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Abstract. Recent work of Conidis [Con12] shows that there is a
Turing degree with nonzero effective packing dimension, but which
does not contain any set of effective packing dimension 1.

This paper shows the existence of such a degree below every
c.e. array noncomputable degree, and hence that they occur below
precisely those of the c.e. degrees which are array noncomputable.

1. Introduction

Packing dimension was independently introduced by Tricot [Tri82]
and Sullivan [Sul84] as a counterpart to the previously established no-
tion of Hausdorff dimension. Both notions allow one to assign a (pos-
sibly noninteger) dimension to subsets of any metric space. The Haus-
dorff dimension of a set A is defined by considering how many open
balls of small radius are required if they are to cover A entirely. The
packing dimension of A is a closely related notion, but asks instead how
many disjoint open balls of small radius can be placed so that each has
its center in A.

Effective versions of both notions have been developed by Lutz,
Staiger, Athreya et al. ([Lut03], [AHLM07], [Sta93]). For our pur-
poses, the characterizations of Mayordomo [May02] and Lutz [Lut05]
of, respectively, effective Hausdorff and packing dimension below can
be taken as definitions.

Definition 1.1. Let A be a real (i.e. member of Cantor Space), then
the effective Hausdorff dimension of A is

dim(A) = lim inf
n→∞

K(A � n)

n
,

and the effective packing dimension of A is

Dim(A) = lim sup
n→∞

K(A � n)

n
.

The reader should note that we are ascribing a notion of dimension
to a single real, in the same way that we can use computability theory
to give meaning to randomness of a single real.

1
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These effective notions of dimension have strong links to complexity
and algorithmic randomness. Moreover, work of Simpson [Sim15] and
Day [Dayep], for example, has shown that effective notions of dimension
can be used to derive classical results in mathematics. In discussions
with co-workers, Simpson [Sim15] proved that the classical dimension
equals the entropy (generalizing a difficult result of Furstenburg 1967)
using effective methods, which were much simpler. Recently Day used
effective packing dimension to give a simple proof of the Kolmogorov-
Sinai Theorem on Ergodic theory.

In many ways, effective packing dimension is quite well behaved on
degrees. For example, we know that each Turing degree obeys a 0-1
Law for effective packing dimension. That is, complexity extraction
procedures given independently by Bienvenu et al., and Fortnow et
al. ([BDS09] and [FHP+06], respectively) show that for any real X,
sup{Dim(Y ) | Y ≤T X} is either 0 or 1. These extraction processes
both yield only that the supremum of the packing dimensions of the
reals in the degree is 1, and hence authors wondered if the supremum
of 1 was always achieved. Work of Conidis [Con12] shows that there
are reals X for which the supremum is 1, but for which that supremum
is not attained1.

Conidis’ construction was a direct forcing argument and resulted in a
hyperimmune-free degree. The second author [Ste15] showed that the
construction given by Conidis, which utilizes forcing with computable
trees, can be modified to work below ∅′. That version may be inter-
preted as a limit-computable construction with permissions provided
by ∅′. In light of this observation one might ask below which c.e. sets
A the construction can be carried out; the obvious restriction is that
A must provide appropriate permissions.

The array noncomputable degrees are a class introduced by Downey,
Jockusch and Stob in [DJS96]. They are noted for their compatibility
with constructions requiring multiple permissions (which we will see
arise naturally when one carries out an approximation-based version
of Conidis’ construction). They have also been shown to form a natu-
ral cutoff in the Turing degrees for constructions involving reals with
nonzero effective packing dimension (see for instance [DG08],[DN10],[DH10]).
In our case, a result of Kummer [Kum96] is most relevant:

Theorem 1.2 (Kummer). If A is an array computable c.e. set, any
real X ≤T A has Dim(X) = 0.

1Any Martin-Löf random real X has dim(X) = 1, and the computable reals all
have Dim(X) = 0, so an unattained supremum is the only difficult case to achieve.
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Moreover, Downey and Greenberg [DG08] proved the 0-1 Law di-
chotomy held for array noncomputable degrees. If a is an array non-
computable c.e. degree, then a has effective packing dimension 1.

These results show that the only c.e. sets which can possibly provide
the necessary permissions for a construction à la Conidis are the array
noncomputable ones. In this paper, we show that every array noncom-
putable c.e. degree computes a set X with the desired properties:

Theorem 1.3. Given any array non-computable c.e. set A, there is a
real X ≤T A such that Dim(X) > 0 and such that for each Y ≤T X,
Dim(Y ) < 1.

In light of Kummer’s result, this gives a full characterisation of the
situation which follows the general pattern observed above:

Corollary 1.4. A c.e. set A is array noncomputable if and only if
there is a set X ≤T A such that Dim(X) > 0 and for each Y ≤T X,
Dim(Y ) < 1.

We remark that the array noncomputable degrees again show up as
quite a ubiquitous class. Kummer’s other result was that a c.e. degree
contains a c.e. set A where the plain complexity C(A � n) =+ 2 log n
for infinitely many n iff the degree was array noncomputable. There
are other characterizations of this class. It is not yet understood how
these combinatorial arguments all inter-relate.

We remark that the proof here is not a simple modification of the
earlier work of the second author, but requires a reasonably delicate
argument of some combinatorial complexity.

Before embarking on our construction, we should pause to note that
effective Hausdorff dimension and effective packing dimension behave
in quite distinct ways. There is no analogous computable extraction
procedure which produces sets with higher effective Hausdorff dimen-
sion than a given input. Indeed a result of Miller confirms this fact
directly:

Theorem 1.5 (Miller [Mil11]). There is a set X with effective Haus-
dorff dimension 1

2
but which cannot compute any set of higher effective

Hausdorff dimension.

The classification of reals with such fractional Hausdorff dimension
is still open.

2. Strategy

Throughout this paper, we denote Turing functionals by upper-case
Greek letters. We will let {Φe}e∈ω be a computable list of all Turing
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functionals. Other notation will be standard, and follows the conven-
tions of Soare [Soa87]. We fix a single c.e. set A = limsAs which is
array noncomputable. The remainder of the paper is devoted to con-
structing a real X ≤T A which satisfies the requirements of Theorem
1.3.

The simplest characterisation of effective packing dimension is in
terms of Kolmogorov complexity. If λ ∈ 2<ω, then we will denote the
prefix-free Kolmogorov complexity of λ by K(λ). As is conventional
we fix a computable decreasing approximation Ks with limit K.

By creating a real X with nonzero effective packing dimension, we
will automatically guarantee that for each ε > 0, there is some Y ≤T X
such that Dim(Y ) > 1 − ε. The difficulty which arises in our con-
struction is thus that we must prevent each Y ≤T X from having
Dim(Y ) = 1.

This calls for us to maintain quite delicate control on complexity
throughout our construction. In order to achieve this, we will work
with pruned clumpy trees. Clumpy trees were introducted as a forcing
notion by Downey and Greenberg [DG08], and will soon be defined.

Definition 2.1. For each n, we write 2=n to mean the binary strings
with length equal to n, and 2≤n to mean those with length less than
or equal to n, respectively. If ρ ∈ 2<ω, P ⊆ 2<ω then ρP is the strings
formed by concatenating ρ with members of P . If σ ∈ 2<ω, τ ∈ 2<ω∪2ω

write σ ≺ τ to mean that σ is a proper initial segment of τ . P ⊂ 2<ω

then the ≺-maximal elements of P are called leaves.
A pruned clump is a downward closed subset of a set of the form

ρ2≤|ρ|, and which contains at least two leaves of ρ2≤|ρ|. We will refer
to ρ as the root of such a pruned clump.

If T is a tree we will say that a pruned clump D is on T if ρ2≤|ρ|∩T =
D. We say that a tree T ⊆ 2<ω is a pruned clumpy tree if every string τ
on T which is an initial segment of a path through T has an extension
ρ which is the root of some pruned clump on T .

A general intuition which may be useful to the reader is to expect
that if T is a pruned clumpy tree which we consider in our construction,
then it will have only occasional pruned clumps, which are spaced far
apart from each other, but that these pruned clumps will be sites of
rapid branching on T .

Our construction will be carried out within a prototypical tree T−1
which captures this idea nicely.

Definition 2.2. Let T−1 be the tree formed by taking the union of the
following finite trees T s−1: T

−1
−1 consists of the empty string together with
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the string consisting of a single 0. Let T s−1 be given by the downward
closure of the strings ⋃

λ∈T s−1
−1

λ a leaf of T s−1
−1

λ2=|λ|02|λ|.

Note that if T is a pruned clumpy tree, and we arrange that each
pruned clump on T has a large enough number of leaves, then some
of those leaves will be forced to have quite high complexity, simply
because there are not many strings of low complexity of any given
length. In particular, in our construction we will be able to ensure
that every pruned clump we build has a leaf λ with K(λ) ≥ |λ|/4. By
arranging for X ∈ 2ω to have such leaves among its initial segments,
we will guarantee that Dim(X) ≥ 1/4.

We will build a sequence {Te}e∈ω of c.e. pruned clumpy trees such
that Te ⊆ Te−1 for each e. The real X which satisfies the hypotheses of
theorem 1.3 will be the unique common path through all of the trees.

We will also make use of the fact that if X is a path through Te, and
ΦX
e is total, then by choosing which leaves should be on each of the

pruned clumps of Te carefully, we can maintain some control on ΦX
e ; in

particular, we will see that we are able to ensure that Dim(ΦX
e ) is able

to be bounded away from 1. The following lemma gives the precise
conditions required to achieve this. It is a minor variation on a result
given in [Ste15] (the proof is essentially unchanged), and is inspired by
a similar computation given by Conidis in [Con12].

Lemma 2.3. Let e ∈ ω, and let T ⊆ T−1 be a c.e. pruned clumpy tree
given by a computable enumeration T 1 ⊆ T 2 ⊆ · · · such that:

(1) For each s and each ρ ∈ T s, if ρ is the root of a pruned clump
on T s+1, it is either the root of a pruned clump on T s or a
leaf of T s, and that all branching in T s occurs as part of some
pruned clump on T s

(2) If ρ0 ≺ ρ are roots of pruned clumps on T , then |ρ| ≥ 4·22e+4|ρ0|
(3) For each pruned clump P on T with root ρ, there is a string

τ ∈ 2<ω with |τ | = 2−2e−4|ρ| and such that:

(a) for each leaf λ of P , and each λ̂ ∈ T such that λ � λ̂, if

x < |τ | and Φλ̂
e (x)↓, then Φλ̂

e (x) = τ(x), and

(b) for each leaf λ of P , there is some λ̂ ∈ T such that λ � λ̂

and for each x < 2−2e−4|ρ|, Φλ̂
e (x)↓.

If X is a path through T and ΦX
e is total, then Dim(ΦX

e ) < αe for some
fixed αe < 1.
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Although we will not prove the lemma in this paper, we will briefly
discuss the intuition behind it. Suppose that Te is a pruned clumpy
tree which meets the conditions of the lemma, and that X is a path
through Te. Then ΦX

e must be total. If P is a pruned clump on Te,
and λ is a leaf of P which is an initial segment of X, let ρ be the
≺-least extension of λ which is the root of another pruned clump on
Te. Then ρ ≺ X, and (3) of the lemma ensures that all sufficiently

long extensions λ̂ ∈ Te of ρ have Φλ̂
e (x) ↓ for each x < 2−2e−4|ρ|; and

furthermore that all of these computations agree. Thus, from the leaf λ
alone, we are able to compute an initial segment of ΦX

e of considerable
length. This ensures that that initial segment cannot have particularly
high complexity, which in turn will suffice to guarantee Dim(ΦX

e ) < 1.

3. Overview and terminology

We will be working on requirements for each e ∈ ω, as follows:

Re : either ΦX
e is nontotal, or

Dim(ΦX
e ) < 1, and for infinitely many ξ ≺ X, K(ξ) ≥ |ξ|/4.

Remark 3.1. If Φe is a total reduction, then to meet Re we must meet
the second of the conditions. Because such reductions exist, satisfying
Re for every e will ensure that Dim(X) ≥ 1/4.

For each e, we will guarantee that X satisfies the requirement Re,
either by ensuring that ΦX

e is not total, or, if that is not possible, by
attempting to make Te satisfy the condition of Lemma 2.3. Because
we will build X as a limit of a computable approximation, we will be
unable to tell which of the two strategies succeeds for each e.

In addition, the approximate nature of the construction means that
our attempt to build a tree Te meeting the conditions of Lemma 2.3 is
not immediately successful — to satisfy the lemma we make a minor
modification to Te after the construction.

At every stage s, we will let T s−1 be as in Definition 2.2. At the start
of stage s, we will be given trees T s−1e for each e < s and a string ξs−1

which is our current guess at an initial segment of X. We will then
construct a tree T se for each e ≤ s, and define ξs to be some string in
T ss . The trees we build will be nested in the sense that T se−1 ⊆ T se at
every stage of the construction, but it will not always be the case that
T s−1e ⊆ T se .

Recall the definition of array noncomputability, as given in [DJS96].

Definition 3.2. A very strong array is a family F = {Fk}k∈ω of uni-
formly computable pairwise disjoint finite sets such that |Fk| > |Fl|
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and maxFl < minFk whenever k > l, and for which k 7→ maxFk is a
computable function.

A c.e. set A is array noncomputable if there is some very strong
array {Fk}k∈ω such that for any c.e. set W , there is some k such that
W ∩ Fk = A ∩ Fk.

We note that it follows easily from the definition of array noncom-
putability that if A is an array noncomputable c.e. set, then every very
strong array meets the condition of the definition, and furthermore
that for each very strong array {Fk}k∈ω, and each c.e. set W , there are
infinitely many k for which such that W ∩ Fk = A ∩ Fk.

We will use the definition directly to set up permissions provided
by A throughout our construction. To do so, we will first specify a
particular very strong array F = {Fk}k∈ω. We will then build a c.e.
set W which will be used to request permission to make changes by
challenging the array noncomputability of A. At each stage of the
construction we will take action at a single pruned clump.

Definition 3.3. If 0 ≤ e ≤ s and P ⊆ T s−1e−1 is a pruned clump such
that some leaf of P is an initial segment of ξs−1, we will say that Re is
working on P at stage s.

If Re is working on a pruned clump P at stage s, we will say that
one or more numbers are assigned to the root ρ of P at stage s.

At stage s, if we wish to make a change to our set X at the root ρ
of a pruned clump, we will request permission to do so, by arranging
that W ∩ Fk 6= As ∩ Fk for each number k assigned to ρ.

Throughout the construction, we may sometimes wish to reassign
a number k to a different string. When we do so, if k is currently
assigned to some ρ, the new assignment will be to some ρ0 ≺ ρ. This
will indicate that the permissions provided by Fk will now be used to
request changes to X on extensions of ρ0. This action will cause us to
devote many boxes Fk to the same string ρ.

To meet the requirements Re, it will be enough to show that there are
infinitely many different roots ρ ≺ X of pruned clumps for which any
request for permission is granted. This will be achieved in the following
way: each time we are granted permission to make a change to ξ at
the level of ρ, any permissions which are assigned to an extension of ρ
will be reassigned to ρ. This is because we only know that W ∩ Fk =
A ∩ Fk for infinitely many k, but do not know for which k this is true.
Therefore we must ensure that the permissions associated with any
particular Fk are not “wasted”. At the end of the construction, we will
have assigned finitely many numbers k to each string ρ ≺ X which is
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ρ

ρ̂

λ̂ λ

Figure 1. The two triangles represent pruned clumps
in T−1, with roots ρ and ρ̂; we have ρ ≺ ρ̂ ≺ ξs−1. Two

of the leaves on the clump with root ρ are λ and λ̂, the
latter being an initial segment of ρ̂. Suppose at stage
s we are permitted to makie a change at the level of ρ,
and that λ � ξs. Then at stage s, we reassign each k
working on ρ̂ to instead work on ρ. We also declare that
ΓA(k)[s] = λ, with a large use.

the root of a pruned clump on one of our trees, and, if W ∩Fk = A∩Fk,
and k settles on ρ as its final assignment, every request for permission
to make changes at the level of ρ will eventually be granted.

It is the process of reassignment of permissions which tells us what
size the boxes Fk should be. The size of the set Fk is the number of
times which we are able to use it to request permissions, so it will be
important that we choose it to be large enough to accommodate any
permissions which we might request throughout the construction. Each
Fk must be large enough to provide enough permissions to successfully
make any changes at the level of the string ρ on which k initially is
working, but we must in addition include enough “spare” permissions
to allow for the possibility that k could later be reassigned to work on
shorter strings. In general, we can expect that many numbers k will
be assigned to work on a particular string ρ. Because we are using a
Turing reduction Γ to construct X ≤T A, all of these numbers will be
responsible for permitting changes at ρ; we will set ΓA(k) to be the leaf
of the pruned clump on T−1 with root ρ which is an initial segment of ξs,
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so that all of the numbers assigned to ρ provide the same information,
and will choose all of these computations to have the same use.

It will be enough if we arrange that |Fk| ≥
4k∑
i=0

(i+ 1)(2i+1 + 1) for

each k. This corresponds to the number of permissions needed to move
through the leaves on a pruned clump with root ρ of length 4k to try
to find one which forces divergence of Φe, for each e ≤ 4k, and, if
one of those searches fails, to look for a leaf of high complexity; as
mentioned earlier, we also include enough permissions that the process
can be repeated again on any number of initial segment of ρ, in case k
is reassigned.

We will now introduce some definitions which we will use throughout
our construction.

Definition 3.4. If Q and P are pruned clumps, we write P ≺ Q if the
root of P is a proper initial segment of the root of Q, and P ∼ Q if P
and Q have the same root. We will write P - Q if P ≺ Q or P ∼ Q.

Notice that if i < j then there will be be pruned clumps P ⊂ T s−1i ,
Q ⊂ T s−1j such that P ∼ Q. It will sometimes be convenient to ignore
the distinction between such clumps, which we will do by referring to
the root of a pruned clump rather than to the clump itself.

In the construction, we will build each tree Te by attending to each
pruned clump within the tree Te−1 individually. Our basic strategy for
succeeding on a pruned clump P on Te−1 has two steps.

We first seek a leaf λ of P which forces divergence, i.e. to arrange
that if Y is a path through Te for which λ ≺ Y , then ΦY

e is nontotal.
We then ask for permission to make that leaf an initial segment of X;
we may need to change our choice of λ several times as we discover
additional halting computations.

If we later discover that every leaf λ of P can be extended to some

λ̂ ∈ Te−1 for which Φλ̂
e halts on a large number of inputs, we switch our

strategy to try to make Dim(ΦX
e ) < 1. We ask for permission to “thin”

the pruned clump P to get a pruned clump Q ⊆ P which we can place
on Te, which meets condition (3) of Lemma 2.3, and to choose some leaf
λ of Q with K(λ) ≥ |λ|/4 to be an initial segment of X. Once again, our
choice of λ may need to change as we look for a leaf with high enough
complexity, and we must seek permission to change X to match. We
will later refer to condition (3) as the e-majority vote criterion.

Whether we achieve the goals outlined above will depend on whether
we are granted a sufficient number of permissions by A.
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Definition 3.5. If k is assigned to work on a string ρ at stage s − 1,
and As � maxFk 6= As−1 � maxFk then we will say that A permits
changes at ρ at stage s.

We will be building a reduction ΓA throughout the construction, as
follows: at each stage s, if k is assigned to the root ρ of a pruned clump
P on T s−1, we will set ΓAs(k) to be the leaf λ of P for which λ � ξs.
The use γs(k) for this computation will be maxFn for the largest n
assigned to work on ρ. In this way, any time A permits changes at ρ,
As will have changed on the use of that computation. This allows us
to redefine ΓA(k) for every k assigned to ρ, any time any k meets the
permitting condition defined above.

At each stage s of our construction, we make predictions about which
strings will remain on the tree T te at all stages t > s. For the root ρ
of each pruned clump P on T se , we will have a corresponding notion,
called e-ρ-verification. Informally, we will say that a string σ � ρ is
e-ρ-verified if the only reason we will ever remove σ from T te at some
later stage t is if we take action to meet a requirement Ri for i < e in
a way which prevents P from being on T te .

These predictions will tell us how to meet the conditions of Lemma
2.3 for e+ 1 as we build Te+1 inside Te.

We will define e-ρ-verification by recursion on e. We will first define
the base case of (−1)-ρ-verification, and defer e ≥ 0 until after outlining
other concepts used in the construction.

Definition 3.6. At any stage s of the construction and for any root ρ of
any pruned clump on T s−1−1 , every string σ � ρ on T s−1−1 is −1-ρ-verified.

In what follows, many of the definitions given depend on a stage s.
Typically that stage will be clear throughout the construction and its
verification, but we include it here to avoid ambiguity.

The next definitions formalize the e-majority vote criterion as well
as some related notions which are key in satisfying Lemma 2.3. This
is the point at which e-ρ-verification is first discussed. The notions of
e-majority vote criterion and e-ρ-verification are defined in terms of
each other, and we present the former first.

Definition 3.7. Suppose that P is a clump on T s−1e−1 with root ρ, and
τ ∈ 2<ω. Let λ be a leaf of P .

We will say that λ is e-τ -extendible at stage s if there is an (e−1)-ρ-

verified extension λ̂ ∈ T s−1e−1 of λ with the property that Φλ̂
e [s] � |τ | = τ ,

and such that λ̂ is the root of a pruned clump on T s−1e−1 and |λ̂| ≥
4 · 22e+4|ρ|. In this case we will say that λ̂ is an e-τ -extension of λ at
stage s.
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We will say that λ is e-τ -extended at stage s if there is an (e − 1)-

ρ-verified e-τ -extension λ̂ of λ on T s−1e , and furthermore that for any

σ ∈ T s−1e such that λ ≺ σ, either λ̂ ≺ σ or σ � λ̂.
We will say that λ is e-extendible at stage s if λ is e-τ -extendible for

some τ ∈ 2<ω of length |ρ|2−2e−4 at stage s.

We will use e-τ -extendibility as the main tool to ensure Dim(ΦX
e ) <

1: if enough of the leaves of a clump P on T se−1 are e-τ -extendible for
some fixed τ of appropriate length, we can use them to build a pruned
clump Q ∼ P on Te which meets the third condition of Lemma 2.3.

When searching for e-τ -extendible strings, we restrict our attention
to (e− 1)-ρ-verified strings, because these are the strings which we can
safely assume actually will remain on Te−1, unless we are interrupted
by a higher priority requirement.

Definition 3.8. Suppose P is a pruned clump on T s−1e−1 with root ρ.
We will say that P meets the e-majority vote criterion at stage s if

T s−1e ∩P is a pruned clump, and there is some string τ ∈ 2<ω of length
2−2e−4|ρ| such that each leaf of T s−1e ∩ P is e-τ -extended at stage s.

We now introduce the conditions which tell us when a requirement
Re requires attention at a pruned clump in the tree T se−1.

Definition 3.9. Suppose P is a clump on T s−1e−1 with root ρ, where
|ρ| ≥ e, and P ∩ T s−1e is a pruned clump on which Re is working.

Say that requirement Re requires attention due to halting at P at
stage s if the leaf λ of P which is an initial segment of ξs−1 is e-
extendible at stage s, but P does not meet the e-majority vote criterion.

If P is a pruned clump in T s−1e−1 whose root ρ has |ρ| ≥ e, say Re

requires attention due to complexity at P at stage s if P meets the e-
majority vote criterion but the leaf λ of P which is an initial segment
of ξs−1 has Ks(λ) < |λ|/4.

If P does not require attention due to halting and does not meet the
e-majority vote criterion, say that the active leaf on P appears to force
e-divergence at stage s. Say that P is the first witness to e-divergence
at stage s if P is the ≺-least clump on T s−1e−1 with root of length at least
e with an active leaf which appears to force e-divergence at stage s.

The restriction that |ρ| ≥ e given above ensures that there is a finite
computable bound on the number of times we seek permission to make
a change at the level of ρ.

We are now ready to complete our definition of e-ρ-verification.

Definition 3.10. Let e ≥ 0, and σ ∈ T s−1e . Suppose ρ ≺ σ is the root
of a pruned clump Q on T s−1e−1 .
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We say that σ is e-ρ-verified if σ is (e− 1)-ρ-verified and either

(1) the active leaf on Q appears to force e-divergence at stage s, or
(2) For each ρ0 ≺ σ which is the root of a pruned clump P on T s−1e−1

such that P ∩ T s−1e is a pruned clump, P meets the e-majority
vote criterion at stage s.

There are several intuitions behind this definition: the first is that
before we believe that σ will stay on Te, we should fisrt believe that it
will stay on Te−1. Thus e-ρ-verification implies (e− 1)-ρ-verification.

The intuition behind the condition (1) of the definition is that if we
believe that the active leaf on Q forces e-divergence, then we assume
we have successfully met Re by forcing divergence of ΦX

e . Then we will
not make any future attempts to restrict which strings are on Te, and
therefore verify all of them.

Condition (2) reflects the fact that each time we meet the e-majority
vote criterion, we will attempt to protect the strings used to do so, and
to keep them on Te; thus they should also be e-ρ-verified.

We will only remove e-ρ-verified strings from T se at a later stage if
required to do so in order to attend to a requirement acting on an
initial segment of ρ.

We are now ready to specify how we choose where to act at each
stage of the construction. We will focus on a single pruned clump on
which some requirement Re is working, and which requires attention
at stage s. If we identify such a pruned clump, we refer to it as our
target for action at stage s. We will choose this target from a list of
potential candidates for action.

We will say that a pair 〈e, P 〉 consisting of a number e < s and clump
P ⊆ T s−1e−1 is a candidate for action at stage s if Re is working on P
at stage s, P requires attention at stage s, and furthermore A permits
changes at the root of P at stage s.

A candidate for action 〈e, P 〉 is the target for action at stage s if it
meets each of the following conditions:

(1) there is no pruned clump Q ≺ P such that for some i, 〈i, Q〉 is
a candidate for action at stage s,

(2) there is no requirement i < e which requires attention on a
pruned clump Q ∼ P ,

(3) there is no pruned clump Q % P and number i < e such that
Q is the first witness to i-divergence at stage s.

Note that the third condition may result in a situation where there is
no target for action even though there are candidates for action.

In the next section, we will outline the construction proper.
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We will build the trees T se by attempting to find strings which force
divergence of Φe, and, if that is not possible, will attempt to meet the
e-majority vote criterion on the pruned clumps in T se−1. If we meet
the e-majority vote criterion on a pruned clump Q ⊆ T se−1, we will
want to preserve this at all future stages. However, it may be the
case that at a later stage t > s we have a target for action of form
〈i, P 〉, where P - Q. At such a stage, if Ri requires attention at P
due to halting, then we will be forced to abandon our progress on Q.
However, if Ri requires attention at P due to complexity, we will ensure
that Q remains a pruned clump on T te . This will assist us in meeting
the enumerability criterion required by Lemma 2.3.

4. The Construction

Initialization
At stage 0, we set ξ0 to be the string consisting of a single 0.
We will now describe how to use the situation at the end of stage

s− 1 of the construction to carry out stage s.
We will define our reduction Γ alongside the construction. The idea

will be to ensure that if at stage s, a number k is working on some ρ,
we have ΓA(k)[s] = λ, where λ is a leaf of a pruned clump with root ρ,
and λ is an initial segment of ξs.

After the construction we will give a clean-up process which assigns
unused numbers k to work and makes initial commitments for ΓA(k)’s
use. This will be the same regardless of what kind of action we take at
stage s.

Defining the trees T se and approximation ξs

How we proceed at stage s depends on whether there is a target
〈e, P 〉 for action, and, if so, the reason that Re requires attention at P .

In the case that there is a target 〈e, P 〉 for action, let ρ be the root
of P . Then we will ensure ρ is an initial segment of ξs, but the leaf of
P which is an initial segment of ξs may change. For this reason, we
will want to redefine Γ to reflect that fact, and to reassign permissions.

If there is no target for action, then for each ρ̂, and each m assigned
to work on ρ at stage s, assign m to work on ρ at stage s+ 1, and set
ΓA(m)[s] = ΓA(m)[s− 1], with the use γs(m) = γs−1(m).

We are now ready to see the various ways the construction should
proceed, depending on the particular form of action required at stage
s

Case 1: No target for action.
If there is no target for action, then for each i < s, define T si as

follows. If P is the ≺-least pruned clump on T s−1i−1 on which Ri is
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working, but which does not meet the i-majority vote criterion at stage
s, then let µ be the leaf of P which is an initial segment of ξs−1, and
let

T si = T s−1i ∪ {τ ∈ T si−1 | µ ≺ τ}.
If every pruned clump P on T si−1 on which Ri is working meets the
u-majority vote criterion at stage s, let

T si = T s−1i ∪ {τ ∈ T si−1 | ξs−1 ≺ τ}.
Define ξs to be some leaf λ of T ss−1 such that ξs−1 � λ.
Case 2a: Target for action due to halting, and an apparently diver-

gent computation is found.
Let 〈e, P 〉 be the target for action. Suppose that Re requires atten-

tion due to halting at P , and that the root of P is ρ. Suppose that
there is a leaf λ of P which is not e-extendible at stage s.

Then we choose ξs = λ (if there are several possible choices, choose
the leftmost). For i < e, let T si = T s−1i . For e ≤ i < s, let

T si = {σ ∈ T s−1i | ¬(ρ ≺ σ)} ∪ {σ ∈ 2<ω | (∃µ ∈ P )[σ � µ]}.
For each m which is assigned to work on a string ρ̂ � ρ at stage s,

assign m to work on ρ at stage s+1. Let n be the largest such number.
For each m assigned to work on ρ at stage s+1, set ΓA(m)[s] = λ with
use γs(m) = maxFn.

Case 2b: Target for action due to halting, but every leaf is e-extendible.
Let 〈e, P 〉 be the target for action. Suppose that Re requires atten-

tion due to halting at P , and that the root of P is ρ. Suppose that
each leaf λ of P is e-extendible at stage s.

For each τ ∈ 2<ω of length |ρ| · 2−2e−4, define E(τ) to be the set of
leaves λ of P which are e-τ -extendible at stage s. From amongst these
strings, choose τ for which |E(τ)| is maximal. Let D(τ) be a subset of

E(τ) with exactly 2|ρ|(1−
∑e
j=0 2

−2j−4) leaves2.

Choose a set D̂(τ) of strings on T s−1e−1 consisting of one e-τ -extension

of each λ ∈ D(τ). Define ξs to be the leftmost member of D̂(τ).
Define T si = T s−1i for i < e.
There is some ≺-least pruned clump Q � P on T s−1e−1 on which Re is

working, and such that Q does not meet the e-majority vote criterion
at stage s. Let ρ0 be the root of Q, and define

T se = {σ ∈ T s−1e−1 | ¬(ρ0 ≺ σ)} ∪ {σ ∈ 2<ω | ∃λ̂ ∈ D̂(τ)[σ � λ̂]}.
For e < i < s, define

T si = {σ ∈ T s−1i | ¬(ρ0 ≺ σ)} ∪ {σ ∈ 2<ω | σ � ξs}.
2We will later see that E(τ) has at least this many leaves.
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For each m which is assigned to work on a string ρ̂ � ρ at stage s,
assign m to work on ρ at stage s+1. Let n be the largest such number.
Let λ � ξs be a leaf of P . For each m assigned to work on ρ at stage
s+ 1, set ΓA(m)[s] = λ with use γs(m) = maxFn.

Case 3: Target for action due to complexity.
Finally, suppose that 〈e, P 〉 is the target for action, that Re requires

attention due to complexity at P , and that the root of P is ρ.
For 0 ≤ i < s, let T si = T s−1i .
In this case, P meets the e-majority vote criterion. For e ≤ i < s

let Pi = T s−1i−1 ∩ P . Let D consist of the numbers i for which Pi is a

pruned clump on T s−1i−1 which meets the i-majority vote criterion. For

each i ∈ D let τi = Φξs−1

i [s] � 2−2i−4|ρ|. Let i0 be the largest member
of D. Let λ be an effectively chosen leaf of Pi0 with the property that
Ks(λ) is maximal amongst all such leaves.

Choose strings ξse � ξse+1 � · · · � ξss−1 � λ such that for each i, ξsi is
a leaf of T s−1i . Let ξs = ξss−1.

For each m which is assigned to work on a string ρ̂ � ρ at stage s,
assign m to work on ρ at stage s+1. Let n be the largest such number.
For each m assigned to work on ρ at stage s+1, set ΓA(m)[s] = λ with
use γs(m) = maxFn.

In all of the cases 1-3, let T ss consist of ξs together with all of its
initial segments.

If at stage s, m is assigned to work on a string ρ0, and we did not yet
specify how it should be assigned at stage s + 1, assign it to work on
ρ0 again, and set ΓA(m)[s] = ΓA(m)[s− 1], with use γs(m) = γs−1(m).

Requesting permissions
In each of the above cases, suppose that n is assigned to work on

a string ρ̂ at stage s + 1, some requirement Re requires attention on
a pruned clump with root ρ̂ at stage s + 1, but there was no such
requirement at stage s. Then enumerate a single element of Fn into
W , in order to ensure that Ws+1 ∩Fn 6= As ∩Fn; if Ws ∩Fn 6= As ∩Fn
already, then make no such enumeration.

Assigning new permissions
Let ρ1 ≺ ρ2 ≺ · · · ≺ ρk be the roots of the clumps on T s−1 of which ξs

has a leaf as an initial segment, and on which we assigned no number
to work at stage s. Let n1 < n2 < · · · < nk be the least k numbers
that were not assigned to work on any string at stage s. For 1 ≤ i ≤ k,
assign ni to work on ρi at stage s + 1. For 1 ≤ i ≤ k, do as follows:
if some requirement Re requires attention on a pruned clump Q with
root ρi on T se−1 at stage s + 1, enumerate a single element of Fni into
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W , in order to ensure that Ws+1∩Fni 6= As∩Fni ; if Ws∩Fni 6= As∩Fni
already, then make no such enumeration.

This concludes the construction.

5. Verification of construction

For each e, let Te = {σ ∈ 2<ω | σ ∈ T se at cofinitely many stages s},
and X = lims ξ

s.
We will begin our analysis of the construction by establishing that

some of its basic features function as intended. We will check that the
strings ξs come to a limit X, and that the permission process behaves
as intended.

Remark 5.1. Let 0 ≤ i ≤ s. Then T si ⊆ T si−1, and for each pruned
clump P on T si , there is a pruned clump Q on T si−1 such that Q ∼ P .

In addition, ξs ∈ T si for each s and i ≤ s, so X is a path through Ti.

Each of these facts is easily verified by checking that they are pre-
served from one stage of the construction to the next.

Lemma 5.2. For each s and each i ≤ s, if P is a pruned clump on T si
with root ρ, then P has at least 2|ρ|(1−

∑i
j=0 2

−2j−4) leaves.

Proof. If i = −1, then P has exactly 2|ρ| leaves, since in that case
P = ρ2≤|ρ|.

Now, work by induction on i. Suppose that the result is true of every
pruned clump Q on T si−1 for every s. Fix some s, and let P be some
pruned clump on T si . Consider the largest t ≤ s such that P is on T ti
but not on T t−1i .

If the construction proceeds via case 1 at stage t, then there is some
string µ ∈ T t−1i−1 such that T ti = T t−1i ∪ {τ ∈ T t−1i−1 | µ ≺ τ}. Let

P ∼ Q, where Q is a pruned clump on T t−1i−1 . The string µ must be
an initial segment of the common root of P and Q, and therefore that
every leaf of Q is also a leaf of P . But that implies that P has at least

2|ρ|(1−
∑i−1
j=0 2

−2j−4) leaves, by induction. This is more than the minimum
required.

If the construction proceeds via case 2a or 3 at stage t, then there
are no pruned clumps on T ti that were not already on T t−1i , and there
is nothing to prove.

If the construction proceeds via case 2b at stage t, then it must be
the case that 〈i, Q〉 is the candidate for action at stage t, where Q is
the pruned clump on T t−1i−1 with P ∼ Q. In this case, there are at least

2|ρ|(1−
∑i−1
j=0 2

−2j−4) leaves on Q. But each such leaf λ is e-τ -extendible at
stage t for some τ ∈ 2<ω with |τ | = 2−2i−4|ρ|, where the ρ is the root of
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P . Since there are 22−2i−4|ρ| many such τ , it follows that there is some

particular τ such that at least
2|ρ|(1−

∑i−1
j=0 2

−2j−4)

22−2i−4|ρ| = 2|ρ|(1−
∑i
j=0 2

−2j−4)

of the leaves of Q are e-τ -extendible. So the construction builds a
pruned clump with exactly this many leaves. Hence P has at least

2|ρ|(1−
∑i
j=0 2

−2j−4) leaves, as desired. �

Corollary 5.3. For each s and each i ≤ s, if P is a pruned clump on
T si , then some leaf λ of P has K(λ) ≥ |λ|/4.

Proof. Any prefix-free set of binary strings of length at most |λ|/4 can
have at most 2

|λ|/4 members. However,(
1−

i∑
j=0

2−2j−4

)
=

(
1− 1

12
(1− 4−i−1)

)
≥11

12

so that 2|ρ|(1−
∑i
j=0 2

−2j−4) ≥ 2
11|ρ|/12 > 2

|ρ|/2 = 2
|λ|/4, and therefore P has

too many leaves for them to all have such short descriptions. �

Lemma 5.4. For each e and string ρ, there are only finitely many
stages t at which there is a target for action of the form 〈e, P 〉, where
ρ is the root of a pruned clump P on T se−1.

In addition, the strings ξs approach a limiting real X. That is, for
each k, there is some s such that |ξs| ≥ k and for each t ≥ s, ξs � k =
ξt � k.

Proof. We will prove the first result by induction on the length of ρ
and (within that) by induction on e.

Fix a number e and string ρ which is the root of a pruned clump on
T−1. Applying the inductive hypothesis, choose t0 such that for s ≥ t0,
〈i, P 〉 is not the target for action at stage s for any P with root ρ0 ≺ ρ,
nor for any i < e and clump P with root ρ.

Suppose that for some s0 ≥ t0, ξ
s0 has an initial segment λ which is

a leaf of some pruned clump P on T s0e−1 with root ρ.
Then P is also on T se−1 for each s ≥ s0 because after that stage there

will never be a target for action which can cause P to be removed.
Now we check that amongst stages t ≥ s0, 〈e, P 〉 can be the target

for action at most finitely many times.
For each leaf λ of P there can be at most one stage t at which
〈e, P 〉 is the target for action and at which Re requires attention due
to halting at P , since at such a stage, if λ is the leaf of P for which
λ ≺ ξt−1, we know that λ is e-extendible. But then we either are in
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case 2a and define ξt in a way which guarantees that it extends a leaf
λ1 of P which is not e-extendible at stage t, or are in case 2b and have
verified that every leaf of P is e-extendible. In the latter case P will
meet the majority vote criterion at the next stage, and Re will never
again require attention due to halting at P .

Likewise, 〈e, P 〉 can be the target for action at a stage t where Re

requires attention due to complexity at P only finitely many times. At
such a stage t we will note that the leaf λ of P such that λ � ξt−1 has
Kt(λ) < |λ|/4. We will then will define ξt to be an extension of a leaf

λ̃ of a pruned clump Q ∼ P which is on a tree T t−1i for some i < s,

and such that Kt(λ̃) is maximal amongst such leaves. It follows that

Kt(λ̃) ≥ |λ̃|/4, by Corollary 5.3. Once again, 〈e, P 〉 can only be the
target at a stage where Re requires attention due to complexity once
for each leaf of P .

Only finitely many requirements ever require attention on the pruned
clump P (namely those Re for which e ≤ |ρ|). As has been seen, each
〈e, P 〉 is a target for action at finitely many stages. So it follows that
eventually ξt � |ρ| will remain constant.

We will now check that lims ξ
s exists as a member of 2ω. Note that

if ξs has the root of P as an initial segment and 〈e, P 〉 is never a target
for action after stage s, then ξt will still have that root as an initial
segment at any stage t ≥ s. Thus it suffices to show that for any given
k, ξs eventually remains at least k in length.

Our proof will be by contradiction. Assume there is some longest
string ρ which is the root of a pruned clump on T−1 and which is an
initial segment of ξs at all stages s ≥ t of the construction. In addition,
choose t large enough that for s ≥ t, the target 〈e, P 〉 for action will
never have the property that P has a root ρ0 � ρ. Thus if s ≥ t, a
target 〈e, P 〉 for action must have the property that the root ρ1 of P
satisfies ρ ≺ ρ1 � ξs.

If such a target exists at a later stage t0, then ρ1 is an initial segment
of ξt0 . Suppose ρ1 is ≺-minimal amongst strings which are roots of
pruned clumps P for which there is some stage t0 ≥ t at which 〈e, P 〉
is the target for action. Then ρ1 will be an initial segment of ξt0 for all
sufficiently large t0. This contradicts that ρ is the longest such string.

Thus we may assume that there are no stages s ≥ t at which there
is a target for action. So at each stage s > t, and for each e < s,

T se ⊇ T s−1e ∪ {τ ∈ T s−1 | ξs−1 ≺ τ},

and ξs is always chosen to be a leaf of T ss−1 which extends ξs−1. But
then ξs an initial segment ρ1 � ρ which is the root of a pruned clump
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on T−1, and ρ1 is an initial segment of ξs at cofinitely many stages s.
This gives the desired contradiction.

So lims ξ
s does exist as a member of 2ω. �

Lemma 5.5. If m is assigned to work on ρ1 and n to work on ρ2 at
some stage s, and m < n, then ρ1 � ρ2.

Proof. If s is the first stage at which we assign n to work on some
string ρ2, then for each m < n, m is assigned to work on a proper
initial segment of ρ2 at that stage.

If n is assigned to work on ρ3 at stage s − 1 and on ρ2 at stage s,
there is some i < n such that for i ≤ m < n, we also assign m to work
on ρ2 at stage s, and for m ≤ i, we assign m to work on the same
string ρ1 ≺ ρ2 at stages s− 1 and s. So the condition of the lemma is
preserved from one stage to the next. �

Lemma 5.6. Let f(n) = |Fn| =
4n∑
i=0

(i+ 1)(2i+1 + 1). For each n,

there are at most f(n) stages s at which we enumerate an element of
Fn into W .

Proof. Observe that if we assign n to work on a string ρ at some stage
s, then at stage s+ 1, we must assign n to work on a string ρ0 � ρ.

Note that if s is the first stage at which we assign n to work on the
root of some pruned clump, that root has length at most 4n, since it is
assigned to work on the shortest root of a pruned clump on T s−1 which
has no number already assigned to work on it.

Next, note that if we enumerate an element of Fn into W at stage s,
then at that stage, n is assigned to work on the root of a pruned clump
P on which a requirement Re requires attention at stage s, and that
furthermore either no requirement Ri required attention on a pruned
clump Q ∼ P at stage s − 1, or n was not assigned to work on ρ at
stage s− 1.

Definition 5.7. Suppose that at some stage s, we assign n to work on
some string ρ. We will say that the interval [t0, t1) is dedicated to e on
ρ if for t0 ≤ t < t1,

i.) we assign n to work on ρ at stage t, and
ii.) for i < e, if Qi is a pruned clump on T ti−1 with root ρ, then 〈i, Qi〉

is not the target for action at stage t.

Note that if ρ is the root of a pruned clump Q on T t0e and [t0, t1) is
dedicated to e on ρ then Q is on T te for t0 ≤ t ≤ t1.
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Fix some number k, and suppose |ρ| = k, and that [t0, t1) is dedicated
to k on ρ. Recall that Ri can only require attention on a pruned clump
with root ρ if i ≤ k.

Then if t0 ≤ t < t1 and we enumerate an element of Fn into W at
stage t+ 1, it must be the case that Rk requires attention on a pruned
clump Q with root ρ at stage t+ 1. In that case, Q is on T tk−1 at each
stage in [t0, t1). We now count the number of stages t ∈ [t0, t1) at which
〈k,Q〉 can be the target for action. For each leaf λ of Q, there is at
most one such stage at which ξt � λ and the construction proceeds via
case 2a, and at most one such stage at which the construction proceeds
via case 3 — as discussed in Lemma 5.4. The target for action may
also be 〈k,Q〉 at one stage at which the construction proceeds via case
2b. Thus we enumerate an element of Fn into W at at most 2k+1 + 1
stages t such that t0 ≤ t < t1 (since this is one more than double the
maximum possible number of leaves on Q).

We now show that for each e, if [t0, t1) is dedicated to e on ρ, there
are at most (k−e+1)(2k+1+1) stages t ∈ [t0, t1) at which we enumerate
an element of Fn into W , by backward induction. The base case (e = k)
is given above.

Fix e ≤ k−1, and assume that whenever [t0, t1) is dedicated to e+1
on ρ, there are at most (k − e)(2k+1 + 1) many stages t ∈ [t0 < t < t1)
at which we enumerate an element of Fn into W .

Suppose that [t0, t1) is dedicated to e on ρ. Let t2 be the largest
number in [t0, t1] such that [t0, t2) is dedicated to e+ 1 on ρ. There are
at most (k − e)(2k+1 + 1) many stages t such that t0 < t < t2 and at
which we enumerate an element of Fn into W .

If t2 < t1, then at stage t2, the target for action is of form 〈e,Q〉,
where Q has root ρ. Thus for t2 ≤ t < t1, only 〈e,Q〉 can be the target
for action at stage t. Applying the reasoning given above in the case
e = k, we see that there are at most 2k+1 +1 stages t ∈ [t2, t1) at which
we enumerate an element of Fn into W . So the total number of stages
t ∈ [t0, t1) at which we do so is at most (k − e)(2k+1 + 1) + 2k+1 + 1 =
(k − e+ 1)(2k+1 + 1), completing the induction.

Now we take account of the fact that n may be assigned to different
strings throughout the construction. Of the stages at which we assign
n to work on the root of P , there are at most (k+1)(2k+1 +1) many at
which we enumerate an element of Fn into W . Because we first assign
n to work on a string ρ for which |ρ| ≤ 4n, and at later stages assign n

to work on initial segments of ρ, there are at most
4n∑
i=0

(i+ 1)(2i+1 + 1)
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stages at which we enumerate an element of Fn into W ; this is of course
the bound f that we specified. �

Note that our assignment of each number n eventually settles on
some string ρ; we now name that string.

Definition 5.8. If we assign n to work on ρ at all stages t ≥ s, we will
say that n settles on ρ by stage s. If n settles on ρ by some stage, then
we will simply say that n settles on ρ.

We will now check that for each e the requirement Re is met. To do
so we must check that X is a path through each Te, and that either
Dim(ΦX

e ) < 1 and there is some string ξ ≺ X with |ξ| ≥ e and K(ξ) ≥
|ξ|/4, or that ΦX

e is a nontotal function. In the former case, the required
inequality on the effective packing dimension of ΦX

e will be verified
indirectly using Lemma 2.3.

Lemma 5.9. Suppose that n0 is a number such that W∩Fn0 = A∩Fn0,
that n0 settles on some string ρ by stage s with |ρ| ≥ e and that ρ is
the root of a pruned clump P which is on T se−1 at every stage t > s.
Suppose also that for each i < e and pruned clump Q % P , Q is not
the first witness to i-divergence at any stage t > s.

Then one of the following conditions holds:

(a) There is a leaf λ of P and stage t1 such that for t > t1, ξt has λ as
an initial segment, and λ is not e-extendible at stage t.

(b) There is a leaf λ of P and stage t1 such that for t > t1, ξt has λ as
an initial segment, P meets the e-majority vote criterion at stage
t+ 1, and K(λ) ≥ |λ|/4.

Proof. We proceed by induction on n0. Fix n0 such that W ∩ Fn0 =
A ∩ Fn0 , and assume the result for n < n0.

Suppose n0 settles on some string ρ by stage s. Note that at stages
t ≥ s, if Q has a root which is a proper initial segment of ρ, then 〈i, Q〉
cannot be the target for action, since that would cause us to assign n0

to a different string.
Fix some number e, and let P ⊂ T se−1 be a pruned clump with root ρ.

Suppose that for t ≥ s and i < e, Ri does not require attention on any
clump Q ∼ P at stage t. Then P is a pruned clump on T te−1 at each
stage t ≥ s, since we have just ruled out all of the possible targets for
action which could prevent that. If t0 ≥ s is a stage at whichRe requires
attention at P , then at a later stage t ≥ t0, Wt−1 ∩ Fn0 = At ∩ Fn0 .
At the first such stage, At ∩ Fn0 6= At−1 ∩ Fn0 , and either Re no longer
requires attention on P , or 〈e, P 〉 is a target for action.

Suppose that for some t1 > s, ξt1 has an initial segment which is a
leaf λ of P which is not e-extendible at any stage t ≥ t1. If so, we may
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choose t1 so that if P is the first witness to e-divergence at any stage
t > t1, then P is the first witness to e-divergence at stage t1.

If so, P is the first witness to e-divergence at every stage t ≥ t1. In
that case, if t ≥ t1 and Q has a root ρ0 � ρ, 〈i, Q〉 cannot be the target
for action at stage t. Thus ξt � λ for all t ≥ t1.

If P is not the first witness to e-divergence at stage t1, then no leaf
of P is e-extendible at any stage t > t1, and there is some leaf λ0 of P
and t2 > t1 such that for t > t2, ξ

t � λ0.
Thus in this case the first of the two conditions is satisfied.
Otherwise there is some stage t0 at which every leaf λ of P is e-

extendible. Because limt ξ
t exists there is some t1 > t0 such that for

t ≥ t1, ξ
t has some fixed leaf λ of P as an initial segment. ButW∩Fn0 =

A ∩ Fn0 , so if t1 is large enough, Re does not require attention at P at
any stage t ≥ t1. This implies that at each stage t ≥ t1, P meets the
e-majority vote criterion and that Kt(λ) ≥ |λ|/4. �

Definition 5.10. If P is a pruned clump on Te−1 such that there is
a leaf λ of P and stage t1 such that for t > t1, ξ

t has λ as an initial
segment, and λ is not e-extendible at stage t, then we will say that λ
forces e-divergence of X.

Note that in the preceding definition and lemma, P forcing e-divergence
merely guarantees that we never find any (e− 1)-ρ-verified extensions
of λ which threaten to make ΦX

e total. We will later see that our
terminology is appropriate: if λ forces e-divergence, then ΦX

e really is
nontotal.

Lemma 5.11. For each n ∈ ω let ρn be the string on which n settles.
For each e, there are finitely many numbers n such that W∩Fn = A∩Fn
and ρn is not the root of a pruned clump on Te.

The finitely many exceptions to this assertion are numbers amongst
those for which either |ρn| < e or when there is some i ≤ e such that
ρn is an initial segment of the root of a pruned clump on T s−1i−1 which is
the first witness to i-divergence at stage s for all sufficiently large s.

Proof. First, fix some number e. There are finitely many numbers n
for which |ρn| < e. Likewise, for each i ≤ e, there is at most one string
ρ which is the root of a pruned clump on T s−1i−1 that is the first witness
to i-divergence at stage s for all sufficiently large s, and hence only
finitely many n for which ρ � ρn. So the list of purported potential
problems is indeed finite.

Now, fix some n such that W ∩Fn = A∩Fn. Fix some e and assume
the result of the lemma for each i < e. We will show that it holds of e,
too.
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Assume that ρn does not satisfy either exceptional condition. Note
that if either of the exceptional conditions discussed above holds of ρn
and e, the same condition also applies to ρn and i, for each i < e.

There are two possible scenarios.
The first is as follows: n settles on ρn by some stage t, and ρn has a

proper initial segment which is the root of a pruned clump P on T s−1e−1
such that for s ≥ t, P is the first witness to e-divergence at stage s.
Assume t is large enough that for s ≥ t, there is no target for action
of the form 〈j,Q〉, where the root of Q is an initial segment of ρn. At
stages s > t at which there is no target for action, if µ is the leaf of P
which is an initial segment of ξs−1, we have T se = T s−1e ∪ {τ ∈ T se−1 |
µ ≺ τ}. By our inductive hypothesis, ρn is the root of a pruned clump
on T se−1 for all sufficiently large s. Because µ ≺ ρn, it follows that ρn
is also the root of a pruned clump on T se . But then ρn is the root of a
pruned clump on T s1e at all stages s1 ≥ s.

The second scenario is that ρn is the root of a pruned clump P on
Te−1 with the property that there is a stage s at which Re requires
attention at P due to halting, and at which the target for action is
〈e, P 〉. This stage may be assumed to be the last stage at which the
target for action is of the form 〈j,Q〉, where j ≤ e and ρ � ρn. In
this case we add a pruned clump Q ∼ P to T se , and never remove it
again. �

Lemma 5.12. Fix e and t1. Let ρ ∈ T t1−1e be a root of a pruned clump
P on T t1−1e−1 such that:

(1) For each i < e such that a leaf of some pruned clump Pi on Ti−1
forces i-divergence, ρ is an extension of the root of the ≺-least
such Pi,

(2) Some number n settles on ρ by stage t1, and furthermore for
each i < e, there is no stage t > t1 at which there is a target for
action of the form 〈i, Q〉, where Q is a pruned clump on T t−1i−1
such that Q ∼ P , except in case Ri requires attention due to
complexity at Q,

(3) P meets the e-majority vote condition at stage t1.

Then P is on T te and meets the e-majority vote criterion at each stage
t > t1.

Proof. The only targets for action which might cause P to not be on
T te−1 for some first stage t > t1 are those of the form 〈i, Q〉 where
Q ≺ P or 〈i, Q〉 where i ≤ e and Q ∼ P . In the case where Ri requires
attention due to complexity no pruned clump will be removed. But
our assumption rules out any other target for action. �
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We now introduce a new kind of verification, which is called e-
permanence.

Definition 5.13. Let e ≥ 0. Say that σ ∈ T s−1e is e-permanent at
stage s if for 0 ≤ i < e, σ is i-permanent at stage s and either:

(1) There is a pruned clump Q with root ρ and a leaf λ such that
for each t ≥ s, Q is on T te−1, λ � ξt, and the active leaf on Q
appears to force e-divergence at stage t, and furthermore that
either σ � λ or λ � σ, or

(2) Each pruned clump P on T se−1 with root ρ ≺ σ for which P ∩
T s−1e is a pruned clump meets the e-majority vote criterion at
stage s.

Lemma 5.14. For each e, there is some stage t1 such that for each
t > t1, any σ ∈ T te which is e-permanent at stage t is also in T t+1

e and
is e-permanent at stage t+ 1.

Proof. Fix some e, and assume the result for all i < e.
Let ρ ≺ X be the root of some pruned clump on Te−1 such that for

each i ≤ e for which a leaf of some pruned clump P forces i-divergence,
one such P has a root which is a proper initial segment of ρ.

Let t0 be large enough that

(1) t0 meets the condition given by the lemma for each i < e
(2) some number n settles on ρ by stage t1

Now suppose that σ is an e-permanent string on T te at some stage
t ≥ t1.

At stages s > t, if i < e and Q is a pruned clump on T s−1i−1 with a root
which is a proper initial segment of σ, 〈i, Q〉 can only be the target if Ri

requires attention at Q due to complexity (otherwise Q could not have
met the i-majority vote criterion, and hence σ was not i-permanent at
stage s− 1).

If a leaf λ of some pruned clump P on Te−1 forces e-divergence, then
for s ≥ t1, ξ

s has λ as an initial segment and λ appears to force e-
divergence at stage t. So the strings which are e-permanent at a stage
s ≥ t1 are precisely the (e − 1)-permanent strings σ on T se such that
σ � λ or λ � σ. No such string can be removed from T se at a stage s
at which there is no target for action, nor at a stage at which there is
a target for action because some requirement Ri requires attention due
to complexity. Thus σ remains e-permanent at all stages s ≥ t.

Otherwise, there is no leaf of any pruned clump on Te which forces
e-divergence. Then every pruned clump P on T t−1e−1 for which P ∩T t−1e is
a pruned clump with root ρ meets the e-majority vote criterion at stage
t. At a stage s at which there is no target for action or at which there is
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a target for action chosen because some requirement requires attention
due to complexity, a pruned clump on T se−1 cannot cease to meet the
e-majority vote criterion. Once again, σ will remain e-permanent at
all stages s ≥ t. �

Lemma 5.15. Suppose that a leaf of some pruned clump P on Te−1
forces e-divergence of X. Then ΦX

e is nontotal.

Proof. Let P have a leaf which forces e-divergence of X. Assume that
P has root ρ such that |ρ| ≥ e, and that for each i < e such that
there is some ≺-least pruned clump Q on Ti−1 with a leaf which forces
i-divergence of X, Q ≺ P (choose P to be a clump with a longer root,
if necessary). Suppose that ΦX

e is total. Choose some stage t0 such
that for t > t0, P is on T te−1, such that some n0 settles on ρ by stage
t1, and such that there is a leaf λ of P such that ξt � λ for all t > t0.

Let σ � λ be an initial segment of X such that σ ∈ T te−1 for all
t > t0. Choose t1 > t0 such that if ρ0 � σ is the root of any pruned
clump P0, the target for action cannot be 〈i, P0〉 at any stage t > t1.
For each i < e such that there is some t2 such that for each t ≥ t2, σ is
i-verified at stage t, assume that t1 ≥ t2.

If σ is not (e− 1)-ρ-verified at every stage t > t1, then there is some
least i < e such that σ is not i-ρ-verified at every stage t > t1. We
will show that this is impossible, by showing that σ is i-ρ-verified at all
sufficiently large stages t. Thus it follows that σ is eventually (e− 1)-
ρ-verified, and since σ was an arbitrary extension of λ, P cannot have
a leaf which forces e-divergence of X.

By our assumption on P , no leaf of the pruned clump Q ∼ P on
Ti−1 appears to force i-divergence at any stage t ≥ t1.

Find the ≺-least initial segment ρ1 of X such that some number n
settles on ρ1 by a stage t2 > t1, and that t2 is the largest stage at which
there is a target for action of form 〈i, P1〉, where ρ1 is the root of a
pruned clump P1 on T t2−1i−1 , Ri requires attention due to halting at P1,
and the construction proceeds via case 2b.

Note that for j < i and P2 ∼ P1 there is never a target for action
of the form 〈j, P2〉 at any stage t > t2 except if Rj requires attention
due to complexity (or t2 would not be the last stage at which there is
a target of form 〈i, P1〉 as specified above).

At stage t2, consider the ≺-least pruned clump Q � P1 on T t2−1i−1 on
which ξt2−1 is working, and such that Q does not meet the i-majority
vote criterion at stage t2.

If Q = P1 then σ is i-ρ-verified at stage t2, by definition.
Otherwise Q ≺ P1 and ρ0 ≺ σ. But in that case the definition of

T t2i ensures that every pruned clump Q such that P - Q - P meets
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the i-majority vote criterion at stage t2 + 1, and so σ is i-ρ-verified at
stage t2 + 1.

By our choice of t2 and Lemma 5.12, there is no stage t > t2 at which
any target for action could cause σ to cease being i-ρ-verified.

This contradicts the minimality of i, as promised. �

Remark 5.16. For each e and s, the e-permanent strings on T se are
downward closed, and therefore form a tree.

Lemma 5.17. Suppose that e is a number such that ΦX
e is total. For

each s, let T̂ se consist of the strings on T se which are e-permanent at
stage s, and t1 be a number satisfying the condition of Lemma 5.14.

Then
⋃
s≥t1 T̂e

s
satisfies the conditions of Lemma 2.3.

Proof. Every pruned clump P on T se−1 such that P ∩ T se is a pruned

clump on T̂ se meets the e-majority vote criterion at stage s+1, because

its leaves are e-permanent. This shows that T̂ se meets conditions (2)
and (3) of Lemma 2.3.

By Lemma 5.14, we have T̂ se ⊆ T̂ s+1
e for each s ≥ t1. Determining

which of the leaves of T se is e-permanent is a computable procedure,

and so
⋃
s≥t1 T̂

s
e is a c.e. tree.

Finally, suppose ρ is the root of a pruned clump on T̂ s+1
e for some

s ≥ t1. Then each string in that pruned clump must be (e− 1)-verified
at stage s, because otherwise there is no way that ρ can be the root
of a pruned clump on T s+1

e which meets the e-majority vote criterion.

Suppose that ρ ∈ T̂ se . If there is some τ � ρ in T̂ se , then we may
deduce that ρ is the root of a pruned clump P on T se−1 which meets
the e-majority vote criterion. Hence P ∩ T se is a pruned clump, and
furthermore every string in P ∩ T se is e-permanent. Thus ρ is the root

of a pruned clump on T̂ se . If no such τ exists, then ρ is a leaf of T̂ se .

Thus
⋃
s≥t1 T̂

s
e satisfies the conditions of Lemma 2.3, as desired. �

Lemma 5.18. Dim(X) ≥ 1
4
.

Proof. If Φe is total, then for infinitely many pruned clumps P on Te
with root ρ ≺ X, condition (b) of Lemma 5.9 must be met. Thus
there is a leaf λ of P such that λ ≺ X and K(λ) ≥ |λ|/4. Therefore
Dim(X) ≥ 1/4. �

Lemma 5.19. X ≤T A.

Proof. We will first check that Γ really is a Turing functional.
To do this, it suffices to check that there are no strings σ ≺ τ such

that for some n, Γσ(n)↓ 6= Γτ (n)↓.
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To this end, suppose that at some stage s, we set ΓAs(m) = λ for
some string λ. Then the use of that computation is γs(n) = maxFn,
where n is the largest number assigned to work on the root ρ of the
pruned clump P on T−1 of which λ is a leaf.

We must check that we will not later define ΓAt(m) to be a different
string, unless At � γs(m) 6= As � γs(m).

The next stage t at which we define ΓAt(m) may be one at which we
have a target for action of the form 〈e,Q〉, where Q - P . If so, then at
that stage t, let k be the largest number assigned to the root of Q. Then
we must have At � maxFk 6= At−1 � maxFk, since we are permitted
to act. Since Q - P , we have k ≤ m and hence At � γs(m) 6= At−1 �
γs(m). Because A is c.e. it follows that At � γs(m) 6= As � γs(m), as
required.

Otherwise the next stage t at which we define ΓAt(m) is one at which
At � γs(m) 6= At−1 � γs(m), and at which we define ΓAt(m) = λ, with
use γt(m) = γs(m).

We now note that Γ does not explicitly compute X from A. Nonethe-
less, we can readily modify Γ to do so. It is enough to show that if
α ≺ A and Γα(m) ↓= λ, then λ ≺ X, and that given k, there is some
n and sufficiently long α ≺ A for which Γα(m) ↓= λ for a string λ of
length greater than k.

At each stage s of the construction, ΓAs(m) (if defined) is an initial
segment of ξs.

Suppose that n settles on a string ρ by stage t, and that t is the
last stage at which the target for action is of the form 〈e, P 〉, where P
has root ρ. Then at that stage we set ΓAt(m) to be the leaf λ of P
which ξt has as an initial segment, with use γt(m) = maxFn, where
n is the largest number assigned to ρ. At any future stage t0 > t at
which At0 � γt(m) 6= At0−1 � γt(m), we still set ΓAt0 (m) = λ, with use
γt0(m) = γt0−1(m) = γt(m) and at that stage we still have λ � ξt0 .
Thus we have ΓA(m) = λ, and λ is indeed an initial segment of X.

Now, to compute a desired initial segment ofX, simply search through
all computations of the form ΓA(n) — any string output by this process
is an initial segment of X, and sufficiently large n will output an initial
segment greater than any desired length. �

Combining the results of Lemmas 5.17, 5.18, and 5.19, we see that
our real X satisfies the requirements of the main result given by Theo-
rem 1.3, and thus suffices to prove both that result and Corollary 1.4,
our characterization.
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