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Abstract. We classify the asymptotic densities of the ∆0
2 sets according to

their level in the Ershov hierarchy. In particular, it is shown that for n ≥ 2,

a real r ∈ [0, 1] is the density of an n-c.e. set if and only if it is a difference

of left-Π0
2 reals. Further, we show that the densities of the ω-c.e. sets coincide

with the densities of the ∆0
2 sets, and there are ω-c.e. sets whose density is not

the density of an n-c.e. set for any n ∈ ω.

1. Introduction

In computability theory, the complexity of sets A ⊆ ω is often measured using
Turing reducibility and the arithmetic hierarchy. In number theory, the size of a set
A ⊆ ω is often measured using its asymptotic density ρ(A) ∈ [0, 1], if this density
exists. It is natural to inquire about relationships between these measurements.
In [3] it is shown that there is a very tight connection between the position of a
set A in the arithmetic hierarchy and the complexity of its density ρ(A) as a real
number, provided that A has a density. (These results are summarized in Theorem
2.1 below.) Here we measure the complexity of a real x0 in terms of the complexity
of its left Dedekind cut; that is, the set of all rational numbers smaller than x0.
In the current paper we study the corresponding relationship when we classify A
according to the Ershov hierarchy, that is, the number of changes in a computable
approximation to A.

We identify sets with their characteristic functions. According to the Shoenfield
Limit Lemma, the ∆0

2 sets A are exactly those for which there is a computable
function g such that, for all x, A(x) = lims g(x, s). Roughly speaking, the Ershov
hierarchy classifies ∆0

2 sets by the number of s with g(x, s) 6= g(x, s + 1). In
particular, if f is a function and A ⊆ ω, then A is called f -c.e. if there is a
computable function g such that, for all x, A(x) = lims g(x, s), g(x, 0) = 0, and
|{s : g(x, s) 6= g(x, s+ 1)}| ≤ f(x).

Our goal here is to determine the relationship between the growth rate of f and
the complexity of the asymptotic density of A as a real number, if it exists. We show
that every real number which is the density of a ∆0

2 set is the density of an id-c.e.
set, where id is the identity function. In fact, we show that the identity function
could be replaced here by any computable, non-decreasing, unbounded function f .
Thus, for any such f the densities of the f -c.e. sets coincide with the densities of
the ∆0

2 sets. Since we consider only f which are computable and nondecreasing, it
remains only to consider the densities of the f -c.e. sets in the special case where f
is constant. A set A is called n-c.e. if A is cn-c.e, where cn is the constant function
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with value n on all arguments. Thus, for example, the 1-c.e. sets are precisely
the c.e. sets and the 2-c.e. sets are precisely the d.c.e. sets; i.e. those sets that are
differences of two c.e. sets.

It is shown in Theorem 5.13 of [3] that the densities of the c.e. sets are precisely
the left-Π0

2 reals in the interval [0, 1]. Thus one might expect that the densities
of the d.c.e. sets are precisely the differences of left-Π0

2 reals in [0, 1]. We prove
that this is the case, but care is necessary because A \ B can have a density even
though A and B do not have densities. The essential observation here is that if
B ⊆ A and A \ B has a density, then this density is ρ(A) − ρ(B) (where ρ(X) is
the upper density of the set X). Note that a difference of left-Π0

n reals is also a
difference of left-Σ0

n reals. A difference of left-Σ0
1 reals is also known as a d.c.e.

real. Relativizing the proof of Corollary 4.6 of [1] shows that there is a real which
is a difference of left-Π0

2 reals but which is neither left-Π0
2 nor left-Σ0

2. Combining
this with our results and Theorem 5.13 of [3] shows that there is a real which is the
density of a d.c.e. set but not the density of any c.e. or co-c.e. set.

We next consider the densities of n-c.e. sets for arbitrary n ≥ 2. It is well known
that every n-c.e. set is a finite disjoint union of d.c.e. sets. Also the reals which
are differences of left-Π0

2 reals are easily seen to be closed under addition. Indeed,
these reals form a field, as may be seen by relativizing Theorem 3.7 of [1]. Thus
one might expect that if a real r is the density of an n-c.e. set, then r is a difference
of left-Π0

2 reals. We prove this, but care is again necessary because a disjoint union
of sets can have a density when the sets themselves fail to have densities. It follows
that, for all n ≥ 2, the densities of the n-c.e. sets coincide with the densities of the
d.c.e. sets.

Say that a set A is ω-c.e. if A is f -c.e. for some computable function f . This
hierarchy has been extended to levels indexed by notations for arbitrary computable
ordinals (see [4]), but there are some subtleties because for levels α ≥ ω2 the sets
occurring at level α depend on the choice of a notation for α. We show that if a
∆0

2 set has a density r then r is also the density of an ω-c.e. set. Thus, if α is a
notation for a computable ordinal greater than or equal to ω, the densities of the
α-c.e. sets coincide with the densities of the ω-c.e. sets and these in turn coincide
with the densities of the ∆0

2 sets.
We summarize some background and prior results needed in Section 2. In Section

3 we characterize the densities of d.c.e. sets, and in Section 4 we characterize the
densities of n-c.e. sets. In Section 5 we show that the densities of ∆0

2 sets coincide
with the densities of the f -c.e. sets for any computable, nondecreasing, unbounded
function f , Finally in Section 6 we show that with respect to upper and lower
densities, the Ershov hierarchy collapses even further.

2. Background

We begin with the basic definitions related to asymptotic density. Let X be a
set of natural numbers. When n ∈ N, let

X � n = {j : j ∈ X ∧ j < n}.

For n > 0, define

ρn(X) =
|X � n|
n
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The upper density of X is defined to be

ρ(X) = lim sup
n

ρn(X)

The lower density of X is defined to be

ρ(X) = lim inf
n

ρn(X)

If the upper and lower density of X coincide, then this common value ρ(X) =
limn ρn(X) is called the asymptotic density of X. If C is a complexity class (such
as Π0

2, ∆0
2, etc.), then a real number r is left (right)-C if and only if its left (right)

Dedekind cut belongs to C. So, for example, a real r is left-Π0
2 if and only if the set

{q ∈ Q : q < r}
is Π0

2.
Theorem 2.21 of [8] shows that the densities of the computable sets are exactly

the ∆0
2 reals in the interval [0, 1]. It is shown in Theorem 5.13 of [3] that the

densities of the c.e. sets are exactly the left-Π0
2 reals in [0, 1]. By relativizing and

dualizing these results, one easily obtains the following theorem.

Theorem 2.1. (Downey, Jockusch, Schupp) Let r be a real number in the interval
[0, 1].

(1) r is the density of a ∆0
n set if and only if r is ∆0

n+1.
(2) r is the density of a Σ0

n set if and only if r is left-Π0
n+1.

(3) r is the density of a Π0
n set if and only if r is left-Σ0

n+1.

Soare [9] gives many examples of real numbers which are left-Σ0
1 but which are

not computable and hence not left-Π0
1. Another example of such a real is given

in [2], Corollary 5.1.9. It follows by relativization that for each n ≥ 1 there is a
real which is left-Σ0

n but not left-Π0
n. Since a real r is left-Σ0

n if and only if −r is
left-Π0

n, it follows that for n ≥ 1 the left-Σ0
n reals are not closed under subtraction.

To obtain closure under subtraction, we instead consider reals of the form r − s
where the reals r and s are left-Π0

n reals. Let Dn be the set of such reals. Study of
the class D1 was initiated in [1], where elements of D1 are called weakly computable
reals. That paper shows that D1 is actually a field. It was further shown by Ng and
independently by Raichev that D1 is a real-closed field. (Proofs of these statements
are also given in Chapter 5 of [2] which is a comprehensive source of information
on the subject.) The cited results extend by relativization to Dn for all n ≥ 1.

By the remarks above, there are reals in Dn which are neither left-Σ0
n nor left-

Π0
n. Also, Ambos-Spies, Weihrauch, and Zheng ([1], Corollary 4.10) showed that

there is a ∆0
2 real which is not in D1. It again follows by relativization that for each

n ≥ 1 there is a ∆0
n+1-real which is not in Dn.

Let DA
n be the class of reals which are differences of left-Π0,A

n reals, so DA
n is

simply the relativization of Dn to A. Such relativized classes play a useful role in
algorithmic randomness. Call a set A low for Dn if DA

n = Dn. It was shown by J.
Miller (see Theorem 15.9.2 of [2]) that the K-trivial sets in the sense of algorithmic
randomness are precisely the sets A which are low for D1.

3. Densities of d.c.e. sets

It is shown in Theorem 5.13 of [3] that the densities of the c.e. sets are the
left-Π0

2 reals in [0, 1]. Hence if A, B are c.e. sets having densities and B ⊆ A, then
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ρ(A \ B) = ρ(A) − ρ(B) is a difference of left-Π0
2 reals. This suggests that if r is

the density of a d.c.e. set, then r should also be a difference of left-Π0
2 reals, that is,

r ∈ D2. However, A \B can have a density even when B ⊆ A, and the sets A and
B do not have densities. Nonetheless, we will prove in this section that if a d.c.e.
set has density r, then r ∈ D2. Conversely, we show that every real in D2 ∩ [0, 1] is
the density of a d.c.e. set, thus characterizing the densities of the d.c.e. sets as the
reals in D2 ∩ [0, 1]. This implies that there is a real which is the density of a d.c.e.
set but not of any c.e. or co-c.e. set.

The following proposition shows that we can use upper densities to avoid the
above mentioned difficulty of nonexistent densities.

Proposition 3.1. If M ≥ an ≥ bn ≥ L for all n, and if limn→∞(an − bn) exists,
then limn→∞(an − bn) = lim supn an − lim supn bn.

Proof. Note that the result is clear if an− bn is constant, since then {an} and {bn}
are near their respective lim sups simultaneously, and so respective lim sups must
differ by the same constant. We show below that essentially this same argument
works when we assume only that an − bn has a limit.

Let a = lim supn an and b = lim supn bn, where these are real numbers because
the given sequences are bounded. Let d = limn(an−bn), which exists by hypothesis.
We must show that d = a−b, which we prove in the form b = a−d, i.e. lim supn bn =
a− d.

Let ε > 0 be given. Since lim supn an = a, we have an ≤ a+ε/2 for all sufficiently
large n. Since limn(bn−an) = −d, we also have bn−an ≤ −d+ε/2 for all sufficiently
large n. Adding these inequalities, we have bn ≤ a− d+ ε for all sufficiently large
n. Since ε was arbitrary, we conclude that b = lim supn bn ≤ a− d.

To obtain the reverse inequality, again let ε > 0 be given. Since lim supn an = a,
there are infinitely many n such that an ≥ a − ε/2. Let S be the set of such n.
Since limn(bn − an) = −d, we have bn − an ≥ −d − ε/2 for all sufficiently large
n. Adding these inequalities, we have that bn ≥ a − d − ε for all sufficiently large
n ∈ S, and hence for infinitely many n. Since ε was arbitrary, we conclude that
b = lim supn bn ≥ a− d, and hence, by the previous paragraph, b = a− d. �

Corollary 3.2. If Y is a subset of X, and if X −Y has a density, then its density
is the upper density of X minus the upper density of Y .

Corollary 3.3. If C is a d.c.e. set which has a density, then ρ(C) ∈ D2.

Proof. Let C = A\B, where A,B are c.e. and B ⊆ A. Then ρ(C) = ρ(A)−ρ(B) by
the previous corollary and the reals ρ(A) and ρ(B) are each left-Π0

2 by [3], Theorem
5.6. �

The next theorem will allow us to prove the converse: Every real in D2 ∩ [0, 1]
is the density of a d.c.e. set. In order to prove the theorem we need the following
lemma which asserts a well-known fact about conditional densities.

Lemma 3.4. Let h be a strictly increasing function and let X ⊆ ω. Then ρ(h(X)) =
ρ(range(h))ρ(X) provided that both the range of h and X have densities.

Proof. Let R be the range of h, and for each u, let g(u) be the least k such that
h(k) ≥ u. Note that, for all u,

|h(X) � u| = |X � g(u)| & |R � u| = g(u)
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via the bijections induced by h. It follows that

ρg(u)(X) · ρu(R) =
|X � g(u)|
g(u)

|R � u|
u

=
|h(X) � u|
g(u)

g(u)

u
=
|h(X) � u|

u
= ρu(h(X))

for all u. Hence, ρu(h(X)) = ρg(u)(X) · ρu(R). As u tends to infinity, g(u) also
tends to infinity, and the lemma follows. �

Theorem 3.5. If a, b are left-Π0
2 reals such that 0 ≤ b ≤ a ≤ 1, then there is a c.e.

set A with density a and a c.e. set B ⊆ A with density b.

Proof. It is shown in Theorem 5.13 of [3] that every left-Π0
2 real in the interval [0, 1]

is the density of a c.e. set, which is the case a = b of the current result. Thus, we
may assume that b < a. Let q be a rational number such that b < q < a, and let
C be a computable set of density q, which exists by Theorem 2.21 of [8]. We will
obtain A by expanding C and obtain B by shrinking C. In more detail, we obtain
A as C ∪A0, where A0 ⊂ C is a c.e. set of density a− q.

Let h be a computable, strictly increasing function with range C. Then let
A0 = h(A1), where A1 is a c.e. set of density (a− q)/(1− q). Such a set exists by
Theorem 5.13 of [3] because (a− q)/(1− q) is a left-Π0

2 real in [0, 1]. Hence,

ρ(A0) = ρ(h(A1)) = (1− q)a− q
1− q

= a− q

by the lemma, and thus

ρ(A) = ρ(C tA0) = ρ(C) + ρ(A0) = q + (a− q) = a

as desired. The c.e. set B ⊆ C of density b is obtained analogously, but working
within C instead of C. Namely B = h(B1), where h is now a strictly increasing
computable function with range C and B1 is a c.e. set of density b/q. Since B ⊆
C ⊆ A, the proof is complete.

�

Corollary 3.6. The densities of the d.c.e. sets coincide with the reals in D2∩ [0, 1].

Proof. The density of a d.c.e. set is in D2 ∩ [0, 1] by Corollary 3.3. For the other
direction, consider a real r ∈ [0, 1] which is a difference of left-Π0

2 reals. Write r as
a − b, where a, b are left-Π0

2 reals and 1 ≥ a ≥ b ≥ 0. By Theorem 3.5, there are
c.e. sets A,B such that B ⊆ A, ρ(A) = a, and ρ(B) = b. Then A \B is d.c.e. and
ρ(A \B) = a− b. �

Corollary 3.7. There is a 2-c.e. set which has a density but whose density is not
the density of any c.e. set or co-c.e. set.

Proof. By Corollary 4.6 of [1], relativized to 0′, there is a real r which is a difference
of left-Π0

2 reals but is not left-Π0
2 or left-Σ0

2. We may assume that r ∈ [0, 1], so r is
the density of a 2-c.e. set. The real r is not the density of a c.e. or co-c.e. set, since
the densities of c.e. sets are left-Π0

2 and the densities of co-c.e. sets are left-Σ0
2. �

4. The densities of n-c.e. sets

It is well known that if D is an n-c.e. set then, for some k, D = D1∪D2∪· · ·∪Dk

where D1, D2, . . . , Dk are pairwise disjoint d.c.e. sets. If each Di has a density, then
ρ(D) =

∑
i≤k ρ(Di), where ρ(Di) ∈ D2 by Corollary 3.3. Since D2 is closed under

addition, it follows that ρ(D) ∈ D2. However, we again have the situation that a
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disjoint union of sets can have a density when the sets themselves do not. This
time, an algebraic trick will come to our rescue.

The following proposition is a well-known fact about n-c.e. sets.

Proposition 4.1. Suppose A is an n-c.e. set where n is a positive integer.

(1) If n = 2k where k ∈ N, then A can be written in the form

(A1 −A2) ∪ . . . ∪ (A2k−1 −A2k)

where A1, . . . , A2k are c.e. and A1 ⊇ . . . ⊇ A2k.
(2) If n = 2k + 1 where k ∈ N, then A can be written in the form

(A1 −A2) ∪ . . . ∪ (A2k−1 −A2k) ∪A2k+1

where A1, . . . , A2k+1 are c.e. and A1 ⊇ . . . ⊇ A2k+1.

Theorem 4.2. If n ≥ 1, and if A is an n-c.e. set that has a density, then the
density of A is a difference of left-Π0

2 reals.

Proof. Without loss of generality, suppose n = 2k where k ∈ N. By Proposition
4.1, there are c.e. sets A1, . . . , A2k such that A = (A1 − A2) ∪ . . . ∪ (A2k−1 − A2k)
and A1 ⊇ . . . ⊇ A2k. Thus, A1 − A2, . . . , A2k−1 − A2k are pairwise disjoint. Let
aj,s = ρs(Aj). It follows that

ρs(A) =

 ∑
j odd

aj,s

−
 ∑

j even
aj,s

 .

Note that a2,s ≤ a1,s, a4,s ≤ a3,s, . . ., a2k,s ≤ a2k−1,s. So, by Proposition 3.1,
ρ(A) = a− b where

a = lim sup
s

 ∑
j odd

aj,s

 , and where

b = lim sup
s

 ∑
j even

aj,s

 .

It thus suffices to show that if {qn} is a computable sequence of rational numbers
and r = lim supn qn, then r is a left-Π0

2 real. This is obvious if r is itself rational.
Otherwise, for every rational number q, q < r if and only if there are infinitely
many n with q < qn, from which the claim follows.

�

Corollary 4.3. Let n ≥ 2. The densities of the n-c.e. sets coincide with the reals
in D2 ∩ [0, 1] and hence with the densities of the 2-c.e. sets.

5. Densities of ω-c.e. sets

It is shown in [8] that the densities of the computable sets are precisely the ∆0
2

reals in [0, 1]. By relativization, the densities of the ∆0
2 sets are precisely the ∆0

3

reals in [0, 1]. In this section, we show that the densities of the ω-c.e. sets coincide
with the densities of the ∆0

2 sets and in fact prove the following much stronger
result.

Theorem 5.1. Let f be a computable, nondecreasing, unbounded function. If A is
a ∆0

2 set that has a density, then the density of A is that of an f -c.e. set.
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Proof. We must construct an f -c.e. set B such that ρ(B) = ρ(A). Our definition of
B uses an oracle for 0′ and also a computable approximation {As} to A. We will
define an increasing modulus function m for A, and arrange that, for each x > 0,

|ρm(x)(B)− ρx(A)| ≤ 1/x

It then follows that ρ(B) = ρ(A) if B has density. We show that B can be
defined on arguments not in the range of m in such a way that B does in fact have
a density.

We now define m by recursion. Let m(0) = (µs)[f(s) > 0]. Given m(x), let
m(x+ 1) be the least s > (x+ 1) ·m(x) such that:

f(s) > x+ 1 & (∀t ≥ s)[At � (x+ 1) = As � (x+ 1)]

Note that m is total because f is unbounded.
We now define B(y) by recursion on y. If y < m(0), then y /∈ B. Now suppose

y ∈ [m(x),m(x+ 1)), and B(z) has been defined for all z < y, so ρy(B) is defined.
Then put y into B if and only if ρy(B) < ρx+1(A). The intuition is that we are
increasing the density of B when it is less than or equal to its “target value” ρx+1(A)
and otherwise we are decreasing it. Hence, as y increases toward m(x+ 1), ρy(B)
should move in the direction of this target value, and not stray far from it once it
gets close to it.

To make this argument more precise, consider first the case where ρm(x)(B) ≤
ρx+1(A). Let y0 be the least element y of B in the interval [m(x),m(x + 1)), or
y0 = m(x+ 1) if there is no such y. Then ρy(B) is increasing in y for y ∈ [m(x), y0)
and |ρy0

(B) − ρx+1(A)| ≤ 1/(x + 1). Further, it is easy to see by induction on y
that |ρy(B) − ρx+1(A)| ≤ 1/(x + 1) for y0 ≤ y ≤ m(x + 1). Thus, |ρm(x+1)(B) −
ρx+1(A)| ≤ 1/(x+ 1). In addition, for all y ∈ [m(x),m(x+ 1)), either ρm(x)(B) ≤
ρy(B) ≤ ρx+1(A) or |ρy(B)− ρx+1(A)| ≤ 1/(x+ 1), as can be seen by considering
the cases y ≤ y0 and y > y0. Dual considerations show that if ρm(x)(B) ≥ ρx+1(A),
then again |ρm(x+1)(B)− ρx+1(A)| ≤ 1/(x+ 1). Also, for all y ∈ [m(x),m(x+ 1)),
either ρm(x)(B) ≥ ρy(B) ≥ ρx+1(A) or |ρy(B)− ρx+1(A)| ≤ 1/(x+ 1).

From the above, it follows at once that limx ρm(x)(B) = limx ρx(A) = ρ(A).
Further, if ρm(x)(B) and ρm(x+1)(B) are both within ε of ρ(A), then for all y ∈
[m(x),m(x + 1)), ρy(B) is within ε + 1/(x + 1) of ρ(A) by the above paragraph.
Hence, ρ(B) = limy ρy(B) = limx ρm(x)(B) = ρ(A).

We now show that B is f -c.e. First, observe that B is ∆0
2 since A and m are

∆0
2, f is computable, and the sets As are uniformly computable. Thus B has a

computable approximation {Bs}. Further, if A0 = ∅ and we choose {Bs} in a
natural way starting with our given approximation {As} to A, then B0 = ∅ and for
each z there are at most f(z) values of s with Bs+1(z) 6= Bs(z). This implies that
B is f -c.e. The proof is a straightforward argument which we merely sketch. Call
a function h approximable from below if there is a computable function g such that
h(x) = lims g(x, s) for all x and g(x, s) ≤ g(x, s + 1) for all x and s. It is easy to
see that the function m defined above is approximable from below. Let h(z) be the
least x with z < m(x). Define “approximable from above” analogously. Then h
is approximable from above because m is approximable from below. Further, note
that z < m(f(z)) for all z, by the definition of m. It follows, by the definition of
h, that h(z) ≤ f(z) for all z. Hence h is approximable from above via a function
g with g(z, 0) = f(z) for all z. It follows that for each z there are at most f(z)
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values of s with g(z, s+ 1) 6= g(z, s). Crucially, if we define the approximation g in
a natural way, and if g(z, s+1) = g(z, s), then Bs+1(z) = Bs(z). This is because, if
z ∈ [m(x),m(x+ 1)) (so h(z) = x+ 1) then B(z) is determined by A � (x+ 1), so if
our approximation to the value of x+1 does not change, our approximation to m(x)
does not change either, and so our approximation to A � (x + 1) does not change
either. Since B(z) is determined by our approximations to h(z) and A � h(z), it
follows that our approximation to B(z) does not change if our approximation to
g(z) does not change. Since our approximation to g(z) changes at most f(z) times,
our approximation to B(z) changes at most f(z) times, and hence B is f -c.e.

�

In the above proof, we assumed that A had a density. However, the same proof
establishes the following stronger result, where we make no such assumption.

Corollary 5.2. (to proof) For any computable, nondecreasing, unbounded function
f and any ∆0

2 set A, there is an f -c.e. set B such that ρ(B) = ρ(A) and ρ(B) =
ρ(A).

Corollary 5.3. For any computable, nondecreasing, unbounded function f there is
an f -c.e. set that has a density, but its density is not the density of any n-c.e. set,
n ∈ ω.

Proof. By Corollary 4.10 of [1], relative to 0′, there is a ∆0
3 real r in the interval

[0, 1] which is not a difference of left-Π0
2 reals. Thus, by Theorem 4.2, r is not the

density of any n-c.e. set for any n. On the other hand, by Theorem 2.21 of [8],
relativized to 0′, there is a ∆0

2 set A with density r. Then by Theorem 5.1, there is
an f -c.e. set B of density r. �

6. Upper and lower density

Since, with respect to density, the Ershov hierarchy collapses to levels 0, 1, 2,
and ω, it is natural to ask if there is any more separation with respect to upper and
lower densities. The following observations show that in some sense we get even
more collapse.

Proposition 6.1. Let r ∈ [0, 1]. Then, the following are equivalent.

(1) r is the upper density of a Σ0
2 set.

(2) r is left-Π0
3.

(3) r is the upper density of a Π0
1 set.

Proof. Without loss of generality, let us assume r is irrational.
Suppose r is the upper density of a Σ0

2 set. Then, by Theorem 5.7 of [3] relativized
to ∅′, r is left-Π0

3.
At the same time, if r is left-Π0

3, then 1− r is left-Σ0
3. So, by Theorem 5.8 of [3],

1 − r is the lower density of a c.e. set. It follows that r is the upper density of a
co-c.e. set. The remaining implication is immediate. �

Corollary 6.2. Let r ∈ [0, 1]. Then, for all n ≥ 2, r is the upper density of an
n-c.e. set if and only if r is the upper density of a co-c.e. set.

The above results can be dualized to show that the lower densities of the Π0
2 sets

coincide with the left-Σ0
3 reals in [0, 1] and with the lower densities of c.e. sets and

we thus have a similar collapse for lower densities. In particular, if A is any ∆0
2 set,
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there is a c.e. set with the same lower density as A and a co-c.e. set with the same
upper density as A.

7. Summary

We have shown that the densities of the 2-c.e. sets coincide with the reals in [0, 1]
which are differences of left-Π0

2 reals, and hence there is a real which is the density
of a 2-c.e. set but not of any c.e. or co-c.e. set. We have also proved that, for n ≥ 2
the densities of the n-c.e. sets coincide with the densities of the 2-c.e. sets. Finally,
we have shown that if A is a ∆0

2 set that has a density, then its density is the
density of an ω-c.e. set, and in fact the density of an f -c.e. set for each computable,
nondecreasing, unbounded function f . It follows that for each such f there is a real
number which is the density of an f -c.e. set but not of any n-c.e. set, n ∈ ω.
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