a fresh number of new
classes, FJUNK(U

⌧

) will be blocked in this way at most once.

Third, as we will see from the INFJUNK strategy below that there might be a finite
structure used as a witness by an INFJUNK strategy which is permanently abandoned by
the INFJUNK strategy and added to the finite junk pool. In this case we also first make
sure that the abandoned structure F is first enlarged and then added to FJUNK(F 0) as a
witness for the appropriate F

0.

Note that once a FJUNK(F ) strategy picks its follower, either on its own, or is assigned
its follower when a node ⌧ or an INFJUNK strategy abandons its current structure, this
follower is permanently tied to FJUNK(F ) and no other strategy in the construction will
produce a structure of the same type.

2.5.2. Description of INFJUNK(F ). Here the situation is more complicated. We need to
ensure that each strategy INFJUNK(F ) will produce in the limit a structure of the form
F � I, but at every finite stage INFJUNK(F ) has a finite part of its intended structure. As
in the case of FJUNK(F ), each INFJUNK(F ) will eventually choose its witness and will
start growing it to a structure of isomorphism type F � I.

The obvious conflict is that a node ⌧ on the priority tree will also produce an infinite
junk structure at the end if ⌧ ⇤ pi2i is its true outcome. Hence we need to ensure that the
corresponding INFJUNK strategy does not duplicate this structure in our list.

To avoid repetition, INFJUNK(F ) must permanently abandon its current witnessD every
time ⌧ is visited and makes more progress in constructing F �I. The structure D will then be
enlarged and then placed into the finite junk collector. INFJUNK(F ) will then restart again
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with a new enlarged witness D0 and starts growing D

0 towards F � I, until ⌧ is again visited
and makes more progress, if ever. In this way, either ⌧ or INFJUNK(F ) will successfully
construct F � I in our list. Note that given any F , there is at most one pair (⌧, i) such that
⌧ constructs F � I under outcome ⌧ ⇤ pi2i.

We describe another possible conflict between infinite junk structures produced by the
tree and INFJUNK strategies. Consider the situation when ⌧ is o↵ the true path and is
initialised infinitely often due to actions of other strategies. Then it may attempt to make
progress in building F �I infinitely often, but in fact it will produce only an infinite collection
of finite structures due to it being initialised. However INFJUNK(F ) is also prevented from
building F �I since it’s witness is also infinitely often reset due to us (wrongly) assuming that
⌧ was making progress. This means that we will never produce a copy of F � I if we simply
follow the instructions as described above. The di�culty goes away if we adopt the following
modification to the basic module of ⌧ :

Modification 3. In the definition of the parameter fin(⌧, j) we will search for a longer sequence
of integers f1 < f2 < · · · < fh⌧,I

⌧

,ji, instead of f1 < f2 < · · · < fh⌧,ji before. Here I
⌧

is the
number of times ⌧ has been initialised through the actions of another node. Here we do not
count self-initialisations where ⌧ is initialised when playing outcome init. This modification
causes ⌧ to produce an infinite junk structure with between h⌧, I

⌧

, ii and 2i+ h⌧, I
⌧

, ii many
finite classes, if ⌧ was initialised exactly I

⌧

many times (by other nodes) and has true outcome
⌧ ⇤pi2i. Now after this modification, for each fixed F , the INFJUNK(F ) strategy only needs
to worry about conflicts with a unique triple (⌧, I, i). If ⌧ has been initialised fewer or more
than I times, then INFJUNK(F ) will work on its witness structure. If ⌧ is initialised exactly
I times then INFJUNK(F ) will have interact with ⌧ as described above. This ensures that
if INFJUNK(F ) fails to hold a stable witness, then ⌧ must build a copy of F � I.

A final conflict between infinite junk structures produced by the tree and INFJUNK

strategies is more subtle. An INFJUNK(F ) strategy might have its witness structure reset
infinitely many times because a strategy ⌧ plays outcome pi2n infinitely often. However the
strategy ⌧ might in fact have true outcome pi2m for m < n, and hence end up constructing an
infinite junk structure which is not of type F �I. This means that F �I is neither constructed
by INFJUNK(F ) nor ⌧ .

This problem can be fixed if we allow INFJUNK(F ) strategy to pick finitely many witness
structures D0, D1, · · ·Dn

instead of a single witness, where INFJUNK(F ) is conflicted with
outcome pi2n of ⌧ . While INFJUNK(F ) detects no conflicts, it will grow D

n

towards F � I

and keep D0, · · · , Dn�1 finite. Whenever ⌧ plays outcome pi2n, INFJUNK(F ) will abandon
D

n

and begin with a new D

n

(while keeping D0, · · · , Dn�1). When ⌧ plays outcome pi2m for
m < n, we will abandon D

m+1, Dm+2, · · · , Dn

and restart these with new witness structures,
while keeping D0, · · · , Dm

. We also grow D

m

for one more step towards making D

m

⇠= F � I.
At the end, if ⌧ has true outcome to the right of pi2n, then D0, · · · , Dn�1 will finally

stabilise at finite structures. We will have D

n

⇠= F � I, but of course U

⌧

6⇠= F � I. If ⌧ has
true outcome pi2n, then D0, · · · , Dn�1 are stable finite structures, while D

n

will be infinitely
often abandoned. Here D

⌧

⇠= F � I. Finally if ⌧ has true outcome pi2m for some m < n then
D0, · · · , Dm�1 are stable finite structures, while Dm+1, · · · , Dn

are infinitely often abandoned.
We finally make D

m

⇠= F � I and in this case, U
⌧

is an infinite junk structure not of type
F � I. Thus either ⌧ or one of the INFJUNK(F ) witnesses (and exactly one) will succeed
in building F � I.

2.6. Formal construction. The basic strategies of ⌧ and the junk collectors have been de-
scribed above. We put it all together in this section. Due to technical reasons we will make
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some cosmetic changes to our discussions above. We adopt Modification 3 above in the
definition of the paramenter fin(⌧, j). The construction will at stage s define the current
approximation �

s

to the true path, where |�
s

| = s. Suppose ⌧ ⇢ �

s

has been defined. We now
need to describe the actions of ⌧ and the outcome played at this stage.

2.6.1. Growing U

⌧

. The first thing we do is to check if ⌧ ⇤pi3 was played at the previous visit
to ⌧ , and if no, we do not grow U

⌧

and skip to step 2.6.2. Otherwise suppose that ⌧ ⇤ pi3 was
played at the previous visit to ⌧ . Let s0 < s be the previous stage where U

⌧

last grew. Take
the following actions:

• For each class e
⌧,j

such that no `

⌧

(i) maps to it and where j  the largest element in
the current range of fin, introduce a new class u

⌧,i

in U

⌧

to have the same size and
set `

⌧

(i) = j.
• For every class u

⌧,i

in U

⌧

such that `
⌧

(i) exists we grow u
⌧,i

to have the same size as
e
⌧,`

⌧

(i).
• Enlarge U

⌧

by adding su�ciently many new u
⌧

classes of size 1, so that the resulting
finite structure has never been looked at by the construction.

If this is the first visit to ⌧ since an initialisation (so that s0 does not exist), we begin building
a new structure U

⌧

by taking U

⌧

to be the enlargement of the empty structure.
Recall that s0 < s was the stage where we last grew U

⌧

; set s0 = 0 if this does not exist.
Check if one of the following holds:

• There exists a stage t such that s0 < t < s, and some node ↵ such that ↵ ⇤ pi3 ✓ ⌧

and ↵ ⇤ pi2(i� 1) ✓ �

t

for some i, or
• there is some i < dom(fin)[s0] such that fin(i) has changed or Q(⌧, k

⌧

, i) has fired
between s0 and s. (As before we assume that Q(⌧, k

⌧

, 0) never fires).

Pick the least i for which one of the above applies:

i = 0: Play outcome init and initialise ⌧ .
i > 0: If the first alternative applies we say that ⌧ is forced to play outcome ⌧ ⇤pi2(i�1);

if the second alternative applies we say that ⌧ wants to play outcome ⌧ ⇤ pi2(i � 1).
In either case we play outcome ⌧ ⇤ pi2(i� 1) and take the actions described under the
basic strategy for ⌧ in Section 2.3.4(iii) when outcome pi2(i� 1) is played.

No i found: Play outcome wait.

In any case go to step 2.6.3.

2.6.2. Acting for ⌧ . Suppose that we did not manage to grow U

⌧

in step 2.6.1. Now take
the actions and outcome described under the basic strategy for ⌧ in Section 2.3.4(i) or (ii),
whichever applies. Proceed to step 2.6.3.

2.6.3. Initialising other nodes. We have described the actions of ⌧ and the outcome of ⌧ at
this stage. Now initialise all the nodes mentioned in Section 2.4. When a node ⌧ is initialised
we will first enlarge the finite structure U

⌧

to U

0 and assign it as a witness to FJUNK(U 0),
reset all parameters associated with the node (except for the counter I

⌧

) and increase the
value of I

⌧

by 1, unless this is due to a self-initialisation.

This ends the description of the actions and the outcomes of ⌧ . Suppose we have finished
with the definition of �

s

of length s. Before we conclude the construction stage s, we shall
act for the junk collector strategies. First process the INFJUNK strategies (Section 2.6.4)
followed by the FJUNK strategies (Section 2.6.5).
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2.6.4. INFJUNK action. For each F with code number less than s, we act for
INFJUNK(F ) as follows. (The actions for di↵erent F are independent). First let h⌧, I, ni
be the triple such that the number of classes of F is between h⌧, I, ni and 2h⌧, I, ni. This
triple, if it exists, is unique. If this triple is not found, then INFJUNK(F ) will have no
conflict with any structure built by the construction tree, and in this case, simply enumerate
a witness F � I into our list.

Otherwise fix this triple h⌧, I, ni. If I
⌧

is currently not equal to I, we will pick a new
witness structure D for INFJUNK(F ) and begin growing D towards F � I. If I

⌧

later
becomes equal to I we will abandon the previous witness structure and proceed as below. If
I
⌧

increases from I to I + 1 then we abandon all witness structures and pick a new D.
Otherwise suppose that I

⌧

= I. We begin by picking new witness structures
D�1, D0, D1, · · · , Dn

. At each stage we will determine if INFJUNK(F ) has any conflicts
with ⌧ . If it is not the case that ⌧ is visited and outcome pi2m for some m  n or outcome
init is taken, then there are no conflicts; at this stage INFJUNK(F ) simply does nothing
with D�1, D0, · · · , Dn�1 and grows D

n

for one more step towards making D

n

⇠= F � I.
Suppose that ⌧ is visited and outcome pi2m for m < n is taken. Then INFJUNK(F )

does nothing with D�1, D0, · · · , Dm�1, and abandons and picks new witness structures for
D

m+1, · · · , Dn

. It also grows D
m

by one more step towards making D

m

⇠= F � I.
Suppose that ⌧ is visited and outcome init is taken. Then INFJUNK(F ) abandons and

picks new witness structures for D0, · · · , Dn

. It also grows D�1 by one more step towards
making D�1

⇠= F � I.
Finally suppose that ⌧ is visited and outcome pi2n is taken. The action of ⌧ at this stage

was to restrain a set of classes G of U
⌧

and grow all the remaining ones. If F ✓ G and such
that every class of G�F is larger than the largest class in F , and has grown since the last time
we considered this step, then a conflict occurs at this stage. INFJUNK(F ) will abandon its
current witness and pick a new witness structure D

n

and keeps D�1, · · · , Dn�1. Otherwise if
there are no conflicts then simply grow D

n

.
In the strategy above we need to ensure several things. First, every time we pick a new

witness structure, we need to take it to be a suitable enlargement of the empty structure.
Second, every time we grow an existing structure, we need to increase the size of one of
its classes, as well as take a suitable enlargement of it. Third, if any witness structure is
abandoned, INFJUNK(F ) will first enlarge it to a suitable finite structure D

0 and then
assign it to FJUNK(D0) as a follower.

2.6.5. FJUNK action. For each F with code number less than s, we act for FJUNK(F ) as
follows. If FJUNK(F ) has no current witness, and if there is no structure X currently in the
list such that X

⇠= F , then FJUNK(F ) will introduce a witness structure of isomorphism
type F . Otherwise, do nothing.

This ends the description of the construction.

2.7. Verification. We define the true path of the construction inductively, each time selecting
the leftmost outcome which is visited infinitely often. It is easy to check that each node on
the true path is initialised by another node only finitely often. Infinite self-initialisation is still
possible.

We will need to argue two things: First, all structures of type (I), (III) and (V) are repre-
sented in our list, and second, that our list does not contain repetitions.

2.7.1. All isomorphism types in (I), (III) and (V) are represented. We begin with an important
lemma.
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Lemma 2.1. Let ⌧ be a node on the construction tree, which is visited infinitely often by
the construction, initialised by other nodes I < 1 times, and where ⌧ ⇤ pi2i is the leftmost
outcome of ⌧ visited infinitely often. Then the final structure U

⌧

built by ⌧ is an infinite junk
structure of type (III) with between h⌧, I, ii and 2h⌧, I, ii many finite classes.

Proof. Since pi2i is played only when we grow U

⌧

, this means that we grow U

⌧

infinitely often.
This means that ⌧ ⇤pi3 is also played infinitely often and so dom(fin) grows arbitrarily large.
Since ⌧ is visited infinitely often but outcomes to the left of pi2i are each played finitely often,
this means that fin(i) will eventually be defined and hold a stable value. After fin(i) is
stable, for each class e

⌧,f

of fin(i), we will be able to define `

�1
⌧

(f) and never again redefine
`

�1
⌧

(f) (notice that these cannot be redefined by an outcome to the right of ⌧ ⇤ pi2i). Since
all classes in fin(i) are finite, this means that there are at least h⌧, I, ii many finite classes in
U

⌧

.
Each time we play outcome pi2i we will preserve a fixed set of U

⌧

classes: these are u
⌧,j

for
j < i+1 and u

⌧,`

�1
⌧

(f) for f 2 fin(i) or f < i+1. There are at most 2i+2+h⌧, I, ii < 2h⌧, I, ii
many preserved classes. All other classes are increased in size. Thus U

⌧

will have at most
2h⌧, I, ii many finite classes.

Finally each time we grow U

⌧

we enlarge it, so U

⌧

must contain infinitely many classes,
and hence infinitely many infinite classes. Hence U

⌧

is an infinite junk structure of type (III).
Note that ⌧ does not have to be on the true path in the statement of the lemma. ⇤
Lemma 2.2. Suppose ⌧ is on the true path, and the true outcome of ⌧ is pi3. Then E

⌧

⇠= U

⌧

is unbounded.

Proof. Since ⌧ ⇤ pi3 is played infinitely often, hence dom(fin) must grow arbitrarily long.
Furthermore ⌧ ⇤pi2i is played finitely often for each i, this means that fin(i) must eventually
be defined and stable. Therefore E

⌧

must be unbounded. Also the unboundedness of E
⌧

implies that whenever `
⌧

is set undefined for some class u
i

in U

⌧

and later seeks a new image
in E

⌧

, it will be able to find a suitable image (since E

⌧

contains arbitrarily large classes).
Similarly, since U

⌧

is grown at infinitely many stages and dom(fin) grows arbitrarily long,
whenever `�1

⌧

(j) is set undefined for some class e
j

in E

⌧

, we will always get a chance to redefine
`

�1
⌧

(j). Furthermore each `

⌧

(i) and `

�1
⌧

(j) will not be made undefined once fin(i) or fin(j) is
stable; notice these cannot be made undefined by an outcome or node to the right of ⌧ ⇤ pi2i
or ⌧ ⇤ pi2j. Thus `⌧ is total, and clearly bijective.

It is also easy to check that at every stage where `

⌧

(i) is defined, the current size of u
i

is at most the current size of e
`(i): This is certainly true at the point when `

⌧

(i) receives a
new definition, and after that we only grow u

i

to match the size of e
`(i) (unless under a pi2n

outcome where we also make `(i) undefined). Since there are infinitely many stages where we
grow U

⌧

, we have in fact that the sizes of u
i

and e
`(i) are equal. Therefore E

⌧

⇠= U

⌧

, and in
fact E

⌧

⇠=�0
2
U

⌧

. ⇤
Lemma 2.3. All structures in our list are of type either (I), (III) or (V).

Proof. Every time FJUNK(F ) receives or picks a witness structure, it is of type F and no
further changes are made to this witness structure.

If INFJUNK(F ) picks a witness structure D, and if D is either later abandoned or is
never grown again, then D ends up being finite. On the other hand if D is never abandoned
and is grown infinitely often, then we will be able to make it of type F � I; the only issue
is that we always enlarge a structure when growing, however, this action only adds classes of
size 1, so is compatible with extending it to F � I.

Finally if a structure U is introduced by a node ⌧ , and is either later abandoned, or is grown
finitely often, then U ends up being finite. Otherwise suppose U is grown infinitely often and
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never abandoned. This means that ⌧ is visited infinitely often but initialised only finitely
often, and the leftmost outcome of ⌧ visited infinitely often has to be either pi3 or pi2n for
some n. If it is pi2n then we apply Lemma 2.1. Otherwise if it is pi3 then we note that ⌧ has
to be on the true path (otherwise ⌧ will be forced to play a ⌧ ⇤ pi2n outcome infinitely often
for some n) and so we apply Lemma 2.2. ⇤

Any activity on a structure X can be classified according to: X is first introduced to the list,
X is grown, or X is abandoned. These are the only three ways in which X can be modified.
It is easy to check the construction verify the following fact:

Fact 2.4. Any activity on a structure X must also be followed by an enlargement of the
structure at the same time. The only exception is when a FJUNK strategy picks a new
witness structure.

Lemma 2.5. Every isomorphism type in (I), (III) and (V) are represented.

Proof. Consider a finite type F , and let s be the stage where FJUNK(F ) is first active. If
FJUNK(F ) ever picks a follower structure, it will be stable of type F , so let’s assume it never
gets to pick a follower. This means that at stage s there is at least one structure X currently
in the list such that X ⇠= F . (In fact there is at most one such X at any time, but so far we
have not addressed uniqueness, and this will be done in Section 2.7.2). By Fact 2.4 no activity
which occurs after stage s can produce a structure of type F . Thus in order that FJUNK(F )
remains blocked at every stage, it must be that one of these structures X already present at
stage s is stable, and of type F . So all structures in type (I) are represented.

Now fix F and consider INFJUNK(F ). If INFJUNK(F ) eventually detects no conflicts
then it will hold a stable witness structure of type F � I. (Again enlarging the structure while
growing is compatible with making it of type F �I). Otherwise INFJUNK(F ) will infinitely
often detect a conflict. This conflict must each time be with a node ⌧ playing some outcome
m  n or init and during the time when I

⌧

= I, for a unique triple h⌧, I, ni.
Let m be the least where the conflict happens infinitely often. If m < n then D

m

will hold
a stable witness structure and we will make D

m

⇠= F � I. Same for the case init where
D�1

⇠= F � I. On the other hand if m = n and a conflict is detected infinitely often then
G � F must contain only infinite classes, and in fact U

⌧

must contain only F as its set of
finite classes. Hence U

⌧

⇠= F � I. (Note that U
⌧

is never abandoned unless I
⌧

is increased or
outcome init is played). So all structures in type (III) are represented.

Now finally we fix an unbounded E of type (V), and argue that it is represented. Let i be
the least such that E

i

⇠= E; since i is least, there is some k such that P (i, k) has ⇧0
3-outcome.

Let ⌧ be along the true path assigned E

i

and guessing P (i, k). We claim that ⌧ must have true
outcome pi3. Since E

⌧

is unbounded, and ⌧ being on the true path is initialised by another
node only finitely often, this means that I

⌧

is stable and hence fin(⌧, n) eventually holds a
stable value for each n. We cannot be stuck waiting under Section 2.3.4, step (i) for ⌧ , as E

⌧

is unbounded, and so this means that outcome pi3 of ⌧ is played infinitely often.
Suppose some outcome to the left of pi3 is played infinitely often. This cannot be init

because fin(0) holds a stable value. On the other hand this cannot be outcome pi2(n � 1);
⌧ cannot be forced to infinitely often play pi2(n � 1), otherwise the true path is to the left
of ⌧ , and ⌧ cannot want to infinitely often play pi2(n � 1) since fin(n) is eventually stable
and Q(⌧, k, n) eventually stops firing. Hence ⌧ ⇤ pi3 is along the true path. By Lemma 2.2 we
have U

⌧

⇠= E

i

. Hence all structures of type (V) are represented. ⇤
2.7.2. Our list does not contain repetitions. Now it remains to verify that no two structures
in our list are of the same type. Fix two structures X and Y in our list. We shall argue that
X 6⇠= Y .
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Suppose X and Y are both finite. Then they each have a final activity before being stable,
assume that the final activity for X is after the final activity for Y . The following are all the
di↵erent possibilities:

Both X and Y are picked by FJUNK strategies: Since each FJUNK strategy
picks at most one witness structure, this means that X 6⇠= Y .

X is not picked by a FJUNK strategy: By Fact 2.4, X is enlarged during its final
activity and so X 6⇠= Y .

X is picked by a FJUNK strategy: Then as Y is already stable when X is picked,
X 6⇠= Y .

Now suppose that X and Y are both infinite, in particular neither of them are ever aban-
doned. Again the following are all the di↵erent possibilities:

Both X and Y infinitely often grown by INFJUNK strategies: Since each sin-
gle INFJUNK(F ) strategy produces at most one infinite structure at the end (which
is necessarily of the type F � I), this means that X and Y are witnesses of di↵erent
INFJUNK strategies, hence, X 6⇠= Y .

Both X and Y infinitely often grown by strategies on priority tree: Then
there are nodes ⌧

x

and ⌧

y

responsible for X and Y respectively. Each node works
on a single structure U

⌧

at any one time, so ⌧

x

6= ⌧

y

. This means that ⌧

x

and ⌧

y

are initialised finitely often, visited infinitely often and play a leftmost outcome pi3
or pi2n for some n infinitely often. If ⌧

x

plays leftmost outcome pi2n then apply
Lemma 2.1 to see that X is an infinite junk structure with between h⌧

x

, I
⌧

x

, ni and
2h⌧

x

, I
⌧

x

, ni many finite classes. If ⌧
x

plays leftmost outcome pi3 then apply Lemma
2.2 to see that X ⇠= E

⌧

x

is unbounded. The same applies to ⌧

y

. Hence it is clear that
X 6⇠= Y except in the case where both ⌧

x

and ⌧

y

have leftmost outcome pi3.
If this is the case then both ⌧

x

and ⌧

y

must lie along the true path, so assume that
⌧

x

⇤ pi3 ✓ ⌧

y

. As ⌧
y

is not deactivated, it means that i
x

6= i

y

, where ⌧

x

is assigned E

i

x

and ⌧

y

is assigned E

i

y

. Since both nodes ⌧
x

and ⌧

y

have true outcome pi3, it must be
that E

i

y

6⇠= E

i

x

(note that it could be that i
x

> i

y

). Hence X 6⇠= Y .
X infinitely often grown by ⌧ and Y infinitely often grown by INFJUNK(F ):

As in the analysis above, in order for ⌧ to produce an infinite junk structure, it
must be initialised finitely often, visited infinitely often and play a leftmost outcome
pi2n for some n infinitely often. Suppose that X

⇠= Y

⇠= F � I. The number of
finite classes in F must be between h⌧, I

⌧

, ni and 2h⌧, I
⌧

, ni. Since ⌧ plays leftmost
outcome pi2n, this means that INFJUNK(F ) will have stable finite witness
structures D�1, · · · , Dn�1, while D

n

gets abandoned infinitely often. This means that
INFJUNK(F ) does not in fact produce an infinite structure, a contradiction.

This ends the proof of Theorem 1.1.

3. A Friedberg enumeration of infinite equivalence structures.

In this section we prove the second result of the paper, that is, we produce a Friedberg
enumeration of all isomorphism types of infinite computable equivalence structures.

We slightly abuse our terminology and identify a finite equivalence structure with its iso-
morphism type. Every non-empty finite equivalence structure F is uniquely described up to
isomorphism by the finite sequence 0 < s0  s1  . . .  s

k

of sizes of its classes. Each such
tuple is also uniquely described by the number N

F

= p

s0
0 p

s1
1 . . . p

s

k

k

, where p0 = 2, p1 = 3, . . .
is the standard e↵ective list of prime numbers. (Here the subscript F in N

F

denotes the
isomorphism type of the corresponding finite equivalence structure.)
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By the main result of the paper, Theorem 1.1, we know that there exists a Friedberg enu-
meration of all isomorphism types of equivalence structures which are either finite, unbounded,
or of type (III). Suppose (F

n

)
n2! is such an enumeration. As was noted earlier in the paper,

we may assume that all structures in this list are non-empty. Notice that in the enumeration
provided by Theorem 1.1, we cannot e↵ectively tell which structures are finite and which are
infinite, since some structures are built by nodes which may never again grow the structure.
Thus we need a separate, non-trivial argument to show that we can eliminate finite structures
from this list.

Definition of V
n

. Given any F

n

as above, define the structure

V

n

= F

n

� C

n

,

where C

n

is infinite and attempts to “code” F

n

as follows. If F
n

is finite, then C

n

is the
structure with infinitely many classes of size 1 and exactly N

F

n

-K
F

n

,2-many classes of size 2,
where K

F

n

,2 is the number of classes of size 2 in F

n

. If F
n

is infinite, then C

n

is empty.

Note that K

F,2 is always smaller than N

F

n

for a trivial counting reason (assuming F

n

is
non-empty), so the definition makes sense. Clearly, each V

n

is infinite. More can be said.

Lemma 3.1. Any Friedberg enumeration of the sequence (V
n

)
n2! can be e↵ectively turned

into a Friedberg enumeration of all infinite equivalent structures (up to isomorphism).

Proof. Which infinite isomorphism types are missing in the list (V
n

)
n2!? All structures of

type (III) and (V) are infinite structures in the list (F
n

)
n2!and hence will appear in the list

(V
n

)
n2!. We are missing the structures in (II), as well as the structures in (IV) which are not

of the form F � C, where F is finite and C has infinitely many classes of size 1 and exactly
N

F

-K
F

-many classes of size 2. We can evidently list all such structures which are not of
this kind. By adjoining the missing isomorphism types, we produce a listing of all infinite
isomorphism types which is easily checked to be Friedberg. ⇤

The reader might now wonder if it is possible for finite structures F 6= F

0 but the associated
F � C

⇠= F

0 � C

0. This is in fact not possible, which is the reason why we chose to define C

in that way. This will be explained in the next lemma. Now it remains to prove that there
exists a Friedberg enumeration of the sequence (V

n

)
n2!:

Lemma 3.2. Given an enumeration of (F
n

)
n2! we can produce an enumeration of (V

n

)
n2!.

Proof. We write F and V instead of F
n

and V

n

. Fix an e↵ective approximation (F [s])
s2!

of F by finite substructures, F [s] ✓ F [s + 1]. Without loss of generality, each extension
F [s] ✓ F [s+ 1] may be assumed to be at most a one-point extension.

Before showing the construction, we give the reason for our choice of C. We wish to append
infinitely many elements to each finite structure F , since we need V = F �C to be an infinite
structure, so C should be padded with infinitely many elements. The easiest way to do this
is to add infinitely many classes of size 1 to C; the reason for choosing infinitely many classes
of size 1 over, say, a single infinite class is that it is easier to move these classes of size 1 from
C into F whenever F grows; remember we have to prepare for the possibility that F itself is
infinite.

However, letting C contain only classes of size 1 will not be enough. Remember we have
to produce a list without repetitions, so for example, if F and F

0 are finite structures such
that F

0 � F are all size 1 classes, then we get F � C

⇠= F

0 � C

0. Thus, our definition of
C must distinguish between these two cases. To do this, we let C contain, in addition to
infinitely many classes of size 1, also N �K many classes of size 2. This ensures that F � C



A FRIEDBERG ENUMERATION OF EQUIVALENCE STRUCTURES 19

contains exactly N many classes of size 2 (remember N codes the atomic diagram of F ), and
so F � C 6⇠= F

0 � C

0.
Now we describe the construction. Suppose we have already defined V [s] which is of the

form F

0[s]�T1[s]�T2[s], where F 0[s] ⇠= F [s], the component T1[s] contains at least 2s disjoint
singleton classes, and T2[s] consists of exactly N

F [s]-KF [s],2-many classes of size 2. We will
define V [s] in stages. We will also implicitly maintain the isomorphism from F [s] onto F

0[s]
in a rather straightforward way, so we do not introduce any notation for the isomorphism.

Case 1. If F [s] = F [s + 1], then we grow V [s] to V [s + 1] according to the definition of
V [s+ 1], i.e., by growing the T1-component.

Note if F [s] = F , then this way we’ll end up producing V . However, if F is actually infinite,
then we need to make sure that all classes previously forming T1 and T2 eventually become
parts of F 0. For this purpose we assign priority to elements of T1[s] � T2[s], depending on
when the class was first introduced in the construction (the earlier the class is introduced the
higher priority it receives).

Case 2. Now assume F [s+ 1] is a one-point extension of F [s] by element x.

• Suppose x forms a new singleton class. Then look for the highest priority singleton
class [y] currently in T1[s]. Then adjoin it to the copy of F 0[s] in V [s+ 1] and declare
this class to be the image of x in the new definition of F 0[s+ 1] :

F

0[s+ 1] = F

0[s]� [y].

(The class keeps its priority even after it has been adjoined.)
• Assume x extends the already existing class f that currently has size � 2. To define
F

0[s+ 1] find the respective class f 0 in F

0[s] and extend it by one new element.
• Suppose x extends the already existing singleton class f that naturally corresponds
to f 0 in F

0[s]. Then f 0 was introduced to F

0[t] (t  s) by adjoining a T1-class to the
F

0-component. See whether there exists a two-element class currently in T2[s] that
has higher priority than that of f 0 in the construction.

– If there is no such class, then extend f 0 by one point to define F 0[s+1] and extend
the natural isomorphism from F [s+ 1] onto F

0[s+ 1] in the most obvious way.
– If there is such class, then let t2 be such a class of highest priority. In this case

remove f 0 from F

0[s], return it back to T1[s] to form T1[s + 1]. (The class still
keeps its priority.) Then adjoin t2 to what is left of F 0[s] to define F

0[s + 1].
Define the natural isomorphism from F [s+ 1] onto F

0[s+ 1] by matching f with
t2 (instead of f 0).

To finish actions in Case 2, extend the T1- and T2-components accordingly to satisfy the
definition of V [s+ 1]

Verification. The key to the verification is checking that the structures can be consistently
grown from stage to stage, i.e., that V [s+ 1] ◆ V [s]. For this purpose we need:

Claim 3.3. Let F ( G be non-empty finite equivalence structures. Then N

F

�K

F

< N

G

�K

G

.

Proof. It is su�cient to check that the lemma is true in the case of a one-point extension, i.e.,
when G\F is a singleton {x}. If x forms a singleton class of G, then without loss of generality
we may assume that it contributes p10 into N

G

= p

1
0 · · · . In this case we have that any factor

of the form p

k

i

in N

F

corresponds to p

k

i+1 in N

G

. But p
i

< p

i+1 and p0 = 2 while K
G,2 = K

F,2.
Thus the lemma holds in this case.
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Now assume x extends one of the already existing equivalence classes of F . Then K

G,2 
K

F,2+1. Suppose x extends the jth largest class in F , i.e. of size s
j

in the notation preceding
the lemma. If s

j

was the largest size of an equivalence class in F then it stays largest in G,

and thus the lemma follows from 2p
s

j

j

 p

s

j

+1
j

. Otherwise, suppose we have some s

j+1 > s

j

.

But then we may assume that the class holds its position as the j

th largest class in G (after
a suitable re-arrangement) and the lemma holds for the same reason as above. ⇤

Now, regardless of which case we are in at a stage s, the claim above ensures that we can
always make the action of adjusting the size of T2[s] (growing is necessary) since it never gets
smaller.

The rest of the verification is rather standard. Indeed, we have already noted that if F is
finite then V =

S
s

V [s] is of the desired form. Thus assume F is infinite. Since F

n

is of type
(III) or (V) and hence also contains infinitely many large enough classes (finite or infinite),
we conclude that there will be infinitely many stages that are 1-point extensions at which a
class of size 1 grows in F [s], and also infinitely many stages at which a new singleton class is
introduced to F [s]

A class from the T2-component, once put into the F

0-component, will stay there perma-
nently. Thus, every class that has ever been put into the T1-component can be extracted from
it and then put back at most finitely many times.

Therefore, if F is infinite then we see that every class that has ever been put into either the
T1- or the T2-component will be eventually enumerated into the F

0-component of V and will
never leave it. Equivalently, V =

S
s2! F

0[s]. It remains to show that the sequence of natural
isomorphisms from F [s] onto F

0[s], as defined in the construction, induces an isomorphism of
F onto V . But this is a consequence of priority: The natural isomorphism has to be redefined
on a class at most finitely often, and once stable it is stable for the whole class (regardless of
whether the class is finite or not). Therefore the sequence of natural isomorphisms induces a
�0

2 isomorphism from F onto V , as desired. ⇤
It remains to verify that the list (V

n

)
n2! contains no repetitions, i.e., that V

n

� V

m

for each
n 6= m. Recall that (F

n

)
n2! is a Friedberg enumeration of all computable isomorphism types

of equivalence structures of type (I), (III) or (V). Suppose first that F
n

is finite. In this case
V

n

is bounded and contains no infinite classes. Thus if F
m

is infinite then V

n

� V

m

⇠= F

m

.
Now if F

m

is finite, then the number of classes of size 2 in V

m

is di↵erent from that in V

n

,
since V

n

will have exactly N

F

n

many classes of size 2. On the other hand, if both F

m

, F

n

are
infinite then F

m

⇠= V

m

and F

n

⇠= V

n

.
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