
Annals of Pure and Applied Logic 166 (2015) 851–880
Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

On Δ0
2-categoricity of equivalence relations ✩

Rod Downey, Alexander G. Melnikov, Keng Meng Ng ∗

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 August 2014
Received in revised form 31 March 
2015
Accepted 3 April 2015
Available online 5 May 2015

MSC:
03D45
03C57
03D25

Keywords:
Equivalence structures
Computable mathematics
Categoricity
Isomorphisms

We investigate which computable equivalence structures are isomorphic relative to 
the Halting problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This paper is within the scope of two frameworks: the first one investigates effective properties of equiv-
alence relations (to be discussed in Section 1.1), and the other one studies non-computable isomorphisms 
between computable structures (see Section 1.2). The main idea of this paper can be described as follows: 
We view a computable equivalence structure as an abstraction to the situation when a computable algebraic 
structure has several components. Examples of such structures include direct or cardinal sums of groups 
or rings, shuffle and free sums of Boolean algebras, and graphs having several connected components. We 
simplify the situation by essentially removing all algebraic content from each component, so that we have 
to care only about matching the sizes of components correctly when we construct an isomorphism. The idea 
is that to understand the general situation, we should first understand the much simpler associated setting 
where the algebra has been stripped away. In particular, the present paper is a companion to Downey, Mel-
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nikov and Ng [15], where p-groups are associated with equivalence relations. One might expect that it would 
be easy to understand Δ0

2-isomorphisms for these “degenerate” computable structures, particularly ones as 
simple as equivalence relations. We will see that the subject is a lot deeper than one might expect. Having 
abstracted the algebraic properties into a setting with no apparent algebraic difficulties, now one faces many 
computability-theoretic difficulties in such studies. Indeed, we see that a non-standard ∅′′′-technique is re-
quired to answer a very basic (but fundamental) question. The proof is of some purely technical interest; its 
high complexity also partially explains why so little is known about Δ0

2-isomorphisms between computable 
structures in general. We now turn to a more detailed discussion and background.

1.1. Effectively presentable equivalence structures

Arguably, the study of effective reducibilities between countable equivalence relations goes back to Mal’cev 
who founded the theory of numberings (see Ershov [16] for a detailed exposition). Many results of numbering 
theory can be translated into results on equivalence relations and vice versa, see the recent paper [1] for 
more details. Numbering theory has been one of the central topics in the Soviet logic school for over 40 
years. In the West, the topic has traditionally received less attention (but see Lachlan [25]), and it is fair to 
say that it did not occupy center stage in computability theory.

Recently however, the subject has enjoyed a rapid development, partially because of the simultaneous 
and successful development of the theory of Borel equivalence relations, see textbook [6]. The theory of 
effective equivalence relations has grown to a rather broad area; we cite [1,18,9] for recent results on this 
subject. Many results of this paper can be stated in terms of Δ0

2-embeddings between effectively pre-
sented equivalence structures. However, we choose a different approach (see the next subsection) and 
thus we will not provide any further background on effective reducibilities between equivalence struc-
tures.

1.2. Non-computable isomorphisms between computable structures

Recall that a structure is computable if its open diagram is a computable set. Recall that a computable 
algebraic structure A is computably categorical if any computable structure B isomorphic to A is computably
isomorphic to A. In many common classes computable categoricity can be understood as a synonym of being 
algebraically tame. For example, it is well-known that a computable linear order is computably categorical 
iff it has finitely many adjacencies, a computable Boolean algebra is computably categorical off it has 
finitely many atoms, and there is a full and simple description of computably categorical abelian p-groups, 
see [27,31,32] and [3,17] for further examples. Most of these classes are not effectively universal (i.e., these 
structures cannot effectively encode an arbitrary computable arbitrary graph, see [11]). On the other hand, 
when we want to study more complex algebraic structures and their computability theory, we often need to 
abandon computable categoricity. As a consequence, there has been an increasing interest in non-computable
isomorphisms between computable structures.

The central notion in the study of non-computable isomorphisms is:

Definition 1.1. Let n > 1 be a natural number. A computable algebraic structure A is Δ0
n-categorical if 

every two computable presentations of A are 0(n−1)-isomorphic.1

In contrast to computable categoricity, obtaining a complete classification of Δ0
n-categoricity in a given 

class is typically a difficult task. Already for n = 2 and even for algebraically very well understood classes, 

1 Here 0(n+1) stands for the (n + 1)th iterate of the Halting problem. We note that there are variations of Definition 1.1 such as 
the notion of relative Δ0

n-categoricity [3], and also related notions of categoricity spectra [20] and degrees of categoricity [19,10].



R. Downey et al. / Annals of Pure and Applied Logic 166 (2015) 851–880 853
the problem may be challenging. The study of Δ0
n-categorical structures has some independent technical 

interest as such investigations typically require new ideas and techniques (see, e.g., [2,12,13]). As a con-
sequence of these technical difficulties, our knowledge of Δ0

n-categorical structures is rather limited even 
when n = 2. Only recently, there has been significant progress in understanding Δ0

n-categoricity in sev-
eral specific classes, for small n. It follows from [8,30] that every free (non-abelian) group of rank ω is 
Δ0

3-categorical, and the result cannot be improved to Δ0
2. It is also known that every computable com-

pletely decomposable group is Δ0
5-categorical, and the result is sharp [13]. Every computable homogeneous 

completely decomposable group is Δ0
3-categorical, and a group of this form is Δ0

2-categorical if and only if it 
encodes a semi-low set into its divisibility relation [12]. See also [29,28,4,5] for more results on Δ0

n-categorical 
structures for small n. We emphasize that most of the results discussed above are technically quite diffi-
cult, and some of these results require new algebraic or computability theoretic techniques, and sometimes 
both.

1.3. Results

As we noted above, the study of Δ0
2-categorical structures already tends to be technically difficult both 

algebraically and computability-theoretically. We would like to pick a very tame algebraic class where we 
could concentrate only on the computability-theoretic aspects of Δ0

2-isomorphisms. The class of computable 
equivalence classes is as algebraically simple as it could get, yet we have good evidence that equivalence 
structures have interesting effective properties as we discussed in Section 1.1 above.

In the context of this paper, a computable equivalence structure is an abstraction to the situation when 
a computable algebra has several components; e.g., think of a cardinal or direct sum of algebras, or imagine 
a graph with several connected components. We remove all structure from each component and keep only 
one fundamental property:

From stage to stage, a component can only increase in size.

To build a Δ0
2-isomorphism, we need to (at least) match the sizes correctly. In a companion paper [15]

we consider abelian groups of Ulm type 1. This is a slightly more complicated class. It reflects the situation 
when “components” are not invariant under automorphisms and have to be guessed.

Calvert, Cenzer, Harizanov and Morozov [7] observed that every computable equivalence structure is 
Δ0

3-categorical, and they gave several sufficient conditions for a computable equivalence structure to be 
Δ0

2-categorical. We address the following problem left open in [7]:

Which computable equivalence structures are Δ0
2-categorical?

A computable equivalence structure E is uniquely described, up to isomorphism, by the Σ0
2 multiset of 

sizes of classes that occur in the structure. Thus, the question above is really a question about Σ0
2-multisets. 

Our understanding of Σ0
2-multisets is very limited, and we wish to reduce the the question to the more 

familiar case of Σ0
2-sets. Given an equivalence structure E, keep only one equivalence class for each finite 

size (i.e., remove repetitions of sizes). Call the resulting equivalence structure Ê the condensation of E. If 
E is computably presentable, then so is Ê (to be discussed in Section 2). We arrive at:

Is it true that E is Δ0
2-categorical if and only if Ê is?

The first main result of the paper answers the question in the affirmative:
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Theorem 1.2. Let E be a computable equivalence structure. Then E is Δ0
2-categorical if and only if its 

condensation Ê is Δ0
2-categorical.

Theorem 1.2 came to us as a surprise, as it seemed that having multiple classes of the same size was a 
natural viable property we can use to diagonalize. However, the hope for carrying out such a diagonalization 
had an unavoidable non-uniform blockage. This is exploited for the proof of Theorem 1.2. We remark that 
the proof has significant combinatorial complexity. Theorem 1.2 also reduces the main problem to the study 
of Σ0

2-sets of a special kind, as we explain below.
From the Δ0

2-categoricity point of view, the only non-trivial case is when an equivalence structure E has 
infinitely many infinite classes, and arbitrarily large finite classes. We shall call such equivalence structures 
non-degenerate. Given a set X, define E(X) to be a non-degenerate equivalence structure having exactly 
one class of size x for every x ∈ X. We emphasize that X is Σ0

2 iff E(X) has a computable copy (folklore). 
For notational convenience, we omit “Δ0

2” when we speak about sets:

Definition 1.3. We say that an infinite Σ0
2-set X is categorical if E(X) is Δ0

2-categorical.

Theorem 1.2 reduces the Δ0
2-categoricity problem to the question:

Which Σ0
2 sets are categorical?

No classical notion of computability theory seems to capture categoricity of a Σ0
2 set. We compare 

categoricty of a Σ0
2-set to some other properties that occur in effective structure theory. It seems that 

the answer might lie in sets with weak guessing procedures for membership, such as low or semilow sets 
(soon to be described). In Theorem 4.2 we prove that every d-c.e. semi-low1.5 set is not categorical, but the 
converse fails. Our interest in semi-low1.5 sets is motivated by the recent results on Δ0

2-categorical completely 
decomposable groups, where semi-lowness actually captures Δ0

2-categoricity [12]. Semi-low and semi-low1.5
sets play an important role in the theory of automorphisms of the lattice of c.e sets under set-theoretical 
operations [33].

We will see that each infinite limitwise monotonic set (to be defined in Section 2) is not categor-
ical, but there exists a non-categorical Σ0

2 set which is not limitwise monotonic (Theorem 4.1). Lim-
itwise monotonic sets and functions naturally appear in the characterization of computable equivalence 
structures, direct sums of cyclic groups, and in many other contexts (see [23,24,14,22]). Limitwise mono-
tonicity fails to describe categoricity of a Σ0

2-set. Nonetheless, our intuition is that limitwise monotonicity 
“almost” captures (non-)categoricity of a Σ0

2-set. Our second main result shows that the difference be-
tween non-categoricity and limitwise monotonicity is so subtle that c.e. degrees do not “see” this differ-
ence:

Theorem 1.4. For a c.e. degree a, the following are equivalent:

(1) a is high;
(2) a bounds an infinite set which is not limitwise monotonic;
(3) a bounds an infinite categorical set.

We prove (2) ↔ (3) in Theorem 4.6 which will be stated in Section 4.2, and (1) ↔ (2) follows from [14]. 
To prove Theorem 4.6 we introduce a new computability-theoretic notion equal to the standard domination 
property [33] for high degrees. The new notion is much more convenient in the context of categorical 
sets; this new notion might be of some independent interest to the reader. We note that Theorem 1.4
continues the line of research into degrees bounding effective model-theoretic and algebraic properties, see 
survey [26].
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2. Computable equivalence structures

Given a computable presentation of an equivalence structure E, we write [i] for the equivalence class 
of the ith element in the representation, and we write #[i] for the size of [i]. We will denote the least 
element of the nth distinct equivalence class by cn. That is, c0 = 0 and cn+1 is the least number i > cn
such that [i] �= [x] for any x ≤ cn. Let Cn = [cn]. The sequence {Cn}n∈ω is a uniformly c.e. sequence of 
pairwise disjoint sets. Without loss of generality, we may allow Cn = ∅ in case the equivalence structure 
has less than n classes. Conversely, given any uniformly c.e. sequence of pairwise disjoint sets {Cn}n∈ω, 
we can effectively and uniformly obtain a computable equivalence structure whose equivalence classes are 
exactly {Cn}n∈ω −{∅}, and whose universe is ∪nCn. Henceforth, we may think of a computable equivalence 
structure (relation) as of a uniformly c.e. sequence of pairwise disjoint sets.

Definition 2.1. The characteristic of an equivalence relation E on ω is the set

χE = {〈m, k〉 : E has at least k classes of size m},

where k ∈ ω and m ∈ ω ∪ {ω}.

Evidently, E ∼= F if and only if χE = χF . We will also use χfin
E = {〈m, k〉 ∈ χE : m ∈ ω} and 

πE = {m : 〈m, 1〉 ∈ χfin
E }.

Recall that a total function F : ω → ω is limitwise monotonic [23,22,14] if there exists a total computable 
function g(x, y) of two arguments such that F (x) = supy g(x, y) for every x. An infinite set is limitwise 
monotonic (l.m. for short) if it is the range of a limitwise monotonic function. It is well-known that a Σ0

2 set 
is limitwise monotonic if and only if it contains an infinite limitwise monotonic subset [22]. Furthermore, 
an infinite limitwise monotonic set is always a range of some injective limitwise monotonic function [22].

Fact 2.2 (Folklore). An equivalence structure is computably presentable if and only if one of the following 
conditions holds:

(1) E has infinitely many infinite classes, and the set χfin
E is Σ0

2, or
(2) E has finitely many infinite classes, the set χfin

E is Σ0
2, and πE is limitwise monotonic.

2.1. Categoricity of equivalence structures

This subsection contains the basic information about Δ0
2-categoricity of equivalence structures. Recall 

that a computable structure A is relatively Δ0
n-categorical if for each B ∼= A there is an isomorphism 

witnessing B ∼= A that is ΔD0(B)
n , where D0(B) is the quantifier-free diagram of B. Relative Δ0

n-categoricity 
clearly implies Δ0

n-categoricity.

Fact 2.3 (Calvert, Cenzer, Harizanov, Morozov). Every computable equivalence structure is relatively 
Δ0

3-categorical. An equivalence structure is relatively Δ0
2-categorical if and only if it has either finitely 

many infinite equivalence classes or πE is finite.

Thus, only equivalence structures with infinitely many infinite classes and unbounded finite classes may 
be not Δ0

2-categorical.

Definition 2.4. We say that a countable equivalence structure is non-degenerate if it has infinitely many 
infinite classes and the collection of sizes of its finite classes is an infinite set (i.e., arbitrarily large sizes 
occur).
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We may accept the following:

Convention 2.5. From this point on, we will assume that all considered equivalence structures are non-
degenerate.

Recall that #[i] stands for the size of class [i]. The proposition below will be used heavily.

Proposition 2.6. For a computable (non-degenerate) equivalence structure E, the following are equivalent:

(1) E is Δ0
2-categorical.

(2) In every computable copy of E, the size function # : ω → ω ∪ {∞} is ∅′-computable.

Proof. It is not difficult to check that (2) ⇒ (1). We prove (1) ⇒ (2). Recall that χfin
E is Σ0

2, and there 
are infinitely many infinite classes by Convention 2.5. To see why (1) ⇒ (2), note that every computable 
equivalence structure E has a computable copy in which # ≤T ∅′. To produce such a copy, start with 
infinitely many infinite classes. Adjoin to these infinitely many infinite classes an equivalence structure 
defined by the following procedure. Set #[i]s = ∞ if χfin

E tells us that the class [i] has to be changed. Then 
introduce a new class with the appropriate finite size representing [i], and repeat. Note that we can always 
ask ∅′ if #[i] = ∞. Now, if the structure is Δ0

2-categorical, then we can use the Δ0
2 isomorphism from the 

“regular” copy described above onto any copy to introduce the desired ∅′-procedure. �
Note that we could replace (2) of Proposition 2.6 above by (2′): For every computable copy of E, there 

exists a ∅′-procedure for deciding if a given class is finite.

Convention 2.7. The proof of Proposition 2.6 above shows that every computable equivalence structure has 
a presentation in which # is computable in ∅′. We will call this special copy regular or standard.

3. From multisets to sets

In this section we prove that repetitions of finite classes do not effect Δ0
2-categoricity. We first prove a 

useful lemma which is interesting on its own right.

Lemma 3.1. Suppose X ⊆ Y are infinite Σ0
2 sets. If Y is categorical then so is X.

Proof. Given any computable presentation {Cn}n∈ω of E(X), we construct a computable copy {Dn}n∈ω

of E(Y ) and an isomorphic Δ0
2-embedding g of {Cn}n∈ω into {Dn}n∈ω. By our assumption, E(Y ) is 

Δ0
2-categorical, and thus there is a Δ0

2-function predicting the sizes of Dn correctly (see Proposition 2.6). 
We will use the isomorphic embedding g to define a Δ0

2 size-function for {Cn}n∈ω. Proposition 2.6 and the 
arbitrary choice of {Cn}n∈ω will imply that X is categorical.

We assume #Cn,s �= #Cm,s for every n, m < s, and that Cn,s �= ∅ for all n < s. We also choose a 
Σ0

2-approximation (Ys)s∈ω of Y so that at every stage s and every n, m < s we have #Cn,s ∈ Ys. We build 
a computable equivalence structure {Dn}n∈ω, a total Δ0

2 function g, and for every y, n meet

Ry : y ∈ Y if and only if ∃!j #Dj = y,

and

Pn : ∃s ∀t ≥ s g(n)[t] ↓= g(n)[s] and #Cn = #Dg(n)[s].
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Strategy for Ry. If y ∈ Ys and there is no Dk,s of size y, then pick i fresh and define Di,s to be a class 
of size y. Say that Di,s is a witness for Ry. If Ry already has a witness Di,s and y /∈ Ys, then declare 
#Di,s = ∞ and say that Ry has no witness.

Strategy for Pn. If first initialized at stage s, define g(n) = k such that #Dk,s = #Cn,s (recall that 
#Cn,s ∈ Ys). Otherwise, if g(n) was already previously defined, wait for #Cn,s > #Cn,s−1. Consider the 
cases:

Case 1. #Cn,s+1 < n. Suppose #Cn,s+1 = #Dk,s+1 for some Dk,s serving as a witness for Ry with y < n. 
Then declare Dg(n),s infinite and reset g(n) to be equal to k.

Case 2. #Cn,s+1 ≥ n. Whenever #Cn,s+1 = #Dk,s+1 for some Dk,s serving as a witness for Ry with y > n, 
declare Dk infinite and initialize Ry by setting its witness undefined.

Construction. At stage 0, do nothing. At stage s, let Ry- and Pn-strategies with y, n < s act according to 
their instructions.

Verification. Observe that at a stage s, if y ∈ Ys then either Ry has a witness or #Dg(n),s = y for some 
n < s. Go to a stage s so large that either #Cn,s > y or has already reached its finite limit. Then either 
#Dg(n),t = y for all t > s or Ry has a stable witness. In both cases we have exactly one class of size y. We 
conclude that Ry is met. For Pn, go to a stage s so that either #Cn,s > n or Cn never changes after s. In 
both cases g(n) is defined and will never be reset to a new value. We conclude that Pn is met as well. �

Recall that πR stands for the set of sizes of finite classes that occur in R. Recall also that we restrict 
ourselves to the case when there are infinitely many infinite classes, and the sizes of finite classes are 
unbounded. Note that the set πR is Σ0

2 relative to R. Thus, if R is computable, then so is E(πR). For 
notational convenience, we denote E(πR) by R̂ and call it the condensation of R.

We next turn to an important question: If an equivalence structure R is Δ0
2-categorical, must its con-

densation R̂ be Δ0
2-categorical? What about conversely? In other words, does the repetition of finite 

equivalence classes affect Δ0
2-categoricity? We prove that the answer is no. Thus we may restict the study 

of Δ0
2-categoricity of equivalence structures to only those structures in which every finite class appears at 

most once.
The rest of this section is devoted to the proof of Theorem 3.2.

Theorem 3.2. A computable equivalence structure R is Δ0
2-categorical if and only if its condensation R̂ is 

Δ0
2-categorical.

First we swiftly dispose of the easy direction.

Lemma 3.3. If a computable equivalence structure R is Δ0
2-categorical, then its condensation R̂ is 

Δ0
2-categorical as well.

Proof. Consider the Σ0
2 set {〈m, k-1〉 : k > 1, 〈m, k〉 ∈ χfin

R }. It corresponds to an equivalence structure 
having a computable copy V . Given a computable copy X of R̂, take a disjoint union Y of X and V . The 
resulting computable structure is a computable copy of R, and has a ∅′-computable function guessing sizes 
in Y correctly. Since the operation of taking the disjoint union is effective, we can restrict this function to 
the domain of X. �

We devote the rest of this section to the proof of the converse of Lemma 3.3. This direction turns out to 
be surprisingly combinatorially involved.
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For the rest of this proof, we fix a computable listing {Me}e∈ω of all uniformly c.e. sequences. 
Me = {Me

i }i∈ω is viewed as the eth equivalence structure (with possible repetition of finite classes). Given 
an equivalence structure Me, we say that Φ∅′

j with range in {f, ∞} is a guessing function for Me if for every 

i, Φ∅′

j (i) = f iff #Me
i < ∞.

Lemma 3.4. Predicate IND(i, e) � “Φ∅′
e is a guessing function for Mi” is Π0

3.

Proof. IND(i, e) holds if and only if

Φ∅′

e is total and ∀j∀z
(
Φ∅′

e (j) ↓= z ⇒
(
z = f ⇔ #M i

j < ∞
))

This can be easily checked to be Π0
3. �

It is not difficult to show that IND(i, e) is Π0
3-complete. Indeed, given any Π0

3-predicate P and a pair (i, j), 
we can uniformly construct a guessing function Ψi,j and a computable structure Ei,j such that Ψi,j = #Ei,j

iff (i, j) ∈ P. We can make Ψi,j = ∞ on even and f on odd inputs. In Ei,j we will have #[2k] = ∞. We 
can make sure #[2k + 1] will be infinite for some k exactly if P fails on (i, j). Based on this observation, we 
conjecture that our complicated guessing procedure is necessary for the proof that will follow.

For the rest of this proof we now fix a computable equivalence structure R = {Ri}i∈ω where finite classes 
may be repeated any number of times. We assume that the condensation R̂ is Δ0

2-categorical. We fix a 
computable enumeration of the classes {Ri[s]}i∈ω and assume that at every stage s there is at most one 
i < s such that Ri[s] �= Ri[s − 1] and in the case where i exists we have #Ri[s] = #Ri[s − 1] + 1. Our goal 
is to produce (not uniformly in an index for R) a guessing function for R.

During the construction we build a computable structure M = {Mi} and appeal to the Recursion 
Theorem to give us an index for M in advance (say index c).

3.1. Tree of strategies

Our tree of strategies is a version of the Baire space where the outcomes of each node is labeled 
0 < 1 < · · · . Each node on the lth level is devoted to measuring if IND(c, l) holds. Since this predi-
cate is Π0

3 there is an obvious way to computably approximate this using the outcomes of each node σ. We 
let {V l

k}l,k∈ω be a computable collection of c.e. sets such that IND(c, l) holds iff #V l
k < ∞ for every k. 

Thus we naturally associate each outcome k of σ with the Σ0
3 outcome where #V l

k = ∞. The Π0
3 outcome 

of σ where IND(c, |σ|) holds corresponds to the situation where every outcome of σ is visited finitely often. 
Since this latter outcome is a global outcome we will not need to place a corresponding σ-outcome for it.

We have a global commitment to make M a copy of the condensation (by Lemma 3.1 it is sufficient to 
make M a structure on a subset of the condensation). Since we are given an index for M in advance we 
know that there will be a true node σtrue of the construction. Namely σtrue is the leftmost node visited 
infinitely often such that each σ ∗ i is visited finitely often (the true node will later be formally defined). We 
will then use Φ∅′

|σ| to help build a guessing function for R. Since we have to guess at the true node we have 
to allow each node on the priority tree to have its own opinion about how the guessing function for R is to 
be defined. This will be maintained via cliques and links.

3.2. Cliques and links

A clique C is a collection of at least one class (possibly more) of R and will always have an associated 
link �(C). This link points to a single M class. Intuitively every R-class of a clique is collectively associated 
with the M -class M�(C). A link for a clique will be fixed (will never be reassigned to another member of M) 
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until the clique is removed. A clique may grow when more R-classes join the clique but will never reduce in 
members. When a clique is removed the associated link is also removed.

Sometimes an R-class Ri which is not currently in a clique will also be linked to a class in M . We denote 
this link as �(i). Again this means that Ri is associated with the M -class M�(i). Like a link for a clique, 
this link (for the class Ri) will be fixed until it is removed. This link will be removed if the class Ri joins a 
clique, or if a higher priority node acts. An R-class Ri for which �(i) is defined is simply said to be linked. 
The intuitive idea is that a link denotes that we believe an R-class is finite and hence the linked element 
in M should also be the same. A clique denotes that we believe a collection of R-classes will all be infinite 
and that the linked element in M will also grow to infinity.

Each node σ on the tree of strategies will have its own separate version of cliques and links. For this 
reason we will often use the term σ cliques and σ links. If C is a clique we write min C to be the index of 
the smallest member of C, i.e. min C = min {i | Ri ∈ C}. We write size C[s] = min {#Rm[s] | m ∈ C}, i.e. the 
size of the smallest class in C.

3.3. Description of the proof

Since the proof of Theorem 3.2 is somewhat combinatorially involved, we will describe the main ideas 
behind the proof here. Most of the steps in the construction and verification are technical and are included 
simply to make the combinatorics work. Nevertheless there are several key ideas which will form the skeleton 
of the proof.

3.3.1. The simple case
We first assume the simple case when the condensation R̂ of R is effectively Δ0

2-categorical [15, Defi-
nition 1.2]. This means there exists a computable procedure which, given an index of a computable copy 
of R̂, returns a Δ0

2-index for # in that copy. It is not hard to show [15, Theorem 2.5] that R is effectively 
Δ0

2-categorical. We sketch a different proof here, along the lines of the proof of Theorem 3.2.
We shall build a computable presentation M = {Mn}n∈ω of R̂. Since R̂ is effectively categorical, by 

applying the Recursion Theorem, we have during the construction of M a computable approximation g(n, s)
where for every n, lims g(n, s) exists and equals f iff #Mn < ∞ and equal ∞ iff #Mn = ∞.

The basic plan is straightforward. We monitor each class Ri and associate with it some class Mn. To 
help organize this we declare Ri to be “linked” to class Mn, and we write �(i) = n. Naively we want to keep 
#M�(i) = #Ri and use g(�(i)) to predict #Ri. Unfortunately we may have #Ri = #Rj for some i �= j but 
we are committed to making M a structure on the condensation R̂. Thus we have to redirect at least one of 
the two links �(i), �(j) when we find that #Ri = #Rj . We want to ensure that each link �(i) is redirected 
only finitely often. If this can be done then it is ∅′-computable to figure out the final stable object for each 
Ri and to read off lims g(�(i), s).

Hence during the construction when we see #Ri = #Rj , for i < j we will immediately grow M�(j) to 
infinity, dissolve the link �(j) and set up a new link �(j) = �(i). What can happen next is that one of the 
two classes Ri, Rj grows. Suppose #Ri > #Rj = #M�(i). In this case it is no good to keep #M�(i) = #Rj

because otherwise the link �(i) will point at a potentially finite class M�(i) even though #Ri can be ∞, 
and so the link �(i) is of no use to us in deciding #Ri. Therefore we should grow #M�(i) to match #Ri

whenever Ri grows, which means that �(j) should be reassigned elsewhere because it is now pointing at the 
class M�(i) where #M�(i) > #Rj , and thus #M�(j) = #M�(i) > #Rj will again tell us nothing about #Rj . 
So if Ri grows before Rj we will be forced to reassigned either �(i) or �(j). If instead the class Rj grows 
first before Ri, we face a similar dilemma.

For general priority reasons, to resolve this situation, we should choose to keep �(i), reassign �(j) and 
grow #M�(i) = #Ri. The issue now is that Rj may clash infinitely often with Ri, i < j this way, and each 
time �(j) is sacrificed by being reassigned to a fresh M -class, and in the end there is no stable link on j. 



860 R. Downey et al. / Annals of Pure and Applied Logic 166 (2015) 851–880
This is bad because ∅′ is unable to determine if the class Rj is finite; even though #Rj is necessarily infinite 
if �(j) is reassigned infinitely often, but this latter fact is not decidable using only a ∅′ oracle.

The reader should realise that we have not yet made use of the function g; this function must obviously 
be used in an essential way. The idea is to introduce two kinds of objects in the construction; a link �(i)
and a clique C with pointer �(C). A link �(i) is a pointer associated with a single class Ri, while a clique is 
a collection of classes {Ri : i ∈ C} which collectively point at the class M�(C) (see Section 3.2).

These two objects pursue essentially opposing strategies. If i is linked to M�(i) then we will keep 
#M�(i) = #Ri; whenever Ri grows, we must grow M�(i) accordingly. On the other hand a clique C will keep 
#M�(C) = size C = min {#Ri | i ∈ C}, i.e. the size of the smallest class in C. The decision as to whether we 
should have a link or a clique on a class Ri is determined by g(�(i), s).

More specifically, for each Ri, we initially start off with a link �(i) on i. We keep #M�(i) = #Ri. When 
we find g(�(i), s) = ∞, we form a clique C = {i} with pointer �(C) = �(i), and remove �(i). (This is step 
(2.1) of the construction.) While g(�(C), s) = ∞ we keep #M�(C) = size C and grow the clique by adding 
j > i to C whenever #Rj ≥ size C. (This is step (2.2) of the construction.) If ever we see that g(�(C), s)
changes its mind and takes value f , we will dissolve the clique C by removing �(C) and restoring the link 
�(i) = �(C).

Since we must make M a structure on the condensation R̂, we have to sort out any conflict in sizes. 
For instance, when we find #M�0 = #M�1 where �0 and �1 are objects pointing at different M -classes, we 
will retain the M -class associated with an object of the highest priority (say M�0) and declare #M�1 = ∞, 
and reassign �1 to now point at M�0 . (This is Phase 4 of the construction.) Priority amongst objects is 
determined by the value of the indices, i.e. the priority of �(i) is i while the priority of �(C) is min C, see 
“σ = τ” under Section 3.3.3.

We now see that the problem described above is solved, and each i will eventually be involved in a stable 
link or clique. Suppose a class Rj has an object removed infinitely often because it conflicts with some Ri, 
for some least i < j. Assume that Ri already has a stable object �. Now if #M� < ∞ then Rj cannot clash 
with Ri infinitely often, because eventually #M�(j) > #M�. Hence we must have #M� = ∞. Since M is 
always a substructure of the condensation R̂, we know that lims g(�, s) has to be correct, hence g(�, −) will 
eventually take on the stable value ∞, we see that both i and j will eventually be involved in a clique C. 
If Ri and Rj are both members of the same clique C then they both point at the same M -class and there 
are no further interactions between these two classes. So each Ri is eventually involved in a stable link or 
clique.

We now show that #Ri < ∞ iff #M� < ∞ where � is the stable object involving i: Since we always have 
#M� ≤ #Ri (equality must hold when � is a link), hence #Ri < ∞ implies that #M� < ∞. On the other 
hand suppose that #Ri = ∞. Then the stable object � cannot be a link because otherwise M� is always 
grown to match the size of Ri, and so #M� = ∞ and we must have lims g(�, s) = ∞, which in turn means 
that a clique containing i will be formed eventually. Thus the stable object � must instead be a clique, and 
so we have #M� = ∞ (else #M� < ∞ and so lims g(�, s) = f and we would eventually dissolve the clique C). 
Since the strategy for a clique always maintains #M� = size C, we see that #Rj = ∞ for every member 
j ∈ C.

Now to figure out if each class Ri is finite we may use ∅′ to first search for a stable object � involving i, 
and then computing lims g(�, s). Since lims g is never wrong, its value will decide #M� and hence #Ri.

3.3.2. Introducing injury
We now describe the problems caused by considering “injury” in the formal construction. We illustrate 

this in a simplified setting. We now relax the condition that “R̂ is effectively Δ0
2-categorical” to one that 

assumes that the procedure which returns a Δ0
2-index for # in a computable copy of R̂ is ∅′′-computable 

(instead of computable in the previous discussion). That is, there is a function F ≤T ∅′′ such that for every e, 
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Φ∅′

F (e) gives the size function # in the computable copy M of R̂ if M has index e. (Note that F ≤T ∅′ is 
equivalent to being effectively Δ0

2-categorical.)
It is easy to see that the condition F ≤T ∅′′ is equivalent to the existence of a computable function H

such that for every e, given a computable copy M = {Mx}x∈ω of R̂ with index e, the function Φ∅′

H(e)(x)
is equal to the size function # of M on almost every class Mx. Under this assumption we describe how to 
prove that R is Δ0

2-categorical.
We use the same setup as before. In this case we may have that lims g(x, s) is incorrect for finitely 

many x. Suppose x0 is such that #Mx0 = ∞ but lims g(x0, s) = f , and Ri0 has a stable link �(i0) pointing 
at Mx0 . Carrying out the strategy above, we see that it is now possible for there to be infinitely many j > i0
such that Rj gets an object reassigned infinitely often (due to conflicts with Ri0). In fact, since g(x0, −) is 
eventually stable with value f , no clique will be formed to point at Mx0. This is bad because there are now 
infinitely many classes Rj with no stable link or clique (even though lims g(x, s) is wrong on only finitely 
many x), and thus our argument above does not directly apply to show that R is Δ0

2-categorical.
This construction in fact does work with a slight modification. A more ingenious argument must be applied 

to show that R is Δ0
2-categorical. Notice that for each such x0, we should have #Mx0 = ∞ �= lims g(x0, s). 

This is because if #Mx0 = f �= lims g(x0, s), then every class Rj is affected by Mx0 only finitely often, and 
so the incorrect prediction of g on such a class Mx0 has no long term effect on the stability of an Rj object. 
Hence if some class Rj enters the clique associated with Mx0 and if Rj later grows larger than #Mx0 we 
can reassign Rj to point to a different M -class. For each j the link on Rj is redirected by Mx0 only finitely 
often.

Now for each x0 such that #Mx0 = ∞ �= lims g(x0, s) assume that i0 is the least such that Ri0 has a 
stable link pointing at Mx0 ; hence #Ri0 = ∞ as well. For each s, define the c.e. set Ξ(s) to contain all 
indices j > i0 such that #Rj [t] ≥ #Ri0 [t] for some t > s. (We refer the reader to Definition 3.5 for the 
formal definition of Ξ; the actual definition is somewhat more complicated due to various technicalities, but 
is similar in spirit to the one given here.)

Now if it is the case that for every s there is some js ∈ Ξ(s) such that #Rjs < ∞ then we could define 
a limitwise monotonic function f by letting f(x) follow the size of the smallest class currently in Ξ(x). In 
that case it is easy to check that the range of f gives an infinite limitwise monotonic subset of the finite 
sizes of R̂, which is impossible because we assumed that R̂ is Δ0

2-categorical by applying Theorem 4.1(i)
and Lemma 3.1.2 (Theorem 4.1(i) has an elementary and self-contained proof. Although it appears later in 
the paper, it does not introduce any circularity to our exposition.)

Thus it must be the case that there exists some s so that for every j ∈ Ξ(s), #Rj = ∞. This means that 
if Rj conflicts with Ri0 infinitely often then j ∈ Ξ(s) and thus we can also conclude that #Rj = ∞. Since 
there are only finitely many different i0 and x0, we can fix non-uniformly an s larger than all the associated 
values for all the i0, x0 (we call these classes “finite junk”). We can then argue that for almost every i, either 
Ri is involved in a stable link or clique, or else i is injured infinitely often by finite junk in which case i is a 
member of Ξ(s). (See Lemma 3.22.) In this way ∅′ can decide the ultimate fate of each Ri.

3.3.3. Priority ordering
The nodes on the strategy tree are ordered lexicographically from left to right. If σ is to the left of τ

then we may think of σ as having higher priority than τ . If σ and τ are comparable then we do not formally 
order σ and τ ; the interactions between σ and τ are more intricate in this case.

We will instead define a priority ordering among links and cliques. This will be the key driving force of 
the construction and is used to regulate when cliques and links are formed and when they are allowed to 
get destroyed. The cases to consider are the following:

2 In this discussion of the basic case we will in fact need to apply the uniform version of Lemma 3.1. That is, the index witnessing 
the categoricity of X can be obtained effectively in a Σ0

2 index for Y and an index witnessing the categoricity of Y .
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• σ is to the left of τ : In this case every σ link and σ clique is declared to be of higher priority than every 
τ link and τ clique.

• σ = τ : A σ link �σ(i) is of higher priority than another �σ(i′) iff i < i′. In the construction we will 
ensure that i = i′, i.e. we never have two different σ links on the same class simultaneously existing. 
A σ clique C is of higher priority than another σ clique C′ iff min C < min C′; again in the construction 
we ensure that we never have two σ cliques with the same min simultaneously in existence. In fact, 
σ cliques are always pairwise disjoint. Finally a σ link �σ(i) is of higher priority than a σ clique C iff 
i < min C. In the construction we ensure i �= min C; in fact i /∈ C.

• σ ⊃ τ : Let k be such that σ ⊇ τ ∗ k. Every τ clique C and every τ link �τ (i) with min C < min Iτk
(or i < min Iτk ) is of higher priority than every σ clique and every σ link. Every τ clique C and every 
τ link �τ (i) with min C ≥ min Iτk (or i ≥ min Iτk ) is of lower priority than every σ clique and every σ
link. (The notation Iτk will be defined in Section 3.3.4, intuitively Iτk is the interval of influence of the 
τ -strategy.)
For instance if i < j are both in Iτk then �τ (i) is of lower priority than �σ(j), even though the former is 
a link on a class with a smaller index.

It is a straightforward but somewhat tedious exercise to check that this gives rise to a linear ordering of all 
links and cliques in existence at any instance during the construction.

Intuitively the priority ordering is best described by the following. If σ is to the left of τ then each σ
object is of higher priority than each τ object. If σ ∗ k ⊆ τ then the priority of a σ object �σ(i) or �(C) with 
i = min C (we call this a (σ, i) object) depends on which interval Iσm the class i is in. Every (σ, i) object for 
i ∈ ∪m<kI

σ
m is of higher priority than every τ object. Every (σ, i) object for i ∈ ∪m≥kI

σ
m is of lower priority 

than every τ object. In other words we allow τ objects to have higher priority over certain σ objects, even 
though σ ⊂ τ .

3.3.4. Notations
We let gl(x, s) be a computable sequence of total functions with range in {∞, f} so that lims gl(x, s) =

Φ∅′

l (x) if the latter converges, and where lims gl(x, s) does not exist otherwise. Given a node σ and a stage s

where σ is visited, we write gσ(x)[s] to mean g|σ|(x, s′) where s′ is the number of times where σ has been 
visited up to stage s. That is, we only update the approximation to g|σ|(x, −) whenever σ is visited.

Each node σ of the construction is associated with a finite sequence of finite intervals Iσ0 , Iσ1 , · · · of ω. 
Intuitively, the interval Iσk grows when outcome σ ∗ k is visited. We always have max Iσk +1 = min Iσk+1 and 
Iσ∗jk ⊂ Iσj . The true node σtrue will be the only node to have every interval Iσtrue

k stable (i.e., its definition 
will never be changed at a later stage), finite and non-empty.

To initialize a node σ means to remove all σ cliques and remove all σ links, and set Iσk = ∅ for every k.
The following definition keeps track of the effect of the “finite junk” arising in the construction. It will 

be used during the construction. Lemma 3.14 will make it clear why Definition 3.5 is necessary.

Definition 3.5. Let i be an index and s be a stage. Define the c.e. set Ξ(i, s) by specifying the following 
computable enumeration of Ξ(i, s). Let Ξ(i, s)[t] = {i} for every t ≤ s. At stage t + 1 > s enumerate j into 
Ξ(i, s) if j /∈ Ξ(i, s)[t] and one of the following holds:

• #Rj [t + 1] ≥ #Rk[t + 1] for some k such that #Rk[t + 1] > j where k is already in Ξ(i, s), or
• #Rj [t + 1] ≥ #Rk[t + 1] for some k which was previously enumerated in Ξ(i, s) at stage t′ ≤ t and 

#Rk[t′] < #Rk[t + 1].

In other words we enumerate j in Ξ(i, s) at a stage t + 1 if the size of Rj currently exceeds (or is equal 
to) the size of another class Rk which was previously enumerated in Ξ(i, s) but where the size of Rk has 
since grown. If #Rk[t + 1] > j then we can ignore the growth restriction on #Rk.
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As is customary in a priority construction, we use stage s not only to refer to a particular stage of the 
construction, but also to refer to a particular instance or a particular step of the construction within stage s. 
Some authors prefer to use the distinct term “sub-stage” instead.

3.3.5. Putting the construction on a tree
Finally we consider the general case when R̂ is Δ0

2-categorical. Now guessing for the index of the size 
function of M is Π0

3, so we carry out the construction on the priority tree defined in Section 3.1. Roughly 
speaking each node σ is given an interval ∪nI

σ
n to work in, and will carry out its own version of the basic 

strategy within its assigned interval. At the true node σtrue, the guessing function gσtrue is equal to the size 
function # of M . Each successor of σtrue is visited finitely often.

Now we need to distinguish between the parameters of different nodes. Hence, instead of links and 
cliques we shall have σ links and σ cliques. The priority ordering between different objects was defined in 
Section 3.3.3.

Now we fix σ = σtrue and let i0 = min Iσ0 . That is, the true node σ is assigned the interval [i0, ∞) to work 
in. Let’s try and briefly describe why for each i ≥ i0 we have that either i ∈ Ξ̂ or i is eventually involved in 
a stable σ link or a stable σ clique. Here we do not wish to encumber the reader with the precise definition 
of Ξ̂ (we refer the reader to Definition 3.16); it suffices at this point to say that Ξ̂ is more or less the union 
of Ξ(s) for all infinite classes Ri, i < i0 for a large enough s.

A key difference between this and the previously discussed cases is that due to the construction being 
carried out on a tree, the true strategy working for σ will not be able to act at every stage, only at infinitely 
many stages. This means that we have to ensure that at stages where σ is not active, the construction 
still respects the needs of every σ object. For instance if σ is active and finds #M� > #Ri then M� is no 
longer helpful in deciding #Ri. Hence we should ensure that whenever there is a (σ, i) object � we must at 
every stage keep #M� ≤ #Ri, unless a higher priority object demands otherwise, in which case � should be 
removed. Note that in the case � = �σ(i) is a link then the strategy σ only needs to grow #M� to be equal 
to #Ri whenever σ is visited; at non-σ-stages it is only important to keep #M� ≤ #Ri (and not necessarily 
equal).

Let’s assume that i is never part of a stable σ link or a stable σ clique. We explain why i should be in Ξ̂. 
By examining the priority between objects, there are only finitely many pairs (τ, k) such that a (σ, i) object 
� can be removed by a conflict with a (τ, k) object �′ (of higher priority). The key to this analysis is to fix 
a large stage s∗ (how large s∗ needs to be is explained carefully in the verification; for now we assume it 
is large enough so that all higher priority activities are stable). We consider two cases: when �′ is formed 
before s∗ and when it is formed after s∗.

If �′ is formed after s∗ then necessarily we should have τ ⊆ σ (as all other nodes are either stable or of 
lower priority). In this case if τ = σ then we use the induction hypothesis, and if τ ⊂ σ then we must have 
k < i0 and so i ∈ Ξ̂. From σ’s point of view (τ, k) belongs to the “finite junk” which σ must accept as a 
finite parameter given non-uniformly, so we can build (τ, k) into the definition of Ξ̂.

Now if �′ is formed before s∗ (there are only finitely many such objects) then we will see that the target 
class M�′ must eventually be infinite. In that case gσ(�′) must eventually take on value ∞ and consequently 
� must be a σ clique. In that case the strategy of � strategy will switch to a negative strategy, and will never 
again request for M�′ to increase. If �′ is a historical object associated with some τ which is never again 
active then there is no need for � to be removed; neither � nor �′ will request for M�′ to be increased and so 
both objects can co-exist.

This forms the main ideas behind the machinery of the construction. The formal construction and 
verification will address the multiple technical complications which arise in the implementation of these 
ideas.
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3.4. Construction

At stage 0 initialize every node and do nothing else. Suppose we are at stage s > 0. The construction 
splits into phases:

Phase 1, Defining δs and initialization.
(1.1) We define the stage s approximation δs to the true node. We will have |δs| = s and this is defined 

inductively as follows. If δs � l has been defined we let δs(l) be the least k < s such that #V l
k has 

increased since the last visit to δs � l (we let δs(l) = s if no k < s is found).
(1.2) We initialize every node σ to the right of δs. For each node σ ⊂ δs we remove every σ clique and every 

σ link which has lower priority than δs.
(1.3) Next we update Iσk for each σ ⊂ δs. This is again done inductively as follows. Suppose that the 

intervals for σ have been updated. We update the intervals for the node σ ∗ k ⊂ δs. If Iσk = ∅ then we 
must also have Iσ∗km = ∅ for every m, in which case we do nothing here for σ ∗ k. Otherwise assume 
that Iσk �= ∅ (in which case max Iσk = s). Now let m be such that σ ∗k ∗m ⊆ δs. Set Iσ∗kn = ∅ for every 
n > m. If Iσ∗km �= ∅ we increase the right end-point of Iσ∗km to s. Otherwise if Iσ∗km = ∅ we let m′ ≤ m

be the least such that Iσ∗km′ = ∅, and in this case set Iσ∗km′ = (max Iσ∗km′−1, s]. Finally if m′ = 0 we set 
Iσ∗k0 = Iσk .

Phase 2, Acting for each σ ⊂ δs. For each node σ ⊂ δs where σ ∗ k ⊆ δs we do the following (unless Iσ0 = ∅, 
in which case we do nothing for σ).
(2.1) Forming new σ cliques. For each j ∈ ∪nI

σ
n we say that j is currently eligible for (2.1) if j is not a 

member of any σ clique, �σ(j) exists, gσ(�σ(j))[s] = ∞ and #Rj has grown since the last time j was 
eligible for (2.1) with respect to σ and the class M�σ(j). Find the least eligible j ∈ ∪nI

σ
n such that the 

current stage is the qth time j has been determined to be eligible for (2.1) with respect to σ and the 
class M�σ(j), where q is even.
We form a new σ clique consisting of all j ≤ j′ < #M�σ(j)[s] such that j′ is not currently a member 
of any σ clique and #Rj′ [s] ≥ #Rj [s] and j′ ∈ ∪nI

σ
n and �σ(j) = �σ(j′). Set �(C) = �σ(j). Remove 

each σ link �σ(j′).
Repeat with the next j1 > j and j1 ∈ ∪nI

σ
n in place of j, forming a new σ clique with j1 as the least 

element in the same way. Continue this way until all eligible elements (with even q) of ∪nI
σ
n have been 

exhausted.
(2.2) Growing existing σ cliques. For each σ clique C in existence and each min C < j < #M�(C)[s] such that 

j is not currently a member of any σ clique and #Rj [s] ≥ size C[s] and j ∈ ∪nI
σ
n and �(C) = �σ(j) we 

add j to C. Remove each �σ(j).
(2.3) Dissolving σ cliques due to a gσ change. For each σ clique C in existence such that gσ(�(C))[s] = f we 

do the following: Restore the σ link to min C by setting �σ(min C) = �(C) and remove C.
(2.4) Updating obsolete σ links. Go through each σ linked class Ri, starting with the smallest i, and for 

each such class we do the following.
(i) For every i′ > i such that Ri′ is σ linked and �σ(i′) = �σ(i) and #Ri′ [s] �= #Ri[s] we remove the 

link �σ(i′).
(ii) See if there exists i′ and τ such that Ri′ is τ linked, �τ (i′) = �σ(i), �τ (i′) has higher priority than 

�σ(i) and #Ri′ [s] < #Ri[s]. If i′ and τ exists we remove the link �σ(i).
(iii) See if there exists a τ clique C such that �(C) = �σ(i), C has higher priority than �σ(i) and 

size C[s] < #Ri[s]. If τ and C exists we remove the link �σ(i).
(iv) Finally if �σ(i) has not been removed by (ii) or (iii), we will remove every lower priority clique or 

link which disagrees with �σ(i). This is achieved by the following. For each i′ and τ such that Ri′
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is τ linked, �τ (i′) = �σ(i), �τ (i′) has lower priority than �σ(i) and #Ri′ [s] < #Ri[s], we remove 
the link �τ (i′). For each τ clique C such that �(C) = �σ(i), C has lower priority than �σ(i) and 
size C[s] < #Ri[s], we remove the clique C.

Phase 3, Growing classes in M . For each finite class Mn of M we grow Mn (if necessary) to have the same 
size as min{#Ri[s] | �σ(i) = n for some σ or �(C) = n for some clique C where i ∈ C}. If Mn has no link or 
clique pointing at it we declare #Mn = ∞.

Phase 4, Resolving conflicts in M . For each x look at the collection of M classes Mn0 , · · · , Mnj
such that 

#Mn0 = · · · = #Mnj
= x. Pick m ≤ j so that there is a clique or a link pointing at Mnm

which is of the 
highest priority (amongst all objects pointing at one of Mn0 , · · · , Mnj

).
Declare #Mn = ∞ for every n ∈ {n0, · · · , nj} −{nm}. We need to reassign the links which were pointing 

at one of these classes Mn that we have just declared to be infinite: If �σ(i) = n ∈ {n0, · · · , nj} − {nm} we 
remove �σ(i) and form a new link �σ(i) = nm. If �(C) = n ∈ {n0, · · · , nj} − {nm} where C is a σ clique, we 
form the link �σ(min C) = nm and remove the clique C.

Phase 5, Establishing new σ links for each σ ⊂ δs. For each σ ⊂ δs and each i ∈ ∪nI
σ
n where i is not a 

member of any σ clique, i is not σ linked and #Ri > i we will place a link �σ(i). If there is already an 
M -class Mn such that #Mn = #Ri we declare �σ(i) = n, otherwise we introduce a new M -class (by picking 
the least n such that Mn has not been used and setting #Mn = #Ri) and declare �σ(i) = n.

Note that ∅′ can tell, for any given class Ri, whether #Ri ≤ i; if so then no link will be formed for Ri

but in this case we know that #Ri is finite.

3.5. Verification

Lemma 3.6. At each point in the construction, for each σ and i, there can be either a unique σ link on Ri, 
or a unique σ clique containing Ri, possibly neither, but never both.

Proof. Straightforward examination of the construction. �
Lemma 3.7. If a link or a clique �0 is of higher priority than another �1, then this stays true until one of 
the two is cancelled.

Proof. Suppose that �0 is associated with σ and �1 with τ . The only non-trivial case to check is when 
σ ⊇ τ ∗ k for some k (or vice versa). In either case �0 remains of higher priority than �1 unless min Iτk
changes. Under (1.3) of the construction, min Iτk changes only if the construction visits left of τ ∗ k, which 
means that σ would be initialized. �
Lemma 3.8. Suppose at some stage s, Ri is σ linked where � = �σ(i), or Ri is part of a σ clique C where 
� = �(C). Then #M�[s] > i.

Proof. Fix i and σ. We argue by induction on s. By Lemma 3.6 at each point of the construction we only 
need to consider either a σ link on Ri or a σ clique C on Ri.

A σ link � = �σ(i) can be formed under Phase (2.3), 4 or 5. When a σ link � = �σ(i) is first formed under 
Phase 5 we certainly have #M� = #Ri > i. If it is formed under Phase 4 then the new target M -class has 
the same size as the old. Lastly if � is formed under (2.3) we apply the induction hypothesis.
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Class Ri will join a σ clique C under (2.1) or (2.2); we can simply check each case (we apply the induction 
hypothesis for (2.1)). Note that �(C) is never retargetted until C is removed. �
Lemma 3.9. Suppose that Mn is a non-empty class. Then at the end of every stage, Mn is finite iff there is 
at least one link or clique pointing at Mn.

Proof. If Mn is declared infinite under Phase 3 or 4 then all links and cliques pointing at Mn are removed 
immediately. No link or clique can afterwards be made to point at the infinite class Mn (the only action 
which creates a new link is in Phase 5, which only targets finite classes).

Now conversely if there are no links or cliques pointing at Mn we would declare #Mn = ∞ in the same 
stage under Phase 3. �
Lemma 3.10. At every point of the construction where Mn �= ∅ we have #Mn ≤ #Ri for every i which is 
involved in a link or a clique pointing at Mn.

Proof. By Lemma 3.9 we can assume that Mn is finite. When Mn is first used under Phase 5 it was set 
equal in size to the only R class pointing at it. Thereafter if a new link or clique is formed pointing at Mn

(2.1) or (2.3) we apply the induction hypothesis. If a clique picks up a new element Rj under (2.2) then 
we also apply induction hypothesis. Under Phase 3 we never grow Mn beyond the minimum size. Under 
Phase 4 we apply the induction hypothesis. Phase 5 is obvious by construction. �
Lemma 3.11. Suppose at stage s of the construction a node τ is visited. If a τ link �τ (i) exists after Phase 3 
is done, then #M�τ (i) = #Ri.

Proof. In Phase 2 of the construction at stage s we act for τ . In particular under (2.4) we ensure that any 
object �τ ′(i′) or �(C) also pointing at M�τ (i) has got #Ri′ ≥ #Ri or size C ≥ #Ri. �
Lemma 3.12. M is an equivalence structure on a subset of the condensation R̂.

Proof. We may assume that M has infinitely many infinite classes. There are two things to check. First, we 
need to verify that no two finite classes of M are equal in size. This is explicitly ensured by Phase 4 of the 
construction.

Second, we need to check that if #Mn < ∞ then there is some R-class with the same size. Assume that 
#Mn = x. Consider a stage s large enough so that the classes Mn and R0, · · · , Rx−1 are all stable. This 
means that for i < x, if Ri is finite then it does not increase in size after stage s and if Ri is infinite then 
#Ri[s] > x. By the construction Phase 3, Lemmas 3.9 and 3.10 we would have that x = #Mn = #Ri for 
some class Ri currently pointing at Mn. By Lemma 3.8, i < x, and since #Ri[s] is stable at stage s, we 
conclude that Ri has size x. �

Lemma 3.12 together with Lemma 3.1 tells us that there is some l such that lims gl(x, s) is a guessing 
function for structure M . (Note that Lemma 3.1 applies even if M has only finitely many finite sizes; 
hence there is no need to explicitly ensure during the construction that M has infinitely many finite 
sizes.)

We define the true node of construction, σtrue, to be the leftmost node with the property that:

• σtrue is visited infinitely often, and
• for every k, σtrue ∗ k is visited finitely often.
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This node σtrue exists because some lims gl(x, s) is a guessing function for the structure M .3

Lemma 3.13. There are only finitely many stages such that the construction visits left of σtrue.

Proof. Note that every node τ where |τ | = |σtrue| must have Π0
3-outcome (if τ is visited infinitely often). 

Thus the set of all nodes which are visited infinitely often is a well-founded tree. Hence if there are infinitely 
many stages s where δs moves left of σtrue then this would contradict the choice of σtrue. �
Lemma 3.14. Suppose that #Ri = ∞. Then there is an s such that for every j ∈ Ξ(i, s), the class Rj is 
infinite.

Proof. Suppose the contrary that for every s there is a number js ∈ Ξ(i, s) such that #Rjs < ∞. 
Pick js ∈ Ξ(i, s) such that #Rjs is least. Define the function f(s, t) = 0 if t < s and equal to 
min {#Rk[t] | k ∈ Ξ(i, s)[t]} if t ≥ s. It is easy to check that f(s, t) is computable and witnesses that 
the function f̂(s) = limt f(s, t) is limitwise monotonic. (The fact that f̂(s) is defined follows from the fact 
that f(s, t) ≤ #Rjs [t] at every stage t after which js is enumerated in Ξ(i, s).)

Fix s and let t0 be a stage after which f(s, t) is stable, say with value c.

Claim 3.15. There is some k ∈ Ξ(i, s) such that #Rk = c.

Proof of claim. Let t1 > t0 be a stage where for every k ∈ Ξ(i, s)[t0], we have #Rk[t1] > c. (If t1 does not 
exist then we are done.) Now let t2 > t1 be such that for every k ∈ Ξ(i, s)[t1], we have #Rk[t2] > c. We also 
require that for every j < c, we have #Rj [t2] > c or Rj finally has size < c. Clearly if t2 does not exist we 
are done, so we assume for a contradiction that t2 exists.

We argue that if a class Rj is added to Ξ(i, s) at some stage u between t1 and t2 then either j < c or 
#Rj [u] > c. Suppose this is false as witnessed by Rj and a least u. At stage u we must have #Rj[u] =
#Rk[u] = c for some k already in Ξ(i, s). Since j ≥ #Rk[u] we see that #Rk must have grown since k
was enumerated in Ξ(i, s). This means that k cannot have been enumerated into Ξ(i, s) after t0 (because 
f(i, −) = c after t0). But if k was enumerated into Ξ(i, s) before t0 then we have #Rk[u] > c by the choice 
of t1. In either case we get a contradiction. Thus we conclude that if a class Rj is added to Ξ(i, s) at some 
stage u between t1 and t2 then either j < c or #Rj [u] > c.

Now at stage t2 we have f(s, t2) = min {#Rk[t2] | k ∈ Ξ(i, s)[t2]} = c. Let j be such that #Rj [t2] = c. 
Then clearly j must have been enumerated in Ξ(i, s) at some stage u where t1 < u ≤ t2. By the preceding 
paragraph we have that either j < c or #Rj [u] > c. Both alternatives are clearly impossible (the first 
alternative contradicts the choice of t2). This contradiction shows that t2 cannot exist and so the claim is 
proved. �

Claim 3.15 says that for every s, f̂(s) is a size of a finite class of the condensation R̂. Furthermore 
by the definition of Ξ(i, s), for every k �= i, k ∈ Ξ(i, s), we must have that the final size of #Rk is no 
smaller than #Ri[s]. By the assumption that #Ri = ∞, the range of f̂ is an infinite subset of the finite 
sizes of the condensation R̂. Since we assumed that R̂ is categorical we obtain a contradiction by applying 
Theorem 4.1(i) and Lemma 3.1. �

Fix a stage strue large enough so that after stage s the construction never visits left of σtrue. We also 
assume that for every j < min Iσtrue

0 such that #Rj < ∞, the class Rj is stable after strue. We also assume 

3 The Recursion Theorem is used here to provide an index for M ; its use can be avoided by directly monitoring each index l
and comparing it against the partially built structure M (this still involves a similar Π0

3 guessing procedure and a similar setup). 
However this latter approach is more cumbersome.
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that strue is large enough so that for every j < min Iσtrue
0 such that #Rj = ∞, the stage strue is larger than 

the s given in Lemma 3.14, and that Rj �= ∅.

Definition 3.16. Let

Ĵ = {j : j < min Iσtrue
0 such that #Rj = ∞} ,

Ξ̂ =
⋃{

Ξ(j, strue) : j ∈ Ĵ
}
,

X0 = max {#Rj | j < min Iσtrue
0 such that #Rj < ∞} .

It is easy to check that Ξ(j, s) ⊇ Ξ(j, s +1) for every j, s, and hence for every k ∈ Ξ̂, the class Rk is infinite. 
We call � a (τ, j) object if � = �τ (j) or if � = �(C) where C is a τ clique such that min C = j. If a link is 
replaced by a new one in a single step (for instance, under (2.1), (2.3) or Phase 4) we consider it to be a 
different object.

Given a (τ, j) object � existing at stage s, we define the origin of � to be the greatest stage s′ < s such 
that a (τ, j) object �′ is formed under Phase 5 at s′.

Lemma 3.17. Fix τ, j. If �0 is a (τ, j) object existing at stage s0 and �1 is a (τ, j) object existing at stage 
s1 > s0 with the same origin, then #M�0 [s0] ≤ #M�1 [s1]. In particular, if �0 has origin s then #M�0 [s0] ≥
#Rj [s].

Proof. Each (τ, j) object � can be traced back to the stage when it was formed. This has to be under steps 
(2.1), (2.3), Phase 4 or Phase 5 of the construction. In the first three cases we are not yet at the origin, and 
can continue with another �′ with the same origin as �. In the first two cases (2.1), (2.2) we in fact have 
� = �′ while in the third case (Phase 4) we also have #M� = #M�′ .

The last statement in the lemma follows easily from the previous, by following �0 to its origin. �
Lemma 3.18. Let � be a (τ, j) object existing at stage t0 > strue, where τ, j is any pair. Suppose that at stage 
t0, every i0 pointing at (or linked to) M� is in Ξ̂. Then for every i, if i is involved in an object made to 
point at M� after stage t0 (before � is killed), we will also have i ∈ Ξ̂.

Proof. i is made to point at M� when a new (τ ′, i) object �′ involving i is formed such that M� = M�′ , or 
when i joins a clique. Let’s consider each case separately.

The new link �′ can only be formed under Phase 4 or Phase 5 of the construction. Note that steps (2.1) 
and (2.3) are not possible since no object involving i was pointing at M� at t0. So suppose �′ was formed 
under Phase 4 or 5 at stage t > strue. By Phase 3 of the construction, there is some class i0 pointing at M�

such that #Ri0 = #M�. Thus #Ri[t] ≥ #M�[t] = #Ri0 [t], and by Lemma 3.8 we have that #Ri0 [t] > i. 
Since i0 is already a member of Ξ̂ at stage t, we conclude by Definition 3.5 that i ∈ Ξ̂.

Next we assume that i joins a clique C pointing at M� at stage t > strue under (2.1) or (2.2). This means 
that #Ri[t] ≥ #Ri0 [t] for some class i0 already pointing at M�. Now by the construction and by Lemma 3.10
we see that i < #M�[t] ≤ #Ri0 [t]. Since i0 is already a member of Ξ̂ at stage t, we conclude that i ∈ Ξ̂. �
Lemma 3.19. Let �0 be a (τ, j) object existing at stage t0 > strue, and �1 be a (τ, j) object formed after �0
with the same origin as �0, where τ, j is any pair. Suppose that at stage t0, every i0 pointing at M�0 is in Ξ̂. 
Then between the time when �1 is formed until the time when �1 is killed, if i is pointing at M�1 then i ∈ Ξ̂.

Proof. We fix �0 and apply induction on the formation of �1. �1 is formed under (2.1), (2.3) or Phase 4. In 
the first two cases (2.1), (2.3) it is easy to see that Lemma 3.19 follows by applying a combination of the 
induction hypothesis, Lemma 3.18 and Definition 3.5.
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Let’s assume that �1 is formed after �0 via Phase 4. Now �1 must have been redirected from another (τ, j)
object �′1, where �′1 was replaced by �1 (note that �′1 could have been a τ clique). Let k0 be pointing at M�′1

and such that #Rk0 = #M�′1 . By induction hypothesis for �′1 we have k0 ∈ Ξ̂. However in order for Phase 4 
to apply and produce �1 we must have #M�1 = #M�′1 which means that for every i pointing at M�1 we 
have #Ri ≥ #Rk0 . (Note that this includes all the classes pointing at some Mn, where #Mn = #M�1 and 
which is redirected to point at M�1 .) By Lemma 3.8, i < #Rk0 and so we have i is in Ξ̂. So every class i
pointing at M�1 is in Ξ̂. �
Lemma 3.20. Let j ∈ Ξ̂ and τ ⊆ σtrue. For almost every (τ, j) object � we have that i ∈ Ξ̂ if i is also (involved 
in a link or clique) pointing at M� at the same time as �.

Proof. Fix τ and j as in the statement of the lemma. For ease of notation we assume that at stage strue, 
j has entered Ξ̂ and Rj has grown in size since it entered Ξ̂. We let � range over all (τ, j) objects. We assume 
that there are infinitely many (τ, j) objects (otherwise it is trivial). Suppose �0 is a (τ, j) object formed at 
t > strue under Phase 5. Then #Rj[t] = #M�0 [t] and by Definition 3.5 and Lemma 3.10 any i also pointing 
at M�0 at t will be enumerated in Ξ̂ at t. Now if some �1 is formed after strue under Phase 5, then almost 
every � formed after strue has the same origin as an �1 formed under Phase 5, and in this case we apply 
Lemma 3.19 to obtain Lemma 3.20.

Suppose that at the end of Phase 3 at some stage t > strue in which τ is visited, we have a τ link 
�0 = �τ (j) in existence. By Lemma 3.11 we have #M�0 = #Rj . This means that at the end of Phase 3, any 
class i pointing at M�0 must be in Ξ̂. Applying Lemma 3.19, we also obtain Lemma 3.20.

So finally we only need to consider the situation where:

• No � is formed under Phase 5 after strue.
• At the end of Phase 3 during a stage t > strue in which τ is visited, we have a (τ, j) object in existence 

which must be a τ clique.

We show that this situation is impossible. These two assumptions imply that no (τ, j) object �0 can be 
formed under (2.3) at t > strue: Otherwise this �0 must remain after its formation until the end of Phase 3 
in the same stage t, which contradicts the second assumption above. This means that the (τ, j) objects 
formed after strue are formed alternately by (2.1) and Phase 4.

Notice that (2.1) must be applied infinitely often, because otherwise the only (τ, j) objects which can 
eventually exist are τ links, and since τ is visited infinitely often we get a contradiction to the second 
assumption. We claim that there is no stage t > strue in which τ is visited and j is determined to be eligible 
for (2.1) with respect to τ and M�τ (j)[t] for the qth time for some odd q: If there is such a stage t then 
the link �τ (j) must remain until the end of Phase 3 of stage t, contradicting the second assumption above. 
Since no such stage t exists, each time j is determined to be eligible for (2.1) after stage strue, it has to 
be with respect to some M�τ (j) which was first determined eligible before stage strue. Since there are only 
finitely many such M -classes, one of them has to be applied to (2.1) infinitely often, which means that it 
has to be determined eligible an odd number of times after strue, contradicting an earlier statement in this 
paragraph. This final contradiction ends the proof of Lemma 3.20. �
Lemma 3.21. Given any x, j and τ ⊆ σtrue such that #Rj > x, there are only finitely many (τ, j) objects �
such that when � is formed, #M� ≤ x.

Proof. Suppose there are infinitely many (τ, j) objects � with #M� ≤ x. Only steps (2.1), (2.3), Phase 4 
and 5 of the construction will cause a new (τ, j) object � to be formed, so infinitely many � with #M� ≤ x

will have to be formed at one of these steps. We say that (2.1), (2.3), Phase 4 or Phase 5 applies at stage s
if this is the situation under which an � is formed at a stage s.
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First observe that only finitely many � can be formed at Phase 5 (i.e. Phase 5 applies finitely often), 
because otherwise for every � formed late enough under Phase 5, we have #M� = #Rj > x, and we can 
apply Lemma 3.17. So we may now assume that every (τ, j) object formed after strue have the same origin.

We proceed similarly as in the proof of Lemma 3.20. Suppose that at the end of Phase 3 at some 
stage t > strue in which τ is visited, we have a τ link �0 = �τ (j) in existence. By Lemma 3.11 we have 
#M�0 = #Rj > x, and we can again apply Lemma 3.17. Thus we will only need to consider the situation 
where:

• No � is formed under Phase 5 after strue.
• At the end of Phase 3 at each stage t > strue in which τ is visited, we have a (τ, j) object in existence 

which is a τ clique.

The rest of the proof follows exactly the proof of Lemma 3.20. �
Lemma 3.22. For every i ≥ min Iσtrue

0 such that max{i, X0} < #Ri, one of the following holds:

• i ∈ Ξ̂.
• There is a stable σtrue link �σtrue(i).
• There is a stable σtrue clique C containing i.

Proof. We proceed by induction on i ≥ min Iσtrue
0 . Assume the statement of the lemma holds for every 

k < i. We consider a stage s∗ > strue large enough so that for each k such that min Iσtrue
0 ≤ k < i and 

#Rk > k, X0, if k ∈ Ξ̂ then Rk has grown in size since k was enumerated in Ξ̂, and if k /∈ Ξ̂ it is already 
involved in a stable link or clique. Suppose that there is no stable σtrue link and no stable σtrue clique C
containing i. We argue that i ∈ Ξ̂.

Since #Ri > i there are infinitely many stages where i is involved in a σtrue object. Suppose that there 
are infinitely many stages where i is made to join a σtrue clique under (2.1) or (2.2) where k = min C < i. By 
Lemmas 3.8 and 3.10, #Rk > k. Since these cliques have to be removed after i joins (else i is permanently 
part of a σtrue clique), we have that infinitely many (σtrue, k) cliques are formed under (2.1). In that case 
it is straightforward to verify that #Rk = ∞ > X0 and we may apply the induction hypothesis for k. 
By the choice of s∗, we have that k ∈ Ξ̂. Since there are necessarily infinitely many (σtrue, k) cliques, by 
Lemma 3.20 we will also have i ∈ Ξ̂.

So we may now assume it is the case that almost every σtrue object which i is involved in is a (σtrue, i)
object. Since every outcome of σtrue is visited finitely often, (1.2) can only apply finitely often to remove a 
(σtrue, i) object. So each (σtrue, i) object will have to be removed under (2.1), (2.3), (2.4) or Phase 4.

Case (2.4). We first consider (2.4). Suppose (2.4) applies infinitely often to remove a (σtrue, i) object. Each 
time (2.4) applies there is a (τ, k) object �′ and a (σtrue, i) object � such that M�′ = M� and �′ is of higher 
priority. Let’s begin by fixing a (τ, k) object �′ which is never removed, and suppose there are infinitely 
many stages such that M� = M�′ , where � is a (σtrue, i) object of lower priority, and where (2.4) applies to 
remove �.

Suppose that #M�′ = x < ∞. By Lemmas 3.10 and 3.21, #Ri = x. This means that (2.4)(ii) and 
(2.4)(iii) cannot apply. If (2.4)(i) were to apply then we would have k < i and τ = σtrue and �′ = �σtrue(k), 
such that #Rk > x. By Lemma 3.11 this link �σtrue(k) must be killed at every such stage where (2.4)(i) 
applies. So (2.4)(i) cannot apply infinitely often for �′.

Finally we consider (2.4)(iv). If this were to apply then �′ = �τ (k) is a link and #Rk > x. This follows from 
the fact that #Ri = x and if C is a (σtrue, i) clique pointing at M�′ then size C = x. Again by Lemma 3.11
this link �′ = �τ (k) must be killed at every such stage where (2.4)(iv) applies (since τ is visited at each such 
stage). Hence (2.4)(iv) cannot apply infinitely often for �′ as well. So the case M�′ < ∞ is impossible.
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Claim 3.23. Fix a class My such that #My = ∞, and assume that there are infinitely many stages such that 
My = M� for some (σtrue, i) object �. If infinitely many of these objects � are removed under (2.4)(iv) then 
i ∈ Ξ̂.

Proof of claim. Suppose that (2.4)(iv) is applied infinitely often in which some (τ ′, k′) link �τ ′(k′) kills some 
� where M� = My. Since τ ′ has to be visited infinitely often and be of higher priority, there are only finitely 
many possibilities for τ ′, namely, τ ′ ⊆ σtrue, so we fix a τ ′ which is infinitely often responsible.

If τ ′ = σtrue then we must have k′ < i such that M�τ′ (k′) = M� = My infinitely often. Hence #Rk′ =
∞ > k′, X0 and so we can apply the induction hypothesis for k′, to obtain that either k′ ∈ Ξ̂ or that k′ is 
already involved in a stable σtrue link or clique. Since gτ ′(y) = gσtrue(y) is eventually a stable ∞, therefore, 
if k′ is already involved in a stable σtrue link or clique at s∗ then this stable object must be a σtrue clique, 
which means that the link �τ ′(k′) cannot exist to kill � infinitely often. Hence, we see that k′ cannot be 
involved in a stable object at s∗, which means, by the choice of s∗, that infinitely many (σtrue, k′) objects 
must exist during the construction and that k′ ∈ Ξ̂. By Lemma 3.20 we will also have i ∈ Ξ̂.

On the other hand suppose that τ ′ ⊂ σtrue, then k′ < min Iσtrue
0 . Since #Rk′ ≥ #M�τ′ (k′) = ∞, hence 

k′ ∈ Ĵ and so k′ ∈ Ξ̂. We would like to apply Lemma 3.20 to conclude that i ∈ Ξ̂, unfortunately this cannot 
be done unless we know that there are infinitely many different (τ ′, k′) objects. Suppose this is not the case; 
so there is a final stable link �τ ′(k′) which is never removed. By Lemma 3.11, and since τ ′ is visited infinitely 
often, we see that at some large stage t0 > s∗, we have that every i0 pointing at M�τ′ (k) is also in Ξ̂. By 

Lemma 3.18 we conclude that i ∈ Ξ̂. �
Now we suppose that #M�′ = ∞. Since σtrue is the true node, we must eventually have the stable value 

gσtrue(�′) = ∞. By assumption there are infinitely many stages such that the (τ, k) object �′ kills some 
(σtrue, i) object under (2.4). If infinitely many of these steps are under (2.4)(iv) then we apply Claim 3.23
to get i ∈ Ξ̂. Suppose only finitely many of these are under (2.4)(iv). This means that �′ will infinitely often 
remove some � under (2.4)(i), (ii) or (iii). We claim that there are infinitely many stages in which a (σtrue, i)
clique �(C) is pointing at M�′ : Suppose not. Since �′ will infinitely often remove some � under (2.4)(i), (ii) or 
(iii), this means that there are infinitely many stages in which σtrue is visited and some link �σtrue(i) exists 
and is pointing at M�′ (note that this link �σtrue(i) cannot be formed at step (2.3) of the same stage, because 
gσtrue(�′) = ∞). By the assumption that almost every σtrue object that i is involved in is a (σtrue, i) object, 
we see that i never joins a σtrue clique with least element < i. Hence eventually we must apply (2.1) to get 
a (σtrue, i) clique C such that �(C) is pointing at M�′ , a contradiction.

Thus there must be infinitely many stages in which a (σtrue, i) clique �(C) is pointing at M�′ . Each clique 
has to be removed after it is formed, since i is never part of a stable link or clique; how can each such clique 
be removed? It is easy to see that out of the possibilities (2.1), (2.3), (2.4) or Phase 4, only (2.4)(iv) is 
possible. (Phase 4 is not possible because otherwise �′ is destroyed along with �(C).) In this case we apply 
Claim 3.23 to get i ∈ Ξ̂.

We now conclude that if there exists some (τ, k) object �′ which is never removed, and which infinitely 
often removes some (σtrue, i) object under (2.4), we have that i ∈ Ξ̂. Since there are only finitely many �′

formed before stage s∗, we may henceforth assume that each �′ responsible for killing some � under (2.4) is 
formed after s∗.

Let Y be such that i ∈ Iσtrue
Y . Since there are only finitely many pairs (τ, k), τ to the left of σtrue ∗ (Y +1), 

where a (τ, k) object is formed during the construction, we now assume that s∗ is large enough so that 
after s∗:

• If some (τ, k) object is formed after s∗, where τ is to the left of σtrue ∗ (Y + 1), then there are infinitely 
many different (τ, k) objects formed during the construction.



872 R. Downey et al. / Annals of Pure and Applied Logic 166 (2015) 851–880
• No (τ, k) object τ to the left of σtrue ∗ (Y + 1) is removed under (2.4) after s∗. (This is because τ is 
never again visited and so if enough (τ, k) objects are removed under (2.4) there will be no further (τ, k)
objects.)

Claim 3.24. No (τ, k) object is formed after s∗, where τ is to the left of σtrue ∗ (Y +1) and k is any number.

Proof of claim. We say that (τ, k) is a stable pair if either τ is to the left of σtrue ∗ (Y + 1) or τ ⊆ σtrue and 
k < min IτY0

where τ ∗ Y0 ⊆ σtrue ∗ Y . By examining the proof of Lemma 3.13, we see that since we never 
visit left of a stable pair, the priority ordering between (τ, k) objects (for stable pairs (τ, k)) is completely 
determined by the pair (τ, k) at stage s∗. Furthermore it is straightforward (though tedious) to check that 
if there is a (τ ′′, k′′) object of higher priority than a (τ, k) object for a stable pair (τ, k), then (τ ′′, k′′) is also 
a stable pair.

For a contradiction let’s fix a pair (τ, k) where τ is left of σtrue ∗ (Y + 1) with an object formed after s∗. 
By the choice of s∗, there are infinitely many (τ, k) objects formed after s∗. Each (τ, k) object must be 
formed under Phase 4 (all other actions require τ to be visited by the construction). Let s∗ < t0 < t1 < · · ·
be the stages where this happens, and let Mni

be the class which the new (τ, k) object formed at stage ti is 
made to point at. Note that at every stage strictly in between ti and ti+1, there is a (τ, k) object pointing 
at Mni

, and at stage ti+1 this (τ, k) object � will get replaced by a new one pointing at Mni+1 . Each time 
this happens there is a (τ ′, k′) object �′ which was already pointing at Mni+1 before the action at ti+1. Let 
us refer to this scenario as �′ injuring � at ti+1.

Since (τ, k) is a stable pair, by the first paragraph above, (τ ′, k′) must also be a stable pair. It is straight-
forward to check that there are only finitely many stable pairs which has an associated object during the 
construction. So, let’s fix a stable pair (τ ′, k′) infinitely often responsible for injuring some �. Since the 
priority of stable objects are determined by the pair, we fix a (τ ′, k′) of the highest priority amongst the 
stable pairs infinitely often injuring some �.

We begin by supposing that τ ′ is to the left of σtrue ∗ (Y + 1), and consider that the (τ ′, k′) object �′

injures some � at ti. Since τ ′ is never again visited, observe that �′ cannot be removed strictly in be-
tween ti and ti+1: It cannot be removed by (2.4) by the assumptions on s∗, and it cannot be removed by 
Phase 4 because otherwise � will be removed before ti+1. Thus at stage ti+1 a new �τ ′(k′) will be formed 
pointing at Mni+1 . Continuing this way, we see that at every stage after ti there is a (τ, k) object � and 
a (τ ′, k′) object �′ such that M� = M�′ = Mnj

for some j. This is a contradiction because some (τ ′, k′)
object �′ must after stage ti injure some �, and the two cannot point at the same M -class before the 
injury.

Thus we must have τ ′ ⊆ σtrue, and we again consider that a (τ ′, k′) object �′ injures some � at ti. By the 
argument in the preceding paragraph, there must exist infinitely many j > i such that a (τ ′, k′) object �′ is 
removed strictly between tj and tj+1.

This case is a bit trickier because τ ′ can now be visited by the construction infinitely often. Let’s examine 
the possibilities for �′ to be removed strictly between tj and tj+1. Phase 4 is again not possible because 
otherwise � will be removed before tj+1. (2.3) is possible but we immediately replace �′ with another (τ ′, k′)
object pointing at the same M -class. If (2.1), (2.2) or (2.4) removes �′ then �′ is replaced by another higher 
priority object pointing at the same M -class. So we see that at each such j there is a (τ ′′, k′′) object �′′ (of 
equal or of higher priority than �′) such that M�′′ = M�′ = M� = Mnj

.
Since �′′ has higher priority than �, we see that (τ ′′, k′′) must also be a stable pair. Now if �′′ itself was to 

be removed before stage tj+1 then we would have yet another stable pair (τ ′′′, k′′′) with an object pointing 
at Mnj

of the same or of higher priority than �′′. In any case we must have the situation that just before 
the action Phase 4 at tj+1, there is an object �̂ pointing at Mnj

where �̂ is of equal or of higher priority than 
(τ ′, k′). This means that in order for Mnj

to be killed by Mnj+1 there must already be an object pointing 
at Mnj+1 of higher priority than �̂ (and higher than (τ ′, k′) as well) injuring some �. Since this happens for 
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infinitely many j, we get a contradiction to the assumption that (τ ′, k′) has the highest priority amongst 
all stable pairs which infinitely often injures some �. �
Claim 3.25. For each τ, k and i, suppose there are infinitely many stages such that M� = M�′ , where � is a 
(σtrue, i) object and �′ is a (τ, k) object of higher priority formed after s∗, and τ ⊆ σtrue. Then i ∈ Ξ̂.

Proof of claim. We fix a τ ⊆ σtrue and a k such that there are infinitely many stages where a (τ, k) object �′
points at the same class as an �.

If τ = σtrue then we must have k < i such that M�′ = M� infinitely often. If #Rk = y < ∞ then we 
claim that #Ri ≤ y: If not then #Ri > y, and by Lemma 3.21 we see that only finitely many � can have 
#M� ≤ y. However since there are infinitely many different (σtrue, i) objects �, we get a contradiction by 
applying Lemma 3.10 to get #M� = #M�′ ≤ y. Hence we see that #Rk > X0, k (since #Ri > X0, i by 
assumption). Thus we may apply the induction hypothesis for k. Since �′ is formed after s∗, by the choice 
of s∗ there are infinitely many (τ, k) objects and k ∈ Ξ̂. Hence by Lemma 3.20 we will have i ∈ Ξ̂.

On the other hand if τ ⊂ σtrue then k < min Iσtrue
0 . If #Rk = ∞ then k ∈ Ĵ and k ∈ Ξ̂. Since strue is 

large enough, we may assume that since some (τ, k) object is formed after strue, there will be infinitely many 
different (τ, k) objects during the construction. Then by Lemma 3.20 we have i ∈ Ξ̂. So we must instead 
have #Rk = y < ∞. Again by Lemmas 3.10 and 3.21 we see that #Ri ≤ y = #Rk. But this is impossible 
since #Ri > X0. �

By Claim 3.25 we may assume that almost every �′ responsible for killing some � under (2.4) is a τ
object for some τ to the left of σtrue ∗ (Y + 1). Even though there are infinitely many nodes to the left of 
σtrue ∗ (Y + 1), only finitely many of them are ever visited by the construction, so we fix a τ to the left of 
σtrue ∗ (Y + 1) infinitely often responsible for killing � under (2.4), and fix an associated k. Since any object 
responsible for killing � under (2.4) is assumed to be formed after s∗, we get a contradiction by applying 
Claim 3.24.

This ends the analysis for case (2.4). Let’s assume that (2.4) applies finitely often and we now consider 
the remaining cases (2.1), (2.3), Phase 4.

Case 4. Suppose Phase 4 applies infinitely often to remove a (σtrue, i) object �. Between two consecutive 
stages t0 < t1 where Phase 4 is applied, we note that only (2.1) and (2.3) can be applied to remove �. Both 
of these actions leave the target M -class unchanged. Hence the (σtrue, i) object formed by Phase 4 at t0 and 
the (σtrue, i) object being removed at t1 will both point at the same M -class. Since there are only finitely 
many objects �′ which are formed before stage s∗, this means that at almost every instance where Phase 4 
applies to remove some �, we have M� = M�′ , where � is a (σtrue, i) object and �′ is a (τ, j) object of higher 
priority formed after s∗. If infinitely many �′ are associated with a τ ⊆ σtrue then we apply Claim 3.25 to 
see that i ∈ Ξ̂. Since Phase 4 applies infinitely often we assume that infinitely many �′ are (τ, j) objects for 
some τ to the left of σtrue ∗ (Y + 1). Since �′ is formed after s∗ we get a contradiction to Claim 3.24.

Case (2.1), (2.3). Now we assume that (2.4) and Phase 4 apply finitely often. Hence with finitely many 
exceptions every (σtrue, i) object is pointing at the same M -class My. Since gσtrue(y) is eventually stable, it 
is also impossible for either (2.1) or (2.3) to apply infinitely often.

This final contradiction shows that either (2.4) or Phase 4 must apply infinitely often, and hence i ∈ Ξ̂. 
This concludes the proof of Lemma 3.22. �

Finally we will demonstrate that R = {Ri}i∈ω is Δ0
2-categorical. Given any class Ri where i > min Iσtrue

0
we use ∅′ to first check if #Ri > max{i, X0}. Note that X0 is a fixed constant with respect to i. If so we 
proceed to check if i ∈ Ξ̂ or if there is a stable σtrue link or clique involving i. At least one of the two 
alternatives is guaranteed to hold by Lemma 3.22. Note that Ξ̂ is a fixed c.e. set. If i ∈ Ξ̂ then #Ri = ∞. 
Otherwise we apply the following:
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Lemma 3.26. If i is involved in a stable σtrue link or σtrue clique with pointer �, then #Ri < ∞ if and only 
if gσtrue(�) = f .

Proof. Since σtrue is the true node, gσtrue(�) = f iff #M� < ∞. Thus if gσtrue(�) = f then i must be involved 
in a stable σtrue link � = �σtrue(i). By Lemma 3.11 and the fact that σtrue is visited infinitely often, we see 
that #Ri < ∞.

On the other hand if gσtrue(�) = ∞ then #M� = ∞. By Lemma 3.10 we see that #Ri = ∞. �
4. Categoricity of sets

Recall that an infinite Σ0
2-set X is categorical if E(X) is Δ0

2-categorical. Fact 2.2 implies that E(X) has 
a computable copy if and only if X is Σ0

2. We follow Convention 2.5 and consider only infinite Σ0
2 sets. By 

Proposition 2.6, a Σ0
2 set X is categorical if and only if for every computable presentation of X there is 

some g ≤T ∅′ telling the sizes of classes in this copy.

4.1. Comparing categoricity to other known properties

As we have seen, categorical sets are closed downwards under ⊆ amongst Σ0
2 sets. Since ω is limitwise 

monotonic (hence, is not categorical), categorical sets are not closed upwards under ⊆, by Theorem 4.1 below. 
The second half of the theorem shows that, however, limitwise monotonicity fails to describe categorical 
sets in general. The simple result below is based on ideas contained in [7] and [21].

Theorem 4.1.

(1) If an infinite Σ0
2 set X is limitwise monotonic then X is not categorical.

(2) There exists an infinite Δ0
2 set which is not categorical and not limitwise monotonic.

Proof. (1) Recall that an infinite limitwise monotonic set is the range of some injective limitwise mono-
tonic function. Suppose X is infinite and limitwise monotonic, and let f be an injective l.m.f. such that 
range(f) = X. By Proposition 2.6 it is sufficient to build a computable copy of E(X) in which the size of 
the classes (the function #) is not dominated by any ∅′-computable function. We use the limit lemma to fix 
an effective listing (ge)e∈ω of all approximations to partial ∅′ functions. We construct a copy M of E(X)
which satisfies the requirements:

Ry : ∃![x] ∈ M(#[x] = f(y));
Qe : ge(3e) ↓⇒ ge(3e) < #[3e] < [∞].

There is also a global requirement which says M ∼= E(X).
The strategy for Qe is to monitor ge(3e). If ge(3e) ↓ and is greater or equal to the current size of 

the class [3e], then we increase the size of [3e] using a fresh z so that fs(z) is greater than the sizes 
of all equivalence classes introduced so far. More specifically, from this stage on we promise #[3e] =
f(z).

The strategy for Ry introduces, if needed, a new class and declares its size to be f(y). In the construction, 
if Ry is active for the first time, Ry picks a new fresh class of the form [3j]. At a later stage, Ry can be 
injured by Qj . If this happens, Ry picks a new fresh x = 3k + 1 and declares #[3k + 1] = f(y).

In the construction, we build E(X) by stages. We make [3k + 2] infinite for every k, and we also let the 
strategies act according to their instructions. The verification is not difficult and is left to the reader.
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(2) As in the proof of (1), we fix an effective listing (ge)e∈ω of approximations to partial Δ0
2 functions. 

We construct a computable representation of an equivalence relation of the form E(X) and satisfy:

Pe : λx supz ϕe(x, z) is total and range (supz ϕe(x, z)) is infinite ⇒ (∃y) supz ϕe(y, z) /∈ X;
Qi : gi is total → (∃x) gi(x) < #[x] < ∞;
Rk : X contains at least k elements.

The strategy for Pe picks y such that supz ϕe(y, z), if it exists, is larger than 2e (we will need more when 
we put the strategies together, see below). Notice that if range (supz ϕe(x, z)) is infinite, then the strategy 
will eventually pick such an y. At stage s, the strategy keeps supz ϕe(y, z)[s] outside X increasing the size 
of [x] to a larger finite value for every x ≤ s such that #[x]s = supz ϕe(y, z)[s].

The Q-strategy is similar to the one in the first part of the theorem. The witness does not have to be 
3e and is picked by a strategy when it is initialized. The strategy for Qi picks a fresh large x and makes 
#[x] > 2e. The strategy increases #[x] to be a larger number if necessary (we do not have a l.m.f. to find a 
safe spot, as in (1)).

The strategy for Rk introduces a class of size k, if this size is not restrained by P -strategies and is not 
currently among the sizes in the equivalence structure we are building.

The P and Q strategies have outcomes {∞, fin}. We put the P and Q strategies onto a tree of strategies. 
In the construction, every strategy acts according to the outcomes of the strategies above it. If there is a 
Pe-strategy with outcome ∞ above a Qi-strategy, then the Qi-strategy waits for supz ϕe(x, z) to grow much 
larger than gi,s(z) (notice that Qi may wait forever in the case when gi(z) tends to infinity or diverges, 
but this is fine). Every P -strategy will impose its restraint larger than the sizes of classes controlled by 
Q-strategies with finitary outcomes above it, and will impose its restraint to be less than the sizes of the 
classes controlled by higher priority Q-strategies above it having infinitary outcomes. �

Downey and Melnikov [12] showed that semi-lowness captures Δ0
2-categoricity of completely decompos-

able groups. In the next result we use limitwise monotonicity and Theorem 4.1 to find an interesting relation 
between categorical sets and semi-low1.5 sets. Recall that a set S is semi-low1.5 if {x : Wx ∩S finite} ≤1 ∅′′. 
We can equivalently replace ∅′′ by Fin = {e : dom(ϕe) finite}.

Theorem 4.2.

(1) Each infinite d.c.e. semi-low1.5 set is not categorical.
(2) Some infinite superlow (hence semi-low1.5) set is categorical.

Comments on the proof. We prove the first part of the theorem by showing that each d.c.e. semi-low1.5 set 
is limitwise monotonic, this fact is of an independent interest for us. The second half of the theorem is done 
by a direct construction which uses the usual lowness requirements.

Proof. (1). For the first half of the theorem, fix a d.c.e. semi-low1.5 set S and a total computable p such 
that We ∩S is finite if and only if dom(ϕp(e)) is finite. We are building a limitwise monotonic function f(x)
using a c.e. set Wg(x) whose index g(x) is given by the recursion theorem. At stage s we will have fs(x), 
and then we will set f(x) = lims fs(x).

Suppose fs(y) has already been defined for each y < x. In the following, we suppose that fs(y) has 
already reached their final values for every y < x (we restart the procedure below, otherwise).

Consider the infinite d.c.e. set

Sx = {v ∈ S : v > fs(x− 1)} = Ux − Vx,
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where Ux and Vx are some c.e. sets. Do the following:

(1) Start by enumerating all elements of Ux into Wg(x) and wait for dom(ϕpg(x)) to grow.
(2) As soon as dom(ϕpg(x)) increases at a stage t, stop enumerating elements from Ux into Wg(x) and set 

ft(x) = minSx,t which is the least z ∈ Ux,t that has not been yet enumerated into Vx,t. (Without loss 
of generality, we may assume such a z exists, otherwise wait until it shows up.)

(3) If the current value of f enters Vx (thus leaves S permanently), pick the next largest z′ currently in 
Wg(x),t which has not yet entered Vx and set ft′(x) = z′. Then repeat the same with the next largest 
z′′ if z′ leaves S, etc.

(4) If at some stage all elements from Wg(x),t leave S, return to 1 above and repeat.

Notice that we cannot infinitely loop through (1) for in this case Wg(x) ∩ S is finite but dom(ϕpg(x)) is 
infinite. Thus, there exists a stage s0 and an element c ∈ S such that fs0(x) will be permanently set equal 
to c at stage s0. Also, notice that s ≤ t implies fs(x) ≤ ft(x), and thus the function f = lims fs is total and 
limitwise monotonic. Finally, the construction guarantees f(x) < f(x + 1), for every x, and therefore f is 
injective. (Note that a Σ0

2-set that contains an infinite limitwise monotonic subset is limitwise monotonic, 
see e.g. [22].)

(2). Let (Zi)i∈ω be the effective listing of all partial computable models in the language of one binary 
predicate symbol. We are constructing an infinite Δ0

2 set X so that the following requirements are met:

Le : ∃∞sΦX
e (e)[s] ↓⇒ ΦX

e (e) ↓;
Rj : Zj represents E(X) ⇒ ∃ total gj ≤T ∅′ representing # in Zj .

We split Rj further into sub-strategies, Rj,k:

Rj,k : gj guesses #[k] in Zj correctly.

Remark: The construction will not be using a tree of strategies, for if we were using many versions of Rj,k, 
we would not be able to define gj without an oracle for ∅′′. In fact, it will be a finite injury construction. 
We also note that the lowness requirements Le will ensure super-lowness if we can bound the number of 
injuries to each Le by a computable function.

The strategy for Rj,k:

• Set a threshold for (the size of) [k], a large and fresh number ≥ (〈j, k〉 +1)2 never seen in the construction 
before;

• At a stage t, keep gj,t(k) = #t[k] in Zj unless [k] passes its threshold, in the latter case set gj,t(k) = ∞;
• If [k] has passed its threshold at stage t, and currently #t[k] ∈ Xt, then extract x from X.

The strategy for Le is a modification of the standard lowness strategy. More specifically, Le attempts to 
preserve the computation ΦX

e (e)[s] by restraining X on the use of Φe(e)[s]. It can also put elements back 
to X, for the sake of restoring a computation of Φe which was previously seen but then was destroyed due 
to actions of higher priority R-substrategies. It does so unless this action injures higher priority strategies. 
Once the computation is restored, the strategy preserves that restored computation.

Construction. At stage 0, we set X0 = ω. At stage s, we let the strategies act according to their instructions.

Verification. By induction, we show that every Le is met. In fact, we show that there exists a stage, after 
which ΦX

e (e)[s] ↓ implies ΦX
e (e) ↓. There are only finitely many R-substrategies that can potentially injure 

a computation of ΦX
e (e). Suppose that after stage s all higher priority R-substrategies that correspond to 
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finite witnesses are never active again, and suppose also that all higher priority L-strategies already passed 
their respective stages of stable evidence. If there is no t ≥ s at which ΦX

e (e)[t] ↓, then there is nothing 
to prove. Otherwise, suppose ΦX

e (e)[t] ↓ for t ≥ s. There exists a stage t′ ≥ t at which all higher priority 
R-strategies having infinitary behavior (i.e., having infinite classes as their witnesses) have their respective 
witnesses of sizes greater than the use of ΦX

e (e)[t] ↓. The strategy for Le then restores the computation by 
returning missing elements into X. This computation will never be injured again. It is also easy to see that 
a bound for the number of injuries to each Le can be computed in advance.

It is now straightforward to verify that Re,j is met, for every e, j. Since the strategy extracts elements 
from X, the respective structure Zj must demonstrate it is isomorphic to E(X) by growing the class. It is 
important that the substrategy can lift its threshold only finitely many times. Consequently, it eventually 
defines an astable threshold, and thus the whole process is Δ0

2. Thus, gj ≤ ∅′, as desired. It is also clear 
that the set is infinite. �
Remark 4.3. It is not difficult to show that some d.c.e. set is categorical. We can modify the R-strategy so 
that whenever it extracts x from X it immediately puts (x − 1) back to X. The number x will never be put 
into X again. It is now sufficient to split ω into large enough intervals, and let “labels” move downwards 
within the intervals. We conclude that both conditions (being d.c.e. and being semi-low1.5) are essential in 
Theorem 4.2(1).

Remark 4.4 (Cholak). In Theorem 4.2(1), semi-low1.5 can be replaced by the “semilow2 and the outer-
splitting property”, with essentially the same proof.

4.2. Degrees bounding categoricity

Although Theorem 4.1(2) implies that limitwise monotonicity fails to describe categorical sets, we would 
like to compare limitwise monotonic sets and categorical sets further. It is possible to describe c.e. degrees 
bounding infinite sets which are not limitwise monotonic:

Theorem 4.5. (Downey, Kach, and Turetsky [14].) A c.e. degree a computes an infinite set which is not 
limitwise monotonic if and only if a is high.

Since ω is limitwise monotonic, S⊕ω is not categorical for a categorical set S. Thus, similarly to limitwise 
monotonicity, being categorical is not a degree-invariant property. Note that the property of being not
categorical is, like being a limitwise monotonic set, closed upwards under ⊆. There are more similarities of 
technical nature which occur when dealing with non-categorical sets. Our intuition is that non-categoricity 
is a non-uniform version of limitwise monotonicity. The intuition is: E(X) is not Δ0

2-categorical if (and 
only if) we can eventually provide each diagonalization substrategy with a sufficiently large class which will 
monotonically grow to a size v ∈ X. If X is limitwise monotonic, then it can be done with all uniformity 
and at once, but in general it does not have to be like that. This difference between non-categoricity and 
limitwise monotonicity is so subtle that c.e. degrees cannot distinguish them:

Theorem 4.6. For a c.e. degree a, the following are equivalent:

(1) a is high.
(2) There is some function f ≤T a such that for every computable sequence of total computable func-

tions {pe}, there is a computable function g such that for each e, we have f(x) > pe(x) for every 
x > g(e).

(3) There exists some infinite set X ≤T a such that X is categorical.
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Proof. (3) ⇒ (1): Every infinite set computable from a non-high c.e. degree is limitwise monotonic and thus 
non-categorical, see Theorems 4.1 and 4.5.

(1) ⇒ (2): Let {pe} be a computable sequence of total computable functions. Let P (x) =
∑

e≤x pe(x), 
where P is total computable. Then any dominant function computable from a must dominate P and hence pe
for every e. Fix (non-uniformly) a number x0 such that f(x) > P (x) for every x > x0. Let g(e) = max{x0, e}.

(2) ⇒ (3): Fix a Turing functional Φ and a c.e. set A such that f = ΦA, where f satisfies (2). Fix 
an enumeration {As} of A as well as an enumeration {Ci

n}i,n∈ω of all uniformly c.e. sets. (Hence each 
computable equivalence relation is identified with some member of this sequence.) We may assume that at 
every stage s, ΦA[s] converges on all inputs up to s.

We define an increasing sequence of markers {zi} by specifying an approximation zi[s] of zi. We ensure 
that this approximation is increasing in i and s. Let Bi be the ith block, i.e., Bi = [zi, zi + 2i2], and Bi[s]
be the stage s approximation to Bi, i.e. Bi[s] = [zi[s], zi[s] + 2i2]. Within the ith block we identify a unique 
element xi[s] ∈ Bi[s]. At the end we take X = {lims xi[s] | i ∈ ω}.

Construction of {zi[s]} and {xi[s]}. To initialize Bi at stage s means to move zi to a fresh number larger 
than s and beyond the boundaries of B0, · · · , Bi−1, and set xi = maxBi. At stage 0 initialize every Bi. Now 
assume we are at stage s + 1. Let k be the least such that A has changed at stage s + 1 below the use of 
ΦA(k)[s] (if As+1 = As then we do nothing). Let i be the least such that k ≤ maxBi. We initialize Bj for 
every j > i. Suppose k ≤ xi and there is some i′, j′ < i such that #Ci′

j′ = xi currently. We decrease xi by 
one, otherwise do nothing else in this stage. Now take X = {lims xi[s] | i ∈ ω}.

It is easy to see that for every i and every s, the blocks Bi[s] are pairwise disjoint and increasing in i. 
Furthermore each block is initialized finitely often and A can compute a stage where each zi and Bi are 
stable. Each xi must stay within the block Bi, because it initially starts off as maxBi, and is decreased 
each time we find some #Ci′

j′ = xi, where i′, j′ < i. Since the size of each class #Ci′

j′ is non-decreasing, and 
the size of the block Bi is 2i2 + 1, xi will never leave the block. Since each initialization to a block moves it 
to a fresh location, it is easy to see that X ≤T A (knowing the function f allows us to compute where the 
blocks are), and that X is infinite. Let Xs = {xi[s] | i < s}.

We now claim that X is Δ0
2-categorical. Fix {Cn} = {CI

n} and assume that {Cn} is an equivalence 
structure presenting E(X). Define {pn} by the following. Run the approximation for {Xs} and Cn[s], and 
suppose we have defined pn(x) at stage sx. We search for a stage sx+1 > sx such that either (i) #Cn[sx+1] ∈
Xsx+1 , or (ii) Xsx+1 ∩ (#Cn[sx], #Cn[sx+1]] �= ∅. When sx+1 is found we define pn(x + 1) to be larger than 
the current value of f(x + 1).

Claim 4.7. pn is total for every n.

Proof. If pn is not total then there is some least sx+1 which we fail to find. Since (i) does not hold after 
stage sx, we can conclude that Cn is infinite (Cn cannot be finite because {Ck} is assumed to be an 
equivalence structure presenting E(X)). Since X is infinite we must have (ii) holds at some large stage 
after sx, a contradiction. �

Now fix a computable function g such that for each n, we have f(x) > pn(x) for every x > g(n). Now 
fix n. Let t be first stage such that #Cn[t] > max{n, I, g(n)}, and such that Bi+1 is initialized at stage t
where i is the largest such that maxBi < #Cn[t] at stage t. If t exists we define h(n) = ∞, otherwise we 
define h(n) = f . Clearly h ≤T ∅′; in fact there is a computable approximation to h(n) which changes at 
most once on each input n.

If t does not exist, we argue that Cn is finite. Otherwise for almost every i, at the first stage where #Cn

grows larger than maxBi, we can conclude that A is stable below the use for ΦA � maxBi + 1. This allows 
us to compute A, which is impossible since A is high.
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Now finally assume that t exists. We argue that Cn is infinite. Let sx0 > t be the least stage of this form. 
We claim that there are infinitely many x > x0 such that #Cn[sx] ≥ x. Note that #Cn[sx0 ] ≥ x0, because 
at stage t we would have ensured that the interval [#Cn[t], t] ∩Xt = ∅, and by construction of X we in fact 
have [#Cn[t], t] ∩Xt′ = ∅ for every t′ ≥ t. Since pn(x0 − 1)[t] ↓ we have that x0 ≤ t. Clearly at stage sx0 we 
must have #Cn[sx0 ] > t ≥ x0.

Now suppose that there are only finitely many x ≥ x0 such that #Cn[sx] ≥ x. Since x0 is such a stage, 
we assume that x is the largest such that #Cn[sx] ≥ x. By maximality of x we have #Cn[sx] = x, and 
in fact we must have #Cn[sx+1] = x. We have x = #Cn[sx] ≥ #Cn[t] > g(n). Since f dominates pn and 
pn(x) > ΦA(x)[sx], this means that A has to change below the use of ΦA � x + 1 after stage sx.

Claim 4.8. At stage sx, there is some j such that x ∈ Bj [sx], where we have xj [sx] ≤ x.

Proof. Suppose that x is not in any block. Then (ii) must hold at stage sx. Let j′ be the largest block such 
that maxBj′ < x. Obviously maxBj′ > #Cn[sx−1]. Clearly at the previous stage sx−1 the block Bj′ was 
still in the same position, and thus xj′ [sx−1] ≥ xj′ [sx], which would contradict the choice of sx. Hence there 
is some j such that x ∈ Bj [sx].

At stage sx if (i) holds then #Cn[sx] ∈ Xsx and the claim certainly holds. Otherwise (ii) holds which 
means we have a new element xj′ [sx] such that Cn[sx−1] < xj′ [sx] ≤ Cn[sx]. Clearly j′ = j because otherwise 
j′ < j and a contradiction can be derived as above. �

Now by Claim 4.8 we can conclude that when A next changes, say at stage u > sx, below the use 
of ΦA � x + 1, we must have the interval [#Cn[u], u] ∩ Xu = ∅. In fact, by the construction we have 
[#Cn[u], u] ∩X = ∅. Let y > x be the least such that sy > u; since sy−1 ≤ u, in particular we have y ≤ u. 
Furthermore at stage sy we must have #Cn[sy] ≥ u ≥ y, since the whole interval [#Cn[u], u] is disjoint 
from X. This contradicts the maximality of x. �
5. A short conclusion

We leave open the following:

Question 5.1. (See [7].) Which computable equivalence structures are Δ0
2-categorical?

It may very well happen that no classical notion of computability theory (nor any reasonable combination 
of such properties) captures categoricity of a set. In this case we would like to know more about such sets.

We hope that our techniques can be used to attack the following problem:

Question 5.2. Describe Δ0
2-categorical linear orders.

We would also like to know more about Δ0
2-degrees of categoricity of computable equivalence structures:

Question 5.3 (Csima). Is every Δ0
2 degree of categoricity of a computable equivalence structure either com-

plete or computable?
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