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Abstract. In graph theory, Courcelle’s theorem essentially states that, if an

algorithmic problem can be formulated in monadic second-order logic, then

it can be solved in linear time for graphs of bounded treewidth. We prove
such a metatheorem for a general class of triangulations of arbitrary fixed

dimension d, including all triangulated d-manifolds: if an algorithmic problem

can be expressed in monadic second-order logic, then it can be solved in linear
time for triangulations whose dual graphs have bounded treewidth.

We apply our results to 3-manifold topology, a setting with many difficult

computational problems but very few parameterised complexity results, and
where treewidth has practical relevance as a parameter. Using our metathe-

orem, we recover and generalise earlier fixed-parameter tractability results on
taut angle structures and discrete Morse theory respectively, and prove a new

fixed-parameter tractability result for computing the powerful but complex

Turaev-Viro invariants on 3-manifolds.

1. Introduction

Parameterised complexity is a relatively new and highly successful framework
for understanding the computational complexity of “hard” problems for which we
do not have a polynomial-time algorithm [18]. The key idea is to measure the
complexity not just in terms of the input size (the traditional approach), but also
in terms of additional parameters of the input or of the problem itself. The result
is that, even if a problem is (for instance) NP-hard, we gain a richer theoretical
understanding of those classes of inputs for which the problem is still tractable, and
we acquire new practical tools for solving the problem in real software.

For example, finding a Hamiltonian cycle in an arbitrary graph is NP-complete,
but for graphs of fixed treewidth ≤ k it can be solved in linear time in the input
size [18]. In general, a problem is called fixed-parameter tractable in the parame-
ter k if, for any class of inputs where k is universally bounded, the running time
becomes fixed degree polynomial in the input size. More precisely, the setting will
be languages L ⊆ Σ∗ × Σ∗1 and L is fixed parameter tractable iff there is a a
fixed constant c, and an algorithm deciding (x, k) ∈ L? in time f(k)(|x|c). Here f
is typically a computable function, as will be the case in the present paper. The
standard examples are Vertex Cover (vertcies cover edges) and Dominating
Set (vertices cover vertices). On general graphs, the first is linear time (c = 1)
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fixed parameter tractable, and the second, the only known algorithm is to (essen-
tially) check all possible k-element meaning the running time is Ω(|G|k), behaviour
considered as fixed parameter intractability. There is a completeness theory which
places Dominating Set in its second level of a completeness hierarchy. ([16, 17].)

Treewidth in particular (which roughly measures how “tree-like” a graph is [38])
is extremely useful as a parameter. A great many graph problems are known to
be fixed-parameter tractable in the treewidth, in a large part due to Courcelle’s
celebrated “metatheorem” [12, 13]: for any decision problem P on graphs, if P can
be framed using monadic second-order logic, then P can be solved in linear time
for graphs of universally bounded treewidth ≤ k.

The motivation behind this paper is to develop the tools of parameterised com-
plexity for systematic use in the field of geometric topology, and in particular for
3-manifold topology. This is a field with natural and fundamental algorithmic
problems, such as determining whether two knots or two triangulations are topo-
logically equivalent, and in three dimensions such problems are often decidable but
extremely complex [36].

Parameterised complexity is appealing as a theoretical framework for identify-
ing when “hard” topological problems can be solved quickly. Unlike average-case
complexity or generic complexity, it avoids the need to work with random inputs—
something that still poses major difficulties for 3-manifold topology [20]. The vi-
ability of this framework is shown by recent parameterised complexity results in
topological settings such as knot polynomials [33, 34], angle structures [8], discrete
Morse theory [6], and the enumeration of 3-manifold triangulations [7].

The treewidth parameter plays a key role in all of the aforementioned results. For
topological problems whose input is a triangulation T , we measure the treewidth
of the dual graph D(T ), whose nodes describe top-dimensional simplices of T , and
whose arcs show how these simplices are joined together along their facets. In
3-manifold topology this parameter has a natural interpretation, and there are
common settings in which the treewidth remains small; see Section 5 for details.

Our main result in this paper is a Courcelle-like metatheorem for use with tri-
angulations. Specifically, in Section 4 we describe a form of monadic second-order
logic for use with triangulations of fixed dimension d, and we show that all problems
expressible in this logical framework are fixed-parameter tractable in the treewidth
of the dual graph of the input triangulation (Theorem 4.8).

Section 5 gives several applications of this metatheorem. We recover earlier re-
sults on taut angle structures [8] and discrete Morse theory [6], generalise the latter
result to arbitrary dimension (Theorem 5.7), and prove a new result on computing
the Turaev-Viro invariants of 3-manifolds (Theorem 5.9). These new results on dis-
crete Morse theory and Turaev-Viro invariants have significant practical potential;
see Section 5 for further discussion.

Of course we are not the first to apply the treewidth methodology outside of
graphs. The main idea is to have a class of objects where there is some natural
methods of representing the objects in a graph like manner. Then if the inter-
pretation is “computationally faithful” we can interpret questions about the ob-
jects as questions about graphs. There is a vast literature about treewidth and
more recently other “width metrics”. Examples are discussed in [19], Chapter
14, where applications to knot polynomials (mentioned above), finite model theory,
databases, and matroid theory. There are many other width metrics such as Local
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Treewidth, Clique Width, Mixed Width, Rankwidth, Branchwidth, and
recent generalizations such as Nowhere Density (see [19, 21] and [24], for some
metatheorems). Our paper also leads to speculation as to the viability of analyses
in computational topology by designing analogues of these other metrics, and per-
haps well-quasi-ordering theory. We remark that recent work [30] also shows that
for natural problems and relatively small treewidth, Courcelle’s Theorem can be
implemented, in spite of the worst case behaviour. ([30])

We prove our main result in two stages. In Section 3 we translate several variants
of Courcelle’s theorem from simple graphs to the more flexible setting of edge-
coloured graphs. Whilst some of this material could be considered as either folklore,
or following from some metatheorems to be found in the literature, we give these
proofs to make the present paper self-contained. In Section 4 we show how to
use an edge-coloured graph to encode the full structure of a triangulation (using a
coloured variant of the well-known Hasse diagram), and using this we translate the
variants of Courcelle’s theorem up to the final setting of triangulations.

We emphasise that our results depend crucially on how we define a triangulation.
We do not allow arbitrary simplicial complexes, where low-dimensional faces can
be joined or “pinched” together independently of the larger simplices to which
they belong. Instead our triangulations are formed purely by joining together d-
simplices along their (d−1)-dimensional facets. This definition is flexible enough to
encompass any reasonable concept of a triangulated d-manifold. Indeed, it covers
structures more general than simplicial complexes, such as the highly efficient one-
vertex triangulations [27] and ideal triangulations [39] favoured by many 3-manifold
topologists.

2. Preliminaries

2.1. Treewidth. Throughout this paper we work with several common classes of
graphs; we briefly outline these classes here. We use the terms node and arc when
working with graphs to avoid confusion with the vertices and edges of triangulations.

A simple graph G = (V,E) is a finite set V of nodes and a finite set E of
arcs, where each arc is an unordered pair {v, w} of distinct nodes v, w ∈ V (so
we do not allow loops that join a node with itself, or multiple arcs between the
same two nodes). A multigraph G = (V,E) is a finite set V of nodes and a finite
multiset of arcs, where each arc is an unordered pair {v, w} of nodes v, w ∈ V and
we allow v = w (so loops and multiple arcs are allowed). An edge-coloured graph
G = (V,E,C) is a finite set V of nodes, a finite set C of colours and a finite set E of
arcs, where each arc is a pair ({v, w}, c) with v, w ∈ V , c ∈ C and v 6= w (i.e., each
arc is given a colour, loops are not allowed, and multiple arcs between the same
two nodes are only allowed if they are assigned different colours). Unless otherwise
specified, any general statement about graphs refers to all of these classes.

For any graph G, the size of the graph is denoted by |G|. The size counts the
total number of nodes and arcs, i.e., |G| = |V |+ |E|.

The treewidth of a graph G, introduced by Robertson and Seymour [38], essen-
tially measures how far G is from being a tree: any tree will have treewidth 1 (the
smallest possible), and a complete graph will have treewidth |V | − 1 (the largest
possible for a given V ). Graphs of small treewidth are often easier to work with,
as Courcelle’s theorem (described below) so strikingly shows. The full definition is
as follows.
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Figure 1. A simple graph and a corresponding tree decomposition

Given a simple graph or multigraph G = (V,E), a tree decomposition of G
consists of a (finite) tree T and bags Bτ ⊆ V for each node τ of T that satisfy the
following constraints:

• each v ∈ V belongs to some bag Bτ ;
• for each arc of G, its two endpoints v, w belong to some common bag Bτ ;
• for each v ∈ V , the bags containing v correspond to a connected subtree of
T .

The width of this tree decomposition is max |Bτ | − 1, and the treewidth of G is the
smallest width of any tree decomposition of G, which we denote by tw(G). Figure 1
illustrates a simple graph G and a corresponding tree decomposition of width 2.

Although computing treewidth is NP-complete, it is also fixed-parameter tractable:

Theorem 2.1 (Bodlaender [3]). There exists a computable function f and an algo-
rithm which, given a simple graph G = (V,E) of treewidth k = tw(G), can compute
a tree decomposition of width k in time f(k) · |V |.

More precisely, we have f(k) ∈ 2k
O(1)

; see [3, 21] for details.

2.2. Monadic second-order logic and Courcelle’s theorem. Monadic second-
order logic, or MSO logic, is our framework for making statements about graphs.
Here we give a brief overview of the key concepts as they appear in the context of
simple graphs; see a standard text such as [21] for further details. What we describe
here is sometimes called extended MSO logic, or MS 2 logic; this highlights the fact
that we can access arcs directly through variables and sets, and not just indirectly
through a binary relation on nodes.

MSO logic supports:

• all of the standard boolean operations of propositional logic: ∧ (and), ∨
(or), ¬ (negation), → (implication), and so on;
• variables to represent nodes, arcs, sets of nodes, or sets of arcs of a graph;
• the standard quantifiers from first-order logic: ∀ (the universal quantifier),

and ∃ (the existential quantifier), which may be applied to any of these
variable types;
• the binary equality relation =, which can be applied to nodes, arcs, sets of

nodes, or sets of arcs;
• the binary inclusion relation ∈, which can relate nodes to sets of nodes, or

arcs to sets of arcs;
• the binary incidence relation inc(e, v), which encodes the fact that e is an

arc, v is a node, and v is one of the two endpoints of e;
• the binary adjacency relation adj(v, v′), which encodes the fact that v and
v′ are the two endpoints of some common arc.
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By convention, we use lower-case letters v, w, . . . to represent nodes and e, f, . . .
to represent arcs, and upper-case letters V,W, . . . to represent sets of nodes and
E,F, . . . to represent sets of arcs.

Note that sets are simply a convenient representation of unary relations on nodes
and arcs. A distinguishing feature of MSO logic is that we can quantify over unary
relations (i.e., we can quantify over set variables as outlined above).

We use the notation φ(x1, . . . , xt) to denote an MSO formula with t free variables
(i.e., variables not bound by ∀ or ∃ quantifiers). An MSO sentence is an MSO
formula with no free variables at all. If G is a simple graph and φ is a MSO
sentence, we use the notation G |= φ to indicate that the interpretation of φ in the
graph G is a true statement.

We give three variants of Courcelle’s theorem, which relate to algorithms for
(i) decision problems on graphs; (ii) optimising quantities on graphs; and (iii) eval-
uating functions on graphs. Each variant works with MSO formulae in different
ways, which we now outline in turn.

2.2.1. Decision problems.

Example 2.2 (3-colourability). The following MSO sentence expresses the fact
that a simple graph is 3-colourable:

∃V1∃V2∃V3 ∀v∀w
(v ∈ V1 ∨ v ∈ V2 ∨ v ∈ V3) ∧
¬((v ∈ V1 ∧ v ∈ V2) ∨ (v ∈ V2 ∧ v ∈ V3) ∨ (v ∈ V1 ∧ v ∈ V3)) ∧
adj(v, w)→ ¬((v ∈ V1 ∧ w ∈ V1) ∨ (v ∈ V2 ∧ w ∈ V2) ∨ (v ∈ V3 ∧ w ∈ V3)).

The sets V1, V2, V3 indicate which nodes are assigned each of the three available
colours. The second and third lines ensure that V1, V2 and V3 partition the nodes,
and the final line ensures that any two adjacent nodes are coloured differently.

Theorem 2.3 (Courcelle [12, 13]). Given a simple graph G = (V,E), its treewidth
k = tw(G) and a fixed MSO sentence φ, there exists a computable function f and
an algorithm for testing whether G |= φ that runs in time f(k, |φ|) · |G|.

Corollary 2.4. For any fixed MSO sentence φ and any class K of simple graphs
with universally bounded treewidth, it is possible to test whether G |= φ for graphs
G ∈ K in time O(|G|).

In other words, testing for φ is linear-time fixed-parameter tractable in the
treewidth. Note that, thanks to Theorem 2.1, we do not need to supply an ex-
plicit tree decomposition of the input graph G in advance.

For the remainder of this paper we will formulate our results using the language
of Corollary 2.4, omitting explicit references to the underlying function f .

2.2.2. Optimisation problems. A restricted MSO extremum problem consists of an
MSO formula φ(A1, . . . , At) with free set variables A1, . . . , At, and a rational linear
function g(x1, . . . , xt). Its interpretation is as follows: given a simple graph G as
input, we are asked to minimise g(|A1|, . . . , |At|) over all sets A1, . . . , At for which
G |= φ(A1, . . . , At), where |Ai| as usual denotes the number of objects in the set
Ai.

Example 2.5 (Dominating set). The well-known problem dominating set asks for
the smallest set of nodes D in a given graph G for which every node in G is either
in D or adjacent to some node in D.
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To formulate this as a restricted MSO extremum problem, we use a single free
set variable D, and minimise the linear function g(|D|) = |D| under the following
MSO constraint:

∀v ∃w (v ∈ D) ∨ (w ∈ D ∧ adj(v, w)).

Courcelle’s theorem has been extended to work with such problems:

Theorem 2.6 (Arnborg, Lagergren and Seese [2]). For any restricted MSO ex-
tremum problem P and any class K of simple graphs with universally bounded
treewidth, it is possible to solve P for graphs G ∈ K in time O(|G|) under the
uniform cost measure.

Recall that the uniform cost measure assumes that elementary arithmetic op-
erations run in constant time; see a standard text such as [1] for details. Again,
Theorem 2.1 ensures that we do not need to supply an explicit tree decomposition
in advance.

Arnborg et al. [2] prove more general results: for instance, they allow evaluation
functions on weighted graphs (where integer or rational weights on the nodes and/or
arcs are supplied with the problem instance), they allow additional constants to be
given with the problem instance, and they discuss non-linear extremum problems
and enumeration problems. For simplicity we restrict our attention here to the
restricted class of extremum problems as described above.

2.2.3. Evaluation problems. We move now to evaluation problems, which are gen-
eralised counting problems: essentially, we assign a value to each solution to some
MSO-defined problem on a graph, and then sum these values over all solutions.
Evaluation problems come in both additive or multiplicative variants, and counting
problems correspond to multiplicative variants in which all solutions have value 1.

More precisely, an MSO evaluation problem is defined as follows. The problem
consists of an MSO formula φ(A1, . . . , At) with t free set variables A1, . . . , At. The
input to the problem is a simple graph G = (V,E), together with t weight functions
w1, . . . , wt : V t E → R on nodes and/or arcs, where R is some ring or field. The
problem then asks us to compute one of the quantities∑

G|=φ(A1,...,At)

{
t∑
i=1

∑
xi∈Ai

wi(xi)

}
or

∑
G|=φ(A1,...,At)

{
t∏
i=1

∏
xi∈Ai

wi(xi)

}
;

we refer to these two variants as additive and multiplicative evaluation problems
respectively. For both problems, the outermost sum is over all solutions A1, . . . , At
that satisfy the MSO formula φ on the graph G.

We now come to our third variant of Courcelle’s theorem, which extends earlier
work of Courcelle and Mosbah [11] and Arnborg et al. [2].

Theorem 2.7 (Courcelle, Makowsky and Rotics [10]). For any MSO evaluation
problem P and any class K of simple graphs with universally bounded treewidth,
it is possible to solve P for graphs G ∈ K in time O(|G|) under the uniform cost
measure.

Here we interpret the uniform cost measure to allow constant-time arithmetic
operations over the ring or field R. Courcelle et al. [10] only prove this explicitly for
t = 1 free variable only; however, they note that the generalisation to a sequence
of t free variables (for fixed t) is obvious.
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Figure 2. Examples of triangulations

2.3. Triangulations. We now describe the general class of d-dimensional triangu-
lations upon which our metatheorem operates. In essence, these triangulations are
formed by identifying (or “gluing”) facets of d-simplices in pairs. This definition
does not cover all simplicial complexes (in which lower-dimensional faces can also
be identified independently), but it does encompass any reasonable definition of a
triangulated d-manifold; moreover, it allows more general structures that simplicial
complexes do not, such as the highly efficient “1-vertex triangulations” and “ideal
triangulations” that are often found in algorithmic 3-manifold topology [27, 39].
The details follow.

Let d ∈ N. A d-dimensional triangulation consists of a collection of abstract d-
simplices ∆1, . . . ,∆n, some or all of whose facets2 are affinely identified (or “glued”)
in pairs. Each facet F of a d-simplex may only be identified with at most one other
facet F ′ of a d-simplex; this may be another facet of the same d-simplex, but it
cannot be F itself. Those facets that are not identified with any other facet together
form the boundary of the triangulation.

Consider any integer i with 0 ≤ i < d. There are
(
d+1
i+1

)
distinct i-faces of each

simplex ∆1, . . . ,∆n. As a consequence of the facet identifications, some of these i-
faces become identified with each other; we refer to each class of identified i-faces as
a single i-face of the triangulation. As usual, 0-faces and 1-faces are called vertices
and edges respectively. A simplex of the triangulation explicitly refers to one of
the d-simplices ∆1, . . . ,∆n (not a smaller-dimensional face), and for convenience
we also refer to these as d-faces of the triangulation.

A d-manifold triangulation is simply a d-dimensional triangulation whose under-
lying topological space is a d-manifold when using the quotient topology.

By convention, we label the vertices of each simplex as 0, . . . , d. We also arbitrar-
ily label the vertices of each i-face of the triangulation as 0, . . . , i (so, for instance,
for i = 1 this corresponds to placing an arbitrary direction on each edge). Note
that there are many possible ways in which the vertex labels of an i-face of the
triangulation might correspond to vertex labels on the constituent simplices.

Example 2.8. Figure 2(a) illustrates a 2-manifold triangulation with n = 2 sim-
plices whose underlying topological space is a Klein bottle. As indicated by the
arrowheads, we identify the following pairs of facets (i.e., edges):

∆1 :02←→ ∆2 :20, ∆1 :01←→ ∆1 :12, ∆2 :01←→ ∆2 :12.

2Recall that a facet of a d-simplex is a (d− 1)-dimensional face.
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The resulting triangulation has one vertex (since all three vertices of ∆1 and all
three vertices of ∆2 become identified together), and three edges (labelled e, f, g in
the diagram).

If we label each edge so that vertices 0 and 1 are at the base and the tip of the
arrow respectively, then vertex 0 of edge e corresponds to the individual triangle
vertices ∆1 :0 and ∆2 :2, and vertex 1 of edge e corresponds to ∆1 :2 and ∆2 :0.

Figure 2(b) illustrates a 3-manifold triangulation with just n = 1 simplex whose
underlying topological space is the solid torus B2×S1 [27]. Here we identify facets
∆1 : 012 ←→ ∆1 : 123, and leave the other two facets as boundary. The resulting
triangulation has just one vertex, three edges, and three 2-faces.

Let T be a d-dimensional triangulation. The size of T , denoted |T |, is the
number of simplices (i.e., d-faces) in T . Note that the total number of faces of any
dimension is at most 2d+1|T |, and is hence linear in |T | for fixed dimension d.

The dual graph of T , denoted D(T ), is the multigraph whose nodes correspond
to simplices and whose arcs correspond to identified pairs of facets. In particular,
D(T ) has precisely |T | nodes, and each node has degree at most d+ 1. Loops may
occur in D(T ) if two facets of the same simplex are identified, and parallel arcs may
occur if different facets of some simplex ∆i are identified with (different) facets of
the same simplex ∆j . Figure 2(c) illustrates the dual graph of the Klein bottle
from Example 2.8.

3. Edge-coloured graphs

Here we prove that the three variants of Courcelle’s theorem on simple graphs
(Corollary 2.4, Theorem 2.6 and Theorem 2.7) also hold for edge-coloured graphs
with a fixed number of colours. Although the results here are unsurprising and draw
on standard techniques3 , they are necessary as a stepping stone for Section 4, where
we use edge-coloured graphs to encode the full structure of a triangulation.

3.1. MSO logic on edge-coloured graphs. For any fixed number of colours k ∈
N, we can extend MSO logic to the setting of edge-coloured graphs as follows. We
allow all of the constructs of MSO logic on simple graphs, as outlined in Section 2.2.
In additional, we support:

• k unary colour relations col1(e), . . . , colk(e), where coli(e) encodes the fact
that e is an arc of the ith colour;

• k binary adjacency relations adj1(v, v′), . . . , adjk(v, v′), where adji(v, v
′)

encodes the fact that v and v′ are the two endpoints of some common arc
of the ith colour.

Note that the relations adji are for convenience only, and can easily be encoded
using the other constructs available.

As usual, if G = (V,E,C) is an edge-coloured graph with |C| = k colours, and
φ is an MSO sentence using the additional constructs outlined above, the notation
G |= φ indicates that the interpretation of φ in the graph G is a true statement.

We define extremum and evaluation problems exactly as before: a restricted
MSO extremum problem minimises a rational function over sizes of set variables as

3For instance, they could be derived from Courcelle and Engelfreit [14], Theorem 9.21 (page
636(!)) and Flum and Grohe [21] from general results about relational structures, without the

precise details of the bounds presented here.
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Figure 3. Converting an edge-coloured graph into a simple graph

in Section 2.2.2, and an MSO evaluation problem computes an additive or multi-
plicative quantity using weights on the nodes and/or arcs as in Section 2.2.3.

3.2. Metatheorems on edge-coloured graphs. Here we translate Courcelle’s
theorem and its variants to edge-coloured graphs. The basic idea is, for any edge-
coloured graph G, to construct an associated simple graph G for which:

• the size |G| is linear in |G|;
• the treewidth tw(G) is at worst linear in tw(G); and
• MSO formulae on G translate to MSO formulae on G.

The coloured variants of Courcelle’s theorem then fall out naturally, as seen in
Theorem 3.5. The details follow.

Construction 3.1. Let G = (V,E,C) be any edge-coloured graph, with colours
C = {c1, . . . , ck}. We construct the associated simple graph G as follows:

• For each colour ci we add i + 2 nodes κi,1, . . . , κi,i+2 to G plus all
(
i+2
2

)
possible arcs between them. In other words, we insert k cliques of sizes
3, . . . , k + 2.
• For each node v ∈ V we add a corresponding node v to G.
• For each arc e = {(v, w), c) ∈ E we add a corresponding node e to G, plus

three arcs {e, v}, {e, w}, and {e, κc,1}.

Figure 3 illustrates this construction. It is immediate from the definition of an
edge-coloured graph (see Section 2.1) that G is indeed a simple graph as claimed.

Lemma 3.2. For any edge-coloured graph G = (V,E,C) with |C| = k colours, we

have |G| = |V |+ 4|E|+
(
k+4

3

)
− 4.

Proof. It is clear by construction that the number of nodes of G is |V | + |E| +∑k+2
i=3 i = |V |+ |E|+

(
k+3

2

)
− 3, and the number of arcs of G is 3|E|+

∑k+2
i=3

(
i
2

)
=

3|E|+
(
k+3

3

)
−1. The result then follows from the identity

(
k+3

2

)
+
(
k+3

3

)
=
(
k+4

3

)
. �

Lemma 3.3. For any edge-coloured graph G = (V,E,C) with |C| = k colours, we

have tw(G) ≤ tw(G) +
(
k+3

2

)
− 1.

Proof. Suppose we have a tree decomposition of G with underlying tree T . From
this we build a tree decomposition of G with underlying tree T as follows (see
Figure 4 for an illustration):



10 BENJAMIN A. BURTON AND RODNEY G. DOWNEY

a

b

c

d

e
f

g

h

u

v

w

x y

z

τ1 τ2

τ3

τ4

u, v, w v, w, x

x, y

x, z

(a) A tree decomposition of G

τ 1 τ 2

τ 3

τ 4

σa

σb

σc

σd

σe

σf σg

σh

u, v, w
κ1,1, . . . , κ2,4

v, w, x
κ1,1, . . . , κ2,4

x, y
κ1,1, . . . , κ2,4

x, z
κ1,1, . . . , κ2,4

a, u, v
κ1,1, . . . , κ2,4

b, u, w
κ1,1, . . . , κ2,4

c, v, w
κ1,1, . . . , κ2,4

d, v, x
κ1,1, . . . , κ2,4

e, w, x
κ1,1, . . . , κ2,4

f , w, x
κ1,1, . . . , κ2,4

g, x, y
κ1,1, . . . , κ2,4

h, x, z
κ1,1, . . . , κ2,4

(b) The corresponding tree decomposition of G

Figure 4. Bounding the treewidth of the simple graph G

(1) In the original tree decomposition, let τ be a node of T and let Bτ =
{v1, . . . , vm} be the corresponding bag. In the new tree decomposition, we
create a corresponding node τ of T , whose bag Bτ contains the correspond-
ing nodes v1, . . . , vm plus all of the clique nodes κi,j .

(2) For each arc e = {(v, w), c} of G we create a new node σe of T , whose
corresponding bag Bσe

contains e, v and w plus all of the clique nodes κi,j .

(3) We connect the nodes of T as follows. For each pair of adjacent nodes
τ1, τ2 of T , we connect the corresponding nodes τ1, τ2 in T . For each arc
e = {(v, w), c} of G, we connect the corresponding node σe of T to one (and
only one) arbitrarily chosen node τ for which v, w ∈ Bτ .

Note that the choice in step (3) is always possible: since we began with a tree
decomposition of G, some node τ of T must have v, w ∈ Bτ and thus v, w ∈ Bτ .

It is simple to show that this construction does indeed yield a tree decomposition
of G: all necessary properties of a tree decomposition follow directly from the
construction above and the fact that we began with a tree decomposition of G.

It remains to compute the bag sizes in our new tree decomposition. For each

bag Bτ created in step (1), we have |Bτ | = |Bτ |+
∑k+2
i=3 i = |Bτ |+

(
k+3

2

)
− 3. For

each bag Bσe created in step (2), we have |Bσe | = 3 +
∑k+2
i=3 i =

(
k+3

2

)
. Therefore

tw(G) ≤ max
{

tw(G) +
(
k+3

2

)
− 3,

(
k+3

2

)
− 1
}
≤ tw(G) +

(
k+3

2

)
− 1. �

Lemma 3.4. For any fixed k ∈ N, every MSO formula φ(x1, . . . , xt) on edge-
coloured graphs with k colours has a corresponding MSO formula φ(x1, . . . , xt)
on simple graphs for which, for any edge-coloured graph G(V,E,C) with |C| = k
colours:

• Any assignment of values to x1, . . . , xt for which G |= φ(x1, . . . , xt) yields a
corresponding assignment of values to x1, . . . , xt for which G |= φ(x1, . . . , xt),
and this assignment is obtained as follows:

– if xi = v for some node v ∈ V , then xi = v;
– if xi = e for some arc e ∈ E, then xi = e (note that xi is a node of G,

not an arc);
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– if xi is a set {vi} ⊆ V or {ei} ⊆ E, then xi is the corresponding set
{vi} or {ei}.

• Conversely, any assignment of values to x1, . . . , xt for which G |= φ(x1, . . . , xt)
is derived from an assignment of values to x1, . . . , xt for which G |= φ(x1, . . . , xt),
as described above.

In particular, this means that if φ is a sentence then G |= φ if and only if G |= φ,
and if φ has free variables then the solutions to G |= φ(x1, . . . , xt) are in bijection
with the solutions to G |= φ(x1, . . . , xt).

Proof. The proof works in three stages: (i) we develop additional “helper” relations
to constrain the roles that variables can play in φ; (ii) we translate each piece of
the formula φ so that statements about G in φ become statements about G in φ,
and thus solutions to G |= φ(x1, . . . , xt) become solutions to G |= φ(x1, . . . , xt); and
then (iii) we add additional constraints to φ to avoid any additional (and unwanted)
solutions to G |= φ(x1, . . . , xt).

In the first stage, we develop the following “helper” unary relations using MSO
logic on simple graphs. These relations only make sense when interpreting φ on a
simple graph G that was built using Construction 3.1; in other contexts they are
well-defined but meaningless.

• is node(x) indicates that a variable in φ represents a node of the original
edge-coloured graph G; that is, x = v for some v ∈ V .
• is arc(x) indicates that a variable in φ represents an arc of the original

edge-coloured graph G; that is, x = e for some arc e ∈ E.
• For each i = 1, . . . , k, is coli(x) indicates that a variable in φ represents

one of the nodes of the clique representing the ith colour; that is, x = κi,j
for some j.

These relations are simple (but messy) to piece together using MSO logic. For
each fixed i, the relation is coli(x) is true if and only if x represents a node that
belongs to an i-clique but not an (i + 1)-clique. The relation is arc(x) is true if
and only if x is a node that does not belong to a triangle, but is adjacent to a node
that does. The relation is node(x) is true if and only if x is a node for which none
of is arc(x) or is coli(x) are true.

In the second stage, we translate each piece of φ to a piece of φ as follows:

• Each variable xi in φ is replaced by xi in φ.
• Standard logical operations (such as ∧, ∨, ¬, → and so on), standard

quantifiers (∀ and ∃), and the equality and inclusion relations (= and ∈)
are copied directly from φ to φ.
• The incidence relation inc(e, v) in φ is replaced by the phrase is arc(e) ∧
is node(v) ∧ adj(e, v) in φ.
• Each colour relation coli(e) in φ is replaced by the phrase ∃v is arc(e) ∧
is coli(v) ∧ adj(e, v) in φ.
• The adjacency relation adj(v, v′) in φ is replaced by the phrase ∃e is node(v)∧
is node(v′) ∧ adj(v, e) ∧ adj(v′, e) ∧ v 6= v′ in φ.
• Each coloured adjacency relation adji(v, v

′) in φ can be replaced with an
equivalent statement in φ using inc(·, ·) and coli(·), and then translated to
φ as described above.
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It follows directly from this translation process that, if an assignment of values
to x1, . . . , xt gives G |= φ(x1, . . . , xt), then the corresponding assignment of values
to x1, . . . , xt as described in the lemma statement gives G |= φ(x1, . . . , xt).

In the third stage, we eliminate any additional and unwanted solutions to G |=
φ(x1, . . . , xt), by insisting that for every variable x in φ, the translated variable x in
φ must still represent a node, arc, set of nodes or set of arcs in the source graph G.
This ensures that logical statements about such variables xi in φ translate correctly
back to logical statements about variables xi in φ. Specifically, for each variable x
in φ (either bound or free), we add the corresponding clause to φ:

is node(x) ∨ is arc(x) ∨ [∀z z ∈ x→ is node(z)] ∨ [∀z z ∈ x→ is arc(z)]. �

These additional clauses are introduced using “gaurd clauses”. When in φ you have
a subformula ∀Xpsi, for a vertex set variable X, then you replace it with subformula
∀Xvertexsubset(X) =⇒ p̄si. Here vertexsubset(X) is an auxiliary formula that
checks that X (as above) is a subset of the original vertices of the graph. Similarly,
for an existential quantifier, guarding it takes the form: ∃Xvertexsubset(X)∧p̄si. A
similar construction is used for other types of variables. We will similarly introduce
guards introducing guards applies to the last paragraph of the proof of Theorem
4.7.

Theorem 3.5. Let K be any class of edge-coloured graphs with fixed colour set
C = {c1, . . . , ck} and with universally bounded treewidth. Then:

• For any fixed MSO sentence φ, it is possible to test whether G |= φ for
edge-coloured graphs G ∈ K in time O(|G|);
• For any restricted MSO extremum problem P , it is possible to solve P for

edge-coloured graphs G ∈ K in time O(|G|) under the uniform cost measure;
• For any MSO evaluation problem P , it is possible to solve P for edge-

coloured graphs G ∈ K in time O(|G|) under the uniform cost measure.

Proof. Let P be any such problem, and let φ be its underlying MSO sentence or
formula. We first use Lemma 3.4 to translate φ to φ, yielding a new problem P in
the setting of simple graphs. Then, for any edge-coloured graph G given as input to
P , we construct the simple graph G and solve P for G instead. Lemma 3.4 ensures
that the solutions to both problems are the same.

For extremum problems, we note that the sizes of the sets in each solution to φ
are equal to the sizes of the sets in the corresponding solution to φ (i.e., the value
of the extremum does not change). For evaluation problems, the input weight on
a node v or arc e of G becomes the same input weight on the corresponding node
v or e of G; all remaining nodes and arcs of G are assigned trivial weights (0 or 1
according to whether the evaluation problem is additive or multiplicative)4

It is clear from Construction 3.1 that we can build the simple graph G in time
O(|G|), and Lemmata 3.2 and 3.3 ensure that G has universally bounded treewidth
and O(|G|) size. The result now follows directly from the three original variants of
Courcelle’s theorem (Corollary 2.4, Theorem 2.6 and Theorem 2.7). �

4One referee suggested an alternative approach not using trivial weights by assigning a weight
function to variables working only on the simplices of the corresponding dimension. We believe

our approach is more natural.
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Figure 5. Adjacent triangles have compatible orientations

4. Triangulations

In this section we prove our main result, that all three variants of Courcelle’s
theorem hold for triangulations of fixed dimension (Theorem 4.8).

4.1. MSO logic on triangulations. Our first task is to extend MSO logic to the
setting of d-dimensional triangulations, for fixed dimension d ∈ N. Here we define
MSO logic to support:

• all of the standard boolean operations of propositional logic (∧, ∨, ¬, →,
and so on);
• for each i = 0, . . . , d, variables to represent i-faces of a triangulation, or

sets of i-faces of a triangulation;
• the standard quantifiers (∀ and ∃) and the binary equality and inclusion

relations (= and ∈), which may be applied to any of these variable types;
• for each i = 0, . . . , d−1 and for each ordered sequence π0, . . . , πi of distinct

integers from {0, . . . , d}, a subface relation ≤π0...πi
.

The relation (f ≤π0...πi
s) indicates that f is an i-face of the triangulation, s

is a simplex of the triangulation, and that f is identified with the subface of s
formed by the simplex vertices π0, . . . , πi, in a way that vertices 0, . . . , i of the face
f correspond to vertices π0, . . . , πi of the simplex s.

Example 4.1. Recall the Klein bottle example illustrated in Figure 2(a). Here the
three edges e, f, g satisfy the subface relations

e ≤02 ∆1 f ≤01 ∆1 g ≤01 ∆2

e ≤20 ∆2 f ≤12 ∆1 g ≤12 ∆2.

The triangulation has only one vertex (since all vertices of ∆1 and ∆2 are identified
together); call this vertex v. Then v satisfies all possible subface relations

v ≤0 ∆1 v ≤1 ∆1 v ≤2 ∆1

v ≤0 ∆2 v ≤1 ∆2 v ≤2 ∆2.

Notation. In general, we will adopt the convention that lower-case letters s, t, . . .
represent simplices and f (i), g(i), . . . represent i-faces, and that upper-case letters
S, T, . . . and F (i), G(i), . . . represent sets of simplices and sets of i-faces respectively.

Example 4.2 (Orientability). Consider d = 2, i.e., the case of triangulated sur-
faces. We will construct an MSO sentence φ stating that a triangulation represents
an orientable surface.

Recall that a 2-dimensional triangulation is orientable if and only if each triangle
can be assigned an orientation (clockwise or anticlockwise) so that adjacent triangles
have compatible orientations, as illustrated in Figure 5.
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The sentence φ is given below. Here S+ and S− are variables denoting sets
of simplices with clockwise and anticlockwise orientations respectively. To encode
the compatibility constraint on adjacent triangles, we introduce variables u and v
to represent two adjacent simplices, and f (1) to represent the common edge along
which they are joined.

∃S+∃S−∀s ∀f (1) ∀u ∀v
(s ∈ S+ ∨ s ∈ S−) ∧ ¬(s ∈ S+ ∧ s ∈ S−) ∧[
(f (1) ≤01 u ∧ f (1) ≤01 v ∧ u 6= v) → ((u ∈ S+ ∧ v ∈ S−) ∨ (u ∈ S− ∧ v ∈ S+))] ∧[
(f (1) ≤01 u ∧ f (1) ≤10 v) → ((u ∈ S+ ∧ v ∈ S+) ∨ (u ∈ S− ∧ v ∈ S−))] ∧[
(f (1) ≤01 u ∧ f (1) ≤02 v) → ((u ∈ S+ ∧ v ∈ S+) ∨ (u ∈ S− ∧ v ∈ S−))] ∧[
(f (1) ≤01 u ∧ f (1) ≤20 v) → ((u ∈ S+ ∧ v ∈ S−) ∨ (u ∈ S− ∧ v ∈ S+))] ∧

...[
(f (1) ≤21 u ∧ f (1) ≤21 v ∧ u 6= v) → ((u ∈ S+ ∧ v ∈ S−) ∨ (u ∈ S− ∧ v ∈ S+))] .

The first line of this sentence is just quantifiers, and the second line ensures
that S+ and S− partition the simplices. The remaining lines encode the fact that
adjacent simplices must have compatible orientations. They do this by iterating
through all 6 × 6 possible ways in which f (1) could appear as both an edge of u
and an edge of v (making u and v adjacent), and in each case a simple parity check
determines whether u and v must have the same orientation (as in the case f (1) ≤01

u ∧ f (1) ≤02 v) or opposite orientations (as in the case f (1) ≤01 u ∧ f (1) ≤20 v).
For the six cases where u and v use the same subface relation (e.g., the first and

last cases above), we add the additional requirement u 6= v to ensure that triangles
u and v lie on opposite sides of the edge f (1).

We return now to notation and definitions. If T is a d-dimensional triangulation
and φ is an MSO sentence as outlined above, the notation T |= φ indicates (as
usual) that the interpretation of φ in the triangulation T is a true statement.

We define extremum and evaluation problems as before, though this time we
must alter the latter definition so that weights are given to the faces of a triangu-
lation (instead of nodes and arcs of a graph). Specifically, in the setting of MSO
logic on d-dimensional triangulations:

• A restricted MSO extremum problem consists of an MSO formula φ(A1, . . . , At)
with free set variablesA1, . . . , At, and a rational linear function g(x1, . . . , xt).
Its interpretation is as follows: given a d-dimensional triangulation T as in-
put, we are asked to minimise g(|A1|, . . . , |At|) over all sets A1, . . . , At for
which T |= φ(A1, . . . , At).
• An MSO evaluation problem consists of an MSO formula φ(A1, . . . , At) with
t free set variables A1, . . . , At. The input to the problem is a d-dimensional
triangulation T , together with t weight functions w1, . . . , wt : F0t. . .tFd →
R, where Fi denotes the set of all i-faces of T , and R is some ring or field.
The problem then asks us to compute one of the quantities∑

T |=φ(A1,...,At)

{
t∑
i=1

∑
xi∈Ai

wi(xi)

}
or

∑
T |=φ(A1,...,At)

{
t∏
i=1

∏
xi∈Ai

wi(xi)

}
.

We note again that MSO evaluation problems include counting problems as
a special case (simply use the multiplicative variant with all weights set to 1).
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Figure 6. An example of a coloured Hasse diagram

For examples of extremum and evaluation problems, see discrete Morse matchings
(Section 5.2) and the Turaev-Viro invariants (Section 5.3) respectively.

4.2. Metatheorems on triangulations. We begin this section by introducing
coloured Hasse diagrams, which allow us to translate between triangulations and
edge-coloured graphs. Following this we present and prove the three variants of
Courcelle’s theorem on triangulations (Theorem 4.8).

In settings such as simplicial complexes or polytopes, a Hasse diagram is a graph
with a node for each face, and an arc whenever an i-face appears as a subface of an
(i + 1)-face. Here we extend Hasse diagrams to include more precise information
about how subfaces are embedded, and to support situations in which a face f is
embedded as a subface of another face f ′ more than once.

Definition 4.3. Let T be a d-dimensional triangulation. Then the coloured Hasse
diagram of T , denoted H(T ), is the following edge-coloured graph:

• The colours of H(T ) are, for all i = 0, . . . , d − 1, all ordered sequences
π0 . . . πi of distinct integers from the set {0, . . . , i+1} (so exactly one integer
from the set is not used). We also allow an additional “empty colour”,

denoted by a dash (−). This gives
∑d+1
i=1 i! colours in total.

For example, for d = 2 we use the following colours: −, 0, 1, 01, 02, 10, 12,
20, 21. Note that there is no colour labelled 2 in this list.
• The nodes of H(T ) are the i-faces of T , for all i = 0, . . . , d. We also add

an extra node for the “empty face”, denoted ∅.
• The arcs of H(T ) are as follows. If f is an i-face and g is an (i + 1)-face

with f ≤π0...πi
g, then we place an arc between nodes f and g of colour

π0 . . . πi. We also add an arc between each vertex of the triangulation and
the empty node ∅, coloured by the “empty colour” −.

Example 4.4. Figure 6 shows a 2-dimensional Klein bottle (the same as seen
earlier in Example 2.8), alongside its coloured Hasse diagram. For consistency with
the earlier example, we label the common vertex as v, the three edges as e, f, g,
and the two triangles as ∆1,∆2.

We now establish a series of results that allow us to convert problems about
triangulations into problems about edge-coloured graphs. Recall from Section 2.3
that if T is a triangulation then |T | denotes the number of top-dimensional simplices
of T , and D(T ) denotes the dual graph of T . Following the pattern established in
Section 3.2, the following lemmata essentially show that for fixed dimension d:
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• the size |H(T )| is linear in |T |;
• the treewidth tw(H(T )) is at worst linear in tw(D(T )); and
• MSO formulae on T translate to MSO formulae on H(T ).

The triangulation-based variants of Courcelle’s theorem then follow naturally from
these results, as seen in Theorem 4.8.

Lemma 4.5. For any d-dimensional triangulation T of positive size, we have
|H(T )| ≤ 2d(d+ 3) · |T |.

Proof. Each individual d-simplex has
(
d+1
i+1

)
distinct i-faces for each i = 0, . . . , d,

and so the triangulation has at most
(
d+1
i+1

)
|T | distinct i-faces in total (typically

there are fewer, since individual faces of simplices are identified together in the

triangulation). Therefore H(T ) has at most 1 +
∑d
i=0

(
d+1
i+1

)
|T | ≤ 2d+1|T | nodes,

including the special node ∅.
For each i = 1, . . . , d, each i-face g of the triangulation has precisely (i+1) subface

relationships of the form f ≤π0...πi−1 g where f is an (i− 1)-face. In addition, each
0-face (vertex) of the triangulation has exactly one arc running to the empty node

∅. Therefore H(T ) has at most
(
d+1

1

)
|T |+

∑d
i=1(i+1)

(
d+1
i+1

)
|T | = 2d(d+1)|T | arcs.

Combining these counts gives |H(T )| ≤ 2d+1|T |+2d(d+1)|T | = 2d(d+3)|T |. �

Lemma 4.6. For any d-dimensional triangulation T of positive size, we have
tw(H(T )) ≤ (2d+1 − 1)(tw(D(T )) + 1).

Proof. Suppose we have a tree decomposition of D(T ), with underlying tree T and
bags {Bτ}. From this we build a tree decomposition of H(T ) using the same tree
T but with different bags {B′τ}.

Specifically, let τ be a node of T . The bag Bτ contains a set of nodes of D(T ),
or equivalently a set of simplices ∆1, . . . ,∆t of T . We define the corresponding
bag B′τ to contain those nodes of H(T ) that denote all of ∆1, . . . ,∆t, all of their
subfaces (of any dimension), and also the empty face ∅.

Assume for now that this is indeed a tree decomposition of H(T ) (we prove this
shortly). Each ∆i has at most 2d+1 − 2 non-empty proper subfaces (possibly fewer
if some of these subfaces are identified), and so |B′τ | ≤ (2d+1−1)|Bτ |+1. Therefore
tw(H(T )) + 1 ≤ (2d+1 − 1)[tw(D(T )) + 1] + 1, which produces the final result.

It remains to show that our construction does yield a tree decomposition of
H(T ). It is clear that every node of H(T ) belongs to a bag B′τ . Moreover, every
arc of H(T ) has both endpoints in some common bag B′τ , since each bag containing
a face f will also contain every subface of f .

To prove the subtree connectivity property for the bags {B′τ}:
• Every bag contains ∅.
• For each simplex ∆i, we already know from the original tree decomposition

that the bags containing ∆i form a connected subtree of T .
• Consider some i-face f of T for i < d, and let ∆1, . . . ,∆t be the simplices

of T that contain f as a subface.
Recall that f is in fact an equivalence class of individual i-faces of the

simplices ∆1, . . . ,∆t that are identified as a consequence of the facet gluings.
In other words, the individual appearances of f in each simplex ∆1, . . . ,∆t

are linked by a series of gluings of facets of these simplices—that is, arcs of
the dual graph D(T ) that connect ∆1, . . . ,∆t.
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The bags containing each ∆i form a connected subtree Ti, and each
arc of D(T ) that joins ∆i with ∆j has a corresponding bag B′τ for which
∆i,∆j ∈ B′τ . Therefore these arcs effectively join the subtrees T1, . . . , Tt
together, and so all bags containing f form a single (larger) connected
subtree of T . �

We emphasise that the proof of Lemma 4.6 makes critical use of our definition of a
d-dimensional triangulation, where we only explicitly identify facets of d-simplices,
and all lower-dimensional face identifications are just a consequence of this. The
proof above does not work for more general simplicial complexes (where lower-
dimensional faces can be independently identified), but again we note that our
setting here covers all reasonable definitions of a triangulated manifold.

Lemma 4.7. For any fixed dimension d ∈ N, every MSO formula φ(x1, . . . , xt)
on d-dimensional triangulations has a corresponding MSO formula φ(x1, . . . , xt)

on edge-coloured graphs with k =
∑d+1
i=1 i! colours for which, for any d-dimensional

triangulation T :

• Any assignment of values to x1, . . . , xt for which T |= φ(x1, . . . , xt) yields a
corresponding assignment of values to x1, . . . , xt for which H(T ) |= φ(x1, . . . , xt).
This assignment is obtained by replacing faces of T with the corresponding
nodes of H(T ).
• Conversely, any assignment of values to x1, . . . , xt for which H(T ) |=
φ(x1, . . . , xt) is derived from an assignment of values to x1, . . . , xt for which
T |= φ(x1, . . . , xt), as described above.

As with the earlier Lemma 3.4, this in particular implies that if φ is a sentence
then T |= φ if and only if H(T ) |= φ, and if φ has free variables then the solutions
to T |= φ(x1, . . . , xt) are in bijection with the solutions to H(T ) |= φ(x1, . . . , xt).

Proof. Following the proof of Lemma 3.4, we work in three stages: (i) we develop
“helper” relations to constrain the roles that variables can play in φ; (ii) we translate
each component of φ to a corresponding component of φ; and (iii) we add additional
constraints to φ to avoid spurious unwanted solutions to H(T ) |= φ(x1, . . . , xt).

For convenience, when developing the formula φ we give our
∑d+1
i=1 i! colours the

same labels that would appear in a coloured Hasse diagram. That is, we use the
empty colour −, plus the series of colours π0 . . . πi as described in Definition 4.3.

In the first stage we develop “helper” unary relations is facei(x) for i = 0, . . . , d,
using MSO logic on edge-coloured graphs. These relations only makes sense when
interpreting φ on the coloured Hasse diagram of a d-dimensional triangulation; in
other contexts they are well-defined but meaningless.

Each relation is facei(x) encodes the fact that a variable in φ represents an
i-face of the original triangulation T . To build these relations using MSO logic:

• We encode is face0(x) by requiring that x is incident with an arc of the
empty colour − and also an arc of some other colour.
• We encode is facei(x) for 1 ≤ i ≤ d−1 by requiring that x is incident with

an arc of some colour π0 . . . πi−1 and also an arc of some colour π0 . . . πi.
• We encode is faced(x) by requiring that x is incident with an arc of some

colour π0 . . . πd−1 but no arc of any colour π0 . . . πd−2.

In the second stage, we translate each piece of φ to a piece of φ as follows:
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• Each variable xi in φ is replaced by xi in φ.
• Standard logical operations (such as ∧, ∨, ¬, → and so on), standard

quantifiers (∀ and ∃), and the equality and inclusion relations (= and ∈)
are copied directly from φ to φ.
• Each subface relation (f ≤π0...πi s) in φ is replaced by a long (but bounded

length) phrase in φ that ensures is facei(f)∧is faced(s), and that enforces
the exact subface relation by enumerating all possible chains through the
Hasse diagram that pass through intermediate (i+ 1), . . . , (d− 1)-faces.

For example, in d = 3 dimensions the edge-to-tetrahedron relationship
f (1) ≤01 s could be encoded as:

is face1(f (1)) ∧ is face3(s) ∧(
∃f (2) [adj01(f (1), f (2)) ∧ adj012(f (2), s)] ∨

[adj10(f (1), f (2)) ∧ adj102(f (2), s)] ∨
[adj02(f (1), f (2)) ∧ adj021(f (2), s)] ∨
[adj20(f (1), f (2)) ∧ adj120(f (2), s)] ∨
[adj12(f (1), f (2)) ∧ adj201(f (2), s)] ∨
[adj21(f (1), f (2)) ∧ adj210(f (2), s)]

)
.

This ensures that, if an assignment of values to x1, . . . , xt gives T |= φ(x1, . . . , xt),
the corresponding assignment of values to x1, . . . , xt gives H(T ) |= φ(x1, . . . , xt).

In the third stage, we eliminate additional and unwanted solutions to H(T ) |=
φ(x1, . . . , xt) by insisting that, for every variable x that appears in φ (either bound
or free), the translated variable x in φ must represent an i-face or set of i-faces in
the triangulation:

is face0(x) ∨ . . . ∨ is faced(x) ∨
[∀z z ∈ x→ is face0(z)] ∨ . . . ∨ [∀z z ∈ x→ is faced(z)] ,

as well as the corresponding guard formulae as in Lemma 3.4. This ensures that
every solution to H(T ) |= φ(x1, . . . , xt) translates back to a corresponding solution
to T |= φ(x1, . . . , xt). �

Theorem 4.8. For fixed dimension d ∈ N, let K be any class of d-dimensional
triangulations whose dual graphs have universally bounded treewidth. Then from a
tree decomposition T from such a dual graph of this bounded treewidth:

• For any fixed MSO sentence φ, it is possible to test whether T |= φ for
triangulations T ∈ K in time O(|T |).
• For any restricted MSO extremum problem P , it is possible to solve P for

triangulations T ∈ K in time O(|T |) under the uniform cost measure.
• For any MSO evaluation problem P , it is possible to solve P for triangula-

tions T ∈ K in time O(|T |) under the uniform cost measure.

Proof. The proof is essentially the same as for Theorem 3.5 (Courcelle’s theorem
for edge-coloured graphs). Let P be any such problem, and let φ be its underlying
MSO sentence or formula. Using Lemma 4.7 we can translate φ to φ, yielding a new
problem P on edge-coloured graphs. Then, for any triangulation T given as input
to P , we construct the Hasse diagram H(T ) and solve P for H(T ) instead. For
extremum problems the size of each set (and hence the value of the extremum) does
not change, and for evaluation problems we copy the input weights from i-faces of
T directly to the corresponding nodes of H(T ).
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Figure 7. Defining a taut angle structure

Noting that d is fixed, Lemma 4.5 shows that H(T ) has size O(|T |) and can
therefore be constructed in O(|T |) time, and Lemma 4.6 ensures that the treewidth
tw(H(T )) is universally bounded. The result now follows directly from the edge-
coloured variants of Courcelle’s theorem (Theorem 3.5). �

5. Applications

We present several applications of our main result (Theorem 4.8); most are in
the realm of 3-manifold topology, where algorithmic questions are often solvable but
highly complex, and parameterised complexity is just beginning to be explored.

• We recover two of the earliest fixed-parameter tractability results on 3-
manifolds as a direct corollary of Theorem 4.8. The underlying problems are
a decision problem on detecting taut angle structures [8], and an extremum
problem on optimal discrete Morse matchings [6].
• We prove two new fixed-parameter tractability results. These include a
d-dimensional generalisation of the discrete Morse matching result, plus a
result on computing the powerful Turaev-Viro invariants for 3-manifolds.

Although “treewidth of the dual graph” might seem artificial as a parameter, this
is both natural and useful for 3-manifold triangulations—there are many common
constructions in 3-manifold topology that are conducive to small treewidth even
when the total number of tetrahedra is large. For instance:

• Dehn fillings do not increase treewidth when performed in the natural way
by attaching layered solid tori [27].
• The “canonical” triangulations of arbitrary Seifert fibred spaces over the

sphere have a universally bounded treewidth of just two [5].
• Building a complex 3-manifold triangulation from smaller blocks with “nar-

row” O(1)-sized connections can also keep treewidth small. See for instance
JSJ decompositions [28] or the bricks of Martelli and Petronio [35], where
each connection involves just two triangles.

5.1. Taut angle structures. Given a 3-dimensional triangulation T , a taut angle
structure assigns internal dihedral angles 0, 0, 0, 0, π, π to the six edges of each
tetrahedron of T so that:

• the two π angles are assigned to opposite edges in each tetrahedron (as in
Figure 7(a));
• for each edge e of the triangulation, the sum of all angles assigned to e is

precisely 2π (as in Figure 7(b)).
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Essentially, a taut angle structure shows how the tetrahedra can be “squashed
flat” in a manner that is globally consistent. They are typically used in the context
of ideal triangulations (where T becomes a non-compact 3-manifold after its vertices
are removed), and they play an interesting role in linking the combinatorics of a
triangulation with the geometry and topology of the underlying 3-manifold [25, 31].

Problem 5.1. taut angle structure is the decision problem whose input is
a 3-dimensional triangulation T , and whose output is true or false according to
whether there exists a taut angle structure on T .

Näıvely, this problem can be solved using an exponential-sized combinatorial
search through all 3|T | possible assignments of angles—in each tetrahedron there
are three choices for which pair of opposite edges receive the angles π. For small
treewidth triangulations, however, it has been shown that we can do much better:

Theorem 5.2 (B.-Spreer [8]). The problem taut angle structure is linear-
time fixed-parameter tractable, where the parameter is the treewidth of the dual
graph of the input triangulation.

More specifically, for any class K of 3-dimensional triangulations whose dual
graphs have universally bounded treewidth ≤ k, given a suitable tree decomposition,
we can solve taut angle structure for any input triangulation T ∈ K in time
O(37kk · |T |).

We observe now that we can recover the linear-time fixed-parameter tractability
result directly from Theorem 4.8 (though we do not recover the precise “constant”
37kk). All we need to do is express the existence of a taut angle structure using
MSO logic. The full MSO sentence is messy, and so we merely outline the key ideas:

• To encode the assignment of angles, we introduce set variables T1, T2, T3

that partition the tetrahedra of the input triangulation T . The set T1

represents the tetrahedra with π angles on opposite edges 01 and 23, set T2

represents the tetrahedra with π angles on opposite edges 02 and 13, and
set T3 represents the tetrahedra with π angles on opposite edges 03 and 12.

• To enforce the 2π angle sum criterion, we introduce an edge variable f (1)

and ensure that ∀f (1), the edge f (1) is assigned the value π precisely twice.
Here a single assignment of π to f (1) corresponds to some simplex s for
which:

s ∈ T1 and
(
f (1) ≤01 s ∨ f (1) ≤10 s ∨ f (1) ≤23 s ∨ f (1) ≤32 s

)
; or

s ∈ T2 and
(
f (1) ≤02 s ∨ f (1) ≤20 s ∨ f (1) ≤13 s ∨ f (1) ≤31 s

)
; or

s ∈ T3 and
(
f (1) ≤03 s ∨ f (1) ≤30 s ∨ f (1) ≤12 s ∨ f (1) ≤21 s

)
.

We must piece together the full MSO clause with care, since f (1) may
receive two assignments of π from the same simplex (e.g., a simplex s ∈ T1

for which both f (1) ≤01 s and f (1) ≤23 s).

By formalising these ideas into a full MSO sentence, the linear-time fixed-parameter
tractability of taut angle structure follows directly from the main result of
this paper (Theorem 4.8).

5.2. Discrete Morse matchings. In essence, discrete Morse theory offers a way
to study the “topological complexity” of a triangulation. The idea is to effectively
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quarantine the topological content of a triangulation into a small number of “crit-
ical faces”; the remainder of the triangulation then becomes “padding” that is
topologically unimportant.

A key problem in discrete Morse theory is to find an optimal Morse matching,
where the number of critical faces is as small as possible. Solving this problem yields
important topological information [15], and has a number of practical applications
[23, 32].

We give a very brief overview of the key concepts here; see the very accessible
paper [22] for details. Morse matchings are typically defined in terms of the Hasse
diagram of a simplicial complex. Here we work with the coloured Hasse diagram
instead, which allows us to port the necessary concepts to the more general d-
dimensional triangulations that we use in this paper.

Definition 5.3. Let T be a d-dimensional triangulation with coloured Hasse dia-
gram H(T ). Let V (i) denote the set of nodes of H(T ) that correspond to i-faces of
T for each i = 0, . . . , d, and let E denote the set of arcs of H(T ).

A Morse matching on T is a set of arcs M ⊆ E with the following properties:

• The arcs in M are disjoint (i.e., no two are incident with a common node),
and no arc in M is incident with the empty node ∅.
• For each i = 0, . . . , d− 1, there are no alternating cycles between V (i) and
V (i+1). That is, H(T ) has no cycle whose nodes alternate between V (i)

and V (i+1), and whose arcs alternate between M and E\M .

For a given Morse matching M , a critical i-face of T is an i-face whose corre-
sponding node v ∈ V (i) is not incident with any arc e ∈ M . We let c(M) denote

the total number of critical faces, so c(M) =
∑d
i=0 |V (i)| − 2|M |.

Example 5.4. Consider the coloured Hasse diagram seen earlier in Figure 6. This
diagram has several pairs of parallel arcs, none of which can be used in a Morse
matching (since this would yield an alternating cycle of length two). Therefore the
largest Morse matching possible has just |M | = 1 arc (either the arc from e to ∆1,
or the arc from e to ∆2). Such a matching has c(M) = 4 critical faces (one 2-face,
two 1-faces, and one 0-face).

Problem 5.5. d-dimensional optimal Morse matching is the extremum prob-
lem whose input is a d-dimensional triangulation T , and whose output is the min-
imum of c(M) over all Morse matchings M on T .

Even in dimension d = 3 the related decision problem is NP-complete [29], but
again for small treewidth triangulations we can do better:

Theorem 5.6 (B.-Lewiner-Paixão-Spreer [6]). The problem 3-dimensional op-
timal Morse matching is linear-time fixed-parameter tractable, where the pa-
rameter is the treewidth of the dual graph of the input triangulation.

More specifically, for any class K of 3-dimensional triangulations whose dual
graphs have universally bounded treewidth ≤ k, we can solve the problem for any

input triangulation T ∈ K in time O(4k
2+k · k3 · log k · |T |).

Again we show now that we can recover the linear-time fixed-parameter tractabil-

ity result directly from Theorem 4.8 (but not the precise “constant” 4k
2+k ·k3 ·log k).

Moreover, we generalise this to arbitrary dimensions:
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Theorem 5.7. For fixed dimension d ∈ N and any class K of d-dimensional
triangulations whose dual graphs have universally bounded treewidth, we can solve
d-dimensional optimal Morse matching for triangulations T ∈ K in time
O(|T |) under the uniform cost measure.

Proof. To formulate this as an MSO extremum problem on triangulations:

• For each i = 0, . . . , d we introduce a set variable V (i) and a clause to ensure
that V (i) contains all i-faces of T . These trivial set variables are used in
the rational function that we seek to minimise (see below).

• To encode a Morse matching, we use a family of set variables W
(i)
π0...πi−1 for

each i = 1, . . . , d and for each sequence π0 . . . πi−1 of distinct integers in

{0, . . . , i}. Each variable W
(i)
π0...πi−1 holds all i-faces of T that are matched

with an (i− 1)-face using an arc of H(T ) of colour π0 . . . πi−1.

• For each set W
(i)
π0...πi−1 , we add a clause to ensure that the corresponding

arcs exist in H(T ): ∀v(i) v(i) ∈W (i)
π0...πi−1 → ∃v(i−1)v(i−1) ≤π0...πi−1

v(i).
• We add a (long) clause to ensure that each face of T is involved in at most

one matchingi edge.
• For each i = 1, . . . , d, we add a (very long) clause to ensure that there are

no alternating cycles between i-faces and (i − 1)-faces. Here we encode

an alternating cycle using a second family of set variables X
(i)
π0...πi−1 that

represent arcs present in the cycle but not the matching, where:

– for each i and each π0 . . . πi−1 the sets W
(i)
π0...πi−1 and X

(i)
π0...πi−1 are

disjoint;

– each i-face v(i) appears in either none of the setsW
(i)
π0...πi−1 orX

(i)
π0...πi−1 ,

or else exactly one of the sets W
(i)
π0...πi−1 and one of the sets X

(i)
π0...πi−1 ;

– each (i−1)-face v(i−1) is involved in precisely zero or two relationships

of the form v(i−1) ≤π0...πi−1
v(i) where v(i) ∈ W (i)

π0...πi−1 ∪ X
(i)
π0...πi−1 .

This defines a family of alternating cycles, but if there is a nonempty
family then there is one alternating cycle in particular.

We can now encode d-dimensional optimal Morse matching as the ex-
tremum problem that asks to minimise

∑
i |V (i)|−2

∑
i |W

(i)
π0...π(i−1)

|, and the result
follows from Theorem 4.8. �

5.3. The Turaev-Viro invariants. The Turaev-Viro invariants are an infinite
family of topological invariants of 3-manifolds [40]. For every triangulation T of
a closed 3-manifold, there is an invariant |T |r,q0 for each integer r ≥ 3 and each
q0 ∈ C for which q0 is a (2r)th root of unity and q2

0 is a primitive rth root of
unity. A key property (which justifies the name “invariants”) is that the value of
|T |r,q0 depends only upon the topology of the underlying 3-manifold, and not the
particular choice of triangulation T .

The Turaev-Viro invariants can be expressed as sums over combinatorial objects
on T , and so (unlike many other 3-manifold invariants) lend themselves well to
computation. Moreover, they have proven extremely useful in practical software
settings for distinguishing between different 3-manifolds [4, 36]. However, they
have a major drawback: computing |T |r,q0 requires time O(r2|T | · poly(|T |)) under
existing algorithms, and so is feasible only for small triangulations and/or small r.
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In Theorem 5.9 we show again that we can do much better for small treewidth tri-
angulations: for fixed r, computing |T |r,q0 is linear-time fixed-parameter tractable,
with (as usual) the treewidth of the dual graph as the parameter.

Before proving this result, we give a short outline of how the Turaev-Viro in-
variants |T |r,q0 are defined. The formula is relatively detailed and so our summary
here is very brief, with just enough information to prove the subsequent theorem.
For more information, including motivations and topological context for these in-
variants, we refer the reader to references such as [36, 40].

Definition 5.8. Let T be a closed 3-manifold triangulation, and let V , E and S
denote the set of all vertices, edges and tetrahedra of T . Let r ≥ 3 be an integer,
and let q0 ∈ C be a (2r)th root of unity for which q2

0 is a primitive rth root of unity.
We define the Turaev-Viro invariant |T |r,q0 as follows.

Let I = {0, 1/2, 1, 3/2, . . . , (r − 2)/2}, so |I| = r − 1. A triple (i, j, k) ∈ I3 is
called admissible if i+j+k ∈ Z, i ≤ j+k, j ≤ i+k, k ≤ i+j, and i+j+k ≤ r−2.

A colouring θ of T is a map θ : E → I; in other words, we “colour” each edge
of T with an element of I. A colouring θ is called admissible if, for each 2-face
f of T , the three edges e1, e2, e3 ∈ E bounding f give rise to an admissible triple
(θ(e1), θ(e2), θ(e3)).

We make use of several complex constants that depend on r and q0. We do not
need to give their exact values here; details can be found in [40]. These constants
are: α ∈ C; βi ∈ C for each i ∈ I; and γi,j,k,`,m,n ∈ C for each i, j, k, `,m, n ∈ I.
Note that these constants do not depend upon the specific triangulation T .

We use these constants as follows. Let θ be an admissible colouring of T . For
each vertex v ∈ V we define |v|θ = α. For each edge e ∈ E we define |e|θ = βθ(e).
For each tetrahedron ∆ ∈ S we define |∆|θ = γθ(e01),θ(e02),θ(e12),θ(e23),θ(e13),θ(e03),
where eij ∈ E is the edge of the triangulation that joins vertices i and j of ∆. For
the entire triangulation we define |T |θ =

(∏
v∈V |v|θ

)
·
(∏

e∈E |e|θ
)
·
(∏

∆∈S |∆|θ
)
.

Finally, we define the Turaev-Viro invariant |T |r,q0 =
∑
θ |T |θ, where this sum

is taken over all admissible colourings θ of T .

Theorem 5.9. For any fixed integer r ≥ 3 and any class K of closed 3-manifold tri-
angulations whose dual graphs have universally bounded treewidth, we can compute
any Turaev-Viro invariant |T |r,q0 for any closed 3-manifold triangulation T ∈ K
in time O(T ) under the uniform cost measure.

Proof. We prove this by framing the computation of |T |r,q0 as a multiplicative MSO
evaluation problem.

For our MSO formula φ, we define several free variables that together encode an
admissible colouring θ of T . These include:

• A single set variable V that stores all vertices of T .
• A set variable Ei for each i ∈ I. Each set Ei represents those edges of T

that are assigned the colour i.
• A set variable Si,j,k,`,m,n for each i, j, k, `,m, n ∈ I where the triples (i, j, k),

(k, `,m), (m,n, i) and (j, `, n) are all admissible. Each set Si,j,k,`,m,n rep-
resents those tetrahedra whose edges 01, 02, 12, 23, 13 and 03 are assigned
colours i, j, k, `,m, n respectively, which means that every 2-face of such a
tetrahedron will be coloured by an admissible triple.

We insert clauses into our MSO formula to ensure that:

• The set variable V contains precisely all vertices of T .
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• The set variables Ei together partition the edges of T , and the set variables
Si,j,k,`,m,n together partition the tetrahedra of T .
• The colourings {Ei} and {Si,j,k,`,m,n} are consistent. This involves clauses

∀s∀e(1) [s ∈ Si,j,k,`,m,n ∧ (e(1) ≤01 s ∨ e(1) ≤10 s)] → e(1) ∈ Ei and many

others of a similar form, where e(1) is an edge variable and s is a tetrahedron
variable.

It follows that the solutions to T |= φ correspond precisely to the admissible
colourings of T .

We now assign weights for our evaluation problem as follows:

• For the set variable V , we assign a weight of α to each vertex of T , and a
weight of 1 to all other faces of all other dimensions.
• For each set variable Ei, we assign a weight of βi to each edge of T , and a

weight of 1 to all other faces of all other dimensions.
• For each set variable Si,j,k,`,m,n, we assign a weight of γi,j,k,`,m,n to each

tetrahedron of T , and a weight of 1 to all other faces of all other dimensions.

By Definition 5.8, the Turaev-Viro invariant |T |r,q0 is precisely the solution to the
multiplicative evaluation problem defined by this MSO formula and these weights.
Note that, whilst the MSO formula depends only on r (which is fixed), the weights
depend on both r and q0 (where q0 is supplied with the input).

The result now follows directly from Theorem 4.8. �

6. Summary

We prove a version of Courcelle’s Theorem for a general class of triangulations
for a triangulated d-manifolds for a fixed dimension d. This is done by using the
dual graph and interpreting the topological questions in classes of coloured graphs
or bounded treewidth. We give applications of the metatheorem to obtain fixed
parameter tractability results for various invariants in discrete Morse theory and
other parts of low dimensional topology.

There are a number of other directions that are suggested by this work. First
we could explore the complexity bounds by looking at, for example, Logspace
computations as suggested by the work in graphs of Tantau, or parallelizations
by Bodlaender. Another possible direction is to examine analogs of other width
metrics. One generalization is discussed by Burton and Petterson [7]. A natural one
currently unexplored is Nowhere Density introduced by Neşetŗiil and Ossona de
Mendez [37], which is a simultaneous generalization of many width metrics, and for
which graphs have decidable first order properties [24]. Perhaps this also suggests
that there might be a structure theory akin to the Robertson-Seymour theory for
low dimensional topology.

Another direction to explore would be “pseudo-lower bounds” based on ETH.
This is the assertion due to Impagliazzo, Paturi and Zane [26] that n-variable
3Sat cannot be solved in DTime(2o(n)). (This hypothesis is equivalent to a pa-
rameterised complexity assertion that M [1] 6= FPT where M [1] the satisfiability
problem for circuits of size k log n, n in unary. See [19], Ch. 29) Now based on
this widely believed refinement of P 6= NP , many problems have been shown to
have more or less matching upper and lower bounds for algorithms. For exam-
ple in [9] it is proven that problems including Independent Set, Dominating
Set, etc for graphs of bounded treewidth cannot have algorithms running in time
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O(2o(tw(G)))|G|c for fixed c. One way to prove such results would be to give a
reduction from Treewidth for graphs to Treewidth for triangulations.

Fnally, there remains the question of whether of whether MSO properties of
arbitrary triangulations of bounded tree width can be decided in linear time (not
just the triangulations of the structure mentioned in the paper).
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