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Abstract. This article examines some of the recent advances in our
understanding of algorithmic randomness. It also discusses connections
with various areas of mathematics, computer science and other areas of
science. Some questions and speculations will be discussed.

1 Introduction

The Copenhagen interpretation of quantum physics suggests to us that random-
ness is essential to our understanding of the universe. Mathematics has devel-
oped many tools to utilize randomness in the development of algorithms and in
combinatorial (and other) techniques. For instance, these include Markov Chain
Monte Carlo and the metropolis algorithms, methods central to modern science,
the probabilistic method is central to combinatorics. Computer science has its
own love affair with randomness such as its uses in cryptography, fast algorithms
and proof techniques.

Nonetheless, it is not clear what each community means by “randomness”.
Moreover, even when we agree to try one of the formalizations of the notion
of randomness based on computation there is also no clear understanding on
how this should be interpreted and the extent to which the applications in the
disparate arenas can be reconciled.

In this article I will look at the long term programme of understanding the
meaning of randomness via an important part of Turing’s legacy, the theory of al-
gorithmic computation: algorithmic randomness. The last decade has seen some
quite dramatic advances in our understanding of algorithmic randomness. In
particular, we have seen significant clarification as to the mathematical relation-
ship between algorithmic computational power of infinite random sources and
algorithmic randomness. Much of this material has been reported in the short
surveys Downey [27], Nies [53] and long surveys [26, 30] and long monographs
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Downey and Hirschfeldt [29] and Nies [52]. Also the book edited by Hector Zenil
[78] has a lot of discussion of randomness of varying levels of technicality, many
aimed at the general audience.

To my knowledge, Turing himself though that randomness was a physical
phenomenon, and certainly recognized the noncomputable nature of generating
random strings. For example, from Turing [71], we have the following quote3:

“ An interesting variant on the idea of a digital computer is a ”digital
computer with a random element.” These have instructions involving the
throwing of a die or some equivalent electronic process; one such instruc-
tion might for instance be, ”Throw the die and put the-resulting number
into store 1000.” Sometimes such a machine is described as having free
will (though I would not use this phrase myself).”

John von Neumann (e.g. [75]) also recognized the noncomputable nature of
generating randomness, and both seem to believe that physical procedures would
be necessary. Von Neumann’s quote is famous:

“Any one who considers arithmetical methods of producing random dig-
its is, of course, in a state of sin.”

Arguably this idea well predated any notion of computation, but the germ
of this can be seen in the following quotation of Joseph Bertrand [14] in 1889.

“How dare we speak of the laws of chance?
Is not chance the antithesis of all law?”

There has been a developing body of work seeking to understand not just
the theory of randomness but how it arizes in mathematics.

For example, we have also seen an initiative (whose roots go back to work
of Demuth [25]) towards using these ideas in the understanding of almost ev-
erywhere behaviour and differentiation in analysis (such as Brattka, Miller, Nies
[15]). Also halting probabilities are natural and turn up in places apparently
removed from such considerations. For instance they turned up naturally in the
study of subshifts of finite type (Hochman and Meyerovitch [39], Simpson [66,
68]), fractals (Braverman and Yampolsky [16, 17]) (as we see later), we see ran-
domness giving insight into Ergodic theory such as Avigad [6], Bienvenu et. al.
[13] and Franklin et. al. [33].

Randomness has long been intertwined with computer science, (although
some regard this as a matter of debate such as Gregorieff and Ferbus [38]) being
central to things like polynomial identity testing, proofs like all known proofs
of Toda’s Theorem and the PCP theorem, as well as cryptographic security. A
nice programme of Allender and his co-workers (e.g. [4, 3]) suggests that per-
haps complexity classes can be understood by understanding how they relate to

3 I am indebted to Veronica Becher for discussions of Turing’s and Von Neumann’s
thoughts on randomness.



the collections of strings which are algorithmically random according to various
measures.

In this article I will try to give a brief outline of theses topics, and make some
tentative suggestions for lines of investigation.

My assumption of the reader of this paper is that they are not well versed
in the theory of algorithmic randomness. I will assume that they have a basic
training in computability theory to the level of a first course in logic. If you are
at all excited by what you read I urge you to look at the surveys or the books
suggested above for fuller accounts.

2 Basics

I will refer to members of {0, 1}∗ = 2<ω as strings, and infinite binary sequences
(members of 2ω, Cantor space) as reals. 2ω is endowed with the tree topology,
which has as basic clopen sets

[σ] := {X ∈ 2ω : σ ≺ X},

where σ ∈ 2<ω. The uniform or Lebesgue measure on 2ω is induced by giving
each basic open set [σ] measure µ([σ]) := 2−|σ|.

We identify an element X of 2ω with the set {n : X(n) = 1}. The space 2ω

is measure-theoretically identical with the real interval [0, 1], although the two
are not homeomorphic as topological spaces, so we can also think of elements of
2ω as elements of [0, 1]. We will let X � n denote the first n bits of X.

The earliest work trying to give meaning to the randomness of an individual
source was that of von Mises who argued as follows. The real should certainly
have to obey the frequency laws like the law of large numbers. Thus

lim
n→∞

{m | m ≤ n ∧X(m) = 1}
n

=
1

2
.

This property is called normality and was studied by Borel and others. In fact,
any random real clearly should be absolutely normal, normal to any basis. It is
easy to construct such numbers computably (an interest of Turing discussed in
Veronica Becher’s article in this volume [8]). In fact any polynomial time random
real (in any reasonable sense) is absolutely normal.

von Mises’ idea was to consider any possible selection of a subsequence and
ask that it was normal: Let f : ω → ω be an increasing injection, a selection
function. Then a random X should satisfy the following.

lim
n→∞

{m | m ≤ n ∧X(f(m)) = 1}
n

=
1

2
.

von Mises work predated the work in the 30’s,culminating in the classic paper of
Turing [70], clarifying the notion of computable function. Thus von Mises had no
canonical choice for “acceptable selection rules”. However, Wald [76, 77] showed
that for any countable collection of selection functions, there is a sequence that is



random in the sense of von Mises. Church [21] proposed restricting f to (partial)
computable increasing functions. This gives rise to notions now called computable
stochasticity, and partial computable stochasticity.

This was how matters stood until the work of Ville. [73] In the following,
S(α, n) is the number of 1’s in the first n bits of α and similarly Sf for the
selected places.

Theorem 1 (Ville’s Theorem [73]). Let E be any countable collection of
selection functions. Then there is a sequence α = α0α1 . . . such that the following
hold.

1. limn
S(α,n)
n = 1

2 .

2. For every f ∈ E that selects infinitely many bits of α, we have limn
Sf (α,n)

n =
1
2 .

3. For all n, we have S(α,n)
n ≤ 1

2 .

The killer is item 3 which says that there are never situations with more 1’s
than 0’s in the first n bits of α. That is plainly non-random. Ville suggested
adding a further statistical law, the law of iterated logarithms, to von Mises’
definition. However, we might well ask “How we can be sure that adding this
law would be enough?”. Why should we expect there not to be a further result
like Ville’s (which there is, see [29]) exhibiting a sequence that satisfies both the
law of large numbers and the law of iterated logarithms, yet clearly fails to have
some other basic property that we would naturally associate with randomness?

We could add more and more statistical laws to our collection of desiderata
for random sequences, but there is no reason to believe we would ever be done,
and we certainly do not want a definition of randomness that changes with
time, if we can avoid it. Martin-Löf’s fundamental idea in [55] was to define an
abstract notion of a performable statistical test for randomness, and require that
a random sequence pass all such tests. He did so by effectivizing the notion of a
set of measure 0. The way to think about Martin-Löf’s definition below is that
as we effectively shrink the measure of the open sets we regard as “tests”, we
are specifying reals satisfying them more and more.

In the below a Σ0
1 class is a computably enumerable collection {[σ] | σ ∈W}

for some c.e. set W of strings. Alternatively think of this as a c.e. set of intervals
in the interval [0, 1].

Definition 1 (Martin-Löf [55]).

1. A Martin-Löf test is a sequence {Un}n∈ω of uniformly Σ0
1 classes such that

µ(Un) ≤ 2−n for all n.
2. A class C ⊂ 2ω is Martin-Löf null if there is a Martin-Löf test {Un}n∈ω

such that C ⊆
⋂
n Un.

3. A set A ∈ 2ω is Martin-Löf random if {A} is not Martin-Löf null.

Now there are three main views of algorithmic randomness. The above is
called the measure-theoretical paradigm.



We briefly discuss the two other main paradigms in algorithmic randomness
as they are crucial to our story. The first is the computational paradigm: Ran-
dom sequences are those whose initial segments are all hard to describe, or,
equivalently, hard to compress.

We think of Turing machines U with input τ giving a string σ. We regard τ as
a description of σ and the shortest such is regarded as the intrinsic information in
σ. The plain U -Kolmogorov complexity CU (σ) of σ is the length of the shortest
τ with U(τ) = σ. Turing machines can be enumerated U0, U1, . . . and hence we
can remove the machine dependence by defining a new (universal) machine

U(0e1τ) = Ue(τ),

so that we can define for this machine M , C(σ) = CM (σ) and for all e, C(σ) ≤
CUe(σ)+e+1. We will use the notation ≤+ for constants and will write C(σ) ≤+

CUe(σ).
A simple counting argument due to Kolmogorov [44] shows that as C(σ) ≤+

|σ| (using the identity machine), there must be strings of length n with C(σ) ≥ n.
We call such strings C-random.

We would like to define a real to be random by saying for all n, C(α �
n) ≥+ n. Unfortunately, there are no such random reals due to a phenomenon
called complexity oscillations, which (in a quantative way) say that in very long
strings σ there must segments with C(σ � n) < n. This oscillation really due to
the fact that on input τ , we don’t just get the bits of τ as information but the
length of τ as well. Thus we are losing the intentional meaning that the bits of
τ are processed by U to produce σ. To get around this first Levin [48, 49] and
later Chaitin [19] suggested using prefix-free machines to capture this intentional
meaning.

Prefix free machines work like telephone numbers. If U(τ) ↓ (i.e. halts) then
for all τ̂ comparable with τ , U(τ̂) ↑ .

Already we see a theme that there is not one but perhaps many notions
of computational compressibility of relevance to understanding randomness. In
the case of prefix free complexity, in some sense we know we are on the correct
track, due to the following theorem which can be interpreted as saying (for
discrete spaces) that Occam’s razor and Baye’s theorem give the same result
(in that the shortest description is essentially the probability that the string is
output).

Theorem 2 (Coding Theorem-Levin [48, 49], Chaitin [19]). For all σ,
K(σ) =+ − log(Q(σ)) where Q(σ) is µ({τ | U(τ) = σ}).

Using this notion, and noticing that the universal machine above would be
prefix-free if all the Ue were prefix free, we can define the prefix-free Kolmogorov
complexity K(σ).

Definition 2 (Levin [49], Chaitin [19]). A set A is 1-random if K(A � n) ≥+

n).

Theorem 3 (Schnorr). A real A is Martin-Löf random iff it is 1-random.



Hence the two paradigms converge on a common intuition. It is easy to see
that since there are only countably many machines, a real is random with prob-
ability 1. The classic example of a 1-random real is Chaitin’s halting probability
(for a universal prefix-free machine U):

Ω =
∑

{σ|U(σ)↓}

2−|σ|,

the measure of the domain of U (which has meaning as the domain of U is a
prefix free set of strings).

It would seem that the definition of Ω is thoroughly machine independent
but in the same spirit as Myhill’s theorem, we can define a reducibility we call
Solovay reducibility, and show that there is only one Ω in this sense. To wit,
we observe that Ω = limsΩs where Ωs =

∑
{σ|U(σ)[s]↓} 2−|σ|, (i.e. s steps of

computation), and hence Ω is what is called a left c.e.-real. We can define a
notion of reducibility on left c.e.-reals α ≤S β iff there is a partial computable
function f and a constant c, such that for all rationals q (we assume all reals
are nonrational for uniformity), if q < α then f(q) ↓ and |α − q| ≤ c|β − f(q)|.
The culmination of a series of papers is the Kučera-Slaman theorem which states
that there is really only one left-c.e. random real.

Theorem 4 (Kučera-Slaman Theorem [46]). α is 1-random and left-c.e.
iff for all left c.e.-reals β, β ≤S α.

The final randomness paradigm is the one based on prediction. The unpre-
dictability paradigm is that we should not be able to predict the next bit of a
random sequences even if we know all preceding bits, in the same way that a
coin toss is unpredictable even given the results of previous coin tosses.

Definition 3 (Levy [50]). A function d : 2<ω → R≥0 is a martingale4 if for
all σ,

d(σ) =
d(σ0) + d(σ1)

2
.

d is a supermartingale if for all σ,

d(σ) ≥ d(σ0) + d(σ1)

2
.

A (super)martingale d succeeds on a set A if lim supn d(A � n) = ∞. The
collection of all sets on which d succeeds is called the success set of d, and is
denoted by S[d].

The idea is that a martingale d(σ) represents the capital that we have af-
ter betting on the bits of σ while following a particular betting strategy (d(λ)

4 A more complex notion of martingale is used in probability theory. We will discuss
this notion, and the connection between it and ours, in [29], where it is discussed
how computable martingale processes can be used to characterize 1-random reals.



being our starting capital). The martingale condition d(σ) = d(σ0)+d(σ1)
2 is a

fairness condition, ensuring that the expected value of our capital after a bet
is equal to our capital before the bet. Ville [73] proved that the success sets of
(super)martingales correspond precisely to the sets of measure 0.

Now again we will need a notion of effective betting strategy. We will say
that the martingale is computable if d is a computable function (with range Q,
without loss of generality), and we will say that d is c.e. iff d is given by an
effective approximation d(σ) = lims ds(σ) where ds+1(σ) ≥ ds(σ). This means
that we are allowed to bet more as we become more confident of the fact that σ
is the more likely outcome in the betting, as time goes on.

Theorem 5 (Schnorr [64, 65]). A set is 1-random iff no c.e. (super)martingale
succeeds on it.

These all seem basic theorems from long ago, but there remain a lot of things
we don’t understand even around these basic theorems. For example, here are
three questions around these theorems.

First, it seems strange that to define randomness we use c.e. martingales and
not computable ones. Based on this possible defect, Schnorr defined two other
notions of randomness, computable randomness (where the martingales are all
computable) and Schnorr randomness (where we use the Martin-Löf definition
but insist that µ(Uk) = 2−k rather than ≤ 2−k so we know precisely the [σ] in
Uk uniformly) meaning in each case that the randomness notion is a computable
rather and computably enumerable one. We know that Martin-Löf randomness
implies computable randomness which implies Schnorr randomness, and none of
these implications are reversible. The first question is:“Can we use some kind
of computable randomness to define 1-randomness?”. The suggested method to
do this is to use a computable but nonmonotonic notion of randomness, where
we have a betting strategy which bets on bits one at a time, but instead of
being increasing can bet in some arbitrary order, and may not bet on all bits.
The order is determined by what has happened so far. This gives a notion called
Kolmogorov-Loveland (or nonmonotonic) randomness and the following question
has been open for quite a while.

Question 1 (Muchnik, Semenov, and Uspensky [59]). Is every nonmonotonically
random sequence 1-random?

A discussion of known results can be found in [29].

The second and third questions actually stem from the proof where we show
that there is a translation of Martin-Löf tests into c.e. supermartingales. There,
we start with a uniformly c.e. sequence R0, R1, . . . of prefix-free generators for a
Martin-Löf test. We build a c.e. supermartingale d that bets evenly on σ0 and
σ1 until it finds that, say, σ0 ∈ Rn, at which point it starts to favor σ0, to an
extent determined by n. If later d finds that σ1 ∈ Rm, then what it does is
determined by the relationship between m and n. If m < n then d still favors
σ0, though to a lesser extent than before. If m = n then d again bets evenly on



σ0 and σ1. If m > n then d switches allegiance and favors σ1. This can happen
several times, as we find more Ri to which σ0 or σ1 belong.

The computable enumerability of d is essential in the above. A computable
supermartingale (which we have seen we may assume is rational-valued with-
out loss of generality) has to decide which side to favor, if any, immediately.
Hitchcock has asked whether an intermediate notion, where we allow our super-
martingale to be c.e. but do not allow it to switch allegiances in the way described
above, is still powerful enough to capture 1-randomness. The purest version of
this question was suggested by Kastermans. A Kastergale is a pair consisting
of a partial computable function g : 2<ω → {0, 1} and a c.e. supermartingale
d such that g(σ) ↓= i iff ∃s (ds(σi) > ds(σ(1 − i))) iff d(σi) > d(σ(1 − i)). A
set is Kastermans random if no Kastergale succeeds on it. A Hitchgale is the

same as a Kastergale, except that in addition the proportion ds(τj)
ds(τ)

(where we

regard 0
0 as being 0) is a Σ0

1 function, so that if we ever decide to bet some
percentage of our capital on τj, then we are committed to betting at least that
percentage from that point on, even if our total capital on τ increases later. A
set is Hitchcock random if no Hitchgale succeeds on it. It is unknown if these
notions differ from 1-randomness and the import is that is any bias allowed in
the definition of 1-randomness?

The message also is that there are many kinds of randomness and they each
give insight. Variations of the notion of randomness include Kurtz or weak ran-
domness, Demuth randomness, finite randomness, resource bounded randomness
(for analyzing complexity classes), etc. For instance, weak randomness asks that
X belongs to all Σ0

1 classes of measure 1. We refer mostly to [29, 52] for more.
There are similarly many kinds of Kolmogorov complexities such as process and
monotone complexities (which solve the “C-” problem by asking that the action
of machines be continuous rather than prefix free). To wit, if U(σ) ↓ and U(ν) ↓,
and σ � ν, then U(σ) � U(ν). There are various interpretations of this idea,
such as U being a multifunction (so that U is really a c.e. collection of pairs
of strings) called Km, monotone complexity, but for all of them, an analog of
Schnorr’s Theorem holds so that α is 1-random iff K(α � n) ≥+ n for all n. In
most cases, K(α � n) =+ n since the identity machine is monotone.

These ideas and associated probability measures have seen applications into
geometric measure theory such as Jan Reimann’s new proof of (classical) Frost-
mann’s Lemma using methods from effective randomness ([62])5. These contin-
uous Kolmogorov complexities tend to be less well understood. Work of Adam
Day (see [29]) gives new methods for building machines. One hallmark is Day’s
remarkable improvement [23] of Gác’s Theorem [35] that the Coding Theorem
fails for continuous spaces.

For the remainder of this paper we will need some further (stronger) no-
tions of randomness. We can strengthen the idea of randomness by giving the
computational devices more compression power via oracles. Then if ∅(n) de-

5 As we soon see, Simpson ([68]) has similar applications of effective measure to derive
classical results in Hausdorff dimension.



notes the n-th iterate of the halting problem, we say that X is n+ 1-random iff

K∅
(n)

(X � n) ≥+ n for all n.
It is a surprising fact that for all n, n-randomness can be defined purely in

terms of K with no oracle. This follows by the next result.

Theorem 6 (Bienvenu, Muchnik, Shen, and Vereschagin [12]). K∅
′
(σ) =

lim supmK(σ | m)±O(1).

Hence A would be 2-random iff for all n, lim supmK(A � n | m) ≥+ n.
In some cases, we know of natural definitions of n-randomness. For instance,
we have seen that it is impossible for a real to have C(X � n) ≥+ n for all
n, but Martin-Löf showed in his original paper that there are reals X with
C(X � n) ≥+ n for infinitely many n. Joe Miller and later Nies, Stephan and
Terwijn showed that such randoms are precisely the 2-randoms, and later Miller
showed that the 2-randoms are exactly those that achieve maximal prefix-free
complexity (n + K(n)) infinitely often. Also Becher and Gregorieff [9] have a
kind of index set characterizations of higher notions of randomness. I know of
no other natural definitions, such as for the 3-randoms.

Another subtext in these investigations is to dispense with Kolmogorov com-
plexity altogether. The idea is to redo algorithmic randomness using total ma-
chines.

Definition 4 (Bienvenu and Merkle [11]). A computable function f is a
Solovay function if

∑
n 2−f(n) < ∞ and lim infn f(n) − K(n) < ∞ (in other

words, there is a c such that f(n) ≤ K(n) + c for infinitely many n).

Solovay functions were first constructed by Solovay, but any reasonable time
bounded version of prefix-free Kolmogorov complexity give rise to one. (An ob-
servation of Hölzl, Kräling, and Merkle [40].) Building on earlier work of Gács,
and of Miller and Yu, recently Merkle, Miller and Nies have proven that a set A
is 1-random iff C(A � n) ≥ n − g(n) − O(1) for any Solovay function g. In fact
by themselves, Solovay functions characterize 1-randomness.

Theorem 7 (Bienvenu and Downey [10]). Let f be a computable function.
The following are equivalent.

1. f is a Solovay function.
2.

∑
n 2−f(n) is a 1-random real.

Further extensions on this theme, generalizations and relationships with ran-
domness have been found. See [29], and the later material on K-triviality.

We have left out the vast amount of work on effective dimensions. In the
same way as we effectivize measure, we can effectivize fractional measure. The-
orems include characterizations due to Mayordomo [56] that effective Hausdorff

dimension of X is equal to lim infn→∞
K(X�n)

n and the characterization of ef-
fective packing dimension by Athreya, Hitchcock, Lutz, and Mayordomo [5] as

lim supn→∞
K(X�n)

n (C can replace K in both cases). These concepts have been
shown to have fascinating interactions with computability, such as characteriz-
ing degree classes, and as we discuss later, have been used to give new proofs of
classical theorems. I don’t have space to discuss further, but see [29].



3 Randomness and classical computability

Interactions of measure, randomness and computability go way back to the early
years of the subject such as the paper de Leeuw et. al. [24] where, amongst other
things, it is proven that a set X is enumerable from a set of oracles of positive
measure iff X is computably enumerable. As a consequence, we get a result later
rediscovered by Sacks that if a real X is computable from a collection of sources
of positive measure, then X must be computable. Nevertheless, a classical result
is the following saying that random sources can have computational power.

Theorem 8 (Kućera [45], Gács [36]). For every set X, there is a random
Y such that X ≤wtt Y , where ≤wtt is Turing reducibility with use bounded by a
computable function.

The above argues that 1-random reals are not random enough to correlate to
the thesis that random reals should have no computational power. This intuition
was clarified by Stephan who proved the following6.

Theorem 9 (Stephan [69]). Suppose a random real is powerful enough to
compute a {0, 1}-valued function f such that for all n, f(n) 6= ϕn(n) (i.e. a PA
degree). Then ∅′ ≤T X, so that it is a “false random.”

Thus we can wash away lots of computational power by raising the level of
randomness. For example, it can be shown that X is weakly 2-random (i.e. in
everyΣ0

2 class of measure 1) iffX is 1-random and its degree forms a minimal pair
with ∅′. Hence no (weakly) 2-random real can bound a PA degree. A remarkable
theorem here is the following, demonstrating a deep relationship between PA
degrees and randomness.

Theorem 10 (Barmpalias, Lewis, and Ng [7]). Every PA degree is the
join of two 1-random degrees.

There has been a huge amount of work concerning the interplay between
things like PA degrees and weakenings of the notion of fixed point free functions
(f(n) 6= ϕn(n)). For example, you can show that this ability corresponds to
traceing, and the speed of growth of the initial segment complexity of a real. As
an illustration, A is h-complex if C(A � n) ≥ h(n) for all n. A is autocomplex if
there is an A-computable order h such that A is h-complex.

Theorem 11 (Kjos-Hanssen, Merkle, and Stephan [41]). A set is auto-
complex iff it is of DNC degree.

Another illustration of the interplay of notions of randomness and Turing
degrees is the theorem.

6 Interpreted by Hirschfeldt as saying that there are two methods of passing a stupidity
test. One is the be the genuine article. The other is to be like Ω is be so smart that
you know what a stupid person would say.



Theorem 12 (Nies, Stephan, and Terwijn [54]). If a nonhigh set (i.e.
A′ 6≥T ∅(2).) is Schnorr random then it is 1-random.

In fact it is possible to show that within the high degrees the separations
between computable, Schnorr, and Martin-Löf randomness always occur. In the
hyperimmune-free (or computably dominated a, meaning that for every f ≤ a
there is a computable g with f(n) < g(n) for all n) degrees, weak randomness
coincides with all of these as well as weak 2-randomness.

There is a delicate interweaving of randomness notions and properties of
Turing degrees. For example, Kurtz and Kautz long ago showed us that every 2-
random degree is hyperimmune (i.e. ∃f ≤ a(∀g)(g computable → ∃∞n(f(n) >
g(n))).) Moreover the “almost all” theory of degrees is decidable by another old
result of Stillwell. We refer to [29] for a lot more on this, and similar things
concerning effective dimensions.

I cannot leave this part of the survey without mentioning the long sequences
of results about lowness notions. For any reasonable property P we say that X
is low for P if PX = P . For example, being low for the Turing jump means that
X ′ ≡T ∅′. A set A is low for 1-randomness iff A does not make any 1-randoms
nonrandom. You can also have a notion of lowness for tests, meaning that every
(effective nullset)A can be covered by an effective nullset. In all cases the lowness
notion for randomness and for tests have turned out to coincide with a single
recent exception of “difference randomness” found by Diamondstone and Fanklin
(paper in preparation).

Now it is not altogether clear that noncomputable sets low for 1-randomness
should exist. But they do and form a remarkable class called the K-trivials. That
is, they coincide with the class of reals A such that forall n, K(A � n) ≤+ K(n).
(In fact Bienvenu and Downey [10] showed that it is enough to put a Solovay
function on the right side.) Many properties of this class have been shown, and
particularly Andre Nies proved the deep result that A is K-trivial iff A is low
for Martin-Löf randomness iff A is useless as a compressor, KA =+ K. (Nies
[51]). A good account of this material can be found in Nies [52, 53], but things
are constantly changing, with maybe 17 characterizations of this class. We also
refer to [29] for the situation up to mid-2010.

Other randomness notions give quite different lowness notions. For exam-
ple, there are no noncomputable reals which are low for C and none low for
computable randomness. On the other hand, lowness for Schnorr and Kurtz
randomness give interesting subclasses of the hyperimmune-free degrees charac-
terized by notions of being computably dominated, and fixed point free functions
in the case of Kurtz. Work here is still ongoing and many results proven, but the
pattern remains very opaque. Even for a fixed real like Ω (i.e. when does ΩX

remain random?) results are quite interesting. In the case of Ω, X is low for Ω
and X is computable from the halting problem, then X is K-trivial, whereas if
X is random, then it is 2-random. (Results of Joe Miller, see [29].)

These classes again relate to various refinements of the jump and to “tra-
ceing” which means giving an effective collection of possibilities for (partial)
functions computable from the degree at hand. Again this has taken on a life



of its own, and such methods have been used to solve questions from classical
computability theory. For instance, Downey and Greenberg’s [28] used “strong
jump traceability” to solve a longstanding question of Jockusch and Shore on
pseudo-jump operators and cone avoidance. Strongly jump traceable reals have
their own agenda and form a fascinating class, see e.g. [20].

The final material for this section is the deep results of Reimann and Slaman
who were looking at the question (first discussed by Levin): given X 6≡T ∅, is
there a measure relative to which X is random?

Clearly we can concentrate a measure on a real, but assuming that we are not
allowed to do this the answer is still that every noncomputable real can be made
random. On the other hand, if we ask that there are no atoms in the measure,
the situation is very different. We get a class of never continuously n-random
reals. For each n this class is countable, but the proof of this requires magical
things like big fragments of Borel determinacy, provably. The reader should look
at Reimann and Slaman [63].

4 (Some) applications

4.1 Left out

I apologize to the workers who are using approximations to C like commercial
compression packages to apply Kolmogorov complexity to measure things like
common information7. As an illustration, I refer to the work of Vitanyi and his
co-workers who do phylogenetic analysis (in biology and music evolution, etc)
by replacing metrics like maximum parsimony by common information defined
via Kolmogorov complexity. (See e.g. [22, 72].)

4.2 Ergodic theory

A very important part of classical mathematics is concerned with recurrent ac-
tions of some process. For example, A d-dimensional shift of finite type is a
collection of colourings of Zd defined by local rules and a shift action (basically
saying certain colourings are illegal). Its (Shannon) entropy is the asymptotic
growth in the number of legal colourings. More formally, consider G = (Nd,+)
or (Zd,+), and A a finite set of symbols. We give A the discrete topology and
AG the product topology. The shift action of G on AG is

(Sgx)(h) = x(h+ g), for g, h ∈ G ∧ x ∈ AG.

A subshift is X ⊆ AG such that x ∈ X implies Sgx ∈ X (i.e. shift invariant).
The classical area of Symbolic Dynamics studies subshifts usually of “finite type.”
Such subshifts are well known to be connected to number theory, Ramsey theory
etc.

The following is a recent theorem showing that Ω occurs naturally in this
setting.

7 The earliest calssical application of Kolgorogov compexity I know of is an old one
by Schnorr and Fuchs [34] sharpening aspects of Markov Chain Monte Carlo.



Theorem 13 (Hochman and Meyerovitch, [39]). The values of entropies
of subshifts of finite type over Zd for d ≥ 2 are exactly the complements of halting
probabilities.

I remark that in the same way that Reimann proved Frostman’s Lemma
using effective methods, Simpson [68] has proven classical results using our ef-
fective methods. Simpson studies topological entropy for subshifts X and the
relationship with Hausdorff dimension. If X ⊂ AG use the standard metric
ρ(x, y) = 2−|Fn| where n is as large as possible with x � Fn = u � Fn and
Fn = {−n, . . . , n}d. In discussions with co-workers, Simpson proved that the
classical dimension equals the entropy (generalizing a difficult result of Fursten-
burg 1967) using effective methods, which were much simpler.

Theorem 14 (Simpson [68]). If X is a subshift (closed and shift invariant),
then the effective Hausdorff dimension of X is equal to the classical Hausdorff
dimension of X is equal to the entropy, moreover there are calculable relation-
ships between the effective and classical quantities. (See Simpson’s home page for
his recent talks and more precise details.)

Other types of Ergodic behaviour have been studied.
The general setting is the following. Let (X,µ) be a probability space, and

T : X → X measure preserving so that for measurable A ⊆ X, µ(T−1A) = µ(A).
Such a map is invariant if T−1A = A except on a measure 0 set. Finally the map
is ergodic if every T -invariant subset is either null or co-null. The shift operator
above (say, on Cantor space so that T (a0a1 . . .) = a1a2 . . .) is an ergodic action
with the Bernoulli product measure.

A classic theorem of Poincaré is that if T is ergodic on (X,µ), then for all
E ⊆ X of positive measure and almost all x ∈ X, Tn(x) ∈ E for infinitely many
n. For a set of measurable subsets E of X, we call an x a Poincaré point if
Tn(x) ∈ Q for all Q ∈ E of positive measure. Long ago Kučera [45] showed that
X is 1-random iff X is a Poincaré point for the shift operator with respect to
the collection of effectively closed subsets of 2ω.

Bienvenu et. al. proved the following extension of this result.

Theorem 15 (Bienvenu, et. al. [13]). Let T be computable ergodic on a
computable probability space (X,µ). Then x ∈ X is 1-random iff x is a Poincaré
point for all effectively closed subsets of X.

We remark that the notion of a computable probability space is natural and
along the lines of the Pour-El Richards [61] version of computable metric space.
There are again a lot of results here. Franklin et. al. [33] looked at the classic
Birkhoff ergodic theorem for f ∈ L1(X) (namely limn→∞

1
n

∑
i<n f(T i(x)) =∫

fdµ.) and showed that 1-random points satisfy Birkhoff’s ergodic theorem. For
other interpretations and stronger hypotheses (that the measure of the closed
sets is computable), Gács, Hoyrup and Rojas [37], showed that the Birkhoff
points are precisely the Schnorr randoms. This is currently an area of intense
activity, and many of the classical ergodic theorems remain to be studied. For



example, Furstenburg’s one with its applications to arithmetical progressions
would seem a natural candidate.

This is also related to metamathematical studies, and here we refer the reader
to Avigad [6].

Another interesting application of the ideas from algorithmic randomness is
to the area of Julia sets. Recall that this is described by z 7→ z2 + αz, where
α = e2πiθ. Braverman and Yampolsky [16, 17] showed that in general even for
computable θ, Julia sets can coincide with complements of Ω.

4.3 Differentiability is the same as randomness

In his blog, Terry Tao remarks that Ergodic theorems and classical theorems
from analysis such as the Lebesgue theorem that functions of bounded variation
are differentiable almost everywhere are closely related. In Bishop’s book, they
have almost the same proof. It is thus not surprising that we see such theorems
giving rise to randomness notions. This is an idea going way back to the work of
Oswald Demuth, a constructivist from Prague. It is being actively pursued by
Brattka, Nies, Miller and others.

Recall that the Denjoy upper and lower derivatives for a function f are
defined as follows.

Df(x) = lim sup
h→0

f(x)− f(x+ h)

h
and Df(x) = lim inf

h→0

f(x)− f(x+ h)

h
.

The Denjoy derivate exists iff both of the above quantities exist and are finite.
The idea in this is that slopes like those in the definitions can be considered to
be martingales.

Using this for one direction, various notions of randomness can be character-
ized by (i) varying the strength of the notion of computable real valued function
(e.g. Markov computable, type 2 computable etc) (ii) varying the theorem.

For an illustration, we have the following.

Theorem 16 (Brattka, Miller and Nies [15]). z is computably random iff
every computable (in the type two sense) increasing function f [0, 1] → R is
differentiable at x.

There are similar results relating 1-randomness of x to its differentiability
of functions of bounded variation. There is still a lot of activity here, and class
like Lipschitz functions and many other classical almost everywhere behaviour
in analysis are found to correlate to various notions of randomness. The paper
[15] is an excellent introduction to this material.

We might speculate that this could also be related to the general purpose
analog computer studied by Shannon, Martin-Pour-El, Ruebel and others last
century.



5 Relationships between random strings and complexity
classes

A very interesting programme is due to Allender and his co-workers (and others
such as Day). At first glance it seems rather strange, but the idea is to look
at resource bounded reductions to highly noncomputable objects like clean ver-

sions of RC = {σ : C(σ) ≥ |σ|
2 }, and similarly RQ for any other Kolmogorov

complexity Q. Long ago, Kummer [47] showed that RC is tt-complete. This
is by no means an obvious fact and the proof uses 0′′ nonuniformity to build
the reduction. It is not necessarily true for RK and depends on the choice of
universal machine, a fact established by Muchnik (in [58]), using a fascinating
game-theoretical argument (see [29] for details).

Kummer’s reduction was double exponential length increasing and one might
ask what does PRC look like. Clearly PRC has noncomputable sets of strings in
it, but the idea that this is an artifact of the choice of universal machine. The
correct class to look at is

∩UPRCU .

Sometimes it is suggested that this should be intersected with the computable
sets, but Allender conjectures that this makes no difference, ∩UPRCU ∩COMP =
∩UPRCU .

In [4] it is proven that P = ∩U{A : A ≤pdtt RCU
} ∩ COMP where the

reductions are restricted to polynomial time disjunctive truth table ones. Some
of the results so far, for any variants of the Kolmogorov complexity (so we drop
the subscript) are BPP ⊆ {A : A ≤ptt R}∩COMP, PSPACE ⊆ PR∩COMP, and
NEXP ⊆ NPR ∩COMP. Specifically it is open for these containments if we can
drop the ∩COMP. The containments might actually be equality, and these are
important open questions. Recently, Allender, Friedman and Gasarch [2] have
tightened two of these for prefix-free complexity to BPP ⊆ {A : A ≤ptt RK} ∩
COMP ⊆ PSPACE and NEXP ⊆ NPRK ∩COMP ⊆ EXPSPACE. Interestingly,
these proofs come from sharpening Muchnik’s game method, along with the fact
that the natural home for strategies is PSPACE.

The methods for some of these results use extractors. These are methods
of taking weak sources of randomness and producing pseudo-randomness from
them, and are particularly successful if you either have independent sources, or
some “true” randomness like a physical source assuming quantum assumptions.
those have found other uses in algorithmic randomness, such as Zimand’s proof
[79] that two sources of nonzero effective Hausdorff dimension can together com-
pute a degree which has Hausdorff dimension 1. It is known that one source is
not enough as Miller [57] has shown that there is a Turing degree of fractional
effective Hausdorff dimension. (See [29]. It is still open if a Turing degree can be
minimal and have effective Hausdorff dimension 1.)



6 Physics

In this last section I will mention a few things of relevance. First, it is possible
to look at various natural phenomena which are regarded as random, such as,
say, Brownian motion. Fouche [31, 32], Kjos-Hanssen and Nerode [42] and B.
Kjos-Hanssen and T. Szabados [46] have a nice body of work here, showing that,
for instance, 1-randomness can be used to understand Brownian motion.

Another major area of randomness is quantum physics under the Copenhagen
interpretation. Some physicists claim that this produces true randomness. In the
same way that we don’t know if the universe can produce any incomputability,
it seems that we don’t know if it can even produce 1-randomness, say. In spite of
this, it seems that we can buy true randomness by Internet, via companies using
semi-transparent mirrors. One such company is Quantis: quantum mechanical
random number generator produced and sold by id Quantique of the University
of Geneva. They seem to pass reasonable practical statistical tests.

It seems that this is a hypothesis that might be analyzed. Assuming that the
universe is a (computable) manifold and assuming the Copenhagen interpreta-
tion, we could ask if we could produce initial segments of random reals. Calude,
Svozil and others are looking at this idea e.g. [1, 18]

7 Conclusion

This is my interpretation of a few themes and high points for the exciting area
of algorithmic randomness. Space considerations preclude me including more. I
do hope I have at least wetted your interest in this fascinating subject.
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to the Kolmogorov-Random Strings?, Annals of Pure and Applied Logic, 138
(2006) 2-19.

5. K. Athreya, J. Hitchcock, J. Lutz, and E. Mayordomo. Effective strong di-
mension in algorithmic information and computational complexity, SIAM Jour.
Comput., 37 (2007), 671–705.

6. J. Avigad, The metamathematics of ergodic theory Annals of Pure and Applied
Logic, 157 (2009), 64-76.

7. G. Barmpalias, A. Lewis, and K. M. Ng. The importance of Π0
1 classes in effec-

tive randomness, JSL, 75(1) (2010), 387–400.
8. V. Becher, Turing’s normal numbers: towards randomness this proceedings.
9. V.Becher, S.Grigorieff, From index sets to randomness in ∅n, Random reals and

possibly infinite computations, Journal of Symbolic Logic, 74:1 (2009), 124–156.



10. L. Bienvenu and R. Downey. Kolmogorov complexity and Solovay functions, in
STACS 2009, 147–158.

11. L. Bienvenu and W. Merkle. Reconciling data compression and Kolmogorov com-
plexity, in ICALP 2007, Lecture Notes in Computer Science 4596. Springer, 2007.

12. L. Bienvenu, An. A. Muchnik, A. Shen, and N. Vereshchagin. Limit complexities
revisited, in STACS 2008.

13. L. Bienvenu, A. Day, M. Hoyrup, I. Mezhirov, and A. Shen, Ergodic-type char-
acterizations of algorithmic randomness, To appear in Information and Compu-
tation.

14. J. Bertrand, Calcul des Probabilités, 1889.
15. V. Brattka, J. Miller, and A. Nies, Randomness and differentiability, to appear.
16. M. Braverman and M. Yampolsky, Non-Computable Julia Sets Journ. Amer.

Math. Soc. 19(3), 2006
17. M. Braverman and M. Yampolsky, Computability of Julia Sets, Springer-Verlag,

2008.
18. C. Calude, K. Svozil. Quantum randomness and value indefiniteness, Advanced

Science Letters 1 (2008), 165168.
19. G. Chaitin, A theory of program size formally identical to information theory,

Journal of the ACM, 22 (1975), 329–340.
20. P. Cholak, R. Downey, and N. Greenberg. Strong-jump traceablilty. I. The

computably enumerable case, Advances in Mathematics, 217 (2008) 2045–2074.
21. A. Church, On the concept of a random sequence, Bulletin of the American

Mathematical Society, 46 (1940), 130–135.
22. R. Cilibrasi, P.M.B. Vitanyi, R. de Wolf, Algorithmic clustering of music based

on string compression, Computer Music J., 28:4(2004), 49-67.
23. A. Day. Increasing the gap between descriptional complexity and algorithmic

probability, Transactions of the American Mathematical Society, 363 (2011),
5577-5604.

24. K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro. Computability by
probabilistic machines, In C. E. Shannon and J. McCarthy, editors, Automata
studies, number 34 in Annals of Mathematics Studies, pages 183–212. Princeton
University Press, Princeton, N. J., 1956.

25. O. Demuth, The differentiability of constructive functions of weakly bounded
variation on pseude-numbers, Comment. Math. Univ. Carolina. Vol. 16 (1975),
583-599.

26. Downey, R., Five Lectures on Algorithmic Randomness, in Computational
Prospects of Infinity, Part I: Tutorials (Ed. C. Chong, Q. Feng, T. A. Slaman,
W. H. Woodin and Y. Yang) Lecture Notes Series, Institute for Mathematical
Sciences, National University of Singapore Vol 14, World Scientific, Singapore,
2008, 3-82.

27. R. Downey, Algorithmic randomness and computability, Proceedings of the 2006
International Congress of Mathematicians, Vol 2, European Mathematical Soci-
ety, (2006), 1-26.

28. R. Downey and N. Greenberg, Pseudo-jump operators and SJTHard sets, sub-
mitted.

29. R. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity,
Springer-Verlag, 2010.

30. Downey, R., D. Hirschfeldt, A. Nies, and S. Terwijn, Calibrating randomness,
Bulletin Symbolic Logic. Vol. 12 (2006), 411-491.

31. W. Fouche, The descriptive complexity of Brownian motion, Advances in Math-
ematics 155 (2000), 317–343.



32. W. Fouche, Dynamics of a generic Brownian motion: Recursive aspects, Theo-
retical Computer Science 394 (2008), 175-186.

33. J. Franklin, N. Greenberg, J. Miller and Keng Meng Ng, Martin-Loef random
points satisfy Birkhoff’s ergodic theorem for effectively closed sets, to appear,
Proc. Amer. Math. Soc.

34. H. Fuchs and C. Schnorr, Monte Carlo methods and patternless sequences, in
Operations Research Verfahren, Vol XXV, Symp. Heidelberg, 1977, 443-450.
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