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Abstract. Recent work of Conidis [Con12] shows that there is a
Turing degree with nonzero effective packing dimension, but does
not contain any real of effective packing dimension 1.

This paper shows the existence of such a degree below every
c.e. array noncomputable degree, and hence that they occur below
precisely those of the c.e. degrees which are array noncomputable.

1. Introduction

Packing dimension was independently introduced by Tricot [Tri82]
and Sullivan [Sul84] as a counterpart to the previously established no-
tion of Hausdorff dimension. Both notions allow one to assign a (pos-
sibly noninteger) dimension to subsets of any metric space. Hausdorff
dimension is defined in terms of outer measures, whereas packing di-
mension is based on inner measures.

Effective versions of both notions have been developed by Lutz,
Staiger, Athreya et al. ( [Lut03], [AHLM07], [Sta93]). For our pur-
poses, the characterizations of Mayordomo [May02] and Lutz [Lut05]
of, respectively, effective Hausdorff and packing dimension below can
be taken as definitions.

Definition 1.1. Let A be a real (i.e. member of Cantor Space), then
the effective Hausdorff dimension of A is

dim(A) = lim inf
n→∞

K(A � n)

n
,

and the effective packing dimension of A is

Dim(A) = lim sup
n→∞

K(A � n)

n
.

The reader should note that we are ascribing a notion of dimension
to a single real, in the same way that we can use computability theory
to give meaning to randomness to a single real.

These effective notions of dimension have strong links to complex-
ity and algorithmic randomness. Moreover, work of Simpson [Sim15]
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and Day [Dayep], for example, have shown that effective notions of
dimesnion can be used to derive classical results in mathematics. In
discussions with co-workers, Simpson proved that the classical dimen-
sion equals the entropy (generalizing a difficult result of Furstenburg
1967) using effective methods, which were much simpler. Recently
Day used effective packing dimension to give a simple proof of the
Kolmogorov-Sinai Theorem on Ergodic theory.

In many ways, effective packing dimension is quite well behaved on
degrees. For example, we know that a Turing degree will obey a 0-
1 Law for effective packing dimension. That is complexity extraction
procedures given independently by Bienvenu et al., and Fortnow et
al. ( [BDS09] and [FHP+06], respectively) show that for any real X,
sup{Dim(Y ) | Y ≤T X} is either 0 or 1. The extraction processes both
yielded only that the supremum of the packing dimensions of the reals
in the degree was 1, and hence authors wondered if the supremum of
1 was always achieved. Work of Conidis [Con12] shows that there are
reals X for which the supremum is 1, but for which that supremum is
not attained1.

Conidis’ construction was a direct forcing argument and resulted in a
hyperimmune-free degree. The second author [Ste15] showed that the
construction given by Conidis, which utilizes forcing with computable
trees, can be modified to work below ∅′. This version may be inter-
preted as a limit-computable construction with permissions provided
by ∅′. In light of this observation one might ask below which c.e. sets
A the construction can be carried out; the obvious restriction is that
A must provide appropriate permissions.

The array noncomputable degrees are a class introduced by Downey,
Jockusch and Stob in [DJS96]. They are noted for their compatibility
with constructions requiring multiple permissions (which we will see
naturally arise in an approximation-based version of Conidis’ construc-
tion). They have also been shown to form a natural cutoff in the Turing
degrees for constructions involving reals with nonzero effective packing
dimension (see for instance [DG08], [DN10], [DH10]). In our case, a
result of Kummer [Kum96] is most relevant:

Theorem 1.2 (Kummer). If A is an array computable c.e. real, any
real X ≤T A has Dim(X) = 0.

Moreover, Downey and Greenberg [DG08] proved the 0-1 Law di-
chotomy held for array noncomputable degrees. If a is array noncom-
putable c.e. degree, then a has effective packing dimension 1.

1Any Martin-Löf random real X has dim(X) = 1, and the computable reals all
have Dim(X) = 0, so an unattained supremum is the only difficult case to achieve.
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These results show that the only c.e. reals which can possibly provide
the necessary permissions for a construction à la Conidis are the array
noncomputable ones. In this paper, we show that every array noncom-
putable c.e. degree computes a real X with the desired properties:

Theorem 1.3. Given any array non-computable c.e. real A, there is a
real X ≤T A such that Dim(X) > 0 and such that for each Y ≤T X,
Dim(Y ) < 1.

In light of Kummer’s result, this gives a full characterisation of the
situation which follows the general pattern observed above:

Corollary 1.4. A c.e. real A is array noncomputable if and only if
there is a real X ≤T A such that Dim(X) > 0 and for each Y ≤T X,
Dim(Y ) < 1.

We remark that the array noncomputable degrees again show up as
quite a ubiquitous class. Kummer’s other result was that a c.e. degree
contains a c.e. set A where the plain complexity C(A � n) =+ 2 log n
for infinitely many n iff the degree was array noncomputable. There
are other characterizations of this class. It is not yet understood how
these combinatorial arguments all inter-relate.

We remark that the proof here is not a simple modification of the
earlier work of the second author, but requires a reasonably delicate
argument of some combinatorial complexity.

Before embarking on our construction, we should pause to note that
effective Hausdorff dimension and effective packing dimension behave
in quite distinct ways. There is no analogous computable extraction
procedure which produces sets with higher effective Hausdorff dimen-
sion than a given input. Indeed a result of Miller confirms this fact
directly:

Theorem 1.5 (Miller [Mil11]). There is a real number X with effective
Hausdorff dimension 1

2
but which cannot compute any real of higher

effective Hausdorff dimension.

The classification of reals with such fractional Hausdorff dimension
is still open.

2. Strategy

Throughout this paper, we will assume all Turing functionals are
partial maps on 2<ω, and denote them by upper-case Greek letters.
We will let {Φe}e∈ω be a computable list of all such functionals. Other
notation will be standard, and follows the conventions of Soare [Soa87].
We fix a single c.e. real A = limsAs which is array noncomputable. The
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remainder of the paper is devoted to constructing a real X ≤T A which
satisfies the requirements of Theorem 1.3.

The simplest characterisation of effective packing dimension is in
terms of Kolmogorov complexity. If λ ∈ 2<ω, then we will denote the
prefix-free Kolmogorov complexity of λ by K(λ). As is conventional
we fix a computable decreasing approximation Ks with limit K.

By creating a real X with nonzero effective packing dimension, we
will automatically guarantee that for each ε > 0, there is some Y ≤T X
such that Dim(Y ) > 1− ε. The difficulty which arises in our construc-
tion is thus that we must prevent each such Y from having Dim(Y ) = 1.

In order to achieve the delicate level of control on complexity implicit
in that requirement, we will work with pruned clumpy trees. Clumpy
trees were introducted as a forcing notion by Downey and Greenberg
[DG08], and will soon be defined.

Definition 2.1. For each n, we write 2=n to mean the binary strings
with length equal to n, and 2≤n to mean those with length less than
or equal to n, respectively. If ρ ∈ 2<ω, P ⊆ 2<ω then ρP is the strings
formed by concatenating ρ with members of P . If σ ∈ 2<ω, τ ∈ 2<ω∪2ω

write σ ≺ τ to mean that σ is a proper initial segment of τ . P ⊂ 2<ω

then the ≺-maximal elements of P are called leaves.
A pruned clump is a downward closed subset of a set of the form

ρ2≤|ρ|, and which contains at least two leaves of ρ2≤|ρ|. We will refer
to ρ as the root of such a pruned clump.

If T is a tree we will say that a pruned clump D is on T if ρ2≤|ρ|∩T =
D. We say that a tree T ⊆ 2<ω is a pruned clumpy tree if every string τ
on T which is an initial segment of a path through T has an extension
ρ which is the root of some pruned clump on T .

Definition 2.2. Let T−1 be the tree formed by taking the union of the
following finite trees T s−1: T−1−1 consists of the empty string together
with the string consisting of a single 0. Let T s−1 be given by⋃

λ∈T s−1
−1

λ a leaf of T s−1
−1

λ2=|λ|02|λ|.

Definition 2.3. If Q and P are pruned clumps, we write P ≺ Q if the
root of P is a proper initial segment of the root of Q, and P ∼ Q if P
and Q have the same root. We will write P - Q if P ≺ Q or P ∼ Q.

We will build a sequence {Te}e∈ω of pruned clumpy trees such that
Te+1 ⊆ Te for each e. The real X which satisfies the hypotheses of
theorem 1.3 will be the unique common path through all of the trees.
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By ensuring that there are sufficiently many leaves on every pruned
clump of a tree T , we can guarantee that one such leaf has complexity
high enough to help us build a real with nonzero dimension (in par-
ticular, each pruned clump built in our construction will have a leaf λ
with K(λ) ≥ |λ|/4).

We will also make use of the fact that if X is a path through a
pruned clumpy tree T , and Φe behaves appropriately on the leaves of
the pruned clumps on T , then Dim(ΦX

e ) is able to be bounded away
from 1. The following lemma gives the precise conditions required.
It is a variation on a result given in [Ste15] (the proof is essentially
unchanged), and is inspired by a similar computation given by Conidis
in [Con12].

Lemma 2.4. Let e ∈ ω, and let T ⊆ T−1 be a c.e. pruned clumpy tree
given by a computable approximation T 1 ⊆ T 2 ⊆ · · · such that:

(1) For each s and each ρ ∈ T s, if ρ is the root of a pruned clump
on T s+1, it is either the root of a pruned clump on T s or a leaf
of T s

(2) If ρ0 ≺ ρ are roots of pruned clumps on T , then |ρ| ≥ 4·22e+4|ρ0|
(3) For each pruned clump P on T with root ρ, there is a string

τ ∈ 2<ω with |τ | = 2−2e−4|ρ| and such that:

(a) for each leaf λ of P , and each λ̂ ∈ T such that λ � λ̂, if

x < |τ | and Φλ̂
e (x)↓, then Φλ̂

e (x) = τ(x), and

(b) for each leaf λ of P , there is some λ̂ ∈ T such that λ � λ̂

and for each x < 2−2e−4|ρ|, Φλ̂
e (x)↓.

If X is a path through T and ΦX
e is total, then Dim(ΦX

e ) < αe for some
fixed αe < 1.

Achieving the agreement between computations specified in condi-
tion (3) of the lemma is the most prominent feature of our construction.

3. Overview and terminology

We will be working on requirements for each e ∈ ω, as follows:

Re : either ΦX
e is nontotal, or

Dim(ΦX
e ) < 1, and for infinitely many ξ ≺ X, K(ξ) ≥ |ξ|/4.

Remark 3.1. If Φe is a total reduction, then to meet Re we must meet
the second of the conditions. Because such reductions exist, satisfying
Re for every e will ensure that Dim(X) ≥ 1

4
.

For each e, we will guarantee that X satisfies the requirement Re,
either by ensuring that ΦX

e is not total, or, if that is not possible, by
attempting to make Te satisfy the condition of Lemma 2.4. Because
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we will build X as a limit of a computable approximation, we will be
unable to tell which of the two strategies succeeds for each e.

In addition, the approximate nature of the construction means that
our attempt to build a tree Te meeting the conditions of Lemma 2.4 is
not immediately successful — to satisfy the lemma we make a minor
modification to Te after the construction.

At every stage s, we will let T s−1 be as in Definition 2.2. At the start
of stage s, we will be given trees T s−1e for each e < s and a string ξs−1

which is our current guess at an initial segment of X. We will then
construct a tree T se for each e ≤ s, and define ξs to be some string in
T ss . The trees we build will be nested in the sense that T se−1 ⊆ T se at
every stage of the construction, but it will not always be the case that
T s−1e ⊆ T se .

At each stage s ≥ 0 we will choose at most one requirement Re to
attend to, and attend to it on a single pruned clump. We will do so by
referring to functions g and h which determine when we have permission
to change our string ξs. The function g will be built as we carry out
the construction. We will define it by giving an approximation gs at
each stage s of the construction.

After the construction, we will give a computable bound f(n) on the
number of times gs(n) 6= gs+1(n), which shows that g ≤wtt ∅′. Because
A is array noncomputable we may fix in advance an A-computable
function h with the property that for infinitely many n, h(n) > g(n).
We fix a Turing functional Θ such that ΘA = h, and let ΘAs(n) = hs(n)
for each s. If necessary, we speed up our approximation to A in order
to ensure that hs(n) is defined for every n and s. We assume that for
each n and s, 0 < hs(n) ≤ hs+1(n).

Definition 3.2. If 0 ≤ e ≤ s and P ⊆ T s−1e−1 is a pruned clump such
that some leaf of P is an initial segment of ξs−1, we will say that e is
working on P at stage s.

Notice that if i < j then there will be be pruned clumps P ⊂ T s−1i ,
Q ⊂ T s−1j such that P ∼ Q. It will sometimes be convenient to ignore
the distinction between such clumps, and we can do so by referring to
the root of a pruned clump rather than to the clump itself.

If e is working on a pruned clump P at stage s, we will say that the
function g assigns one or more particular numbers to work on the root
ρ of P at stage s.

Definition 3.3. If g assigns n to work on a string ρ at stage s−1, and
gs−1(n) < hs(n), then we will say that g permits changes at ρ at stage
s.
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During our construction, we will sometimes want to fix some string
ρ which is the root of a pruned clump P on T se , and assume that we
will never again act to satisfy a requirement Ri for i < e in a way
which affects P . Having made this assumption, we may fix some string
σ ∈ T s−1e such that ρ ≺ σ, and ask whether is also a member of T te at
all stages t ≥ s. We will refer to σ as e-ρ-verified in cases where we
have reason to believe so. This concept will be defined by recursion on
e, and will implicitly depend on the stage of the construction.

We will first define (−1)-ρ-verification, and defer the case e ≥ 0 until
after outlining the main concepts used in the construction.

Definition 3.4. At any stage s of the construction and for any root ρ of
any pruned clump on T s−1−1 , every string σ � ρ on T s−1−1 is −1-ρ-verified.

In what follows, many of the definitions given depend on a stage s.
Typically that stage will be clear throughout the construction and its
verification, but we include it here to avoid ambiguity.

The next definitions are key in satisfying Lemma 2.4.

Definition 3.5. Suppose that P is a clump on T s−1e−1 with root ρ, and
τ ∈ 2<ω. Let λ be a leaf of P .

We will say that λ is e-τ -extendible at stage s if there is an (e−1)-ρ-

verified extension λ̂ ∈ T s−1e−1 of λ with the property that Φλ̂
e [s] � |τ | = τ ,

and such that λ̂ is the root of a pruned clump on T s−1e−1 and |λ̂| ≥
4 · 22e+4|ρ|. In this case we will say that λ̂ is an e-τ -extension of λ at
stage s.

We will say that λ is e-τ -extended at stage s if there is an (e − 1)-

ρ-verified e-τ -extension λ̂ of λ on T s−1e , and furthermore that for any

σ ∈ T s−1e such that λ ≺ σ, either λ̂ ≺ σ or σ � λ̂.
We will say that λ is e-extendible at stage s if λ is e-τ -extendible for

some τ ∈ 2<ω of length |ρ|2−2e−4 at stage s.

Definition 3.6. Suppose P is a pruned clump on T s−1e−1 with root ρ.
We will say that P meets the e-majority vote criterion at stage s if

T s−1e ∩P is a pruned clump, and there is some string τ ∈ 2<ω of length
2−2e−4|ρ| such that each leaf of T s−1e ∩ P is e-τ -extended at stage s.

We now introduce the conditions which tell us when a requirement
Re requires attention at a particular point in the tree T se−1.

Definition 3.7. Suppose P is a clump on T s−1e−1 with root ρ, where
|ρ| ≥ e, and P ∩ T s−1e is a pruned clump on which Re is working.

Say that requirement Re requires attention due to halting at P at
stage s if the leaf λ of P which is an initial segment of ξs−1 is e-
extendible at stage s, but P does not meet the e-majority vote criterion.
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If P is a pruned clump in T s−1e−1 whose root ρ has |ρ| ≥ e, say Re

requires attention due to complexity at P at stage s if P meets the e-
majority vote criterion but the leaf λ of P which is an initial segment

of ξs−1 has
Ks(λ)

|λ|
<

1

4
.

If P does not require attention due to halting and does not meet the
e-majority vote criterion, say that P appears to force e-divergence at
stage s. Say that P is the first witness to e-divergence at stage s if P is
the ≺-least clump on T s−1e−1 with root of length at least e which appears
to force e-divergence at stage s.

The restriction that |ρ| ≥ e given above ensures that only finitely
many requirements will ever require attention on the pruned clumps
with root ρ.

We are now ready to complete our definition of e-ρ-verification.

Definition 3.8. Let e ≥ 0, and σ ∈ T s−1e . Suppose ρ ≺ σ is the root
of a pruned clump Q on T s−1e−1 .

We say that σ is e-ρ-verified if σ is (e− 1)-ρ-verified and either

(1) Q appears to force e-divergence at stage s, or
(2) For each ρ0 ≺ σ which is the root of a pruned clump P on T s−1e−1

such that P ∩ T s−1e is a pruned clump, P meets the e-majority
vote criterion at stage s.

The idea of this definition is that if we believe that Q forces e-
divergence then there is no reason to remove any of its extensions from
Te, whereas if we have met the e-majority vote criterion we will attempt
to preserve that at later stages. In either case, it appears that from the
perspective of ρ, σ can safely be expected to remain on Te. Of course,
we should only believe that σ will stay on Te if we already believe that
it will stay on Te−1, and thus adjust our beliefs accordingly.

At each stage s of the construction we will want to focus on a single
pruned clump on which some requirement Re is working, and which
requires attention at stage s. If we identify such a pruned clump, we
refer to it as our target for action at stage s.

We will say that a pair 〈e, P 〉 consisting of a number e < s and clump
P ⊆ T s−1e−1 is a candidate for action at stage s if Re is working on P
at stage s, P requires attention at stage s, and furthermore g permits
changes at the root of P at stage s.

A candidate for action 〈e, P 〉 is the target for action at stage s if it
meets each of the following conditions:

(1) there is no pruned clump Q ≺ P such that for some i, 〈i, Q〉 is
a candidate for action at stage s,
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(2) there is no requirement i < e which requires attention on a
pruned clump Q ∼ P ,

(3) there is no pruned clump Q % P and number i < e such that
Q is the first witness to i-divergence at stage s.

There is at most one target for action at each stage. At some stages
there may be no candidates for action, or candidates but no target.

In the next section, we will outline the construction proper.
We will build the trees T se by attempting to find strings which force

divergence of Φe, and, if that is not possible, will attempt to meet the
e-majority vote criterion on the pruned clumps in T se−1. If we meet
the e-majority vote criterion on a pruned clump Q ⊆ T se−1, we will
want to preserve this at all future stages. However, it may be the
case that at a later stage t > s we have a target for action of form
〈i, Q〉, where P - Q. At such a stage, if Ri requires attention at Q
due to halting, then we will be forced to abandon our progress on Q.
However, if Ri requires attention at Q due to complexity, we will ensure
that Q remains a pruned clump on T te . This will assist us in meeting
the enumerability criterion given by Lemma 2.4.

4. The Construction

Initialization
At stage 0, we set ξ0 to be the string consisting of a single 0, and let

g0 have empty domain. We adopt the convention that 0 is not working
on the single pruned clump of T 0

−1 at this stage.
We will now describe how to use the situation at the end of stage

s− 1 of the construction to carry out stage s.
Defining the trees T se and approximation ξs

How we proceed at stage s depends on whether there is a target
〈e, P 〉 for action, and, if so, the reason that Re requires attention at P .

Case 1: No candidates for action.
If there are no candidates for action, then for each i < s, define T si

as follows. If P is the ≺-least pruned clump on T s−1i−1 on which ξs−1

is working, but which does not meet the e-majority vote criterion at
stage s, then let µ be the leaf of P which is an initial segment of ξs−1,
and let

T si = T s−1i ∪ {τ ∈ T si−1 | µ ≺ τ}.
If every pruned clump P on T se−1 on which ξs−1 is working meets the
e-majority vote criterion at stage s, let

T si = T s−1i ∪ {τ ∈ T si−1 | ξs−1 ≺ τ}.

Define ξs to be some leaf λ of T ss−1 such that ξs−1 � λ.
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Case 2a: Target for action due to halting, and an apparently diver-
gent computation is found.

Let 〈e, P 〉 be the target for action. Suppose that Re requires atten-
tion due to halting at P , and that the root of P is ρ. Suppose that
there is a leaf λ of P which is not e-extendible at stage s.

Then we choose ξs = λ (if there are several possible choices, choose
the leftmost). For i < e, let T si = T s−1i . For e ≤ i < s, let

T si = {σ ∈ T s−1i | ¬(ρ ≺ σ)} ∪ {σ ∈ 2<ω | (∃µ ∈ P )[σ � µ]}.

Case 2b: Target for action due to halting, but every leaf is e-extendible.
Let 〈e, P 〉 be the target for action. Suppose that Re requires atten-

tion due to halting at P , and that the root of P is ρ. Suppose that
each leaf λ of P is e-extendible at stage s.

For each τ ∈ 2<ω of length |ρ| · 2−2e−4, define E(τ) to be the set
of leaves λ of P which are e-τ -extendible at stage s. From amongst
these strings, effectively find a string τ for which |E(τ)| is maximal.

Let D(τ) be a subset of E(τ) with exactly 2|ρ|(1−
∑e
j=0 2

−2j−4) leaves2.

Let D̂(τ) be an effectively chosen set of strings on T s−1e−1 consisting
of one e-τ -extension of each λ ∈ D(τ). Define ξs to be the leftmost

member of D̂(τ).
Define T si = T s−1i for i < e.
There is some ≺-least pruned clump Q � P on T s−1e−1 on which ξs−1 is

working, and such that Q does not meet the e-majority vote criterion
at stage s. Define

T se = {σ ∈ T s−1e−1 | ¬(ρ0 ≺ σ)} ∪ {σ ∈ 2<ω | ∃λ̂ ∈ D̂(τ)[σ � λ̂]}.

For e < i < s, define

T si = {σ ∈ T s−1i | ¬(ρ0 ≺ σ)} ∪ {σ ∈ 2<ω | σ � ξs}.

Case 3: Target for action due to complexity.
Finally, suppose that 〈e, P 〉 is the target for action, that Re requires

attention due to complexity at P , and that the root of P is ρ.
For 0 ≤ i < s, let T si = T s−1i .
In this case, P meets the e-majority vote criterion. For e ≤ i < s

let Pi = T s−1i−1 ∩ P . Let D consist of the numbers i for which Pi is a

pruned clump on T s−1i−1 which meets the i-majority vote criterion. For

each i ∈ D let τi = Φξs−1

i [s] � 2−2i−4|ρ|. Let i0 be the largest member
of D. Let λ be an effectively chosen leaf of Pi0 with the property that
Ks(λ) is maximal amongst all such leaves.

2We will later see that E(τ) has at least this many leaves.
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Choose strings ξse � ξse+1 � · · · � ξss−1 � λ such that for each i, ξsi is
a leaf of T s−1i . Let ξs = ξss−1.

Finally, in all of the cases 1-3, let T ss consist of ξs together with all
of its initial segments.

Defining the permission function
We will now define gs. When deciding whether g assigns n to work

on ρ, we will want to ensure that any numbers assigned at stage s are
still assigned a stage s + 1, and in addition to this, that a number
assigned to work on ρ at stage s should be assigned to work on some
initial segment of ρ at stage s+ 1.

Begin by checking if there is a target 〈e, P 〉 for action at stage s.
Suppose that there is one. Then let ρ0 be the root of P .

For each number n which g assigns to work on a string ρ � ρ0 at
stage s, declare that g assigns n to work on ρ0 at stage s+ 1. For each
ρ ≺ ρ0, if g assigns n to work on ρ at stage s, say g assigns n to work
on ρ at stage s+ 1.

If there was no target for action at stage s, then for each ρ such that
g assigned n to work on ρ at stage s, say that g assigns n to work on
ρ at stage s+ 1.

In each of the above cases, if g assigns n to work on ρ at stage s+ 1,
then define gs(n) = hs(n) if some requirement Re requires attention
on a pruned clump with root ρ at stage s + 1, but there was no such
requirement at stage s. Otherwise, define gs(n) = gs−1(n).

Finally, let ρ1 ≺ ρ2 ≺ · · · ≺ ρk be the roots of the clumps on T s−1 on
which R0 is working at stage s and on which g assigned no number to
work at stage s. Let n1 < n2 < · · · < nk be the least k numbers that
g did not assign to work on any string at stage s. For 1 ≤ i ≤ k, say
that g assigns ni to work on ρi at stage s + 1. For 1 ≤ i ≤ k, define
gs(ni) = hs(ni) if some requirement Re requires attention on a pruned
clump Q with root ρi on T se−1 at stage s+ 1, and gs(ni) = 0 if not.

5. Verification of construction

For each e, let Te = {σ ∈ 2<ω | σ ∈ T se at cofinitely many stages s},
and X = lims ξ

s.
We will begin our analysis of the construction by establishing that

some of its basic features function as intended. We will check that the
strings ξs come to a limit X, and that the permission process given by
the functions g and h behaves as intended.

Remark 5.1. Let 0 ≤ i ≤ s. Then T si ⊆ T si−1, and for each pruned
clump P on T si , there is a pruned clump Q on T si−1 such that Q ∼ P .

In addition, ξs ∈ T si for each s and i ≤ s, so X is a path through Ti.



12 ROD DOWNEY & JONATHAN STEPHENSON

Each of these facts is easily verified by checking that they are pre-
served from one stage of the construction to the next.

Lemma 5.2. For each s and each i ≤ s, if P is a pruned clump on T si
with root ρ, then P has at least 2|ρ|(1−

∑i
j=0 2

−2j−4) leaves.

Proof. If i = −1, then P has exactly 2|ρ| leaves, since in that case
P = ρ2≤|ρ|.

Now, work by induction on i. Suppose that the result is true of every
pruned clump Q on T si−1 for every s. Fix some s, and let P be some
pruned clump on T si . Consider the largest t ≤ s such that P is on T ti
but not on T t−1i .

If the construction proceeds via case 1 at stage t, then there is some
string µ ∈ T t−1i−1 such that T ti = T t−1i ∪ {τ ∈ T t−1i−1 | µ ≺ τ}. Let

P ∼ Q, where Q is a pruned clump on T t−1i−1 . The string µ must be
an initial segment of the common root of P and Q, and therefore that
every leaf of Q is also a leaf of P . But that implies that P has at least

2|ρ|(1−
∑i−1
j=0 2

−2j−4) leaves, by induction. This is more than the minimum
required.

If the construction proceeds via case 2a or 3 at stage t, then there
are no pruned clumps on T ti that were not already on T t−1i , and there
is nothing to prove.

If the construction proceeds via case 2b at stage t, then it must be
the case that 〈i, Q〉 is the candidate for action at stage t, where Q is
the pruned clump on T t−1i−1 with P ∼ Q. In this case, there are at least

2|ρ|(1−
∑i−1
j=0 2

−2j−4) leaves on Q. But each such leaf λ is e-τ -extendible at
stage t for some τ ∈ 2<ω with |τ | = 2−2i−4|ρ|, where the ρ is the root of

P . Since there are 22−2i−4|ρ| many such τ , it follows that there is some

particular τ such that at least
2|ρ|(1−

∑i−1
j=0 2

−2j−4)

22−2i−4|ρ| = 2|ρ|(1−
∑i
j=0 2

−2j−4)

of the leaves of Q are e-τ -extendible. So the construction builds a
pruned clump with exactly this many leaves. Hence P has at least

2|ρ|(1−
∑i
j=0 2

−2j−4) leaves, as desired. �

Corollary 5.3. For each s and each i ≤ s, if P is a pruned clump on
T si , then some leaf λ of P has K(λ) ≥ |λ|/4.
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Proof. Any prefix-free set of binary strings of length at most |λ|/4 can
have at most 2

|λ|/4 members. However,(
1−

i∑
j=0

2−2j−4

)
=

(
1− 1

12
(1− 4−i−1)

)
≥11

12

so that 2|ρ|(1−
∑i
j=0 2

−2j−4) ≥ 2
11|ρ|/12 > 2

|ρ|/2 = 2
|λ|/4, and therefore P has

too many leaves for them to all have such short descriptions. �

Lemma 5.4. For each e and string ρ, there are only finitely many
stages t at which there is a target for action of the form 〈e, P 〉, where
ρ is the root of a pruned clump P on T se−1.

In addition, the strings ξs approach a limiting real X. That is, for
each k, there is some s such that |ξs| ≥ k and for each t ≥ s, ξs � k =
ξt � k.

Proof. We will prove the first result by induction on the length of ρ
and (within that) by induction on e.

Fix a number e and string ρ which is the root of a pruned clump on
T−1. Applying the inductive hypothesis, choose t0 such that for s ≥ t0,
〈i, P 〉 is not the target for action at stage s for any P with root ρ0 ≺ ρ,
nor for any i < e and clump P with root ρ.

Suppose that for some s0 ≥ t0, ξ
s0 has an initial segment λ which is

a leaf of some pruned clump P on T s0e−1 with root ρ.
Then P is also on T se−1 for each s ≥ s0 because after that stage there

will never be a target for action which can cause P to be removed.
Now we check that amongst stages t ≥ s0, 〈e, P 〉 can be the target

for action at most finitely many times.
For each leaf λ of P there can be at most one stage t at which
〈e, P 〉 is the target for action and at which Re requires attention due
to halting at P , since at such a stage, if λ is the leaf of P for which
λ ≺ ξt−1, we know that λ is e-extendible. But then we either are in
case 2a and define ξt in a way which guarantees that it extends a leaf
λ1 of P which is not e-extendible at stage t, or are in case 2b and have
verified that every leaf of P is e-extendible. In the latter case P will
meet the majority vote criterion at the next stage, and Re will never
again require attention due to halting at P .

Likewise, 〈e, P 〉 can be the target for action at a stage t where Re

requires attention due to complexity at P only finitely many times. At
such a stage t we will note that the leaf λ of P such that λ � ξt−1 has
Kt(λ) < |λ|/4. We will then will define ξt to be an extension of a leaf
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λ̃ of a pruned clump Q ∼ P which is on a tree T t−1i for some i < s,

and such that Kt(λ̃) is maximal amongst such leaves. It follows that

Kt(λ̃) ≥ |λ̃|/4, by Corollary 5.3. Once again, 〈e, P 〉 can only be the
target at a stage where Re requires attention due to complexity once
for each leaf of P .

Only finitely many requirements ever require attention on the pruned
clump P (namely those Re for which e ≤ |ρ|). As has been seen, each
〈e, P 〉 is a target for action at finitely many stages. So it follows that
eventually ξt � |ρ| will remain constant.

We will now check that lims ξ
s exists as a member of 2ω. Note that

if ξs has the root of P as an initial segment and 〈e, P 〉 is never a target
for action after stage s, then ξt will still have that root as an initial
segment at any stage t ≥ s. Thus it suffices to show that for any given
k, ξs eventually remains at least k in length.

Our proof will be by contradiction. Assume there is some longest
string ρ which is the root of a pruned clump on T−1 and which is an
initial segment of ξs at all stages s ≥ t of the construction. In addition,
choose t large enough that for s ≥ t, the target 〈e, P 〉 for action will
never have the property that P has a root ρ0 � ρ. Thus if s ≥ t, a
target 〈e, P 〉 for action must have the property that the root ρ1 of P
satisfies ρ ≺ ρ1 � ξs.

If such a target exists at a later stage t0, then ρ1 is an initial segment
of ξt0 . Suppose ρ1 is ≺-minimal amongst strings which are roots of
pruned clumps P for which there is some stage t0 ≥ t at which 〈e, P 〉
is the target for action. Then ρ1 will be an initial segment of ξt0 for all
sufficiently large t0. This contradicts that ρ is the longest such string.

Thus we may assume that there are no stages s ≥ t at which there
is a target for action. So at each stage s > t, and for each e < s,

T se ⊇ T s−1e ∪ {τ ∈ T s−1 | ξs−1 ≺ τ},

and ξs is always chosen to be a leaf of T ss−1 which extends ξs−1. But
then ξs an initial segment ρ1 � ρ which is the root of a pruned clump
on T−1, and ρ1 is an initial segment of ξs at cofinitely many stages s.
This gives the desired contradiction.

So lims ξ
s does exist as a member of 2ω. �

Note that from the above proof it follows that for each n, if s is
sufficiently large, then gs(n) is defined.

Lemma 5.5. If g assigns m to work on ρ1 and n to work on ρ2 at
some stage s, and m < n, then ρ1 � ρ2.



AVOIDING EFF. PACKING DIM. 1 BELOW C.E. ANC DEGREES 15

Proof. If s is the first stage at which g ever assigns n to work on some
string ρ2, then for each m < n, g assigns m to work on a proper initial
segment of ρ2.

If g assigns n to work on ρ3 at stage s−1 and on ρ2 at stage s, there
is some i < n such that for i ≤ m < n, g also assigns m to work on
ρ2 at stage s, and for m ≤ i, g assigns m to work on the same string
ρ1 ≺ ρ2 at stages s − 1 and s. This is sufficient to verify that the
condition of the lemma is preserved from one stage to the next.

�

Lemma 5.6. For each n, there are finitely many numbers s such that
gs(n) 6= gs+1(n). Indeed there is a computable bound f(n) on the num-
ber of such stages s, and that bound can be given independently of h.

Proof. Observe that g assigns n to work on a string ρ at some stage s,
then at stage s+ 1, g must assign n to work on a string ρ0 � ρ.

Now we show that if s is the first stage at which g assigns n to work
on the root of some pruned clump, that root has length at most 4n.
Suppose the result for each m < n. Thus at the first stage s at which
g assigns n to work on some string ρ, any m < n which g assigns to
work at this stage will be working on a string of length at most 4m. So
if ρ is the ≺-least on T s−1 which is the root of a pruned clump on which
R0 is working and such that g assigns no number m < n to work on ρ
at stage s, we must have |ρ| ≤ 4n.

Next, we note that if gs(n) 6= gs−1(n), then g assigns n to work
on the root of a pruned clump P on which a requirement Re requires
attention at stage s, and that furthermore either no requirement Ri

required attention on a pruned clump Q ∼ P at stage s− 1, or n was
not assigned to work on ρ at stage s− 1.

We must find a computable bound on how many times this can
happen.

Definition 5.7. Suppose that at some stage s, g assigns n to work on
some string ρ. We will say that the interval [t0, t1) is dedicated to e on
ρ if for t0 ≤ t < t1,

i.) g assigns n to work on ρ at stage t, and
ii.) for i < e, if Qi is a pruned clump on T ti−1 with root ρ, then 〈i, Qi〉

is not the target for action at stage t.

Note that if ρ is the root of a pruned clump Q on T t0e and [t0, t1) is
dedicated to e on ρ then Q is on T te for t0 ≤ t ≤ t1.

Fix some number k, and suppose |ρ| = k, and that [t0, t1) is dedicated
to k on ρ. Recall that Ri can only require attention on a pruned clump
with root ρ if i ≤ k.
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Then if t0 ≤ t < t1 and gt(n) 6= gt+1(n), Rk requires attention on a
pruned clump Q with root ρ at stage t+1. In that case, Q is on T tk−1 at
each stage in [t0, t1) because no requirement can affect this clump. In
addition, we may count the number of stages t ∈ [t0, t1) at which 〈k,Q〉
can be the target for action. For each leaf λ of Q, there is at most one
such stage at which ξt � λ and the construction proceeds via case 2a,
and at most one such stage at which the construction proceeds via case
3 — as seen in Lemma 5.4. The target may also be 〈e,Q〉 for action
at one stage at which the construction proceeds via case 2b. Thus
gt(n) 6= gt+1(n) for at most 2k+1 + 1 values of t such that t0 ≤ t < t1
(since this is one more than double the maximum possible number of
leaves on Q).

We now show that for each e, if [t0, t1) is dedicated to e on ρ, there are
at most (k−e+1)(2k+1 +1) stages t ∈ [t0, t1) at which gt(n) 6= gt+1(n),
proceeding by backward induction. The base case (e = k) is given
above.

Fix e ≤ k − 1. Suppose that whenever [t0, t1) is dedicated to e + 1
on ρ, there are at most (k − e)(2k+1 + 1) many stages t ∈ [t0 < t < t1)
at which gt(n) 6= gt+1(n).

Suppose that [t0, t1) is dedicated to e on ρ. Let t2 be the largest
number in [t0, t1) such that [t0, t2) is dedicated to e on ρ. There are
at most (k − e)(2k+1 + 1) many stages t such that t0 < t < t2 and
gt(n) 6= gt+1(n).

If t2 < t1, then at stage t2, the target for action is of form 〈e,Q〉,
where Q has root ρ. Thus for t2 ≤ t̃ < t1, only 〈e,Q〉 can be the target
for action at stage t. Applying the reasoning given above in the case
e = k, we see that there are at most 2k+1 +1 stages t ∈ [t2, t1) at which
gt(n) 6= gt+1(n). So the total number of stages t ∈ [t0, t1) at which
gt(n) 6= gt(n) is at most (k−e)(2k+1+1)+2k+1+1 = (k−e+1)(2k+1+1),
completing the induction.

Now consider the stages at which g assigns n to work on the root of
P . There are at most (k + 1)(2k+1 + 1) many such stages t for which
gt(n) 6= gt(n+1). Because g first assigns n to work a string ρ for which
|ρ| ≤ 4n, and at later stages assigns n to work on initial segments of

ρ, there are at most
4n∑
i=0

(i+ 1)(2i+1 + 1) stages throughout the entire

construction at which gs(n) 6= gs+1(n). �

Lemma 5.8. For each n there is some string ρ such that g assigns n
to work on ρ at all but finitely many stages.
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Proof. For some least s, gs(n) is defined. At stage s, g assigns n to
work on some string ρ. If t > s, g assigns n to work on some string
ρt. Furthermore, ρt is ≺-decreasing as a function of t, and therefore is
eventually constant. �

Definition 5.9. If g assigns n to work on ρ at all stages t ≥ s, we will
say that n settles on ρ by stage s. If n settles on ρ by some stage, then
we will simply say that n settles on ρ.

We are now ready to check that for each e the requirement Re is met.
To do so we must check that X is a path through each Te, and that
that either Dim(ΦX

e ) < 1 and there is some string ξ ≺ X with |ξ| ≥ e
and K(ξ) ≥ |ξ|/4, or that ΦX

e is a nontotal function. In the former case,
the required inequality on the effective packing dimension of ΦX

e will
be verified indirectly using Lemma 2.4.

Lemma 5.10. Suppose that n0 is a number such that h(n0) > g(n0),
that n0 settles on some string ρ by stage s with |ρ| ≥ e and that ρ is
the root of a pruned clump P which is on T se−1 at every stage t > s.
Suppose also that for each i < e and pruned clump Q - P , Q is not
the first witness to i-divergence at any stage t > s.

Then one of the following conditions holds:

(a) There is a leaf λ of P and stage t1 such that for t > t1, ξt has λ as
an initial segment, and λ is not e-extendible at stage t.

(b) There is a leaf λ of P and stage t1 such that for t > t1, ξt has λ as
an initial segment, P meets the e-majority vote criterion at stage

t+ 1, and K(λ) ≥ |λ|
4

.

Proof. We proceed by induction on n0. Fix n0 such that g(n0) < h(n0),
and assume the result for n < n0.

Suppose n0 settles on some string ρ by stage s. Note that at stages
t ≥ s, if Q has a root which is a proper initial segment of ρ, then 〈i, Q〉
cannot be the target for action, since that would cause g to assign n0

to a different string.
Fix some number e, and let P ⊂ T se−1 be a pruned clump with root

ρ. Suppose that for t ≥ s and i < e, Ri does not require attention on
any clump Q ∼ P at stage t. Then P is a pruned clump on T te−1 at
each stage t ≥ s, since we have just ruled out all of the possible targets
for action which could prevent that. If t0 ≥ s is a stage at which Re

requires attention at P , then at a later stage t ≥ t0, gt−1(n0) < ht(n0).
At the first such stage, either Re no longer requires attention on P , or
〈e, P 〉 is a target for action.
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Suppose that for some t1 > s, ξt1 has an initial segment which is a
leaf λ of P which is not e-extendible at any stage t ≥ t1. If so, we may
choose t1 so that if P is the first witness to e-divergence at any stage
t > t1, then P is the first witness to e-divergence at stage t1.

If so, P is the first witness to e-divergence at every stage t ≥ t1. In
that case, if t ≥ t1 and Q has a root ρ0 � ρ, 〈i, Q〉 cannot be the target
for action at stage t. Thus ξt � λ for all t ≥ t1.

If P is not the first witness to e-divergence at stage t1, then no leaf
of P is e-extendible at any stage t > t1, and there is some leaf λ0 of P
and t2 > t1 such that for t > t2, ξ

t � λ0.
Thus in this case the first of the two conditions is satisfied.
Otherwise there is some stage t0 at which every leaf λ of P is e-

extendible. Because limt ξ
t exists there is some t1 > t0 such that for

t ≥ t1, ξ
t has some fixed leaf λ of P as an initial segment. But h(n0) >

g(n0), so if t1 is large enough, Re does not require attention at P at
any stage t ≥ t1. This implies that at each stage t ≥ t1, P meets the
e-majority vote criterion and that Kt(λ) ≥ |λ|/4. �

Definition 5.11. If P is a pruned clump on Te−1 such that there is
a leaf λ of P and stage t1 such that for t > t1, ξ

t has λ as an initial
segment, and λ is not e-extendible at stage t, then we will say that P
forces e-divergence of X.

Note that in the preceding definition and lemma, P forcing e-divergence
merely guarantees that we never find any (e− 1)-ρ-verified extensions
of λ which threaten to make ΦX

e total. We will later see that if P forces
e-divergence, then ΦX

e really is nontotal.

Lemma 5.12. At infinitely many stages there is no target for action.

Proof. If ρ is the root of a pruned clump P on T si−1 but is not the root
of a pruned clump on T s−1i−1 for some i ≥ 0, then there is no target for
action at stage s.

If there are only finitely many stages without targets for action, there
are only finitely many strings ρ which are roots of pruned clumps on
any tree T si−1 at some stage s. For each such ρ, there are finitely many
stages at which the target for action is of the form 〈i, P 〉, where ρ is the
root of P . If t is the last such stage for any ρ, every stage s > t must be
one at which there is no target for action, contrary to hypothesis. �

Lemma 5.13. For each n ∈ ω let ρn be the string on which n settles.
For each e, there are finitely many numbers n such that h(n) > g(n)
and ρn is not the root of a pruned clump on Te.

The finitely many exceptions to this assertion are numbers amongst
those for which either |ρn| < e or when there is some i ≤ e such that
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ρn is an initial segment of the root of a pruned clump on T s−1i−1 which is
the first witness to i-divergence at stage s for all sufficiently large s.

Proof. First, fix some number e. There are finitely many numbers n
for which |ρn| < e. Likewise, for each i ≤ e, there is at most one string
ρ which is the root of a pruned clump on T s−1i−1 that is the first witness
to i-divergence at stage s for all sufficiently large s, and hence only
finitely many n for which ρ � ρn. So the list of purported potential
problems is indeed finite.

Now, fix some n such that h(n) > g(n). Fix some e and assume the
result of the lemma for each i < e.

Assume that ρn does not satisfy either exceptional condition. Note
that if either of the exceptional conditions discussed above holds of ρn
and e, the same condition also applies to ρn and i, for each i < e.

There are two possible scenarios.
The first is as follows: n settles on ρn by some stage t, and ρn has a

proper initial segment which is the root of a pruned clump P on T s−1e−1
such that for s ≥ t, P is the first witness to e-divergence at stage s.
Assume t is large enough that for s ≥ t, there is no target for action
of the form 〈j,Q〉, where the root of Q is an initial segment of ρn. At
stages s > t at which there is no target for action, if µ is the leaf of P
which is an initial segment of ξs−1, we have T se = T s−1e ∪ {τ ∈ T se−1 |
µ ≺ τ}. By our inductive hypothesis, ρn is the root of a pruned clump
on T se−1 for all sufficiently large s. Because µ ≺ ρn, it follows that ρn
is also the root of a pruned clump on T se . But then ρn is the root of a
pruned clump on T s−1e at all stages s1 ≥ s.

The second scenario is that ρn is the root of a pruned clump P on
Te−1 with the property that there is a stage s at which Re requires
attention at P due to halting, and at which the target for action is
〈e, P 〉. This stage may be assumed to be the last stage at which the
target for action is of the form 〈j,Q〉, where j ≤ e and ρ � ρn. In this
case we add a pruned clump Q ∼ P to T se , and never remove it again.

This concludes the induction. �

Lemma 5.14. Fix e. Let t1 be a stage in the construction and let
ρ ∈ T t1−1e be a root of a pruned clump P on T t1−1e−1 such that:

(1) For each i < e such that some pruned clump Pi on Ti−1 forces
i-divergence, ρ is an extension of the root of the ≺-least such
Pi,

(2) Some number n settles on ρ by stage t1, and furthermore for
each i < e, there is no stage t > t1 at which there is a target for
action of the form 〈i, Q〉, where Q is a pruned clump on T t−1i−1
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such that Q ∼ P , except in case Ri requires attention due to
complexity at Q,

(3) P meets the e-majority vote condition at stage t1.

Then P is on T te and meets the e-majority vote criterion at each stage
t > t1.

Proof. The only targets for action which might cause P to not be on
T te−1 for some first stage t > t1 are those of the form 〈i, Q〉 where
Q ≺ P or 〈i, Q〉 where i ≤ e and Q ∼ P . In the case where Ri requires
attention due to complexity no pruned clump will be removed. But
our assumption rules out any other target for action. �

We now introduce a noneffective version of verification which is called
e-permanence.

Definition 5.15. Let e ≥ 0. Say that σ ∈ T s−1e is e-permanent at
stage s if for 0 ≤ i < e, σ is i-permanent at stage s and either:

(1) there is a pruned clump Q with root ρ and a leaf λ such that
for each t ≥ s, Q is on T te−1, appears to force e-divergence at
stage t, and λ � ξt, and such that σ � λ or λ � σ, or

(2) each pruned clump P on T se−1 with root ρ ≺ σ for which P∩T s−1e

is a pruned clump meets the e-majority vote criterion at stage
s.

Lemma 5.16. For each e, there is some stage t1 such that for each
t > t1, any σ ∈ T te which is e-permanent at stage t is also in T t+1

e and
is e-permanent at stage t+ 1.

Proof. Fix some e, and assume the result for all i < e.
Let ρ ≺ X be the root of some pruned clump on Te−1 such that for

each i ≤ e such that some pruned clump P forces i-divergence, such a
clump has a root which is a proper initial segment of ρ.

Let t0 be large enough that

(1) t0 meets the condition given by the lemma for each i < e
(2) some number n settles on ρ by stage t1

Now suppose that σ is an e-permanent string on T te at some stage
t ≥ t1.

At stages s > t, if i < e and Q is a pruned clump on T s−1i−1 with a root
which is a proper initial segment of σ, 〈i, Q〉 can only be the target if Ri

requires attention at Q due to complexity (otherwise Q could not have
met the i-majority vote criterion, and hence σ was not i-permanent at
stage s− 1).

If some pruned clump P on Te−1 forces e-divergence, then for s ≥ t1,
ξs has some fixed leaf λ of P as an initial segment and P appears to
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force e-divergence at stage t. So the strings which are e-permanent at
a stage s ≥ t1 are precisely the (e− 1)-permanent strings σ on T se such
that σ � λ or λ � σ. No such string can be removed from T se at a stage
s at which there is no target for action, nor at a stage at which there
is a target for action because some requirement Ri requires attention
due to complexity. Thus σ remains e-permanent at all stages s ≥ t.

Otherwise, there is no pruned clump on Te which forces e-divergence.
Then every pruned clump P on T t−1e−1 for which P ∩ T t−1e is a pruned
clump with root ρ meets the e-majority vote criterion at stage t. At
a stage s at which there is no target for action or at which there is a
target for action chosen because some requirement requires attention
due to complexity, a pruned clump on T se−1 cannot cease to meet the
e-majority vote criterion. Once again, σ will remain e-permanent at
all stages s ≥ t.

�

Lemma 5.17. Suppose that some pruned clump P on Te−1 forces e-
divergence of X. Then ΦX

e is nontotal.

Proof. Let P force e-divergence of X. Assume that P has a root ρ such
that |ρ| ≥ e, and that for each i < e such that there is some ≺-least
pruned clump Q on Ti−1 which forces i-divergence of X, Q ≺ P (choose
P to be a clump with a longer root, if necessary). Suppose that ΦX

e

is total. Choose some stage t0 such that for t > t0, P is on T te−1, such
that some n0 settles on ρ by stage t1, and such that there is a leaf λ of
P such that ξt � λ for all t > t0.

Let σ � λ be an initial segment of X such that σ ∈ T te−1 for all
t > t0. Choose t1 > t0 such that if ρ0 � σ is the root of any pruned
clump P0, the target for action cannot be 〈i, P0〉 at any stage t > t1.
For each i < e such that there is some t2 such that for each t ≥ t2, σ is
i-verified at stage t, assume that t1 ≥ t2.

If σ is not (e− 1)-ρ-verified at every stage t > t1, then there is some
least i < e such that σ is not i-ρ-verified at every stage t > t1. We
will show that this is impossible, by showing that σ is i-ρ-verified at all
sufficiently large stages t. Thus it follows that σ is eventually (e− 1)-
ρ-verified, and since σ was an arbitrary extension of λ, P cannot force
e-divergence of X.

By our assumption on P , the pruned clump Q ∼ P on Ti−1 does not
appear to force i-divergence at any stage t ≥ t1.

Find the ≺-least initial segment ρ1 of X such that some number n
settles on ρ1 by a stage t2 > t1, and that t2 is the largest stage at which
there is a target for action of form 〈i, P1〉, where ρ1 is the root of a
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pruned clump P1 on T t2−1i−1 , Ri requires attention due to halting at P1,
and the construction proceeds via case 2b.

Note that for j < i and P2 ∼ P1 there is never a target for action
of the form 〈j, P2〉 at any stage t > t2 except if Rj requires attention
due to complexity (or t2 would not be the last stage at which there is
a target of form 〈i, P1〉 as specified above).

At stage t2, consider the ≺-least pruned clump Q � P1 on T t2−1i−1 on
which ξt2−1 is working, and such that Q does not meet the i-majority
vote criterion at stage t2.

If Q = P1 then σ is i-ρ-verified at stage t2, by definition.
Otherwise Q ≺ P1 and ρ0 ≺ σ. But in that case the definition of

T t2i ensures that every pruned clump Q such that P - Q - P meets
the i-majority vote criterion at stage t2 + 1, and so σ is i-ρ-verified at
stage t2 + 1.

By our choice of t2 and Lemma 5.14, there is no stage t > t2 at which
any target for action could cause σ to cease being i-ρ-verified.

This contradicts the minimality of i, as promised. �

Remark 5.18. For each e and s, the e-permanent strings on T se are
downward closed, and therefore form a tree.

Lemma 5.19. Suppose that e is a number such that ΦX
e is total. For

each s, let T̂ se consist of the strings on T se which are e-permanent at
stage s, and t1 be a number satisfying the condition of Lemma 5.16.

Then
⋃
s≥t1 T̂e

s
satisfies the conditions of Lemma 2.4.

Proof. Every pruned clump P on T se−1 such that P ∩ T se is a pruned

clump on T̂ se meets the e-majority vote criterion at stage s+1, because

its leaves are e-permanent. This shows that T̂ se meets conditions (2)
and (3) of Lemma 2.4.

By Lemma 5.16, we have T̂ se ⊆ T̂ s+1
e for each s ≥ t1. Determining

which of the leaves of T se is e-permanent is a computable procedure,

and so
⋃
s≥t1 T̂

s
e is a c.e. tree.

Finally, suppose ρ is the root of a pruned clump on T̂ s+1
e for some

s ≥ t1. Then each string in that pruned clump must be (e− 1)-verified
at stage s, because otherwise there is no way that ρ can be the root
of a pruned clump on T s+1

e which meets the e-majority vote criterion.

Suppose that ρ ∈ T̂ se . If there is some τ � ρ in T̂ se , then we may
deduce that ρ is the root of a pruned clump P on T se−1 which meets
the e-majority vote criterion. Hence P ∩ T se is a pruned clump, and
furthermore every string in P ∩ T se is e-permanent. Thus ρ is the root

of a pruned clump on T̂ se . If no such τ exists, then ρ is a leaf of T̂ se .
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Thus
⋃
s≥t1 T̂

s
e satisfies the conditions of Lemma 2.4, as desired.

�

Lemma 5.20. Dim(X) ≥ 1
4
.

Proof. If Φe is total, then for infinitely many pruned clumps P on Te
with root ρ ≺ X, condition (b) of Lemma 5.10 must be met. Thus
there is a leaf λ of P such that λ ≺ X and K(λ) ≥ |λ|/4. Therefore
Dim(X) ≥ 1/4.

�

Lemma 5.21. X ≤T A.

Proof. We will define a Turing functional Ψ which witnesses the fact.
We will let ψs denote the use of the reduction ΨAs . Recall that ΘAs(n) =
hs(n) for each s, and that for each n, hs(n) is an increasing function of
s. Let θs denote the use of ΘAs . We may assume that for each s, and
each m < n, θs(m) < θs(n) if both are defined.

At stage 0 of the construction, specify none of the graph of Ψ.
At each stage s > 0 at which g assigns n to work on the root ρ of

a pruned clump P , but such that g did not assign n to work on ρ at
stage s− 1, set ΨAs(n) = ρ with use ψs(n) = θs(n).

We must check that there are no strings σ ≺ τ such that for some
n, Ψσ(n)↓ 6= Ψτ (n)↓.

Suppose that g assigns n to work on ρ at stage s, and that at stage s
we define ΨAs(n). Suppose also that g assigns n to work on some ρ0 � ρ
at stage s−1. Then the target for action at stage s is of the form 〈e, P 〉,
where P has root ρ. So for some m < n which g assigns to work on ρ at
both stages s− 1 and s, gs−1(m) < hs(m). Furthermore, at some stage
t0 < s at which g assigns m to work on ρ, some requirement began to
require attention on a pruned clump with root ρ, and gt0(m) = ht0(m).
If t0 is the greatest such stage, then ht0(m) = hs−1(m), because h is an
increasing approximation. Thus ht(m) < hs(m) for all t < s.

Now suppose t < s and At � θt(n) = As � θt(n). We will show
ΨAt�θt(n)(n) is not defined. If it were defined, note that θt(n) ≥ θt(m),
from which it follows that At � θt(m) = As � θt(m), and therefore that
ΘAt�θt(m)(m) = ΘAs�θs(m)(m), i.e. that ht(m) < hs(m), which is absurd.

At each stage s of the construction, if m < n then ΨAs(m) ≺
ΨAs(n) � ξs, by Lemma 5.5. Furthermore, ΨA is total, because g
assigns each n to work on a string at all sufficiently large stages t.

To compute a desired initial segment of X it therefore suffices to
consult the output of ΨA(n) for sufficiently large n. �
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Combining the results of Lemmas 5.19, 5.20, and 5.21, we see that
our real X satisfies the requirements of the main result given by Theo-
rem 1.3, and thus suffices to prove both that result and Corollary 1.4,
our characterization.
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