
Parameterized Learning Complexity

Rodney G. Downey Patricia A. Evans and Michael R. Fellows

Mathematics Department Computer Science Department
Victoria University University of Victoria

Wellington, New Zealand Victoria, B.C. V8W 3P6, Canada
downey@math.vuw.ac.nz pevans (mfellows) @csr.uvic.ca

Abstract

We describe three applications in computational
learning theory of techniques and ideas recently in-
troduced in the study of parameterized computational
complexity.
(1) Using parameterized problem reducibilities, we show
that P -sized DNF (CNF) formulas can be exactly
learned in time polynomial in the number of variables
by extended equivalence queries if and only if the dom-
inating sets of a graph can be learned in polynomial
time by extended equivalence queries. (That is, learn-
ing by an arbitary hypothesis class. See Angluin [?].)
Since learning dominating sets is a special case of learn-
ing monotone CNF formulas, this extends to the exact
learning model a result of Kearns, li, Pitt and Valiant
in the PAC prediction model [?]. We show that P -sized
DNF (CNF) formulas can be learned exactly in poly-
nomial time by extended equivalence and membership
queries if and only there is an algorithm running in time
polynomial in n and k to learn the k element dominat-
ing sets of an n vertex graph. We also prove related
results concerning the problem of learning the truth as-
signments of weight k for DNF (CNF) formulas (that
is, assignments that set exactly k variables to true and
the rest to false).
(2) We describe a number of learning algorithms
for both parameterized and unparameterized graph-
theoretic learning problems, such as learning the in-
dependent sets, vertex covers or dominating sets of a
graph.
(3) We show that computing the Vapnik-Chervonenkis
dimension of a family of sets is complete for the param-
eterized complexity class W [1].

1. Introduction

Whether DNF formulas can be learned in polynomial
time has remained for many years one of the outstand-
ing open questions in the field of learning theory. There
are four results on this problem which form the context
of our first theorem.

(1) DNF formulas are PAC-learnable in polynomial

time if and only if monotone DNF formulas are PAC-
learnable in polynomial time [?].

(2) Modulo a plausible cryptographic assumption, in the
PAC model, DNF formulas can be learned in polynomial
time by extended equivalence queries if and only if they
can be learned in polynomial time by extended equiva-
lence and membership queries [?].
(3) Monotone DNF formulas can be exactly learned by
equivalence queries and membership queries in polyno-
mial time [?], [?].
(4) Monotone DNF formulas are not learnable in poly-
nomial time by equivalence queries if the hypotheses are
required to be represented as DNF formulas [?].

Theorem 1. Arbitrary DNF formulas can be learned in
polynomial time if and only if monotone DNF formu-
las can be learned in polynomial time in the model of
exact learning by means of extended equivalence queries
(without membership queries).

In fact, we show that the problem of learning DNF
or CNF formulas reduces to the problem of learning the
dominating sets of a graph in the model of exact learning
by extended equivalence queries. (In this learning prob-
lem, the concept being taught is: the sets of vertices
that are dominating sets in a particular graph. Note
that a graph on n vertices may have as many as 2n − 1
distinct dominating sets.)

The significance of Theorem 1 depends upon how one
feels about the learnability of DNF formulas. If DNF
formulas cannot be learned in P -time, then presumably
this will be easier to show in the exact model and the
reduction to the monotone case may be useful in this
direction (see (4) above). In view of (3), we would then

have an indication of the importance of membership
queries in the exact learning model, in contrast with
the results of (2) for the PAC model. In any case, our
theorem directly improves on (1) and contributes to our
understanding of the relative power of the various mod-
els of learning.

Theorem 2. Arbitrary DNF (CNF) formulas can be
exactly learned in polynomial time by extended equiva-
lence and membership queries if and only if there is an
algorithm for learning the k-element dominating sets of
a graph in time polynomial in k and the number of ver-
tices of the graph.

We also consider the problem of learning the truth
assignments of weight k to DNF (CNF) formulas. A
truth assignment has weight k if it assigns exactly k
variables the value true. By analogy with the study
of parameterized computational complexity introduced
in [?], [?] [?], [?], [?], [?], [?], the interesting question
is whether the truth assignments of weight k can be
learned in time f(k)nα, where f is an arbitrary function
and α is a constant independent of k. We term this fixed
parameter learnability; see Definition 6.

Theorem 3. The weight k truth assignments to arbi-
trary DNF (CNF) formulas are fixed parameter learn-
able if and only if the weight k truth assignments to
monotone DNF (CNF) formulas are fixed parameter
learnable in the model of exact learning by means of
extended equivalence queries.

Theorem 4. The weight k truth assignments to arbi-
trary DNF (CNF) formulas are fixed parameter learn-
able by extended equivalence and membership queries if
and only if the k-element dominating sets of a graph are
fixed parameter learnable in this model.

Because the study of parameterized computational
complexity employs a finely resolved measure of the
complexity of checking solutions, it seems that it may
provide an interesting window on the boundary between
what can and what cannot be learned in polynomial
time. With this possibility in mind and motivated by
the connections shown in Theorems 2 and 4, we report
in §4 on some results concerning the learning complexity
of vertex sets in graphs.

In §5 we directly apply the theory of parameterized
computational complexity to the problem of computing
the VC dimension of a family of sets.

Theorem 5. Determining whether the VC dimension
of a family of sets is at least k is complete for the pa-
rameterized complexity class W [1].

A concrete interpretation of Theorem 5 is that we
can determine whether the VC dimension of a family
F of sets is at least k in time f(k)|F|α, where f is an
arbitrary function and α is independent of k, if and only
if we can obtain an analogous result for the problem of
determining whether a graph has a k-clique.

2. Preliminaries and Overview

In discussing the complexity of parameterized prob-
lems, we make the convention that in any use of asymp-
totic (“big O”) notation, any hidden constants are inde-
pendent of the parameter. In the interests of clarity, we
will generally write completely explicit expressions for
bounds on complexity (as in the discussion of Theorem
5 in the previous section).

Our focus is on the model of exact learning by equiv-
alence and membership queries introduced by Angluin
[?], [?], which we briefly review for completeness and to
fix notation and terminology.

The Learning Model

Learning is modeled as an interaction between two
players, the Teacher and the Learner. The object to be
taught is a finite language c ⊆ Σ∗, where Σ = {0, 1},
such that each word x ∈ c has length n. Such a finite
language is termed a concept. We refer to n as the size
of the concept.

A learning problem is described by specifying a fam-
ily F of representations r of concepts. We assume that
|r| is bounded by some polynomial in the size of the con-
cept c(r) represented by r. Thus, for example, when we
discuss the learnability of CNF or DNF expressions we
assume that there is a fixed polynomial bound on the
number of literals in an expression e as a function of the
number of variables; the concept represented is the set
of 0-1 vectors corresponding to truth assignments to e.
We may view the requirement that the representations
have size bounded by some polynomial in the size of the
represented concepts to be analogous to the requirement
that solutions can be checked in polynomial time in the
definition of NP

In the exact learning model, with respect to a given
learning problem F , we define three different kinds of
queries which the Learner may make to the Teacher.
(1) Membership Query: “Is x ∈ c?” (for some word
x ∈ Σ∗ of length n)
(2) Equivalence Query: “Does r represent c?” (for some
representation r ∈ F)
(3) Extended Equivalence Query: “Does the n-input
boolean circuit h correctly decide membership in c?”

In (2) and (3) the representation r (or the circuit
h) is termed an hypothesis. The Teacher responds to
a membership query with yes or no (always correctly).
The Teacher responds to an equivalence query (of either
kind) either with the information that the hypothesis is
correct (and consequently the learning process is com-
plete), or by providing a counterexample showing that
the representation r (or the circuit h) is incorrect. If
the counterexample is a word x ∈ c not represented by
the hypothesis r (accepted by circuit h) we say that the
Teacher has provided a positive counterexample, and if

2

the counterexample provided by the Teacher is a word
x /∈ c then we say that a negative counterexample has
been provided.

We measure the running time of a learning algorithm
as a function of the concept size n, and we assume that
the Teacher provides n to the Learner at the beginning
of the interaction. A polynomial-time exact learning
algorithm for the learning problem F is an algorithm
which can be executed by the Learner, with each query
to the Teacher accounted as taking place in unit time,
such that for whatever concept c = c(r) for some r ∈ F
the Teacher may be teaching, the Learner finishes the
algorithm in time polynomial in the size n of c with a
correct equivalent representation of c. Depending on the
flavor of exact learning, this will be either a representa-
tion r′ ∈ F such that c = c(r′), or an n-input circuit h
that accepts precisely c.

Exact learning comes in various flavors depending on
which of the 3 kinds of queries to the Teacher are al-
lowed. For example (discussed further below) the domi-
nating sets in a graph can be learned in polynomial time
by extended equivalence and membership queries; the
independent sets in a graph can be learned in polyno-
mial time by equivalence queries (where the representa-
tions r are graphs). In the sequel, we may refer to these
flavors as EE+M, EE, E+M, etc., and by EE+M learn-
able we mean exactly learnable in this flavor in polyno-
mial time.

Our analysis of learning algorithms and reductions
will generally focus on the number of queries made by
the Learner. (P -time generation of the queries will be
obvious.)

Problem Reductions for Exact Learning by Ex-
tended Equivalence Queries

Theorems 1–4 are concerned with exhibiting reduc-
tions between learning problems. The following notion
of reduction relevant to Theorem 1 is a slight modifica-
tion of the reduction introduced by Pitt and Warmuth
in the PAC setting [?]. Another notion of reduction in
this setting appropriate for learning with membership
queries has been studied by Angluin and Kharitonov
[?].

Definition 1. Let F and F ′ be learning problems. A
positive EE reduction from F to F ′ is a triple (α, β, γ)
where:
(1) α : F → F ′ and β : N → N are reference functions
with |α(r)| polynomial in |r| and β a polynomial, and
(2) γ : Σn → Σβ(n) is a function computable in time
polynomial in n, such that:
(3) ∀r ∈ F and ∀x ∈ Σn where n is the size of the
concept c(r), we have x ∈ c(r) if and only if γ(x) ∈
c(α(r)).

If in (3) we replace “γ(x) ∈ c(α(r))” with “γ(x) /∈
c(α(r))” then we term this a negative EE reduction. The
proof of the following lemma is straightforward.

Lemma 1. If F reduces to F ′ and F ′ is EE learnable,
then F is EE learnable.

Proof Sketch. We argue for the case of a positive
reduction (α, β, γ); the case of negative reductions is
similar. The Learner creates a subroutine S which exe-
cutes the learning algorithm A′ for F ′. Repeatedly, the
Learner offers to the Teacher the hypothesis (suitably
encoded as a circuit) h: x ∈ c if and only γ(x) ∈ h′,
where h′ is the current hypothesis of S. If the Teacher
responds that h is correct then, of course, we are done.
Otherwise, the Teacher will produce a counterexample
y. The Learner then passes γ(y) to the subroutine.

It is straightforward to verify from the definition of
reduction that: (1) as seen by S, the interaction is con-
sistent with being taught the concept c′ = c(α(r)) for
a representation r ∈ F for which c = c(r), and (2) if
S computes a correct hypothesis h′ concerning c′, then
the hypothesis h offered by the Learner to the Teacher
will be correct concerning c.

(1) and (2) insure that after no more rounds of in-
teraction than required by A′, the Learner will produce
a hypothesis concerning c which will be correct (even if
the hypothesis of S on which it is based is not correct
about c′). 2

Parameterized Computational Complexity

A theory of parameterized computational complex-
ity is introduced in [?], [?], [?], [?], [?], [?], [?], to which
the reader should refer for further details. The the-
ory is motivated by the observation that many natu-
ral problems have two or more inputs, for example, a
graph G and a positive integer k. It is sometimes the
case that only a small range of parameter values have
practical significance; for a number of examples arising
in VLSI, computational biology, programming language
design, cryptography, and natural language processing,
see [?]. Some problems of this form can be solved in
time f(k)|G|α where α is independent of k (for exam-
ple, Vertex Cover, Graph Genus, and Min Cut Linear
Arrangement [?]). For others (e.g., Independent Set,
Dominating Set and Bandwidth) we have only brute-
force algorithms requiring time O(|G|f(k)). This quali-
tative complexity issue is formalized as follows.

Definition 2. A parameterized problem is a set L ⊆
Σ∗ ×Σ∗ where Σ is a fixed alphabet. Let Ly = {(x, y) :
(x, y) ∈ L}. We call Ly the y-th slice of L.

Definition 3. A parameterized problem L is fixed-
parameter tractable (FPT) if there exists a constant α
and an algorithm to determine if (x, y) is in L in time
f(|y|) · |x|α, where f : N → N is an arbitrary function.

Definition 4. A uniform parameterized reduction of a
parameterized problem L to a parameterized problem L′

is an oracle algorithm A that on input (x, y) determines
whether x ∈ Ly and satisfies
(1) There is an arbitrary function f : N → N and a

3

polynomial q such that the running time of A is bounded
by f(|y|)q(|x|).
(2) For each y ∈ Σ∗ there is a finite subset Jy ⊂ Σ∗

such that A consults oracles only for fixed-parameter
decision problems L′w where w ∈ Jy.

In [?] and [?] complexity classes of parameterized
problems are defined based on a finely resolved circuit
model of solution checking. These classes form a hier-
archy called the W hierarchy:

FPT ⊆W [1] ⊆W [2] ⊆ · · · ⊆W [P]

A large number of well-known combinatorial decision
problems are identified as hard or complete for various
levels of this hierarchy. For example, Clique and Inde-
pendent Set are complete for W [1], and Dominating Set
is complete for W [2]. If P = NP then the hierarchy col-
lapses, and conversely, if the hierarchy collapses, then a
quantitative version of the P 6= NP conjecture fails [?].

The Slices of a Learning Problem

We consider a parameterization of learning problems
that is both natural in many cases and technically useful
in exhibiting learning problem reductions.

Definition 5. The weight w(x) of a 0-1 vector x is the
number of 1’s in x (i.e., the Hamming weight of x). Let
F be a learning problem and let c be a concept rep-
resented by r ∈ F . The kth slice of c is the concept
ck = {x ∈ c : w(x) = k} which also we view to be rep-
resented by r in defining the kth slice Fk of F . That is,
in Fk we simply reinterpret the concept represented by
r ∈ F to be c(r)k.

The following Lemma provides the structure for some
of our arguments. Note that in the hypothesis, the poly-
nomial q(n) provides a completely explicit bound on the
number of queries (i.e., we do not mean O(q(n)).

Lemma 2. Let F be a family of concepts, and sup-
pose there is a polynomial q(n) and a polynomial-time
uniform family of polynomial-time exact learning algo-
rithms Ak for 1 ≤ k ≤ n, such that each algorithm
Ak learns Fk by making at most q(n) extended equiva-
lence queries. Then there is an exact polynomial-time
learning algorithm A for F that makes at most n · q(n)
extended equivalence queries.

Proof Sketch. Since the Learner makes only extended
equivalence queries, the algorithm consists of some num-
ber of rounds of (1) the Learner presenting a hypothesis,
and (2) the Teacher presenting a counterexample. The
Learner essentially runs the algorithms A1, . . . , An in
parallel, presenting at each occasion (1) the collective
current hypothesis: x ∈ c if and only if w(x) = k and
x is accepted by the current hypothesis of Ak. When
the Teacher responds with a counterexample y, this is
“refered” to the algorithm Aj , where j = w(y). Each
Ai independently learns the ith slice Fi of F . After at

most n · q(n) rounds each slice has been learned cor-
rectly. The uniformity hypothesis insures that the slice
algorithms Ak can be generated in polynomial time by
the Learner. 2

Lemma 2 shows how we can learn F by learning the
slices Fk of F . The following easy lemma describes a
passage in the other direction.

Lemma 3. If F is EE learnable then for all k, Fk is
EE learnable.
Proof Sketch. Let A denote a learning algorithm for
F . The Learner simply executes A with the modifica-
tion that the hypothesis offered to the teacher is: x ∈ ck
if and only if w(x) = k and x is accepted by the current
hypothesis offered by A regarding c. From the point of
view of (the subroutine) A, it is just as if one were inter-
acting with a Teacher of c who (strangely) only offered
counterexamples of a certain size. In no more rounds
than required by A the Learner will produce a correct
hypothesis regarding ck. 2

We remark that Lemma 3 seems to fail for EE+M
learning. The proof of Lemma 3 actually gives us a little
more, which we capture with the following definition.

Definition 6. A learning problem F is slicewise uni-
formly learnable if there is a polynomial q and a (param-
eterized) learning algorithm L such that given k and n
by the Teacher, 1 ≤ k ≤ n, L correctly learns Fk (by
interacting with the Teacher of Fk) in time bounded by
q(n). That is, the single learning algorithm L can be
“set” by the parameter k to solve any of the learning
problems Fk in time bounded by the polynomial q. We
say that F is fixed-parameter learnable if there is a pa-
rameterized learning algorithm L for F which learns Fk
in time f(k) · nα where α is independent of k.

Lemma 3 shows that if F is EE learnable, then F is
slicewise uniformly EE learnable.

3. To Learn DNF Learn Dominating Sets

For convenience, we shift the venue from DNF to CNF.
The following is straightforward (and well-known).

Lemma 4. (1) DNF is EE (EE+M) learnable if and
only if CNF is EE (EE+M) learnable. (2) Monotone
DNF is EE (EE+M) learnable if and only if monotone
CNF is EE (EE+M) learnable.
Proof Sketch. The proof for EE learning is easy to
see using Lemma 1 and considering compositions of re-
ductions based on the reference maps α that map an
expression e either to its negation or to its bitwise com-
plement. This argument can be strengthened slightly to
establish the case for EE+M learning. 2

We next describe a parameterized complexity reduc-
tion between the problems Weighted Satisfiability and
Dominating Set. We will use this reduction to simulta-
neously prove both Theorems 1 and 2. We will subse-

4

quently point out an easier reduction that can be used
for Theorem 1 (and later Theorem 2) but not for The-
orem 3. This reduction is used in [?] to show the com-
pleteness of Dominating Set for the parameterized com-
plexity class W [2].

A dominating set of vertices in a graph G = (V,E)
is a set of vertices V ′ ⊆ V such that for every vertex
u ∈ V , either u ∈ V ′ or uv ∈ E for some vertex v ∈ V ′.
It is easy to see that the dominating sets in a graph
G are in a natural 1:1 correspondence with the truth
assignments to a monotone CNF formula which has one
clause for each neighborhood in G. By the weight of a
truth assignment to a set of boolean variables, we mean
the number of variables assigned the value true.

Dominating Set
Instance: A graph G = (V,E).
Parameter: A positive integer k.
Question: Does G have a k-element dominating set?

Weighted Satisfiability
Instance: A boolean expression X in conjuctive normal
form.
Parameter: A positive integer k.
Question: Is there a truth assignment of weight k that
satisfies X?

Lemma 5. [?] There is a uniform parameterized re-
duction from Weighted Satisfiability to Dominating Set.

Proof. Let X be a Boolean expression in conjuctive
normal form consisting of m clauses C1, ..., Cm over the
set of n variables x0, ..., xn−1. We show how to produce
in polynomial-time by local replacement, a graph G =
(V,E) that has a dominating set of size 2k if and only
if X is satisfied by a truth assignment of weight k.

The vertex set V of G is the union of the following
sets of vertices:
V1 = {a[r, s] : 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n− 1}
V2 = {b[r, s, t] : 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n − 1, 1 ≤ t ≤
n− k + 1}
V3 = {c[j] : 1 ≤ j ≤ m}
V4 = {a′[r, u] : 0 ≤ r ≤ k − 1, 1 ≤ u ≤ 2k + 1}
V5 = {b′[r, u] : 0 ≤ r ≤ k − 1, 1 ≤ u ≤ 2k + 1}
V6 = {d[r, s] : 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n− 1}

For convenience, we introduce the following notation
for important subsets of some of the vertex sets above.
Let
A(r) = {a[r, s] : 0 ≤ s ≤ n− 1}
B(r) = {b[r, s, t] : 0 ≤ s ≤ n− 1, 1 ≤ t ≤ n− k + 1}
B(r, s) = {b[r, s, t] : 1 ≤ t ≤ n− k + 1}

The edge set E of G is the union of the following sets
of edges. In these descriptions we implicitly quantify
over all possible indices.
E1 = {c[j]a[r, s] : xs ∈ Cj}
E2 = {a[r, s]a[r, s′] : s 6= s′}
E3 = {b[r, s, t]b[r, s, t′] : t 6= t′}
E4 = {a[r, s]b[r, s′, t] : s 6= s′}
E5 = {b[r, s, t]d[r, s′] : s′ 6= s+ t (mod n)}

E6 = {a[r, s]a′[r, u]}
E7 = {b[r, s, t]b′[r, u]}
E8 = {c[j]b[r, s, t] : ∃i xi ∈ Cj , s < i < s+ t}
E9 = {d[r, s]a[r′, s] : r′ = r + 1 (mod k)}

Suppose X has a satisfying truth assigment τ of
weight k, with variables xi0 , xi1 , ..., xik−1

assigned the
value true. Suppose i0 < i2 < ... < ik−1. Let
dr = ir+1(modk) − ir (mod n) for r = 0, ..., k − 1. It
is straightforward to verify that the set of 2k vertices

D = {a[r, ir] : 0 ≤ r ≤ k−1}∪{b[r, ir, dr] : 0 ≤ r ≤ k−1}

is a dominating set in G.
Conversely, suppose D is a dominating set of 2k ver-

tices in G. The closed neighborhoods of the 2k vertices
a′[0, 1], ..., a′[k − 1, 1], b′[0, 1], ..., b′[k − 1, 1] are disjoint,
so D must consist of exactly 2k vertices, one in each of
these closed neighborhoods. Also, none of the vertices
of V4 ∪V5 are in D, since if a′[r, u] ∈ D then necessarily
a′[r, u′] ∈ D for 1 < u′ < 2k+ 1 (otherwise D fails to be
dominating), which contradicts that D contains exactly
2k vertices. It follows thatD contains exactly one vertex
from each of the sets A(r) and B(r) for 0 ≤ r ≤ k − 1.

The possibilities for D are further constrained by the
edges of E4, E5 and E9. The vertices of D in V1 rep-
resent the variables set to true in a satisfying truth as-
signment for X, and the vertices of D in V2 represent
intervals of variables set to false. Since there are k vari-
ables to be set to true there are, considering the indices
of the variables mod n, also k intervals of variables to
be set to false.

The edges of E4, E5 and E9 enforce that the 2k ver-
tices in D must represent such a choice consistently. To
see how this enforcement works, suppose a[3, 4] ∈ D.
This represents that the third of k distinct choices of
variables to be given the value true is the variable x4.
The edges of E4 force the unique vertex of D in the
set B(3) to belong to the subset B(3, 4). The index of
the vertex of D in the subset B(3, 4) represents the dif-
ference (mod n) between the indices of the third and
fourth choices of a variable to receive the value true,
and thus the vertex represents a range of variables to
receive the value false. The edges of E5 and E9 enforce
that the index t of the vertex of D in the subset B(3, 4)
represents the “distance” to the next variable to be set
true, as it is represented by the unique vertex of D in
the set A(4).

It remains only to check that the fact that D is a
dominating set insures that the truth assignment repre-
sented by D satisfies X. This follows by the definition
of the edge sets E1 and E8. 2

There are two important aspects of the proof which
require our notice in this context. (1) In the proof of
Lemma 5, the reduction described is accomplished in
time polynomial in n and k. (2) For each slice, the
reduction satisfies the definition of an EE learning re-
duction.

5

Proof Sketch for Theorem 1. (Theorem 3 works
by an essentially similar argument). By Lemma 4, it is
enough to show that the problem of learning the truth
assignments to a polynomial-sized CNF expression re-
duces to learning the dominating sets in a graph, a spe-
cial case of monotone CNF. By Lemma 3, if the dom-
inating sets in a graph can be learned in polynomial
time by extended equivalence queries, then also the k-
element dominating sets (for 1 ≤ k ≤ n) can be slicewise
uniformly learned in polynomial time in this model. By
Lemma 5, the above observations, and a diagonalization
trick to handle the problem of supplying the subroutines
the correct concept sizes, the slices of CNF reduce to the
slices of Dominating Sets, in total time polynomial in
n, and so by Lemma 2 we are done. 2

Alternative Proof Sketch for Theorem 1. For
those interested only in Theorem 1, we remark that The-
orem 1 can also be obtained with essentially the same
argument but from a simpler fairly standard reduction
from CNF to Dominating Sets:
Let X be as in the proof of Lemma 5. This time the
vertex set of G is the union of the sets V1, ..., V4 below:
V1 = {x[j] : j = 0, ..., n− 1}
V2 = {y[j] : j = 0, ..., n− 1}
V3 = {z[j] : j = 0, ..., n− 1}, and
V4 = {c[j] : j = 1, ...,m}.
The edge sets of G is the union of the sets E1, ...E5 be-
low:
E1 = {x[j]y[j] : j = 0, ..., n− 1}
E2 = {y[j]z[j] : j = 0, ..., n− 1}
E3 = {x[j]z[j] : j = 0, ..., n− 1},
E4 = {c[i]y[j] : xj ∈ Ci}, and
E5 = {c[i]z[j] : xj ∈ Ci}.
We say a dominating set has correct form if it does not
involve x[j] or c[i] for any i or j. The point is that X is
satisfiable if and only if G has a dominating set of size n
if and only if G has a dominating set of size n in correct
form. Since we can recognise when a dominating set
is in correct form, we can recognise which correspond
to valid truth assignments and hence since we are only
using EE queries the argument goes through. 2

Proof Sketch for Theorem 2. We handle “if” by
improving on the argument for Theorem 1, noting that
if the subroutine Lk of the Learner which is devoted
to the kth slice wants to make a membership query
about the vector x, then in consideration of the struc-
ture of the graph in the proof of Lemma 5, x /∈ ck if
x fails to meet certain conditions. In particular, we
must have w(x) = k and the vertex set indicated by x
must contain exactly one vertex in each of the sets A(r)
for 0 ≤ r ≤ k − 1, or the Learner can supply (consis-
tently) the answer “no” without consulting the Teacher.
If these conditions are met then the Learner can com-
pute a truth assignment of weight k corresponding to x
and make a membership query to the Teacher in order

to obtain the correct answer to pass to the subroutine
Lk.

Conversely, suppose that the Learner is informed of
the parameter k and the number of vertices n in the
graph. Let A denote a polynomial-time algorithm for
EE+M learning of CNF. The Learner creates a sub-
routine S which executes A, initially passing to S the
concept size kn. The Learner interacts with S according
to a “mental model” based on the following reduction
of Dominating Set to Satisfiability (complementary, in
some sense, to Lemma 5). Let e(G, k) denote the CNF
expression in the variables a[i, j] for 1 ≤ i ≤ k and
1 ≤ j ≤ n described as follows. (We may assume that
the vertex set of G is {1, ..., n}.)

e(G, k) = e1(G, k) · e2(G, k) · e3(G, k)

where

e1(G, k) =

k∏
i=1

∏
1≤r<s≤n

(¬a[i, r] + ¬a[i, s]) · qk,

where qk =

n∏
j=1

∏
1≤r<s≤k

(¬a[r, j] + ¬a[s, j])

and

e2(G, k) =
∏

1≤u≤n

 ∑
v∈N [u]

k∑
i=1

a[i, v]

and

e3(G, k) =

k∏
i=1

n∑
j=1

a[i, j]

It is easy to observe (1) that any truth assignment sat-
isfying e(G, k) has weight exactly k and (2) any truth
assignment τ satisfying e1(G, k) corresponds naturally
with a k-element set of vertices in G that is a dominat-
ing set if and only if τ also satisfies e2(G, k).

¿From the point of view of S, the Learner behaves as
if teaching e(G, k). Even though e(G, k) is only partly
known to the Learner, this can be accomplished in the
following way. If S makes a membership query to the
Learner, then the Learner responds “no” immediately
if the query truth assignment does not have weight k
or if it fails to satisfy e1(G, k) (which the Learner can
determine). If the query truth assignment has weight
k and satisfies e1(G, k) then it corresponds to a set of
k vertices in G about which the Learner queries the
Teacher in order to determine the correct answer to pass
to the subroutine S. Handling equivalence queries is
similar. In no more rounds of interaction than required
by A, the subroutine S will produce a correct hypothesis
about the truth assignments satisfying e(G, k). This
yields by the obvious translation a correct hypothesis
concerning the k-element dominating sets in G. 2

6

Theorem 4 is proved by a similar argument. As with
Theorems 1 and 3, there is also a simpler proof of The-
orem 2 that does not, however, lead to a proof of Theo-
rem 4. For this, we augment the construction employed
in the alternate proof of Theorem 1 with 2n additional
vertices

{p[j, t] : t = 1, ..., 2n},
and with 4n additional edges

{p[j, t]y[j] : t = 1, ..., 2n} ∪ {q[j, t]z[j] : t = 1, ..., 2n}

These additional edges and vertices force any n element
dominating set to be of the correct form.

By Theorem 2, if polynomial-sized DNF (CNF) for-
mulas are EE+M learnable then the k-element dominat-
ing sets in a graph can be learned in time polynomial in
k and the size n of the graph. Such an outcome might be
considered surprising, since the best known algorithm at
present makes O(nk) queries. Are the k-element domi-
nating sets at least fixed-parameter learnable?

4. Graph-Theoretic Learning Problems

Theorems 2 and 4 invite us to further investigate the
natural problems of learning graph structures. This area
seems very poorly developed. Together with Lane Clark
and Walter Wallis, Evans and Fellows have proven the
following concerning the learnablity of vertex sets. De-
tails and further results will appear elsewhere [?]. We
remark that some of the algorithmic strategies (e.g., for
Proposition 3), are taken from the theory of fixed pa-
rameter tractability.

Proposition 1. The independent sets (the cliques) in
a graph are E learnable with O(n2) queries.
Proof Sketch. We give the argument for independent
sets. The Learner begins with the hypothesis H of the
complete graph. If the graph G being taught is not
complete, then the Teacher must respond with a posi-
tive counterexample V ′. Since every singleton set is in-
dependent, V ′ must contain at least two vertices. The
Learner can deduce that there are no edges inG between
vertices in V ′. The algorithm makes only equivalence
queries. At each stage, the Learner presents a hypoth-
esis graph H that contains edges between all pairs of
vertices except those pairs for which the Learner has
deduced that no edge is present in G. It follows that
the Teacher must respond with a positive counterexam-
ple, and this must allow for the non-presence of an edge
to be deduced for at least one new pair of vertices. The
algorithm will terminate in at most

(
n
2

)
rounds. 2

Proposition 2. The vertex covers in a graph are E
learnable with O(n2) queries.
Proof Sketch. Similar to Proposition 1. 2

Proposition 3. The k-element vertex covers in a

graph are E learnable with 22
2k+1 queries (independently

of the size of the graph). 2

Proof Sketch. A complicated argument based on
an extremal theorem concerning minimal vertex covers,
and the tree-search technique discussed in [?]. 2

Proposition 4. The dominating sets in a graph are
EE+M learnable with O(n2) queries.
Proof Sketch. This can be done by adapting Valiant’s
algorithm for learning monotone DNF [?]. The algo-
rithm can be briefly described as follows. The Learner
begins with the hypothesis that the graph is complete,
i.e., that any non-empty set of vertices is a dominating
set. If this is not the case, the Teacher is obliged to
produce a negative counterexample: a set S of vertices
that is not dominating set. By augmenting S, making
at most n membership queries, the Learner can iden-
tify a maximal non-dominating set of vertices S′. Of
necessity, S′ is the closed neighborhood of some vertex
u. By repeatedly identifying the closed neighborhoods
in the graph in this way, the Learner can compute a cir-
cuit that correctly identifies the dominating sets, since
a dominating set is precisely a set having non-empty in-
tersection with each closed neighborhood. 2

The evidence to date suggests that perhaps only rel-
atively “simple” concepts can be learned in polynomial
time. The W hierarchy may be a useful reference struc-
ture in exploring polynomial-time learnability, because
it makes a finely resolved classification of problems ac-
cording to the complexity of checking solutions. For
example, Vertex Cover is in FPT , Independent Set is
complete for W [1] and Dominating Set is complete for
W [2]. The propositions above suggest that we might
look for the boundary between what can be learned in
polynomial time and what cannot, “between W [1] and
W [2].” Several natural problems in this range are iden-
tified in [?].

5. VC Dimension is Complete for W [1]

The following concept has proved to be of some
importance in proving lower bounds in computational
learning theory.

Definition. The Vapnik-Chervonenkis dimension (VC
dimension) of a family of subsets F of a base set X is
the maximum cardinality of a set S ⊆ X such that for
every subset S′ ⊆ S, ∃Y ∈ F such that S ∩ Y = S′. In
general, we say that such a subset S′ of S is generated
in S by F . The VC dimension of F is thus the largest
cardinality of S ⊆ X such that every subset of S is
generated by F .

VC Dimension
Instance: A family of subsets F of a base set X.
Parameter: A positive integer k.
Question: Is the VC dimension of F at least k?

The VC dimension of a family of sets F over a base
set X of cardinality n can be shown to be at most

7

log n. Consequently, the above problem is unlikely to be
NP -complete [?]. In the following theorem, both mem-
bership and hardness for the parameterized complexity
class W [1] involve reductions that are exponential in the
parameter k. Note that this is permitted in the theory
of parameterized complexity (see Definition 4).

Theorem 3. VC Dimension is complete for W [1].

Proof. A proof of membership in W [1] can be found in
[?]. We argue that VC Dimension is hard for W [1] by a
reduction from Clique.

Given a graph G = (V,E) and a positive integer k we
describe how to compute a family of sets F over a base
set X, so that F has V-C dimension k if and only if G
has a k-clique. The cardinality of the family F that we
will describe is O(k2n2 + 2k), and the size of the base
set X is kn, where n is the order of G. For convenience
we will assume that V = {1, . . . , n}. We write [m] to
denote the set {1, . . . ,m}.

The base set X is simply:

X = {(u, i) : u ∈ V, i ∈ [k]}

The family F consists of four subfamilies, F = F0 ∪
F1 ∪ F2 ∪ F3 which are described as follows. (These
correspond, roughly, to the cardinality of the sets in the
subfamilies.)

F0 = {∅}

F1 = {{(u, i)} : u ∈ V, i ∈ [k]}

F2 = {{(u, i), (v, j)} : uv ∈ E, i, j ∈ [k]}

F3 = {{(u, i) : i ∈ S} : S ⊆ [k],#(S) ≥ 3}

To see this that this construction works, let C be
the clique in G and let f be any 1:1 map from C to
{1, . . . , k}. Consider the set S ⊆ X of cardinality k:

S = {(u, f(u)) : u ∈ C}

If S′ ⊆ S has cardinality at least 3, then it is generated
by the corresponding set in F3. It is straightforward to
verify that subsets of S of cardinality smaller than 3 are
generated by F0 ∪ F1 ∪ F2.

Conversely, suppose S is a k-element subset of X,
every subset of which is generated by F . For each subset
S′ ⊆ S choose a witness W ∈ F with W ∩ S = S′. If
S′ has cardinality at least 3, then its witness must be
chosen from F3. But this implies that every set in F3

must serve as a witness for some S′ ⊆ S of cardinality
at least 3.

The witnesses for sets S′ ⊆ S of cardinality 2 must
therefore belong to F2. We cannot have both (u, i) and
(u, j) in S for i 6= j, else there is no witness possible for
the 2-element set consisting of these (by the definition of
F2). Consequently S must range over k different vertex
indices. The fact that there are witnesses for all of the
2-element subsets implies that there is a corresponding
k-clique in G. 2

References

[1] K. Abrahamson, R. Downey and M. Fellows. Fixed-
parameter intractability II. Proceedings Tenth
Symposium on Theoretical Aspects of Computing
(1993) 374-385.

[2] D. Angluin and M. Kharitonov. When won’t mem-
bership queries help? In Proceedings of the 23rd
Annual ACM Syposium on Theory of Computing
(1991), 444-454. New York, May 1991. ACM Press.

[3] D. Angluin. Learning regular sets from queries and
counterexamples. Information and Computation 75
(1987), 87-106.

[4] D. Angluin. Queries and concept learning. Machine
Learning 2 (1987), 319-342.

[5] D. Angluin. Negative results for equivalence
queries. Machine Learning 5 (1990), 121-150.

[6] D. Angluin. Computational Learning theory: sur-
vey and selected bibliography. Proceedings 24th
ACM Symposium on the Theory of Computing
(1992) 351-369.

[7] L. Clark, P. Evans, M. Fellows and W. Wallis. Al-
gorithms for learning and teaching sets of vertices
in graphs. University of Victoria Technical Report
DCS-212-IR (1993).

[8] R. Downey and M. Fellows. Fixed parameter
tractability and completeness. Congr. Num., 87
(1992) 161-187.

[9] R. Downey and M. Fellows. Fixed parameter
tractability and completeness I: basic results. To
appear.

[10] R. Downey and M. Fellows. Fixed parameter
tractability and completeness II: on completeness
for W [1]. To appear.

[11] R. Downey and M. Fellows. Fixed parameter in-
tractability (extended abstract). Proceedings of the
Seventh Annual IEEE Conference on Structure in
Complexity Theory (1992), 36-49.

[12] R. Downey and M. Fellows. Fixed parameter
tractability and completeness III: some structural
aspects of the W -Hierarchy. To appear in: Com-
plexity Theory (Proceedings of the 1992 Dagstuhl
Workshop on Structural Complexity), (ed. Ambos-
Spies et. al.) Cambridge University Press.

[13] R. Downey and M. Fellows. Parameterized compu-
tational feasibility. To appear in: Feasible Math-
ematics II (ed. Clote and Remmel), Birkhauser,
Boston.

8

[14] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP -
Completeness. Freeman, San Francisco, 1979.

[15] M. Kearns, M. Li, L. Pitt and L. Valiant. On the
learnability of boolean formulae. In Proceedings of
the 19th ACM Symposium on Theory of Computing
(1987), 285-295. ACM Press.

[16] L. Pitt and M. Warmuth. Prediction-preserving re-
ducibility. J. of Computer and Systems Sciences
(1990), 430-467.

[17] C. H. Papadimitriou and M. Yannakakis. On
the complexity of computing the V-C dimension.
Manuscript, May 1992.

[18] L. G. Valiant. A theory of the learnable,” Commu-
nications of the ACM 27 (1984), 1134-1142.

9

