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Abstract
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1 Introduction

In a series of earlier papers, the second two authors have developed a theoretical framework
for studying parameterized computational complexity [DF1-4]. The theory is motivated by
the many concrete applications of parameterized problems, and by the fact that for many of
these problems useful applications may involve only a small range of parameter values. The
following are some examples of well-known parameterized problems.

VERTEX COVER
Instance: A graph G = (V,E).
Parameter: A positive integer k.
Question: Is there a set of vertices V ′ ⊆ V of cardinality at most k, such that for every edge
uv ∈ E, either u ∈ V ′ or v ∈ V ′?

FEEDBACK VERTEX SET
Instance: A graph G = (V,E).
Parameter: A positive integer k.
Question: Is there a set of vertices V ′ ⊆ V of cardinality at most k such that G − V ′ is
acyclic?

k-LEAF SPANNING TREE
Instance: A graph G = (V,E).
Partameter: A positive integer k.
Question: Is there a spanning tree of G with at least k leaves?

MINOR TESTING
Instance: A graph G
Parameter: A graph H
Question: Is G ≥m H?

DOMINATING SET
Instance: A graph G = (V,E).
Parameter: A positive integer k.
Question: Is there a set of vertices V ′ ⊆ V of cardinality at most k such that for every
vertex u ∈ V , there is an edge uv ∈ E for some vertex v ∈ V ′?

All of these problems are NP -complete in general (which tells us nothing about their
fixed-parameter complexity), and all of these except DOMINATING SET can be solved in
time f(k)n, that is, in linear time for each fixed parameter value.

For DOMINATING SET the simple brute-force algorithm that examines all vertex sets
of size k in time O(nk+1) has not been improved upon. The best known algorithm for
the well-known problem INDEPENDENT SET (or equivalently, CLIQUE, see [GJ]) is only
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slightly better [NT]. Thus, the difference between fixed-parameter tractability and apparent
intractability appears to qualitatively resemble the difference in complexity behavior that we
commonly observe when contrasting problems in P and problems which are NP -complete.

Definition. A parameterized problem is a set L ⊆ Σ∗× ω where Σ is a fixed alphabet. We
define the kth slice of a parameterized problem L to be Lk = {x : 〈x, k〉 ∈ L}.

From this definition we may frame our notion of fixed parameter tractability at various
levels of uniformity

Definition. (i) A parameterized problem L is fixed-parameter tractable if there is an algo-
rithm to decide whether 〈x, k〉 is a member of L in time f(k)nα for some function f : ω → ω,
and for a constant α that is independent of the parameter k. FPT denotes the class of
fixed-parameter tractable problems.

(ii) If f in (i) above is recursive then we say that L is strongly FPT.

(iii) Finally we say that L is nonuniformly FPT if there is a sequence of algorithms
Ak for k ∈ ω such that for each k, Ak decided membership of Lk and runs in time O(|x|α)
on input 〈x, k〉.

We remark that it is easy to demonstrate by diagonalization that the flavours of FPT
are all distinct. Furthermore, there are a number of known natural examples of problems
that seem to lie in each class. Obviously (ii) is the ideal class for practical problems and is
the class we concentrate upon in this paper

In the previous papers of this series, we have introduced a completeness theory with
which to address the apparent fixed-parameter intractability of problems such as DOMI-
NATING SET and INDEPENDENT SET, and have studied the structure of parameterized
complexity classes and reducibilities [DF1-6,DS]. For applications of this theory to concrete
problem domains such as cryptography and computational biology, see [DF6,FHW,FK]. The
issues raised in the study of parameterized complexity seem to have very wide-ranging prac-
tical and theoretical significance.

Although it is possible (and interesting from a structural viewpoint) to define several
different notions of reducibility [DF5], the following definition serves for most applications
of the theory.

Definition. A parameterized problem L1 reduces to a parameterized problem L2 if there is
an algorithm transforming 〈x, k〉 into 〈x′, g(k)〉 in time f(k)|x|α, so that 〈x, k〉 ∈ L1 if and
only if 〈x′, g(k)〉 ∈ L2, where f and g are arbitrary functions f, g : ω → ω and α is a constant
independent of k. We say that the reduction is strong if additionally the functions f and g
are recursive.
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We remark that all known concrete reductions are strong ones.

In [DF1,2] the W hierarchy

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ]

is defined and studied. This hierarchy is based on the logical depth needed to describe
parameterized problems in terms of circuits. It is shown, for example, that INDEPENDENT
SET (equivalently, CLIQUE) is complete for W [1] [DF3], and that DOMINATING SET is
complete for W [2] [DF2]. (For a compendium of the many known completeness and hardness
results see [DF2].)

We conjecture that the above hierarchy of parameterized problem classes is proper. If
P = NP then FPT = W [P ]. Conversely, if FPT = W [P ] then a quantitative version of the
P 6= NP conjecture fails [ADF].

Since for each fixed parameter value, each of the problems in the class W [P ] is soluable in
polynomial time, this theory addresses in some sense (i.e., with parameters fixed) complexity
issues inside of P . Alternatively, one may view the larger issue as regarding limited amounts
of nondeterminism. For related studies addressing these issues see [BG,CC,PY,Re].

In this paper, we focus on some natural issues concerning the structure of FPT. A
closer inspection of the above examples reveals an apparent qualitative distinction about
the manner in which these problems are fixed-parameter tractable. Consider the following
results.

(1.1) Theorem.
(i) (S. Buss [BG]) VERTEX COVER is soluable in time O(n+ kk).
(ii) (Downey and Fellows [DF7]) FEEDBACK VERTEX SET is soluable in time O((2k +
1)k · n2).
(iii) (Robertson and Seymour [RS1]) MINOR TESTING can be solved in time O(f(k)n3)
where f(k) is “approximately” 500k

2
and k = |H|.

We were motivated towards the present study by the apparent distinction between (i)
of (1.1), and (ii) and (iii). The “additive” form of (i) results from a general method of
parameterized algorithm design that can be viewed as based on (k-uniform) polynomial-
time recognizability with the help of a single word of advice for each parameter value k
(where the advice is computable, but not necessarily efficiently). There are strong analogies
between this study in parameterized complexity and the advice classes introduced by Karp
and Lipton in the classical setting [KL].

The classical advice class P/poly, for example, is concerned with languages that can be
recognized in polynomial time when we are provided, for input of size n, a word of advice
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wn, where the length of wn is bounded by some polynomial q(n). This is a reasonable
computational extension of P , because we may be able to pre-compute (perhaps expensively,
but only once) the words of advice wn for the input sizes n of interest. The reasonable
“feasibility” requirement imposed in the definition of P/poly is that the words of advice be
polynomially succinct.

Computational feasibility is addressed in parameterized complexity by a focus of the fact
that for many parameterized computational problems, a small range of parameter values may
have important applications. Thus, for example, for k ≤ 10 a running time of 2kn would
be quite acceptable, as would a word of advice of size 2k. This point of view concerning
parameterized feasibility, just as with the feasibility claims of P , is, of course, essentially

qualitative. That is, a parameterized complexity time bound of 222
k

n would be about as
“useful” as a polynomial running time bound of n1000.

In our parameterized analog of P/poly, which is motivated by the natural examples
of additive fixed-parameter tractability (such as VERTEX COVER), we have the situation
where the advice wk allows us to solve the parameterized problem uniformly (i.e., by a single
algorithm that accesses this advice), for any parameter k, and for all input sizes, in time
bounded by a polynomial (independent of k). (c.f. The Main Definition below where g(|x|)
represents the cost independent of k and w(k) is the advice.) The only requirement we have
on the advice is that it is finite for each parameter value k.

As in the motivating natural examples for this study, we consider that in solving any
given instance, it is not necessary to consider all of the advice. For this reason, we model the
advice formally as a finite language. Furthermore there is nothing special here about P , we
can apply the advice idea to any complexity class. In discussing space-bounded complexity
classes we employ the standard model of a Turing machine with a read only two way input
tape, a write only output tape and a work tape (where the space complexity of a computation
is measured).

Definition. (i) Let C be a class of functions representing time (space) resource bounds.
We say that a (parameterized) language L is C + advice if there is a function g ∈ C, an
oracle Turing machine Γ, and a function w : ω → Σ∗ (the advice function) such that

〈x, k〉 ∈ L iff Γw(k)(〈x, k〉) accepts,

and futhermore for all k, x, the running time (space) of Γw(k)(〈x, k〉) is ≤ g(|x|).

(ii) If w is recursive then we say that L is in uniform C + advice.

The advice w(k) often is a table of hard instances for the parameter k. The following
lemma illustrates this nicely.

(1.2) Lemma. (i) Suppose that g ≥ log |x| with g ∈ C, and h are functions, and Φ is a
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Turing machine with L a language so that for all x, k,

〈x, k〉 ∈ L iff Φ accepts 〈x, k〉,

and Φ(〈x, k〉) runs in time (space) g(|x|) + h(k). Then L is in C + advice. If k is recursive
then L is in uniform C + advice.
(ii) Furthermore the converse holds for space bounds provided the witness function is recur-
sive. That is, if C is a class of space bounds and L is in C + advice with w(k) computable
from k, then there exist Φ, g, and h as in (i).

Proof. (i) Observe that 2g(|x|) > g(|x|) + h(k) for almost all x, and 2g(|x|) is in C as C
represents a complexity class. It follows that we can emulate Φ by a an oracle machine Γ
running in time (space) 2g(|x|) with an oracle consisting of a lookup table for the values x
with g(|x|) + h(k) ≥ 2g(|x|), together with the value of x where 2g(n) > g(n) + h(k) for all
n ≥ |x|. Note that if k is recursive then this can all be done effectively from g.
(ii) In the space bound case, we can write in the memory all the oracle answers corresponding
to the advice w(k). Then we can emulate the machine Γw(k) by accessing this precomputed
advice whenever an oracle question would be asked in Γ. This only costs a finite additional
cost of h(k) since the advice now written on the tape can be addressed as many times as we
like, because we are dealing with space. 2.

For illustration, note that (1.1) shows that VERTEX COVER is in P + advice whereas
one the face of it, FEEDBACK VERTEX SET and MINOR TESTING are only in FPT .
In the same spirit as the previous definition we could define the class of SLICEWISE C
as those languages L accepted in time (space) f(k)g(|x|). As with the other definitions we
append the adjective “uniform” if additionally, f is recursive. Under this definition, FPT is
SLICEWISE P .

Surprisingly, for some complexity classes C there is no distinction.

(1.3) Theorem. (i) strong FPT = uniform P + advice(= uniform SLICEWISE P ).
(ii) nonuniform FPT = P + advice.

Proof. (i) Let L ∈ strong FPT . Then there is a procedure M , a constant c and a recursive
function f such that 〈x, k〉 ∈ L iff M(〈x, k〉) accepts, and M runs in time f(k)|x|c. Consider
the following new machine N accepting L. This machine runs in time |x|c+1 + h(k), where
h is a function to be described. The point is that we know that f(k)|x|c is dominated by
|x|c+1 and so we can compute a string x = 0n for some n by which |x|c+1 > 2f(k)|x|c.
Once this n is known we can write all the values for L(〈x, k〉) for |x| ≤ n in a table T .
(This is the advice.) The algorithm N first computes n and then constructs the table T . It
then looks at the length of x in the input 〈x, k〉. If the length exceeds n then the machine
emulates M(〈x, k〉). Otherwise, the machine N uses table lookup to give the desired answer.
Clearly from f(k), c, and M one can compute a value h(k) so that the running time for this
procedure is bounded by |x|c+1 + h(k). Now we can use Lemma (1.2).
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Conversely, if L ∈ uniform P + advice, then there is an oracle machine M running in time
O(nc) with recursive advice wk for each k. Now simply let f(k) be any function sufficiently
large that we can compute all the values of the oracle wk. Clearly M can be emulated by a
procedure with no oracle but running in time f(k)|x|c.
Now (ii) is quite similar. P +advice is clearly in nonuniform FPT by the reasoning above,
since we need only construct f from wk. Conversely, if L ∈ nonuniform FPT then the
advice we need will consist of the information of (i), as well as the index of the procedure
Ak used to compute Lk. 2

The proof of Theorem (1.3) depends little on C = P ; only on the appropriate closure
properties of P . For instance, the following can also be easily shown.

(1.4) Theorem.
(i) (uniform) SLICEWISE POLY LOGSPACE = (uniform) POLY LOGSPACE +
advice.
(ii) (uniform) SLICEWISE PSPACE = (uniform) PSPACE + advice.

Theorem (1.3) essentially says that, assuming that P 6= NP , for NP complete problems
whose parameterized versions are in FPT , hard instances can only be found when the size
of the paramameter is close to that of the object under consideration, and therefore being
FPT yields real qualitative insight into the distribution of hard instances.

In the present paper, we shall study a couple of natural subclasses of FPT for which the
collapse of (1.3) not occur. In particular, in §2 we will look at the class LOGSPACE+advice
and to a lesser extent, related classes such as NLOGSPACE + advice. Several examples
are given covering certain basic techniques commonly used to demonstrate membership of
FPT . In §3 we shall briefly look at some structural aspects of the notions introduced and
finally in §4 we will suggest some conclusions and mention some open questions.

2 LOGSPACE + advice and Related Classes

In this section we (mainly) look at some problems that are in the class uniform LOGSPACE+
advice. The simplest method of all for showing that a language is in (uniform) LOGSPACE+
advice is to show that the problem is “essentially finite”. We give one example. This example
uses the “dynamic programming” approach used, for instance, in showing that problems have
pseudopolynomial time algorithms (see e.g. [GJ,§4.2, for PARTITION), and are therefore
FPT .

(2.1) Theorem. The following problem is in uniform LOGSPACE + advice
FIXED SUBSET SUM (for positive integers)
Instance: A set B= {a1, ..., an} with “sizes” s(ai) ∈ ω
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Parameter: k
Question: Is there a subset B′ of B with

∑
ai∈B′ s(ai) = k?

Proof. Reading the input make a table of the sizes s ≤ k occurring in B together with their
frequency f(s) until f(s) × s exceeds k. Check all possibilities see if k is attainable. This
method actually shows that the problem is in constant space+ advice. 2.

A similar argument shows that BOUNDED SUBSET SUM is in uniform LOGSPACE+
advice. For this problem, we ask if there is a set of elements of a set B, the sum of whose
(positive) sizes equals a given one S given that s(a) ≤ k for all a ∈ B. The parameter here
is k. A variation on this problem is to allow the sizes s(ai) ∈ Z, that is possibly negative. In
that case a the parameterized problem becomes NP -complete. (Reduction from SUBSET
SUM. Take an instance of SUBSET SUM, {a1, ..., an} which we need to sum to S. Let
s(bi) = s(ai)− S + k, and consider the problem that asks if there is a subset A of {1, ..., n}
with

∑
i∈A s(bi) = k.) Another related problem is the following:

POST CORRESPONDENCE
Input: Sets of words A = {w1, ...wn} and B = {u1, ..., um}.
Parameter: k
Question: Do there exist k indices {i1, ..., ik} such that the corresponding elements of A and
B have equal concatenations. That is, wi1̂...̂wik = ui1̂...̂uik?

(2.2) Theorem. (i) POST CORRESPONDENCE is W [1]- complete.
(ii) Over a unary alphabet, POST CORRESPONDENCE is in LOGSPACE.

The proof of (i) relies on gadget design and will appear elsewhere ([CCDF]). The
LOGSPACE tractability of (ii) follows by the realization that one only needs to check
to see if the lenghts line up. This can be checked by lexicographic order on the lengths and
then systematic search.

A common method of demonstrating that a parameterized problem L is fixed-parameter
tractable is to give a method for “reducing”, in time bounded by some polynomial q(|x|, k), a
problem instance I = 〈x, k〉 to an equivalent “small” instance I ′ = 〈x′, k′〉, where by “small”
we mean that both |x′| and k′ are bounded by some recursive function f(k) of the parameter
k. This algorithm design strategy is termed the method of reduction to a problem kernel and
several examples are given in [DF6] and [DF7]. This method immediately yields that L ∈
uniform P+advice, with the advice wk consisting of an exhaustive analysis of all instances of
size at most f(k). If the equivalent small instance 〈x′, k′〉 can be constructed in small space,
then we may be able to further show that L belongs to (uniform) LOGSPACE + advice
or (uniform) SLICEWISE LOGSPACE. (The latter may be the best we can do; for
instance for I and I ′ graphs, in the reduction of I to I ′ we often need I ′ to be described by
something like f(k) many vertices of I and thus may require f(k)log(|I|) space to describe
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I ′). A good example of this method comes from analysing proofs that VERTEX COVER is
in FPT .

(2.3) Theorem. VERTEX COVER is in uniform LOGSPACE + ADV ICE

Proof (1). Our proof uses a modification of an algorithm of Sam Buss. Fist observe that
any vertex of degree > k must belong to any vertex cover of a given G. So, firstly count
the number of vertices in G of degree > k, until we stop with a value p ≤ k or we exceed
k in which case we declare that there is no k element vertex cover. In the former case, let
m = k− p. Now try to compute the number q of vertices that are not covered by a vertex of
degree > k. We do this until either we find that there are > m(k+ 1) such vertices, in which
case we reject, or we discover that there are ≤ m(k + 1) vertices corresponding to edges
with no high degree vertex covering them. (The bound here is generated by the fact that a
simple graph with a m-element vertex cover and all degrees bounded by k has no more than
m(k + 1) vertices.)

Finally, if we are in the case that there are at most m(k+1) vertices not covered by high
degree vertices, we need to do a complete check. We need to do this in very small space. What
we do is build an isomorphic copy of the induced subgraph H of G generated by the vertices
of edges not covered by those of high degree. The idea is to use the natural “intrinsically
definable” lexicographic order on the uncovered vertices to induce the isomorphism. Thus we
generate to incidence array of our copy H ′ of H by first locating the lexixographically least
uncovered vertex. Now to generate the first row of the q × q incidence array, we look at the
vertices of G in lexicographic order, and put an entry if the one presently being considered
is uncovered. The entry is of course dependent upon whether the first uncovered vertex is
connected to the current one. We then increment our counter to the next entry of the first
row, until we fill in all q entries. We continue this process inductively, until we determine
the whole q × q matrix. Now in constant space we can check if H ′ has a m element vertex
cover. If not then G does not have a k element one. If H ′ has such a vertex cover then G has
a k-element one generated by the p elements of degree > k and the one induced by lifting
the m element one in H ′. 2

Before we continue with further examples, we mention that another method of prov-
ing fixed parameter tractability is to use what Downey and Fellows[DF7] call the method
of bounded search trees. This method relies on the fact that for some problems classical
intractability seems to be derived from the fact that witnesses can be very large and for a
fixed k we can use a pruning process to bound the search. To demonstrate how this com-
monly used procedure can sometimes be carried out in small space we again reanalyse the
VERTEX COVER problem.

Proof (2). We base this on the proof from [DF1,2]. Again this uses the intrinsic definability
of the construction via lexicographic ordering. Recall that the the proof of [DF1,2] went as
follows. Build a tree of 2k possible vertex covers by taking an edge 〈vi1 , wj1〉 and beginning
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a tree of possibilities by placing vi1 on one node and wj1 on the other. Inductively for a
node σ of the bounded search tree, take an edge not covered by the vertices defined by,
σ = vq1̂...̂vqm and use this to make the children of σ. The tree has depth k and then we
check order if everyone is covered.

We claim that this proof can actually be accomplished in small space. Consider the
standard tree T = 2k. We can regard a node η of T as “intrinsically” coding a potential vertex
cover as follows. Let η = i1̂...̂ik. Then the vertex of G coded by i1 is the lexicographically
least vertex of the lexicographically least edge of G if i1 = 0, and the other vertex of the
lexicographically least edge of G if i1 = 1. This description can be extended inductively, the
children of the γ being associated with the lexicographically least edge not covered by the
vertices intrinsically defined by γ. We can easily show by induction there is a LOGSPACE
procedure Φ(γ, n) which computes the vertex of G associated with the γ at level n, by cycling
through candidates in lexicographic order. Now to see if all edges are covered by η we can
again cycle through all the edges of G and for each edge, invoke Φ(η, j) sequentially for each
i ≤ k until either the edge is found to be covered by a vertex associated with η, or we reject
the potential vertex cover coded by η. 2

The technique of the second proof is rather widely applicable since it describes a more
or less canonical method of converting a problem solved by the method of search trees into
one soluable in uniform LOGSPACE+advice. Notice also that it shows the problem LOG
VERTEX COVER which asks for a vertex cover of size log of the input size or less is not
only soluable in time O(n2) by the proof of [DF1,2], it is soluable in LOGSPACE, since the
search tree has height k = log(|G|). As further illustrations of these ideas, we consider some
further problems below.

RESTRICTED ALTERNATING HITTING SET

Instance: A collection C of subsets of a set B with |S| ≤ k1 for all S ∈ C.
Parameter: 〈k1, k2〉.
Question: Does player I have a win in ≤ k2 moves in the following game? Players play
alternatively and choose unchosen elements, until, for each S ∈ C some member of S has
been chosen. The player whose choice this happens to be wins.

Let ϕ be a formula of propositional logic. We say that ϕ is in q-CNF form if ϕ consists of
a conjunction of clauses all bounded by q in size. Our standard hard parameterized problem
is WEIGHTED 3-CNF SATISFIABILITY, which asks if a given 3-CNF formula ϕ has a
weight k (i.e. exactly k literals true) satisfying assignment. A variation on this problem is
WEIGHT ≤ k 3-CNF SATISFIABILITY which asks for a satisfying assignment of weight
≤ k for the given parameter k. When there is no a priori bound on the clause size, the second
two authors have proven that the problem of determining if a CNF formula has a weight ≤ k
satisfying assignment is of the same f.p. complexity as determining if a formula has a weight
exactly k satisfying assignment. However a bounded search tree argument shows that this
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is apparently not true for bounded CNF formulae. We have the following.

(2.4) Theorem. The following problems are in uniform LOGSPACE + advice:
(i) RESTRICTED ALTERNATING HITTING SET.
(ii) WEIGHT ≤ k q-CNF SATISFIABILITY for any fixed q.
(iii) DOMINATING SET FOR PLANAR GRAPHS.

Proof. These are all similar. For (i) consider the argument from [ADF2]: It is simplest
to consider k1 = 2, the analogue of the PSPACE complete problem ALTERNATING
VERTEX COVER. Take an edge (x, y). All vertex covers must include x or y. Try each,
generating the tree of possibilities. Terminate a branch and put the cover at the leaf if a
branch achieves a vertex cover. This gives a tree with at most kk21 = 2k2 leaves (corresponding
to posible candidates for vertex covers), at most k22

k2 vertices, and all size ≤ k2 covers must
contain a subset occurring at one of the leaves.

Now we select k2 additional vertices of G, not occurring at any of the leaves of the tree
(we can assume V is large compared to k2, else the problem is easily done). Consider all
possible strategies played on the subgraph induced by these at most k2 + k22

k2 vertices. It
is easy to see that player I has a winning strategy in ≤ k2 moves in G iff he has one in
this set of strategies. It is not difficult to see that the above can be performed in uniform
LOGSPACE + advice for the same reason as VERTEX COVER can.
(ii) is again similar. Let ϕ be any q-CNF formula. Again we build a bounded search tree.
To see if ϕ has a weight ≤ k satisfying assignment, first see if any clause has only unnegated
variables. If there is no such clause, answer that ϕ is (weight 0) satisfiable. Otherwise, pick
the first such monotone clause and begin to build a tree with first children being the variables
of this monotone clause. Each child represents the possibility that we will set this variable to
be true. Inductively, for a branch σ the nodes will represent a collection of variables that we
will need to made true. to determine σ’s children, find a monotone clause C containing no
member of σ. If none exists then output “yes”. Otherwise stop when the length of a branch
reaches k. Now check if any of the branches represent a satisfying assignment for ϕ. Again
we can use the VERTEX COVER modification to perform this all in small space. Finally,
(iii) follows using similar reasoning applied to [DF7, Theorem 2.4]. 2.

Another nice example of the problem kernel method is provided by the k-LEAF SPAN-
NING TREE PROBLEM. We consider also the following variation:

k-LEAF SPANNING FOREST
Input: A graph G.
Parameter: k
Question: Does G have a k-leaf spanning forest? That is, Does there exist a collection of
trees {Ti : i ∈ I} such that collectively the trees have at least k leaves and each Ti is a
spanning tree for its component of G. Thus if G is connected then a spanning forest is
simply a spanning tree.
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It is not difficult to see the following.

(2.5) Theorem. k-LEAF SPANNING TREE is in uniform SLICEWISE NLOGSPACE.

Proof. Nondeterministically guess the spanning tree, check that it is a tree, and then check
that it spans the given graph G by sequentially checking all the vertices of G. 2.

We can do rather better than (2.5). We begin our analysis by giving a linear time
algorithm for the k-LEAF SPANNING TREE problem. In fact our algorithm isO(n+(2k)4k),
improving a result of Hans Bodlaender who proved that the problem is in LIN + advice,
that is he proved the problem to be soluable in linear time but with a multiplicative constant
depending upon k. ([Bo1,2]) We give the argument in full since details were not supplied in
[DF7].

(2.5) Theorem. (Downey and Fellows[DF7]) k-LEAF SPANNING TREE is soluable in
time O(n+ (2k)4k)

Proof. Note that any graph G that is a yes instance must be connected. A vertex v is called
useless if (i) it has neighbours u, w of degree 2 and (ii) v has degree 2. We will argue that
any sufficiently large graph without useless vertices of degree 2 is necessarily a yes instance.
Note also that if G has a vertex of degree at least k, then G is a yes instance.

Say that a useless vertex v is resolved by deleting v from G and adding an edge between
u and w. Let G′ denote the graph obtained from G (in linear time) by resolving all useless
vertices.

Our algorithm for k-LEAF SPANNING TREE is very simply described:
Step 1. Check whether G is connected, and whether there is a vertex of degree ≥ k.
Step 2. If the answer is still undetermined, then compute G′. If G′ has at least 3k(k + 1)
vertices then the answer is yes.
Step 3. Otherwise, exhaustively analyze G′ and answer accordingly, since G′ has a k-leaf
spanning tree if and only if G does.

Our proof that the algorithm is correct employs the following fact.

Claim. If H is connected simple graph of order at least k(k + 1) and every vertex of G has
degree 6= 2, then G has a spanning tree with at least k leaves.

To establish the claim, it can be shown by elementary induction that
(2.6) If a tree T has i internal vertices of degree at least 3, then T has at least i+ 2 leaves.

Suppose H satisfies the hypotheses of the above Claim. If H has any vertex of degree k
we are done, and hence w.l.o.g. we may presuppose that H has no vertex of degree ≥ k. Let
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T be a spanning tree of H having a maximum number of leaves l, and suppose l ≤ k−1. Now
as T has k(k+ 1) vertices but only l leaves, it must have at least k(k+ 1)− (k− 3)− (k− 1)
vertices of degree 2. (By (2.6).) Now as the maximum degree in H of any vertex is k − 1,
and

k(k + 1)− (k − 3)− (k − 1)− (k − 1)(k − 1) = k + 5,

it follows that there is at least k + 5 vertices of degree 2 in T that have the property that
they are not connected to any leaf of T . Let v be such a degree 2 vertex of T . Regard T as
a rooted tree with root v. Let u1, ..., um be the children of v. Now as v has degree 2 in T ,
and yet degree 3 or more in H it follows that v is adjacent to some vertex w in H which is
not a child of v since H is simple, and furthermore w is not a leaf of T by choice of v. But
now it is possible to change T into a new tree T ′ with more leaves as follows. w must occur
below one of the children, say u of v. We can therefore make u a leaf by deleting the edge
(v, u) and add an edge (v, w). The point is that as w is not a leaf, this must increase the net
number of leaves. This concludes the proof of the claim.

It is now easy to see that the algorithm is correct since the derived graph, G′, will satisfy
the hypotheses of the claim in step 2 of the algorithm. 2

We claim that the above proof can be achieved in uniform NLOGSPACE + advice.
Certainly, we can check if G is connected in NLOGSPACE. Then deterministically, we can
count the number of nonuseless vertices, until either that number exceeds 3k(k + 1) or we
get a number q of nonuseless vertices. In the latter case we use “topological” variation of the
isomorphism construction we used in the VERTEX COVER (proof (1)) case. In this case we
need to generate an H isomorphic to G′ in the above, but with a small description. Again we
begin by considering the lexicographically least nonuseless vertex v. This time we consider
its neighbours in G in lexicographic order. Let u be the neighbour under consideration. If
u has is nonuseless, put a 1 in position b where u is the lexicographically b-th nonuseless
vertex. If u is useless traverse to u′, u’s other neighbour and continue inductively until a
nonuseless vertex is found. After all of the neighbours of v have been processed, put 0’s in all
the entries of the first row that do not already have a 1. This reasoning gives the following
result.

(2.7) Theorem. (i) k-LEAF SPANNING TREE is in uniform NLOGSPACE + advice.
(ii) k-LEAF SPANNING FOREST is in uniform LOGSPACE + advice.

Proof. (ii) To see this we merely note that the only nondeterministic part of the algorithm
outlined in the paragraph preceding (2.6) is the determination of connectivity. 2.

We remark that we do not know if Theorem (2.6) (i) can be improved to say that
k-LEAF SPANNING TREE is in uniform SLICEWISE LOGSPACE but we do know
any such result is improbable since any such result would imply that CONNECTIVITY for
undirected graphs would be in LOGSPACE. This is thought to be unlikely. The reader is
referred to for instance, Johnson [Jo], page 128.
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3 The Structure of FPT and Additional Comments

One issue that we have not addressed so far is the structural one generated by our consid-
erations. In the same way that we analyse P under LOGSPACE reductions, we are natu-
rally lead to looking at the structure of FPT under a variety of reductions. Some natural
ones that suggest themselves are (uniform) SLICEWISE LOGSPACE and (uniform)
LOGSPACE + advice reductions. These are defined as follows.

Definition. Let L1 and L2 be parameterized problems. We say that L1 is SLICEWISE
LOGSPACE reducible to L2 iff there is a procedure M and a function f(k) such that for
all z ∈ Σ∗, and all k ∈ ω,

〈z, k〉 ∈ L1 iff M(〈x, k〉) accepts and runs in space f(k) log |z|.

If additionally f is recursive then we call the uniform.
Simiarly we can define LOGSPACE + advice reductions for M by asking for the existence
of an oracle Turing machine Γ, and an advice function w so that for all x, k,

〈x, k〉 ∈ L1 iff Γw(k)⊕L2(〈x, k〉) accepts,

and Γ is running in space log |x|.

Note that the reductions are good in the sense that, for instance, if L is in (uniform)
LOGSPACE + advice and L′ is reducible to L under a (uniform) LOGSPACE + advice
reduction, then L′ is in (uniform) LOGSPACE + advice. (This is easily observed by
amalgamating the advice for the reduction with the advice function for membership for L.)

Let A ⊆ Σ∗. Define N1(A) = {〈z, 0〉 : z ∈ A} and N2(A) = {〈z, k〉 : z ∈ A, k ∈ ω}. Note
that N1(A) ≡ N2(A) for either of the reductions defined above. Also let B be a parameterized
problem. We can define the standardization of B to be S(B) = {〈〈z, q〉, k〉 : 〈z, q〉 ∈
B and q ≤ k}. Again note that B and S(B) have the same parameterized complexity.
Standardization ensures that the structure of a set is smooth in the sense that the k’th row
codes all the information of the preceding rows. The reader should note that virtually all
natural problems are standardized.

(3.1)Theorem. (i) Let A be P -complete. Then N1(A) and N2(A) are complete for (strong)
FPT under (unifrom) LOGSPACE+advice reductions. (ii) Furthermore, if B is complete
for FPT under SLICEWISE LOGSPACE reductions then for some k, for all k′ ≥ k, the
k′-th row of S(B) is P-complete.

Proof. Neither of these are hard. We begin with (i). Let N = N1 and let A be P -complete.
Let C ∈ FPT . Then there is a procedure M a function f , and a constant c such that

〈z, k〉 ∈ C iff M(〈z, k〉)accepts, and M runs in time f(k)|z|c.
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Take a set W accepted in time |z|c+1, universal for all sets accepted in time O|z|c. Such a
machine can be canonically constructed by waiting to code the e-th O(|z|c) machine untill
we are considering those z which are sufficiently long so that |z|c+1 exceeds the collective
running time for the first e machines. Then we directly code the values for the e-th machine
into W , say via the e-th row, putting alll earlier values in a table lookup. Such a reduction
is clearly also a LOGSPACE + advice one, and the value of the constant can be computed
from an index for the O(|z|c) problem. Consider each of the rows of C as giving a member
of the class of sets accepted in time O(|z|c). The above construction implies that C is
LOGSPACE + advice reducible to W . But as W is in P , W is LOGSPACE-reducible to
A. It easily follows that C is LOGSPACE + advice reducible to N(A).

(ii) Let B be complete for FPT under SLICEWISE LOGSPACE reductions. Let A
be P -complete. Now N2(A) is SLICEWISE LOGSPACE reducible to S(B). It follows
that for some k, the k-th row of S(B) can, in O(log |z|) compute A. The result follows. 2.

From the above it follows that FPT = SLICEWISE LOGSPACE iff P = LOGSPACE.
A number of other structural results concerning the structure of FPT are similarly easily
obtainable. We mention a couple below.

(3.2)Theorem. (i) (uniform) LOGSPACE+advice 6= (uniform) SLICEWISE LOGSPACE.
(ii) (uniform) SLICEWISE LOGSPACE has no problem complete under (uniform)
LOGSPACE + advice-reductions.

Proof. Both of these are easy diagonalization arguments, which we very briefly sketch. The
recursive, uniform, cases are easier. Thus we will only look at the more intricate nonuniform
case. To see (i), we only need to build a language whose k-th slice is accepted in space
f(k) log |x|, where we get to build f . We need to construct f(k) so that we have enough
room to diagonalize. We need the following lemma.

(3.3) Lemma Suppose that L is in LOGSPACE+advice. Then there exists a witness oracle
Turing machine Γ accepting L running in space O(log |x|) which has an advice function w
recursive in 0′, the Turing degree of the halting problem.

Proof. Take the oracle machine Γ accepting L. Define a string σ to be acceptable if

∀x, k[〈x, k〉 ∈ L iff Γσ(〈x, k〉) accepts.]

As being acceptable is a Π1 condition, it is computable by 0′. (Alternatively use the Shoen-
field limit lemma to finitely approximate the least acceptable σ and this will serve as the
relevant advice function.) 2.

In view of (3.3), it suffices to meet the following requirements.
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Re,n : Either ∃k(lims(φe(k, s)(=def φe(k)) does not exist ),
or ∃x, k(Φφe(k)

e (〈x, k〉) does not run in space n. log(|x|))
or ∃x, k(Φφe(k)

e (〈x, k〉) 6= L(〈x, k〉).

In the above 〈φe( , ),Φe〉e∈ω is a simultaneous enumeration of all pairs consisting of an
oracle Turing machine and a partial recursive binary function. We devote the 〈e, n〉’th slice
of L to meeting the requirement Re,n. We define f(〈e, n〉) = n + 1. In view of the proof
of lemma (3.3), we can assume that if φe(〈e, n〉, s) ↓6= φe(〈e, n〉, t) ↓ and t > s then for all
u ≥ t, φe(〈e, n〉, u) 6= φe(〈e, n〉, s).

At stage s, on row 〈e, 〈e, n〉〉 with 1〈e,n〉 ≤ s we perform the following action. If we see
φe,s(〈e, n〉, t) ↓ in ≤ log(|s|) space and Φφe(〈e,n〉,t)

e (〈1s, 〈e, n〉〉) ↓ in ≤ (n+1) log(s) space, with
t ≤ log(|s|), for the largest such t, let

L(〈1s, 〈e, n〉〉) = 1 + Φφe(〈e,n〉,t)
e (〈1s, 〈e, n〉).

This action will succeed in diagonalizing the possibility of φe(〈e, n〉, t) as being a value
for lims(φe(〈e, n〉, s)). Since either we will thus diagonalize a final value for φe(〈e, n〉), or
possible values will change infinitely often, or the running space will never be correct, or
finally φe(〈e, n〉) will be partial. In any case we succeed in meeeting the Re,n, giving the
theorem.
We remark that (ii) is essentially similar. For if we had such a problem L, accepted in space
f(k) log(|x|) slicewise, then we could build L′ not computable by L in space 2kf(k) log(|x|)
since the additional 2k multiplicative factor gives us plenty of extra space to diagonlize and
no finite advice could lift f(k) to 2kf(k). 2.

While the above result provides separation, they do not provide natural examples of
problems providing such separations. There are a number of natural candidates for this sort
of problem. For instance, the work of Lipton and Zalcstein [LZ] provides such a candidate.
In [LZ], Lipton and Zalcstein analysed computational complexity of the word problem for
groups. Of course, by the famous work of Boone and of Novikov, we know that in general
the word problem, which asks one to decide if a word in over a given alphabet of generators
is the identity, is undecidable. Nevertheless, the word problem for certain classes of groups
such as one relator groups is decidable, so one is naturally lead to consider its computational
complexity. Lipton and Zalcstein proved the following interpreted in our setting.

(3.4) Theorem. ([LZ]) The problem LINEAR GROUP WORD PROBLEM (below) is in
uniform SLICEWISE LOGSPACE.

LINEAR GROUP WORD PROBLEM
Input: A word w from a linear group (or even semigroup) G presented as a finitely generated
group of k × k matrices over a field F of characteristic zero.
Parameter: G
Question: Does w = 1?
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Proof. The Lipton-Zalcstein argument is to show that the general problem can be rephrased
as the following:
Input: A sequence of k×k matrices A1, ..., An over Z[x1, ..., xm] with all entries having degree
at most d and coefficients bounded in absolute value by b.
Parameter: 〈m, k, d, b〉.
Question: Does A1...An = I?

Lipton and Zalcstein then proved that the rephrased problem can be solved in space
O(log n) where the constant recursively depends only upon 〈m, k, d, b〉. By definition the
problem belongs to uniform SLICEWISE LOGSPACE. 2.

Before we leave the topic of P -completeness, we would like to mention a related result
concerning the structure of the W -hierarchy. The reader should recall that a problem A is
complete for the top level of the hierarchy, W [P ], iff the problem of deciding if a formula
of propositional logic has a weight k satisfying assignment is f.p. reducible to A. (For more
details see, e.g., [ADF1,2], [DF1,2].) It has been noticed that all the natural W [P ]-complete
problems have the property that they are P -complete by the slice. This leads to the false
conjecture that a problem A is W [P ]-complete iff there is a k such that for each k′ ≥ k, Ak′
(the k′-th slice of A) is P -complete. The examples above show that the “only if” part fails.
The if part cannot be exactly true as we could use many rows to code a piece of information.
However one is lead to the following possibility:

(3.5) If A is W [P ]−complete then for some k, S(A)k is P − complete.

We do not believe that (3.5) holds since it seems to imply something along the lines of
P = LOGSPACE, although the issue is still not totally clear.

4 Conclusions and Open Problems

In this paper we have demonstrated that the parameterized view of the world yields insight
into the structural and algorithmic complexity of various concrete problems. In particular we
have examined how fixed parameter tractability can be viewed as an extension of the notion
of advice computations introduced by Karp and Lipton, where a finite piece of information
is enough to uniformly solve all of the instances of a particular parameter value. This in
turn yields qualitative insight into the distribution of hard instances of various intractable
problems. We have also shown that standard techniques (such as those surveyed in [DF7]) of
demonstrating parameterized tractability can often give much more information regarding
the precise structural complexity of the problem at hand. In this paper we have concentrated
upon LOGSPACE but there is no reason that we could have studied similar ideas for, say,
NC giving classes such as NC+advice and SLICEWISE NC. We remark that not even all
problems soluable by, say, the search tree method seem to be classified in, e.g., SLICEWISE
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LOGSPACE. A notable example here is FEEDBACK VERTEX SET which is shown to
be soluable in time O((2k+ 1)kn2) in Downey-Fellows [DF7] by the search tree method. (In
[DF1] and [Bo] using minor testing methods and bounded tree width arguments it is shown
to also be soluable in time O((17k4)!n).) The relevant tree does not seem amenable to the
compression outlined above. Another noteworthy open question here is whether MINOR
TESTING (where the parameter is a fixed graph) is one of our LOGSPACE-advice classes.
A method of demonstrating that this is unlikely would be to show that the problem is P -
complete for some parameter graph H. It would also be nice to know the space complexity
generated by the well quasi-order methods of Abrahamson-Fellows and the monadic second
order logic methods of Courcelle’s theorem. (See e.g. [AF].)

Finally, we believe that the analysis above is sufficiently close to “practical complexity”
that we could analyse the situation for subpolynomial time bounds. That is, while we know
that FPT = P +advice, nevertheless it is clear that some of the FPT algorithms have quite
a different structure than others. While this does not matter at the level of P , it does seem
to matter at say “linear time”. The trouble is that such classes are not robust. In this case
the we could fix the model as, say, a RAM and then it would make emminent sense to look
at DTIMERAM(O(n) + advice) and DTIMERAM(SLICEWISE O(n)) for a whole class
of concrete problems.
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