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Chapter 1

Introduction

Computability theorists have studied many different reducibilities between sets
of natural numbers including one reducibility (≤1), many-one reducibility (≤m),
truth table reducibility (≤tt), weak truth table reducibility (≤wtt) and Turing
reducibility (≤T ). One motivation for studying strong reducibilities (i.e. re-
ducibilities stronger than Turing reducibility) stems from internal questions
within computability theory associated with varying the access mechanism to
the oracle. For example, before Post’s Problem for the Turing degrees was
solved, Post [29] solved it for the many-one degrees and the truth table degrees
using an analysis of the connections between m-completeness and immunity
and between tt-completeness and hyperimmunity. As another example, Nerode
[24] characterized the connection between ≤tt and ≤T using partial recursive
functionals which are total on all oracles.

A second motivation for studying strong reducibilities is that most natural
reducibilities arising in classical mathematics tend to be stronger than Turing
reducibility. Abstract algebra provides many examples of this phenomena. In
combinatorial group theory, the word problem is one reducible to the conjugacy
problem. In field theory, Frohlich and Shepherdson [11] proved that the root
set RF of a computable field F is Turing equivalent to the splitting set SF
of F . Miller [22] sharpened this result to show that while SF ≤1 RF , it is
possible to have RF 6≤1 SF . Steiner [37] strengthened Miller’s negative result
by constructing a computable field F for which RF 6≤wtt SF . For vector spaces,
Downey and Remmel [8] proved that if V is an enumerable subspace of V∞,
then the degrees of the computably enumerable (c.e.) bases of V are precisely
the weak truth table degrees below the degree of V .

Examples also abound outside of algebra. In differential geometry, wtt-
reducibility proved fundamental in the work of Nabutovsky and Weinberger [23],
as studied by Csima [4] and Soare [35]. In algorithmic randomness, Downey,
LaForte and Terwijn [7, 9] showed that presentations of halting probabilities
coincide with ideals in the c.e. wtt-degrees, and Reimann and Slaman (e.g.
[31]) demonstrated that truth table degrees are precisely the correct notion for
studying randomness notions for continuous measures.
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4 CHAPTER 1. INTRODUCTION

A final motivation is a technical one: results about strong reducibilities and
their interactions with Turing reducibility can lead to significant insight into
the structure of (for example) the Turing (T -)degrees. A good example is the
first paper of Ladner and Sasso [20] in which they construct locally distributive
parts of the c.e. T -degrees using the wtt-degrees (via contiguous degrees) and
their interactions with the T -degrees. Extensions of this concept resulted in the
first naturally definable antichain by Cholak, Downey and Walk [1] and similar
definability results from Downey, Greenberg and Weber [6]. These definability
results are actively being extended via notions of wtt-reducibility by Downey
and Greenberg [5].

For general information concerning these reducibilities, we refer the reader
to the survey article by Odifreddi [26] as well as the books by Rogers [30],
Odifreddi [27] and Soare [34].

Our main concern here is the interaction of minimality and enumerability,
two of the most basic concepts in classical computability. Constructions of min-
imal degrees are typically effective forcing arguments of one kind or another
and such constructions are relatively incompatible with building effective ob-
jects. For example, by the Sacks Splitting Theorem, no c.e. T -degree can be a
minimal T -degree. On the other hand, it is known that there can be c.e. sets
of minimal m-degree (for example, Lachlan [18]) and of minimal tt-degree (for
example, Fejer and Shore [10]). Since wtt-reducibility is intermediate between
≤tt and ≤T , it is natural to wonder what happens there. Again, the Sacks
Splitting Theorem shows that the wtt-degree of a c.e. set cannot be a minimal
wtt-degree, but this leaves open the intriguing possibility that a set with min-
imal wtt-degree might sit inside a c.e. T -degree. This question served as our
primary motivation. Before we present our results, we discuss the history and
motivation in more detail.

Whether minimal degrees exist is a basic question in any degree structure.
Frequently, a positive answer to this algebraic question leads to a negative an-
swer to the logical question of whether the first order theory (in the language of
a partial order or an upper semi-lattice) is decidable. Spector [36] proved the ex-
istence of a minimal T -degree using a forcing argument with perfect trees. This
type of construction eventually led to Lachlan’s proof [16] that every countable
distributive lattice can be embedded as an initial segment of the T -degrees and
hence that the structure of the T -degrees (as an upper semi-lattice) is unde-
cidable. Furthermore, the method of forcing with perfect closed sets is now a
mainstay in set theory.

Spector’s construction uses a 0′′ oracle to construct a sequence of total trees
which force T -minimality and hence gives a ∆0

3 minimal T -degree. Because the
trees are total, his construction also gives a minimal wtt-degree and a minimal
tt-degree. Sacks [32] strengthened Spector’s theorem to show that there are ∆0

2

minimal T -degrees by using a 0′ oracle to define a sequence of partial recursive
trees which force T -minimality. Because these trees are partial, his construction
does not immediately give either a minimal wtt-degree or a minimal tt-degree.
The use of an oracle in the construction of a minimal T -degree can be completely
removed with a full approximation argument and such arguments can be used
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to build minimal T -degrees in a variety of contexts such as below any noncom-
putable c.e. T -degree (Yates [38]) or below any high ∆0

2 T -degree (Cooper [3],
later generalized by Jockusch [14] to any T -degree which is GH1). This tech-
nique also uses partial trees and hence does not automatically produce minimal
wtt or tt-degrees.

The other classical theme for the present work is that of enumerability and
specifically the c.e. sets. For strong reducibilities such as ≤1, ≤m and ≤tt,
the techniques for building minimal degrees and c.e. degrees can be combined.
Lachlan proved that there is a c.e. minimal 1-degree ([17]) and a c.e. minimal
m-degree ([18]). That is, there is a set A with minimal m-degree such that
A ≡m We for some c.e. set We. In the 1-degrees and the m-degrees, the property
of being c.e. is closed downwards and therefore, to build such minimal degrees,
it suffices to make them minimal within the c.e. 1-degrees or within the c.e. m-
degrees. Marchenkov [21] proved that c.e. minimal tt-degrees exist, although
the first direct construction of such a degree was given by Fejer and Shore [10].

As remarked earlier, for weaker reducibilities such as ≤T and ≤wtt, the
techniques for constructing minimal degrees and c.e. degrees do not mix. Sacks
[33] proved that the c.e. T -degrees are dense and Ladner and Sasso [20] proved
that the c.e. wtt-degrees are dense. So, in addition to there being no minimal T
or wtt-degrees, there are no c.e. minimal T or wtt-covers. However, it is possible
to get some positive results concerning the relationship between minimal T -
degrees and c.e. T -degrees. For example, Yates [38] used a full approximation
argument together with c.e. permitting to show that in the T -degrees, every
noncomputable c.e. set bounds a minimal T -degree.

We look at Yates’ Theorem from a different perspective. Instead of looking
at whether noncomputable c.e. sets bound minimal degrees, we look at whether
sets with minimal degree can bound noncomputable c.e. sets or can even be
of c.e. degree. By the results mentioned above, if we work entirely within the
T -degrees or the wtt-degrees, this is not possible, but it becomes nontrivial if
more than one reducibility is involved. Although a minimal wtt-degree d cannot
wtt-bound a noncomputable c.e. set, we look at what d bounds under Turing
reducibility. Specifically, if A is a ∆0

2 set with minimal wtt-degree, can there
be a noncomputable c.e. set B such that B ≤T A? Can we make B ≡T A?
Our main theorems give a positive answer to the first question and a negative
answer to the second question.

Theorem 1.1. There is a ∆0
2 set A and a noncomputable c.e. set B such that

A has minimal wtt degree and B ≤T A.

Theorem 1.2. No c.e. Turing degree can contain a set which is wtt-minimal.

In addition, we show that the sets A realizing Theorem 1.1 cannot be close
to 0′ in the sense that they cannot compute a promptly simple set.

Theorem 1.3. Let V be a promptly simple c.e. set and let A be a ∆0
2 set such

that A ≥T V . There exists a c.e. set B such that 0 <T B ≤wtt A.

In his injury-free solution to Post’s Problem, Kuc̆era [15] proved that if Y is
a ∆0

2 set of diagonally noncomputable Turing degree, then there is a promptly
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simple c.e. set V ≤T Y . Therefore, we have the following corollary to Theorem
1.3.

Corollary 1.4. Let A be a ∆0
2 set such that there is a diagonally noncomputable

function f ≤T A. There exists a c.e. set B such that 0 <T B ≤wtt A.

If A has Martin-Löf Turing degree or PA Turing degree, then there is a diag-
onally noncomputable function f ≤T A. Therefore, we obtain similar corollaries
for such sets. Chapter 4 of Nies [25] has a thorough discussion of these notions
including generalizations of Kuc̆era’s result for wtt-reductions.

Our main results take place within the ∆0
2 sets. In the case of Theorem 1.1,

this follows from the fact that full approximation arguments naturally produce
∆0

2 sets. In the case of Corollary 1.4, we do not know if the hypothesis that A is
∆0

2 can be weakened. It cannot be removed entirely because there are diagonally
noncomputable functions of hyperimmune-free Turing degree and such degrees
cannot bound noncomputable c.e. degrees.

We feel that the proof of Theorem 1.1 is of significant technical interest.
The proof combines a full approximation argument to make A wtt-minimal with
permitting to build the noncomputable c.e. set B such that B ≤T A. Because
of the complexity of the interactions between the wtt-minimality strategies and
the permitting strategies, we need to use a ∆0

3 method with linking in our tree
of strategies to control the construction of the partial computable trees in the
full approximation argument. The kind of inductive considerations needed for
the construction of the Turing reduction somewhat resemble the methods used
by Lachlan [19] in embedding nondistributive lattice in the c.e. degrees. Such
techniques have hitherto never been used in a full approximation argument,
which is why we will slowly work up to the full details. In Chapter 2, we give
an informal sketch of the construction method for Theorem 1.1 and in Chapter
3, we present the full construction and prove it succeeds.

In Chapter 4, we prove Theorems 1.2 and 1.3 giving two different limitations
on the set A in Theorem 1.1. Our proof of Theorem 1.2 is nonuniform and in
Section 4.1 we prove this nonuniformity is necessary. In Section 4.2, we isolate
a technical approximation condition, called an almost c.e. approximation, and
we prove that if A has an almost c.e. approximation, then A is not wtt-minimal.
In Section 4.3, we finish the proof of Theorem 1.3 by showing that if A has
c.e. Turing degree but does not have an almost c.e. approximation, then A is
not wtt-minimal. Finally, we prove Theorem 1.3 in Section 4.4.

Most of our terminology is standard and follows Soare [34]. For example,
we use ϕe and We to denote the e-th partial computable function and the e-
th computably enumerable set respectively. If Γ is a Turing reduction, we use
ΓAs (x) or ΓA(x)[s] to denote the result of running Γ for s steps with oracle A,
and assume this computation only queries the oracle about numbers below s.

We use α, β, γ and δ to denote finite binary strings and λ to denote the empty
string. We use |α| to denote the length of α, α ∗ β to denote the concatenation
of α and β, α ∗ i to denote α ∗ 〈i〉, and α′ to denote α with its last element
removed. We write α ⊆ β to indicate that α is an initial segment of β and
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α ⊆ X to denote that α is an initial segment of the set X viewed as an infinite
binary string. X � n denotes the finite string 〈X(0), . . . , X(n)〉.

The proof of Theorem 1.1 uses a full approximation argument for which
Posner [28] provides an excellent introduction. The proof of Theorem 1.3 relies
on basic results about promptly simple sets which can be found in Chapter XIII
of Soare [34].

Finally, we use [e] for the eth weak truth table reduction. To be more
specific, this reduction is given by a pair e = 〈i, j〉 where i is the index of
a Turing functional Φi and j is the index of a partial computable function
ϕj . We compute [e]A(n) by first calculating ϕj(0), . . . , ϕj(n). If any of these
computations diverge, so does [e]A(n). If all of these computations converge,
then we calculate ΦAi (n). If this computation converges and never queries the
oracle about a number x > ϕj(n), then we set [e]A = ΦAi (n). Otherwise, [e]A(n)
diverges.
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Chapter 2

Informal Construction

In this section, we present an informal description of the construction used to
prove Theorem 1.1. For convenience, we restate the theorem below.

Theorem 1.1. There is a ∆0
2 set A and a noncomputable c.e. set B such that

A has minimal wtt-degree and B ≤T A.

Throughout this chapter, we will introduce various pieces of terminology
in an intuitive way and the formal definitions will appear in Chapter 3. We
assume familiarity with full approximation arguments as in Posner [28] and
with the notation for computable trees used in minimal degree constructions as
in Chapter VI of Soare [34]. In particular, a tree T is a computable function
T : 2<ω → 2<ω such that T (α ∗ 0) and T (α ∗ 1) are incomparable extensions of
T (α) with T (α ∗ 1) to the left of T (α ∗ 0). The nodes Ts(α) for small values of
α in a tree Ts defined at stage s during the construction will do work towards
meeting a minimality requirement while nodes Ts(α) for large values of α will
be defined trivially by Ts(α ∗ i) = Ts(α) ∗ i.

Recall that [e] denotes the eth wtt-reduction while ϕe denotes the eth Turing-
reduction. We use λ to denote the empty string and α′ to denote the string
obtained from α by removing the last element. Whenever we define a number
to be large or the length of a string to be long, we mean for it to be larger than
(or longer than) any number or string used in the construction so far.

To make A have minimal wtt-degree, we meet

Re : [e]A total ⇒ A ≤wtt [e]A or [e]A is computable.

To make B noncomputable, we satisfy

Pe : B 6= We.

We also need to meet the global requirements that B is c.e. and B ≤T A by a
Turing reduction Γ which we build.

We use a full approximation argument to satisfy the Re requirements. To
meet a single Re requirement, we build a sequence of computable trees Te,s on

9
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which we attempt to find [e]-splittings. A node Te,s(α) is said to [e]-split if there
is an x ≤ s such that

[e]Te,s(α∗0)s (x) ↓6= [e]Te,s(α∗1)s (x) ↓ .

We say that the number x is a splitting witness for the node Te,s(α). A node
which [e]-splits is said to be in the high [e]-state and a node which does not
[e]-split is said to be in the low [e]-state.

In addition, we define the current path As which represents our approxima-
tion to A at the beginning of stage s. During stage s, strategies will be allowed
to alter the path As as part of their action. Therefore, in the full construction
As really has two subscripts Aη,s where η was the last strategy to act. For
simplicity of notation right now, we omit the second subscript. We also occa-
sionally leave off the stage number subscripts, especially in our diagrams where
they cause unnecessary clutter. In general, if the current path As goes through
a node Te,s(α), then it also goes through Te,s(α ∗ 0) unless some strategy has
actively moved the path to go through Te,s(α ∗ 1).

We make two significant modifications to a typical full approximation ar-
gument. First, rather than look for [e]-splits for every node, we only look for
[e]-splits along the current path. To be more specific, suppose Te,s(α) has been
defined and we are trying to define Te,s(α ∗ i) for i = 0, 1. If Te,s(α) ⊆ As,
then we look for extensions τ0 and τ1 which [e]-split and such that either τ0 or
τ1 is on As. If we find such strings, then we define Te,s(α ∗ i) = τi. Otherwise
we define Te,s(α ∗ i) as they were defined at stage s − 1 (if these nodes are
still available) and if not, we extend Te,s(α) trivially (that is, we take the first
available extension strings). If Te,s(α) is not on the current path, then we define
Te,s(α∗ i) as they were defined on Te,s−1 (if possible) and otherwise define them
by taking the first available extensions.

The second important modification is that we will occasionally move the
current path As for the sake of a P requirement. (See Figure 2.1.) When a
requirement moves the current path, it may challenge Re to prove that [e] is
total on some finite set Xe of number using oracles on the new current path.
In this situation, [e] has converged on all the numbers in Xe using oracles from
the old current path. As long as there is a number x ∈ Xe for which [e] does
not see an oracle along the new current path which makes [e] converge on x, Re
remains in a nontotal state and we define Te,s trivially. (That is, we attempt to
keep the nodes of Te,s as they were at the last stage and take the first possible
extensions when this is not possible.) If Re remains in a nontotal state forever,
then [e]A is not total and Re is satisfied.

The current path As settles down on larger and larger initial segments as
the construction proceeds and gives us A in the limit. Furthermore, nodes
Te,s(α) which are on A reach pointwise limits and final [e]-states. At the end
of the construction, we are in one of three situations. Either Re is eventually
in a permanent nontotal state, the nodes Te,s(α) along A are eventually in the
high state or there is a string α such that Te,s(α) is on A and all extensions of
Te,s(α) are permanently in the low state. If Re is permanently in the nontotal
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Anew Aold

Te(σ ∗ 1) Te(σ ∗ 0)

Te(σ)

Figure 2.1: When the current path moves from Te(σ ∗ 0) to Te(σ ∗ 1),
we challenge Re to verify that it converges on all elements of Xe = {x |
[e]τs (x) converges for some τ ⊇ Te(σ ∗ 0)} using oracles along the new current
path Anew.

state, then we win Re because [e]A is not total. If the nodes along A are each
eventually in the high state, then A ≤wtt [e]A. If sufficiently long nodes along
A are eventually always in the low state, then [e]A is computable.

The basic idea of these computation lemmas is as in a typical full approxi-
mation argument. For the low state case, we show that once we see [e]Te,s(α)(x)
converge at a stage s for some node Te,s(α) on the current path, then this com-
putation is equal to [e]A(x). As usual, this equality follows (for sufficiently long
nodes Te,s(α)) because if not, we would later have the option of using Te,s(α)
and the node along A which gives the correct computation for [e]A(x) to make
Te,t(α

′) high splitting (where t > s is a stage at which the correct computation
appears).

For the high case, we can define A inductively using [e]A because the com-
putations of [e]A tell us which half of each high split A eventually has to pass
through. In general, this computation procedure gives a T -reduction A ≤T [e]A

and not a wtt-reduction A ≤wtt [e]A. To achieve a wtt-reduction, we incorpo-
rate stretching. (Stretching is also used by P strategies as described below.)
Before describing the stretching procedure, we give the algorithm for determin-
ing the computable use for the wtt-reduction and then explain how to alter the
construction so that this use function works.

To compute the use u(m) of the reduction A ≤T [e]A (and show it is a wtt-
reduction) on a number m proceed as follows. Wait for a stage s and a node
Te,s(α) ⊆ As such that Te,s(α) is in the high state and |Te,s(α)| > m. Define
u(m) to be the maximum of the splitting witnesses that Re has seen in the
construction so far.

The apparent problem with this definition is that the current path may move
below Te,s(α) at a later stage t > s and along the new current path, there may
not be a node of length > m which is high splitting. To handle this potential
problem, we redefine our trees by stretching each time we move the current path.
(See Figure 2.2.) Suppose the current path moves from Te,t(β ∗ 0) ( Te,t(α) to
Te,t(β ∗ 1) at stage t (for the sake of some lower priority requirement). Because
Te,s(β) ( Te,s(α) and Te,s(α) is high splitting, we know that Te,s(β) is high
splitting (and is still high splitting at stage t). We let βe,H be the shortest node
along the new current path such that Te,t(βe,H) is not high splitting. (In other
words, Te,t(β

′
e,H) is the longest node on the new current path which is high
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Anew Aold

T new
e (βe,H)

T old
e (βe,H) Te(α)

Te(β
′
e,H)

Te(β ∗ 1) Te(β ∗ 0)

Te(β)

Figure 2.2: If Te(α) is high splitting and the current path moves from Te(β ∗ 0)
to Te(β ∗ 1), then we stretch T old

e (βe,H) to have value T new
e (βe,H) such that

|T new
e (βe,H)| > |Te(α)| > m.

splitting so β ⊆ β′e,H ( βe,H .) Because we only look for new high splits along
the current path and because either β′e,H = β (so Te,s(β

′
e,H) is high splitting)

or β ( β′e,H (so Te,t(β
′
e,H) is not on the current path and cannot change from

low to high splitting between stages s and t), Te,s(β
′
e,H) must have been high

splitting at stage s. Therefore, the splitting witness for Te,t(β
′
e,H) is less than

the purported use u(m).

Redefine Te,t(βe,H) so that it extends its old value, it has long length and
is along the current path. (That is, its new length is longer than any number
used so far in the construction and in particular is longer than m. For strings
α such that βe,H ( α, extend the definition of Te,t trivially.) We refer to this
redefinition process as stretching and say that the node Te,t(βe,H) is stretched.
The node Te,t(β

′
e,H) is not changed by this process and it remains in the high

state with the same splitting witness (which is less than u(m)).

Assume that the current path does not move below Te,t(β
′
e,H) after stage

t. In this case, the reduction A ≤T [e]A uses the witness for the high split at
Te,t(β

′
e,H) to tell us that A passes through Te,t(βe,H) (which has length > m)

since this node remains on the current path forever and hence is on A. However,
this splitting witness is less than the purported use u(m) for A ≤T [e]A, so u(m)
is correct. If the current path does move below Te,t(β

′
e,H) after stage t, then

we repeat this stretching procedure at the next place where the current path
moves. As long as such movement of the current path occurs only finitely often,
we have the desired wtt-reduction.

To see that stretching does not interfere with the pointwise convergence of
nodes along A, notice that a node is only stretched when the current path is
moved and that node is the shortest node along the new current path which
is not high splitting. Therefore, once a node becomes high splitting it is not
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stretched again. Since the current path will settle down on longer and longer
segments, we will show that stretching only causes a finite disruption in the
definition of the nodes along A. There are more subtle issues with stretching
when multiple R strategies are involved and we address these below.

The basic strategy for meeting one Pe requirement (in the presence of a
single Re requirement of higher priority which is defining Te,s) is to pick a node
Te,s(α) such that Te,s(α ∗ 0) ⊂ As at which to diagonalize and a large witness
x with which to diagonalize. Since we have not yet put x into B, we define
ΓTe,s(α∗0)(x) = 0. (Recall that Γ is the reduction we build to witness B ≤T A.)
We wait for x to enter We. If this never happens, then we never put x into B
and we win Pe. If x does enter We at some later stage t, then we try to put x
into B. (If the node Te,s(α ∗ 0) ever changes because of a new [e]-split, then we
initialize this Pe strategy and start over with a new large witness x. In the full
construction, we will have different Pe strategies guessing what the final state
of the Re strategy is.)

Before putting x into B, we need to get permission from A by changing
A below the use of the computation ΓTe,t(α∗0)(x) = 0 which we defined at
stage s. We would like to move the current path At from Te,t(α ∗ 0) ⊆ At to
Te,t(α ∗ 1) ⊆ At, declare ΓTe,t(α∗1)(x) = 1 and put x into B. However, there is
a potential problem with this strategy. If the current path Au, for some u > t,
is ever moved so that Te,t(α ∗ 0) ⊆ Au again, then we will have ΓAu(x) = 0
(by our definition that ΓTe,t(α∗0)(x) = 0) and x ∈ B. Since B must be c.e.,
we cannot remove x from B. Therefore, before we can put x into B, we must
forbid the cone above Te,t(α ∗ 0) in the sense that we promise never to move
the current path Au for u ≥ t back to this cone again. If Te,t(α) is in the high
state, then this strategy is fine because there is no reason to look at nodes above
Te,t(α ∗ 0) for a potential high split of Te,t(α) since this node is already in the
high state. Furthermore, we can tell from [e]A that Te,t(α ∗ 1) ⊆ A as opposed
to Te,t(α ∗ 0) ⊆ A.

However, there is a problem if Te,t(α) is in the low state. If the true final
state of Re is low, then to compute [e]A(y) for any value y, we look for a node
Te,v(β) on the current path in the low state such that [e]Te,v(β)(y) converges
and declare this to be the value of [e]A(y). This computation will be correct
since otherwise we could put up another high split. However, if the node Te,v(β)
happens to be in a cone like Te,t(α∗0) which is later forbidden, then it is possible
that [e]A(y) has a different value and the forbidding process restricts us from
putting up the new high splitting. Therefore, in this case, we do not want to
rule out the possibility of using nodes above Te,t(α ∗ 0) to make Te,t(α) high
splitting at a later stage unless we have further evidence that Te,t(α) should
be in the low state. To accomplish this, we start a low challenge procedure to
check that to the best of our knowledge, Te,t(α) should be in the low state.

For the low challenge procedure, we let Xe be the finite set of numbers y for
which we have seen [e] convergence using a node above Te,t(α ∗ 0) as the oracle
but we have not seen [e] convergence using Te,t(α) as the oracle. We move
the current path At from Te,t(α ∗ 0) to Te,t(α ∗ 1) and declare the cone above
Te,t(α ∗ 0) to be frozen. (See Figure 2.3.) This means that we no longer look at
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Anew

frozen

Te(σ ∗ 1) Te(σ ∗ 0)

Te(σ) Aold

Te(α ∗ 1) Te(α ∗ 0)

Te(α)

Figure 2.3: If Te(α) is in the low state and we move the current path from
Te(α ∗ 0) to Te(α ∗ 1) for the sake of Pe, then we freeze the cone above Te(α ∗ 0)
until we have seen identical computations on all the elements of Xe using oracles
along the new current path Anew. The auxiliary diagonalization node Te(σ) for
Pe is chosen so that its length is greater than the use for any [e] computation
on an element in Xe.

computations involving nodes in this cone as oracles. Pe challenges Re to verify
that Te,t(α) should be in the low state by providing computations along the
new current path which agree with the computations from the old current path
for all the numbers in Xe. We also pick a large auxiliary diagonalization spot
Te,t(σ) with Te,t(σ ∗0) on the (new) current path such that Te,t(α∗1) ( Te,t(σ).
We define ΓTe,t(σ∗0)(x) = 0 since x has not yet been enumerated into B.

This auxiliary diagonalization spot is chosen to have length larger than the
use of any of the computations for numbers in Xe. Since we are working with
wtt-computations, Re is only concerned with nodes on the current path below
Te,t(σ) as oracles for the [e] computations on numbers from Xe. Furthermore,
while Re is waiting for verification that Te,t(α) really should be in the low state,
it can suspend building Te any further. That is, with the current path running
through Te,t(σ ∗ 0), Re thinks that [e]A will not be total until it actually sees
computations involving all the numbers in Xe.

If Re sees a computation at stage u > t on some element of Xe using an
oracle on the current path which differs from the computation using the oracle
above Te,t(α∗0), then it unfreezes the cone above Te,u(α∗0) (which is the same
as Te,t(α ∗ 0) since Re does not change Te while it is low challenged) and it uses
this computation to put Te,u(α) in the high state. In this case, we initialize the
Pe strategy and let it work with a new large witness x′ at the same node Te,u(α).
(In the full construction, we will actually have a separate Pe strategy guessing
that the final Re state is high.) Since this node now has the high state, we know
that we will win Pe with this new witness x′ (either because x′ never enters We

or because x′ does enter We and we can immediately diagonalize since Te,u(α)
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is now in the high state).
If Re sees computations at stage u > t using oracles along the current path

for all the numbers in Xe and they agree with the computations using oracles
above Te,t(α ∗ 0), then Re has met the low challenge and it is safe to forbid the
cone above Te,u(α∗0) because we have identical computations in a nonforbidden
part of the tree. That is, any future high splitting which might want to use a
node above Te,u(α ∗ 0) can use a node above Te,u(α ∗ 1) instead which gives
the same computation. To perform the diagonalization in this case, we use the
auxiliary split Te,u(σ). We move the current path from Te,u(σ ∗0) to Te,u(σ ∗1),
declare the cones above Te,u(α∗0) and Te,u(σ ∗0) to be forbidden, put x into B,
and declare ΓTe,u(σ∗1)(x) = 1. The forbidding action is allowed for Te,u(α ∗ 0)
because we have identical computations for all numbers in Xe above Te,u(α ∗ 1)
and it is allowed for Te,u(σ ∗ 0) because the length of this node was chosen
large. That is, when we chose Te,t(σ), we had not looked at any computations
above this node and because Te,t(σ) has length greater than the [e] use for any
number in Xe, we never need to look at computations above this node when
verifying the lowness. Therefore, we are not committed to any computations
above Te,u(σ ∗ 0) at the time it is forbidden.

Finally, we might never see convergence on some number in Xe using any
node above Te,t(α ∗ 1) (and below Te,t(σ)) on the current path. In this case,
Re remains in the nontotal state forever and is won trivially because [e]A is not
total. Furthermore, we can start a different version of the Pe strategy which
guesses that Re never meets the low challenge and which picks its own node
above Te,t(σ ∗ 0) at which to diagonalize and its own large witness with which
to diagonalize. It gets to diagonalize immediately if it ever sees its witness enter
We. Immediate forbidding is allowed for this strategy since the Re strategy has
not looked at any computations above Te,t(σ ∗ 0).

This completes the informal description of the interaction between a sin-
gle R strategy and a single P strategy. The interaction is significantly more
complicated when multiple R strategies are involved. Before illustrating this
interaction, we describe the tree of strategies used to control the full construc-
tion. An Re strategy η has three possible outcomes: H, L, and N . We use the
H (high) outcome whenever η finds a new high split along the current path. All
strategies extending this outcome believe that the final [e]-state along A will be
high. Each strategy µ with η ∗H ⊆ µ defines a large number pµ and does not
begin to act until the tree Tη,s being built by η has the high state along the
current path up to level pµ. We use the N (nontotal) outcome whenever η has
been challenged to verify its lowness and has not yet seen computations on all
numbers in the set Xη it has been challenged to verify. All strategies extending
this outcome believe that [e]A will not be total and hence they ignore the strat-
egy Re when making calculations about which action to take. We use the L
(low) outcome whenever neither of the other two applies. Strategies extending
this outcome think that [e]A may be total, but that the final [e]-state along A
will be the low state. These outcomes are ordered in terms of priority with H
the highest priority and N the lowest priority. (That is, η ∗H is to the left of
η ∗ L which is to the left of η ∗N .)
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A Pe strategy η has two possible outcomes, S and W . The S outcome is
used when Pe has already been satisfied by a diagonalization. Otherwise, we
use the W outcome. The S outcome has higher priority than the W outcome.
(That is, η ∗ S is to the left of η ∗W .) The action of a Pe strategy is finitary,
while the action of an Re strategy is infinitary.

Formally, the tree of strategies is defined by induction, with the empty string
λ being the only R0 strategy. If η is an Re strategy, then η ∗H, η ∗L and η ∗N
are Pe strategies. If η is a Pe strategy, then η ∗W and η ∗S are Re+1 strategies.
To make the notation more uniform, we use [η] and Wη to denote [e] and We if
η is an Re or Pe strategy. We let Tη,s denote the tree build at stage s by an R
strategy η. Furthermore, we use the term true path to refer to the eventual true
path through the tree of strategies. We use the term current path to denote the
current approximation As to the set A.

To illustrate the remaining features of the construction, we consider four R
strategies µi, 0 ≤ i ≤ 3 and one P strategy η. Assume that the priorities are
µ0 < µ1 < µ2 < µ3 < η, and that µ1 = µ0 ∗ L, µ2 = µ1 ∗H, µ3 = µ2 ∗ L, and
η = µ3 ∗H. We consider the action of η. During this example, we assume that
we never move to the left of these strategies in the tree of strategies and thus
these strategies are never initialized. In particular, neither µ0 nor µ2 finds a
new high split during our discussion.

Since η thinks the final state along A will be 〈L,H,L,H〉, there is no reason
for η to pick a node at which to diagonalize that does not have this state. When
η is first eligible to act, it picks a large number pη. During each later stage at
which η is eligible to act, η checks if the node Tµ3,s(α) along the current path
with |α| = pη has state 〈L,H,L,H〉. Until this occurs, η does not pick a node
at which to diagonalize or a witness with which to diagonalize.

If η is on the true path, then eventually there will be such a node Tµ3,s(α). At
this stage, η sets αη = α and picks a large witness xη with which to diagonalize.
η begins to wait for xη to enter Wη (while keeping xη out of B) and η defines
ΓTµ3,s(αη∗0)(xη) = 0. If xη eventually enters Wη, then η begins a verification
procedure to put xη into B.

Assume xη enters Wη at stage s. η moves the current path from Tµ3,s(αη ∗0)
to Tµ3,s(αη ∗ 1) and freezes the cone above Tµ3,s(αη ∗ 0). η would like to put
xη into B, define ΓTµ3,s(αη∗1)(xη) = 1 and forbid the cone above Tµ3,s(αη ∗ 0).
There are two issues that need to be addressed before forbidding this cone. First,
because we have moved the current path, we need to perform stretching for the
sake of the strategies µ1 and µ3 which are in the high state in order to ensure
that the set A has minimal wtt-degree. This issue is easy to address and does
not stop us from immediately forbidding this cone. The second issue is more
serious. The action of forbidding this cone is fine for µ1 and µ3 since Tµ3,s(αη)
is in the high µ1 and µ3 states. However, since Tµ3,s(αη) is in the low µ0 and
µ2 states, we cannot do this forbidding before finding identical computations
(to the computations they have already seen) for these strategies along the new
current path.

We begin with the issue of redefining the trees Tµi,s by stretching. First, we
let βµ0,L and βµ2,L denote the strings such that the current path just moved
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Figure 2.4: When we move the current path from Tµ3
(αη ∗ 0) to Tµ3

(αη ∗ 1) for
the sake of the P strategy η, we freeze the cone above Tµ3

(αη ∗ 0) and stretch
the trees Tµi , 0 ≤ i ≤ 3. In this figure, δ is equal to T new

µ1
(βµ1,H), T new

µ2
(β),

T new
µ3

(βµ3,H) and Tµ0(σ1).

from Tµi,s(βµi,L ∗ 0) to Tµi,s(βµi,L ∗ 1) (for i = 0, 2). Second, we let βµ1,H

be the shortest string such that Tµ1,H(βµ1,H) is on the new current path and
Tµ1,s(βµ1,H) is in the low µ1 state. Hence, Tµ1,s(β

′
µ1,H

) is the longest node on
the new current path which has state 〈L,H〉. Similarly, we define βµ3,H to be the
shortest string such that Tµ3,s(βµ3,H) is on the new current path and has state
〈L,H,L, L〉. In other words, Tµ3,s(β

′
µ3,H

) is the longest node on the new current
path with state 〈L,H,L,H〉. Notice that Tµ3,s(βµ3,H) ( Tµ1,s(βµ1,H). Finally,
let δ be a string with long length such that δ is on all of these trees and is on
the new current path. Since δ has long length, our trees will have been defined
trivially above δ in the sense that if δ ⊆ Tµi,s(α), then Tµi,s(α∗j) = Tµi,s(α)∗j.
Therefore, in the redefinition process described below, the new versions of each
tree will be subtrees of the old versions.

We redefine these trees by stretching. (See Figure 2.4. The node Tµ0
(σ1)

is introduced after the definition for stretching.) For µ0, let Tµ0,s remain the

same. For µ1, let T̂µ1
= Tµ1,s and we redefine Tµ1,s. For any node α such that

α ( βµ1,H or α is incomparable with βµ1,H , let Tµ1,s(α) = T̂ (α) (and this node
retains its previous state). Redefine Tµ1,s(βµ1,s) = δ and extend this definition
trivially above here. That is, if βµ1,H ⊆ α and Tµ1,s(α) has been defined, then
set Tµ1,s(α ∗ i) = Tµ1,s(α) ∗ i (and has all low states). Notice that the new
definition of Tµ1,s(βµ1,H) extends the old definition (since both the old value of
Tµ1,s(βµ1,H) and δ are on the new current path), so Tµ1,s(β

′
µ1,s) is still in the

high µ1 state.

For µ2, let β denote the string such that Tµ2,s(β) is equal to the value of
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Tµ1,s(βµ1,H) before it was redefined by stretching. We set T̂µ2 = Tµ2,s and
redefine Tµ2,s as follows. For α ( β or α incomparable with β, set Tµ1,s(α) =

T̂µ2
(α) (that is, leave these nodes unchanged). Redefine Tµ2,s(β) = δ and extend

the definition of Tµ2,s trivially above here. For µ3, we follow essentially the

same procedure as for µ1. Set T̂µ3
= Tµ3,s. For α ( βµ3,H and α incomparable

with βµ3,H , define Tµ3,s(α) = T̂µ3
(α). Redefine Tµ3,s(βµ3,H) = δ and extend

the definition trivially above here. Notice that the new value of Tµ3,s(βµ3,H)
extends the old value of this node, so Tµ3,s(β

′
µ3,H

) still has state 〈L,H,L,H〉.
This completes the redefinition of these trees by stretching. The important

properties to note are that each tree (except Tµ0,s) has a unique node along the
new current path that is stretched, these nodes are all stretched to the same
value (that is Tµ1,s(βµ1,H) = Tµ2,s(β) = Tµ3,s(βµ3,H) = δ) and the longest
nonstretched node on each tree retains its old state.

We turn to the issue of verifying lowness for µ0 and µ2. As with the case
of a single P strategy, we must calculate the sets Xµ0

and Xµ2
on which these

strategies need to verify computations. The set Xµ0
is calculated as before:

it contains all numbers y such that µ0 has seen [µ0] converge on y with an
oracle extending Tµ0,s(βµ0,L ∗ 0) but not with Tµ0,s(βµ0,L) as an oracle. (Recall
that βµ0,L marks the place on Tµ0,s above which the current path just moved.)
The set Xµ2

has to be calculated slightly differently by taking into account the
states of the nodes extending Tµ2,s(βµ2,L ∗ 0). Let γ be the string such that
Tµ2,s(γ) = Tµ3,s(αη). Because µ2 sees the state of Tµ2,s(γ) as 〈L,H,L〉, when
µ2 looks for a high splitting for this node, it only looks at extensions of Tµ2,s(γ)
which have high µ1 state. Therefore, we define Xµ2 to be all y such that µ2 has
seen a computation on y using an oracle above Tµ2,s(βµ2,L ∗ 0) which has high
µ1 state and has not seen a computation on y using Tµ2,s(βµ2,L) as the oracle.
(Notice that the node Tµ2,s(βµ2,s) and the tree above Tµ2,s(βµ2,L ∗ 0) are not
effected by the stretching procedure.) These are the numbers for which µ2 has
to verify its lowness.

If both Xµ0
= ∅ and Xµ2

= ∅, then η has permission from all of the R
strategies µi for i = 0, 1, 2, 3 to immediately put xη into B and forbid Tµ3,s(αη ∗
0). (It has permission from µ1 and µ3 because Tµ3,s(αη) is high µ1 and µ3

splitting and it has permission from µ0 and µ2 because there are no numbers on
which these strategies need to verify their lowness.) Assume this is not the case
so that some verification of lowness for either µ0 or µ2 (or both) is required.
We split into the cases when Xµ2

= ∅ and when Xµ2
6= ∅. Handling these cases

requires the introduction of links into our tree of strategies.

First, assume that Xµ2
= ∅ and Xµ0

6= ∅. In this case, η has permission from
µ1, µ2 and µ3 to forbid the cone above Tµ3,s(αη ∗ 0) and only has to wait for µ0

to verify the computations on numbers in Xµ0 . η defines σ1 to be the string such
that Tµ0

(σ1) = δ (where δ is the string used in the stretching process as shown
in Figure 2.4) and defines ΓTµ0,s(σ1∗0)(xη) = 0. (We need this Γ computation to
be defined since we have not yet placed xη into B and we do not know ahead of
time whether µ0 will eventually verify the computations on numbers in Xµ0

.)
η places a link from µ0 to η, challenges µ0 to verify its lowness and passes the
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set Xµ0 and the string βµ0,L to µ0.
At future stages, µ0 checks whether there are computations with oracles

above Tµ0,s(βµ0,L ∗ 1) for all the numbers in Xµ0
which agree with the com-

putations with oracles above Tµ0,s(βµ0,L ∗ 0). Because [µ0] is a wtt procedure
and because δ was chosen to have long length, µ0 never has to look at strings
longer than Tµ0,s(σ1) = δ for these computations. If µ0 ever finds a disagreeing
computation, it can put up a new high split, take outcome µ0 ∗H and initial-
ize the attempted diagonalization by η. (By our assumption for this informal
description, this situation does not occur.) If µ0 eventually finds identical com-
putations for all the numbers in Xµ0

, then instead of taking outcome µ0 ∗ L, it
travels the link to η. Until such a stage arrives, µ0 takes outcome µ0 ∗ N and
strategies extending µ0 ∗N define their trees higher up on Tµ0,s so that they do
not interfere with any of the nodes mentioned so far. Also, if µ0 takes outcome
N at every future stage, then [µ0]A is not total because it diverges on at least
one number in Xµ0

. Therefore, assume that we eventually travel the link from
µ0 to η.

When we travel the link from µ0 to η at stage t > s, η acts as follows. It
moves the current path from Tµ0,t(σ1 ∗ 0) to Tµ0,t(σ1 ∗ 1) (these nodes are the
same as they were at the end of stage s since all the action of strategies extending
µ0 ∗ N takes place with longer nodes), it forbids the cone above Tµ0,s(αη ∗ 0)
(since η has µ0 permission to forbid this cone and it previously had permission
from µi for 1 ≤ i ≤ 3), it forbids the cone above Tµ0,t(σ1 ∗ 0) (which is allowed
by µ0 since µ0 did not need to look in this cone to verify its computations on
numbers in Xµ0 and is allowed by µi for 1 ≤ i ≤ 3 since Tµ0,s(σ1) = δ was
defined to have long length and only strategies extending µ0 ∗ N have been
eligible to act between stages s and t, so none of the strategies µi for 0 ≤ i ≤ 3
have looked at any computations in this cone) and it puts xη into B. Because the
only computations of the form Γγ(xη) = 0 are γ = Tµ3,t(αη ∗ 0) = Tµ3,s(αη ∗ 0)
and γ = Tµ0,t(σ1 ∗ 0) = Tµ0,s(σ1 ∗ 0), we have forbidden all strings which define
a Γ computation on xη to be equal to 0. η picks a large number k and defines
Γγ(xη) = 1 for all strings γ of length k which do not extend Tµ3,s(αη ∗ 0) or
Tµ0,s(σ0 ∗ 0). Therefore, ΓA(xη) = 1 and η has won its requirement.

Next, we consider the case whenXµ2
6= ∅. In this case, at stage s, η defines σ1

to be the string such that Tµ2,s(σ1) = δ (where δ is the string used in the stretch-
ing process at stage s as shown in Figure 2.4) and defines ΓTµ2,s(σ1∗0)(xη) = 0. η
places the link from µ2 to η. We challenge µ0 and µ2 to verify their lowness (and
pass them the strings βµ0,L and βµ2,L and the sets Xµ0

and Xµ2
respectively).

We challenge µ1 to verify its highness and define xµ1
= xη. The meaning and

purpose of this high challenge has not come up yet and will be explained below.
Since µ1 is an R strategy, it does not keep a value xµ1 for the purposes of diag-
onalization. However, as we shall see, µ1 may need to take over the Γ definition
of xη temporarily and hence it needs to retain this value as a parameter.

Consider how the construction proceeds after stage s. Until µ0 verifies its
lowness, it takes outcome µ0 ∗ N and the strategies extending µ0 ∗ N work
higher on the trees and do not effect the nodes defined above. Assume that µ0

eventually meets its low challenge at stage s0 > s.
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At s0, µ0 takes outcome µ0 ∗ L and µ1 becomes eligible to act for the first
time since stage s. µ1 needs to verify that Tµ1,s0(βµ1,H) should be in the high
[µ1] state. (Because strategies containing µ0 ∗ N work higher on the trees, we
have Tµ1,s0(βµ1,H) = Tµ1,s(βµ1,H), Tµ1,s0(βµ1,H ∗i) = Tµ1,s(βµ1,H ∗i) for i = 0, 1
and the current path still goes through Tµ1,s0(βµ1,H ∗ 0). For the rest of this
informal explanation, we take it for granted that strategies to the right of the µi
or η strategies do not cause any of the named nodes defined by these strategies
to change and do not cause the current path to move below any of these nodes.)

The point of verifying that Tµ1,s0(βµ1,H) is in the high µ1 state is that µ2

eventually needs to verify that it is in the low state by finding computations
for each number in Xµ2 using oracles along the current path which are in the
high µ1 state. The length of Tµ1,s0(βµ1,H) was stretched at stage s, so it has
length longer that the [µ2] use of any number in Xµ2

. But, we need this node
to be in the high µ1 state in order to use it as a potential oracle for these [µ2]
computations on Xµ2

.

µ1 begins to look for a high splitting for Tµ1,s0(βµ1,H). Because Tµ1,s0(β′µ0,H
)

is already high µ1 splitting, Tµ1,s0(βµ1,H) is the first node on the current path
which is not high µ1 splitting. Until µ1 finds a potential high split for this node,
it takes outcome µ1 ∗ L.

Suppose µ1 eventually finds a pair of strings τ0 and τ1 which could give a
high splitting for Tµ1,s0(βµ1,H) with either τ0 or τ1 on the current path. (Recall
that we only look for new splittings for which half of the splitting lies on the
current path. If τ0 and τ1 have this property, then either one or both satisfy
Tµ1,s0(βµ1,H ∗0) ⊆ τi since this node remains on the current path.) Consider the
action that η eventually wants to take if this entire verification procedure stated
by η comes to a conclusion. η wants to move the current path from the node
Tµ2,s(σ1 ∗0) = Tµ1,s0(βµ1,H ∗0) to the node Tµ2,s(σ1 ∗1) = Tµ1,s0(βµ1,H ∗1) and
forbid the cone above Tµ2,s(σ1∗0) before enumerating xη into B (because we are
committed to ΓTµ2,s(σ1∗0)(xη) = 0). Therefore, if we define a new high splitting
for Tµ1,s0(βµ1,H) at stage s1 > s0, we want the values of Tµ1,s1(βµ1,H ∗ i) to
satisfy the condition

Tµ1,s0(βµ1,H ∗ i) ⊆ Tµ1,s1(βµ1,H ∗ i)

for i = 0, 1. If the potential splitting pair τ0 and τ1 satisfies this condition, then
we use them to make Tµ1,s1(βµ1,H) high splitting and take outcome µ1 ∗H. In
this case, we say that µ1 has met its high challenge.

However, it may not be the case that τ0 and τ1 satisfy this condition. It is
possible that when we find these nodes τ0 and τ1 at stage s1 > s0, both nodes
extend Tµ1,s0(βµ1,H ∗0). In this case, we want to press µ1 to find an appropriate
half for the high splitting which extends Tµ1,s1(βµ1,H ∗ 1) = Tµ1,s0(βµ1,H ∗ 1) =
Tµ2,s(σ1 ∗ 1). Because we have two different computations using oracles extend-
ing Tµ1,s1(βµ1,H ∗ 0) = Tµ1,s0(βµ1,H ∗ 0), this pressing amounts to forcing µ1

to find any oracle extending Tµ1,s1(βµ1,H ∗ 1) which gives a convergent com-
putation with the splitting witness wµ1

for the µ1 splitting strings τ0 and τ1.
(The splitting witness wµ1 is the number on which the [µ1] computations using
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Figure 2.5: This figure represents our actions at stage s1 when µ1 finds a po-
tential high split using nodes τ0 and τ1 extending Tµ1

(βµ1,H ∗ 0). For ease of
notation, we have used β in place of βµ1,H .

oracles τ0 and τ1 differ.) If µ1 finds such a computation using a node extending
Tµ1,s0(βµ1,H ∗ 1), then it can use this node together with one of τ0 or τ1 to get
a high splitting for Tµ1,s1(βµ1,H) which has the required property above.

To accomplish this goal, µ1 moves the current path from Tµ1,s1(βµ1,H ∗0) to
Tµ1,s1(βµ1,H ∗ 1) and freezes the cone above Tµ1,s1(βµ1,H ∗ 0). (See Figure 2.5.)
Because µ1 has moved the current path, it redefines the trees Tµ0,s1 and Tµ1,s1

by stretching. As before, we set βµ0,L to be the string such that the current path
just moved from Tµ0,s1(βµ0,L∗0) to Tµ0,s1(βµ0,L∗1). Because µ0∗L ⊆ µ1, the tree

Tµ0,s1 remains the same. To redefine Tµ1,s1 , set T̂µ1
= Tµ1,s1 . For α such that

α ( βµ1,H∗1 or α is incomparable with βµ1,H∗1, define Tµ1,s1(α) = T̂µ1(α) (that
is, leave these nodes unchanged). Redefine Tµ1,s1(βµ1,H ∗ 1) to have long length
and lie on the new current path (and hence the new definition of Tµ1,s1(βµ1,H ∗1)
extends the old definition). Extend the definition of Tµ1,s1 trivially above this
node.

Between the time µ0 met its original low challenge at stage s0 and the stage
s1 at which µ1 finds the potential high split, µ0 may have looked at computations
involving oracles above Tµ1,s1(βµ1,H ∗ 0). Because we may or may not ever
unfreeze the cone above this node, µ0 needs to verify these computations along
the new current path. Therefore, µ1 issues a low challenge to µ0 to verify the
computations it has seen in this frozen cone.

µ1 defines the set Xµ0
of numbers on which µ0 has seen computations using

oracles extending Tµ0,s1(βµ0,L ∗ 0) but not using Tµ0,s1(βµ0,L) as an oracle. It
passes this set Xµ0 and the string βµ0,L to µ0 and challenges µ0 to verify its
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Figure 2.6: This figure represents our action at stage s2 when µ1 begins the
process to forbid the cone above Tµ1

(βµ1,H ∗ 1 ∗ 0) to eliminate the Γ definition
using this node as the oracle. For ease of notation, we have used β in place of
βµ1,H .

lowness on these numbers. Furthermore, because µ1 has moved the current
path away from the node Tµ1,s1(βµ1,H ∗ 0) = Tµ2,s(σ1 ∗ 0) which was used
by η in the Γ definition on xη, µ1 needs to take over the Γ definition of xη.
When µ1 was challenged to verify its highness, we set xµ1 = xη, so µ1 defines
ΓTµ1,s1 (βµ1,H∗1∗0)(xµ1) = 0. Once it makes this definition, µ1 ends the stage.
However, we do not want to allow µ1 to initialize η, so µ1 only initializes the
strategies of lower priority than µ1 ∗ L, including µ1 ∗ L.

To see how the construction proceeds from here, assume that µ0 eventually
meets the low challenge issued by µ1 and takes outcome µ0 ∗ L so that µ1 is
later eligible to act again. Because the length of Tµ1,s1(βµ1,H ∗ 1) was stretched
when µ1 redefined the trees at stage s1, it has length longer than the use of the
wtt computation [µ1] on the splitting witness wµ1 for τ0 and τ1. Therefore, once
µ1 is eligible to act again, it checks if the [µ1] computation on wµ1

with oracle
Tµ1,s1(βµ1,H ∗ 1) converges. Until it sees this convergence, it takes outcome
µ1 ∗N .
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forbidden

Aold

Tµ1
(β ∗ 1 ∗ 1 ∗ 1) Tµ1

(β ∗ 1 ∗ 1 ∗ 0)

Tµ1
(β ∗ 1 ∗ 1)

forbidden

Tµ1(β ∗ 1 ∗ 0)

Tµ1
(β ∗ 1)

Anew

Tµ1(β ∗ 0)

Tµ1
(β)

frozen

Tµ3
(αη ∗ 1) Tµ3

(αη ∗ 0)

Tµ3(αη)

Figure 2.7: This figure represents the situation at stage s3 when µ1 returns the
current path to Tµ1

(βµ1,H∗0) and meets its high challenge by putting Tµ1
(βµ1,H)

into the high µ1 state. For ease of notation, we have used β in place of βµ1,H .

If this computation never converges, then [µ1]A will not be total. Therefore,
assume that this computation does eventually converge at stage s2 > s1. In
this case, µ1 wants to use the node Tµ1,s2(βµ1,H ∗ 1) and either τ0 or τ1 to make
Tµ1,s2(βµ1,H) high µ1 splitting. To do this, it needs to unfreeze the cone above
Tµ1,s1(βµ1,H∗0) that was frozen at stage s1 and it will let the current path return
to passing through Tµ1,s1(βµ1,H ∗ 0). However, when we perform this action, we
don’t want to leave the extra xµ1

= xη computation ΓTµ1,s2 (βµ1,H∗1∗0)(xµ1
) = 0

unforbidden because it could cause us problems if η eventually enumerates xη
into B. Therefore, before moving the current path back to Tµ1,s1(βµ1,H ∗ 0), µ1

begins a verification procedure to forbid the cone above Tµ1,s2(βµ1,H ∗ 1 ∗ 0).

The R strategy µ1 acts as though it were a P strategy with only one low R
strategy of higher priority. (See Figure 2.6.) That is, it moves the current path
from Tµ1,s2(βµ1,H ∗1∗0) to Tµ1,s2(βµ1,H ∗1∗1). µ1 redefines Tµ0,s2 and Tµ1,s2 by
stretching essentially as before: it defines βµ0,L and Xµ0

, leaves Tµ0,s2 the same
and stretches Tµ1,s2(βµ1,H ∗1∗1) to have long length. µ1 calculates the set Xµ0



24 CHAPTER 2. INFORMAL CONSTRUCTION

of numbers which µ0 has seen converge with an oracle above Tµ0,s2(βµ0,L ∗ 0)
but not with Tµ0,s2(βµ0,L) as oracle. It defines ΓTµ1,s2 (βµ1,H∗1∗1∗0)(xµ1) = 0 and
issues a low challenge to µ0 with βµ0,L and Xµ0

. Because Tµ1,s2(βµ1,H ∗ 1 ∗ 1)
is redefined to have long length, µ0 does not need to look above this node for
any computations on the numbers in Xµ0

. Therefore, if this low challenge is
met at s3 > s2, µ1 forbids the cone above Tµ1,s2(βµ1,H ∗ 1 ∗ 0) (since µ0 has
verified the computations that used oracles above this node), forbids the cone
above Tµ1,s2(βµ1,H ∗ 1 ∗ 1 ∗ 0) (since µ0 did not look at any computations above
this cone), unfreezes the cone above Tµ1,s3(βµ1,H ∗ 0) and uses Tµ1,s3(βµ1,H ∗ 1)
together with either τ0 or τ1 to make Tµ1,s3(βµ1,H) have high µ1 state. The
current path As3 also returns to passing through Tµ1,s3(βµ1,H ∗0) now that this
node is unfrozen. (See Figure 2.7.) µ1 has met its high challenge and takes
outcome µ1 ∗H.

It might seem that there are too many µ0 low challenges by µ1. However,
the first µ0 low challenge issued by µ1 at stage s1 is because we cannot know
whether µ1 will ever see [µ1] converge on wµ1

with oracle Tµ1,s2(βµ1,H ∗ 1). If
this computation never converges, then the cone above Tµ1,s2(βµ1,H ∗0) in never
unfrozen and so is essentially forbidden despite never being officially forbidden.
Therefore, the first µ0 low challenge by µ1 at stage s1 is to account for this
possibility. The second µ0 low challenge issued by µ1 at s2 is to allow the cone
above Tµ1,s2(βµ1,H ∗ 1 ∗ 0) to be forbidden to remove the potentially damaging
Γ computation on xµ1

using this oracle.
Summing up the action for µ1 which is challenged high, µ1 meets its high

challenge (in one of the two ways described above) by eventually finding a high
splitting for Tµ1,s0(βµ1,H) = Tµ1,s1(βµ1,H) at some stage s3 ≥ s1 such that
Tµ1,s0(βµ1,H ∗ i) ⊆ Tµ1,s3(βµ1,H ∗ i) for i = 0, 1. If it fails to find such a splitting,
then it is either because µ0 failed to meet some low challenge (in which case
either we win the µ0 requirement because [µ0]A is not total or else µ0 finds a
high split, takes outsome µ0 ∗H and initializes µ1) or because µ1 failed to find
an appropriate “second half” to a potential high split (in which case we win
µ1 because [µ1]A is not total). Furthermore, the current path at stage s3 goes
through Tµ1,s3(βµ1,H ∗ 0) and the computations ΓTµ3,s(αη∗0)(xη) = 0 (defined
by η when it originally chose xη) and ΓTµ1,s(βµ1,H∗0)(xη) = ΓTµ2,s(σ1∗0)(xη) = 0
(defined by η at stage s when it started the verification procedure to put xη
into B) are the only Γ computations on xη which are not forbidden at stage
s3. Finally, the node Tµ1,s3(βµ1,H) = Tµ1,s(βµ1,H) has not changed since being
stretched by η at stage s when η began its diagonalization process and is now
in the high µ1 state.

At stage s3, µ2 is eligible to act for the first time since stage s. µ2 begins
to verify its lowness as challenged by η at stage s. The current path still runs
through Tµ3,s(αη ∗1) (where it was moved at stage s) through Tµ1,s3(βµ1,H) and
Tµ1,s3(βµ1,H ∗ 0). (Of course, µ3 has not been eligible to act since stage s.) We
now have permission from µ0, µ1 and µ3 to forbid the cone above Tµ3,s(αη ∗ 0)
and only need to obtain µ2 permission by verifying its computations on the
numbers in Xµ2 along the current path using oracles in the high µ1 state (since
Tµ3,s(αη) was already in the high µ1 state at stage s). Because the length of
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Tµ1,s(βµ1,H) = Tµ1,s3(βµ1,H) was stretched at stage s when Xµ2 was defined by
η and because this node is now in the high µ1 state, µ2 does not need to look at
any computations using oracles which extend this node. Furthermore, at stage s,
η defined σ1 so that Tµ2,s(σ1) = Tµ1,s(βµ1,H). Therefore Tµ2,s3(σ1) = Tµ2,s(σ1)
and µ2 does not need to look at any computations using oracles above Tµ2,s3(σ1).

Until µ2 sees the correct computations on these numbers using an oracle
along the current path, it takes outcome µ2 ∗N . If there is a number in Xµ2 for
which µ2 never sees a correct computation, then [µ2]A is not total and we win
requirement µ2. If there is a number in Xµ2

for which µ2 sees a computation
which does not agree with the computation along the old current path that ran
through Tµ3,s(αη ∗ 0), then µ2 can use this computation to define a new µ2

high splitting, take outcome µ2 ∗H and initialize η. Therefore, assume that µ2

eventually verifies these computations at a stage s4 > s3.
In this case, µ2 follows the link to η. (Recall that when η started the di-

agonalization process at stage s, it placed a link from µ2 to η.) η now has
permission from µi, 0 ≤ i ≤ 3 to forbid the cone above Tµ3,s(αη ∗ 0). How-
ever, before placing xη in B, η also needs to worry about the computation
ΓTµ2,s(σ1∗0)(xη) = 0 that it defined at stage s after moving the current path.
Therefore, µ2 moves the current path from Tµ2,s4(σ1 ∗ 0) = Tµ1,s4(βµ1,H ∗ 0) to
Tµ2,s4(σ1 ∗ 1) = Tµ1,s4(βµ1,H ∗ 1), redefines Tµi,s4 for 0 ≤ i ≤ 2 by stretching
and freezes the cone above Tµ2,s4(σ1 ∗ 0).

Because Tµ1,s4(βµ1,H) is already in the high [µ1] state, η has permission from
µ1 to forbid the cone above Tµ2,s4(σ1 ∗ 0). Because we have not considered µ3

since stage s when η originally began its diagonalization procedure, µ3 has not
seen any computations in this cone and hence η has permission from µ3 to forbid
this cone. Because Tµ2,s4(σ1) = Tµ2,s3(σ1) = Tµ2,s(σ1), µ2 did not look at any
computations in the cone above Tµ,s4(σ1 ∗ 0) when it verified its computations
on Xµ2 and hence has seen no computations in this cone. Therefore, η has
permission from µ2 to forbid this cone. However, µ0 may have seen computations
using oracles in the cone above Tµ2,s4(σ1 ∗ 0) between stage s0 when µ0 verified
its lowness and stage s4. Therefore, η still needs µ0 permission to forbid this
cone.

To obtain this permission, η defines βµ0,L to be the string such that the
current path moves from Tµ0,s4(βµ0,L ∗ 0) to Tµ0,s4(βµ0,L ∗ 1) and defines Xµ0

to be the set of all numbers y such that µ0 has seen a computation on y using
an oracle extending Tµ0,s4(βµ0,L ∗ 0) but not using oracle Tµ0,s4(βµ0,L). η issues
a low challenge to µ0 with Xµ0

. The action proceeds just as in the case when
Xµ0

6= ∅ and Xµ2
= ∅. That is, η sets up another Γ definition on xη using a long

string on Tµ0,s4 , places a link from µ0 to η and waits for µ0 to verify its lowness.
When this occurs, η has the last remaining permission to forbid the cone above
Tµ2,s4(σ1 ∗ 0) and it has the permission to forbid the new Γ computation on xη
since µ0 does not need to look above this large node to verify its computations
and none of µi for 1 ≤ i ≤ 3 is eligible to act and to look at any computations
in this cone while µ0 is verifying its lowness. Therefore, when µ0 verifies its
lowness, η can safely place xη into B, forbid the remaining Γ computations on
xη (including Tµ3,s(αη ∗ 0)), pick a large number k and define Γγ(xη) = 1 for
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all strings γ of length k which are not forbidden. After performing this action,
η has won its requirement.



Chapter 3

Formal construction

This chapter is devoted to giving the formal construction for Theorem 1.1. We
begin with some notational conventions. We use the letters η, ν and µ to refer to
R and P strategies and we use α, β, γ, δ, σ and τ to denote finite binary strings.
λ denotes the empty string and for any nonempty string α, α′ denotes the string
formed by removing the last element of α. For uniformity of presentation, we
regard λ′ and λ′′ as a special symbols distinct from λ and set Tλ′′,s to be an
identity tree for all s.

In the tree of strategies as defined in the last chapter, λ is an R0 strategy.
In general, an Re strategy η has successors η ∗H, η ∗ L and η ∗N ordered left
to right by η ∗ H <L η ∗ L <L η ∗ N . A Pe strategy µ has successors µ ∗ S
and µ ∗W ordered left to right by µ ∗ S <L µ ∗W . If µ is a Pe strategy, then
µ′ is an Re−1 strategy and µ will attempt to do its diagonalization on the tree
Tµ′,s built by µ′. If η is an Re strategy, then η′′ is an Re−1 strategy and η will
attempt to build its tree Tη,s as a subtree of the tree Tη′′,s built by η′′. Because
we use the extra symbol λ′′ and assume that Tλ′′,s is the identity tree for all s,
we can treat the highest priority R strategy λ as any other strategy.

The current path Aη,s at stage s is defined by induction on the sequence
of strategies η which are eligible to act at stage s. When η begins its action
at stage s, it uses the current path Aη′,s and it may move this path during its
action. (The strategy λ works with the current path Aλ′,s defined to be the
final version of the current path from stage s − 1. As above, this convention
allows us to treat λ as any other strategy.) Aη,s denotes the current path at the
end of η’s action. (Typically, the current path is the rightmost path through
Tη,s which does not pass through any frozen or forbidden nodes.)

Each Re requirement η keeps several pieces of information. Gη ∈ {H,L,N}e
represents η’s fixed guess at the final (e − 1) state along A in Tη,s. For each
i < e there is a unique Ri strategy µ ⊆ η. Gη(i) ∈ {H,L,N} is defined such
that µ ∗ Gη(i) ⊆ η. Typically, if η is eligible to act at stage s, η defines a
tree Tη,s. Each node Tη,s(α) is assigned an e-state U(Tη,s(α)) ∈ {H,L}e+1

(called the η state of Tη,s(α)) which is defined by induction as in a standard full
approximation argument. The η′′ state of a node Tη,s(α) is defined to be the

27
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(e−1) state of Tη′′,s(γ) where γ is such that Tη′′,s(γ) = Tη,s(α). We make some
technical comments below on comparing e-states of the form U(Tη,s(α)) (which
cannot contain the letter N) and e-states of the form Gν (which can contain
the letter N).

We will abuse terminology by using the phrase “the η state of Tη,s(α)” to
refer to the η state as defined above (for example when comparing the η state
to Gµ for some µ extending η) and to refer to whether or not Tη,s(α) is η high
splitting (for example when saying that Tη,s(α) has the high or low η state). It
will be clear from context which of these meanings is intended.

The second parameter for an Re strategy η is pη ∈ N. This parameter
denotes the level on the η′′ tree at which we start building Tη. Before defining
Tη,s, we wait for a string α such that |α| = pη, U(Tη′′,s(α)) = Gη (ignoring for
the moment the fact that Gη may contain the letter N), and Tη′′,s(α) is on the
current path. When we find such a string, we set the parameter αη = α and
begin to define Tη,s by setting Tη,s(λ) = Tη′′,s(αη).

If η is challenged low, then it is given a finite set Xη of numbers on which it
is waiting for convergence and a string βη,L such that it is looking for conver-
gence above either Tη,s(βη,L ∗ 0) or Tη,s(βη,L ∗ 1) depending on which strategy
challenged η to verify its lowness.

If η is challenged high, then η is given a string βη,H and a number xη.
The string βη,H determines the node Tη,s(βη,H) which η needs to verify is high
splitting and the number xη is the number on which η may need to define
Γ computations higher on the tree if it has to move the current path while
verifying its highness. In addition, η may define a number wη on which the [η]
computations disagree for potential splitting strings τ0 and τ1 while it attempts
to find an appropriate string τ2 so that the two halves of the new high split will
extend Tη,s(βη,H ∗ 0) and Tη,s(βη,H ∗ 1).

Each Pe requirement η also keeps several pieces of information. Gη is η’s fixed
guess at the final e-state and it is defined as in the Re case. η defines a number
pη and a string αη as in the Re case and attempts to do its diagonalization at
the node Tη′,s(αη). η also choses a large witness xη with which it attempts to
diagonalize.

During the construction, strategies may freeze or forbid certain nodes. We
use the term active to refer to a node which is neither frozen nor forbidden and
the term inactive to refer to a node that is either frozen or forbidden. We adopt
the following conventions concerning inactive nodes. If α is declared frozen or
forbidden, then so are all extensions of α. If α ∗ 0 and α ∗ 1 are both inactive,
then so is α. We never search for splits in the part of the tree which is inactive.
After the construction, we verify that the current path is always infinite.

Before giving our methods for defining trees, we make one comment on
comparing e-state strings. If η is an Re strategy, then the e-state for a node
Tη,s(α) is denoted U(Tη,s(α)) and is a string τ ∈ {H,L}e+1. If τ = U(Tη,s(α))
and a lower priority strategy µ is comparing τ and Gµ, then for all i such
that Gµ(i) = N , µ treats τ as though τ(i) = N . That is, µ is guessing that
the Ri strategy of higher priority is not total and hence has no interest in the i
component of any e-state string. In other words, when comparing e-state strings,
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µ ignores the entries for which µ is guessing nontotality. Although we continue
to use the standard notations =, <, and > for comparing e-state strings, they
always have this addition meaning in the context of a strategy µ.

We also need to clarify the definition for a number to be large or a string
to be long. During this construction, each tree Tη,s which is defined at stage s
is a total function from 2<ω to 2<ω. When we define a number to be large, we
want to say that it is larger than any number we have looked at in a meaningful
way in the construction. Therefore, we define a number n to be large to mean
that n is larger than any parameter defined so far in the construction and larger
than any string used as an oracle in any computation looked at so far in the
construction. We say that a string is long if its length is large.

We have three basic ways of defining the tree Tη,s from Tη′′,s. In all cases, η
will already have defined its parameters pη and αη. First, we define Tη,s trivially
from Tη′′,s as follows. Let Tη,s(λ) = Tη′′,s(αη) and continue by induction.
Assume that Tη,s(β) = Tη′′,s(γ) has been defined. If there is a most recent
stage t < s at which η defined Tη,t and η has not been initialized since t, then
we attempt to keep Tη,s the same as it was at stage t. If Tη,s(β) = Tη,t(β) and
for i ∈ {0, 1}, Tη,t(β ∗ i) is still on Tη′′,s, then set Tη,s(β ∗ i) = Tη,t(β ∗ i) and
U(Tη,s(β)) = U(Tη,t(β)). If any of those conditions fails or there is not such
stage t, then set Tη,s(β ∗ i) = Tη′′,s(γ ∗ i) and U(Tη,s(β)) = U(Tη′′,s(γ)) ∗ L.

We sometimes define a subtree of Tη,s trivially by following the same algo-
rithm above an already defined node. If Tη,s(β) has already been defined, then
defining Tη,s trivially above Tη,s(β) means to use the above algorithm to define
Tη,s(δ) for all β ⊂ δ.

Second, we may define Tη,s by searching for active splittings on Tη′′,s. Set
Tη,s(λ) = Tη′′,s(αη) and proceed by induction. Assume that Tη,s(β) = Tη′′,s(γ)
has been defined.

If Tη,s(β) ⊆ Aη′,s and has η′′ state Gη, then we look for an appropriate
splitting extension with half of the split lying on Aη′,s. Check for active nodes
τ0 and τ1 on Tη′′,s such that

1. |τ0|, |τ1| ≤ s with τ0 to the right of τ1,

2. Tη′′,s(γ) ⊆ τ0, τ1,

3. either τ0 ⊆ Aη′,s or τ1 ⊆ Aη′,s,

4. U(τ0) = U(τ1) = Gη, and

5. there is an x ≤ s such that [η]τ0s (x) ↓6= [η]τ1s (x) ↓.

If there exist such sequences, then take the first pair found, set Tη,s(β ∗ i) = τi
and set U(Tη,s(β)) = Gη ∗H. (We assume that once η has chosen such a pair,
it continues to chose the same pair at future stages as long as the pair remains
on Tη′′ .) In all other cases, define Tη,s trivially above Tη,s(β).

Third, a strategy η may redefine trees Tµ,s for R strategies µ ( η by stretch-
ing. η could be an R or a P strategy, but in either case, η will have just moved
the current path. Let δ be a string of long length such that Tλ′′,s(δ) is on the



30 CHAPTER 3. FORMAL CONSTRUCTION

new current path. (Recall that Tλ′′,s is the identity tree, so Tλ′′,s(δ) = δ.) In
particular, because δ is chosen large, this node is on all of the trees Tν,s for R
strategies ν ⊆ η and this node is in the low ν state for all such ν. Furthermore,
the current path goes through Tλ′′,s(δ ∗ 0) = δ ∗ 0.

For each R strategy µ such that µ ∗ L ⊆ η or µ ∗ N ⊆ η, let βµ,L be the
string such that η moved the current path from Tµ,s(βµ,L ∗ 0) to Tµ,s(βµ,L ∗ 1)
or from Tµ,t(βµ,L ∗ 1) to Tµ,t(βµ,L ∗ 0). The procedure for redefining trees by
stretching splits into two cases.

The first case is when there are no R strategies µ such that µ ∗ H ⊆ η.
In this case, each tree Tµ,s remains the same and the stretching procedure has
no effect. (The point in that since there are no high splitting nodes, we do
not need the stretching procedure to help us define a wtt computation of the
form A ≤wtt [µ]A for any of these strategies µ at the end of the construction.
Therefore, the stretching will not be necessary in this case.)

The second case is when there is at least one R strategy µ such that µ∗H ⊆ η.
Let µ0 ⊆ µ1 ⊆ · · · ⊆ µk ⊆ η be the R strategies such that µj ∗ H ⊆ η. Let
βµj ,H be the longest string such that Tµj ,s(βµj ,H) is on the new current path
and U(Tµj ,s(β

′
µj ,H

)) = Gµj ∗H. That is, Tµj (βµj ,H) is the first node on the new

current path with state Gµj ∗ L. Because U(Tµj ,s(βµj ,H)) = Gµj ∗ L, we have

Tµk,s(βµk,H) ⊆ Tµk−1,s(βµk−1,H) ⊆ · · · ⊆ Tµ0,s(βµ0,H) ⊆ δ.

We want to redefine the trees Tν,s for R strategies ν ( η such that the node
Tµj ,s(βµj ,H) is stretched to have value Tλ′′,s(δ). The redefinition of Tν,s splits
into three subcases.

First, if ν ( µ0, then Tν,s remains the same. Second, if ν = µj , the let

T̂µj = Tµj ,s and we redefine Tµj ,s as follows. For all α such that α ( βµj ,H
or α is incomparable with βµj ,H , set Tµj ,s(α) = T̂µj (α) and let U(Tµj ,s(α)) =

U(T̂µj (α)). Define Tµj ,s(βµj ,H) = Tλ′′,s(δ) and U(Tµj ,s(βµj ,H)) = all low states.

Continue the definition of Tµj ,s trivially from T̂µj above Tµj ,s(βµj , H). Notice
that Tµj ,s(βµj ,H ∗ 0) = δ ∗ 0 and so the current path runs through this node.

The third subcase is quite similar to the second subcase with a slight change
in notation. If none of the first two subcases applies, let j ≤ k be the greatest
number such that µj ⊆ ν. Set T̂ν = Tν,s and let β be the string such that

T̂ν(β) = the value of Tµj ,s(βµj ,H) before it was redefined by stretching. For

all α such that α ( β or α is incomparable with β, set Tν,s(α) = T̂ν(α) and

U(Tν,s(α)) = U(T̂ν(α)). Define Tν,s(β) = Tλ′′,s(δ) and U(Tν,s(β)) = all low

states. Continue the of Tν,s trivially from T̂ν above this node. This completes
the definition of redefining trees by stretching.

The construction proceeds in stages with the action at each stage s directed
by the tree of strategies. At stage 0, we begin with the current path A0 =
Aλ′,0 = ∅ and let λ be eligible to act. At the beginning of stage s > 0, we define
the current path As and Aλ′,s so that As = Aλ′,s = Aν,s−1 where ν is the last
strategy which was eligible to act at stage s − 1. We let λ be eligible to act
to start stage s. When a strategy η acts at stage s, it may move the current
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path by explicitly defining Aη,s from Aη′,s. If it does not explicitly define a new
current path, then Aη,s = Aη′,s. (That is, the current path does not change.)
Similarly, any parameters not explicitly redefined or canceled by initialization
are assumed to retain their previous values. We proceed according to the action
of the strategies until a strategy explicitly ends the stage. When a strategy η
ends a stage, it will either initialize all lower priority strategies or it will initialize
all strategies of lower priority than η ∗ L (including η ∗ L). When a strategy
is initialized, all of its parameters are canceled and become undefined. If the
strategy η is eligible to act at stage s, then s is called an η stage.

We need to clarify the definition of the functional Γ. We make new defini-
tions for Γ at the end of each stage s after we have initialized the appropriate
strategies. For each x ≤ s such that x is not currently equal to xη for some P
strategy η and such that x 6∈ Bs, set ΓY (x) = 0 for all sets Y . If x = xη for for
some P strategy η, then the construction takes care of the definition of Γ on x.

Action for a P strategy η:

Case 1. η has not acted before or has been initialized since its last action.
Define pη large, end the stage and initialize all lower priority strategies.

Case 2. pη is defined but αη is not defined. Let α be the unique string
such that |α| = pη and Tη′,s(α) ⊆ Aη′,s. Check if U(Tη′,s(α)) = Gη. If not,
then end the stage now and initialize the lower priority strategies. If so, define
αη = α, define xη to be large and set ΓTη′,s(αη∗0)(xη) = 0. End the stage now
and initialize all lower priority strategies. (After the construction we verify that
Tη′,s(αη ∗ 0) ⊆ Aη′,s = Aη,s and that this node remains on the current path
at future η stages unless η is initialized or η moves the current path in the
verification procedure called in Case 3 below.)

Case 3. αη and xη are defined. Check if xη ∈ Wη. If not, then let η ∗W
be eligible to act. If so, begin a verification procedure with σ0 = αη. (The
verification procedure is described after the description of the action for an R
strategy.) At each subsequent η stage until the verification procedure concludes,
the verification procedure will end the stage and initialize the lower priority
strategies. (If η is on the true path, then the action of the verification procedure
will be finitary.)

Case 4. The verification procedure called in Case 3 ends at this stage.
Forbid all cones that were η frozen by the verification procedure. Put xη into
B. Let n be a large number. For all strings γ of length n which are not η
forbidden, define Γγ(xη) = 1. Declare η satisfied and take outcome η ∗ S. At
future η stages, take outcome η ∗ S.

Action for an R strategy η:

Case 1. η has not acted before or has been initialized since the last time it
acted. In this case, define pη large, end the stage and initialize all strategies of
lower priority.

Case 2. η has defined pη but not αη. Let α be the unique string such
that |α| = pη and Tη′′,s(α) ⊆ Aη′,s. If U(Tη′′,s(α)) = Gη then define αη = α.
Otherwise, leave αη undefined. In either case, end the stage and initialize all
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lower priority strategies.

Case 3. αη is defined and η is not challenged. Define Tη,s by setting
Tη,s(λ) = Tη′′,s(αη) and searching for active splittings. If η finds a new high
splitting along the current path, then let η ∗H act. Else, let η ∗ L act.

Case 4. η was challenged high at stage t < s. At stage t, η was given a
number xη and a string βη,H such that U(Tη,t(β

′
η,H)) = Gη ∗H and Tη,t(βη,H)

was stretched at the end of stage t (and hence has all low states at the end
of stage t). Let γ denote the string such that at stage t we had Tη,t(βη,H) =
Tη′′,t(γ). After the construction, we verify the following properties. Tη′′,s(γ) =
Tη′′,t(γ) = Tη,t(βη,H), U(Tη′′,s(γ)) = Gη and Tη′′,s(γ ∗ 0) ⊆ Aη′,s. At each η
stage u such that t < u < s, Tη,u was defined trivially from Tη′′,u. If u < v are
η stages such that t < u < v < s, then Tη,t(βη,H) = Tη,u(βη,H) = Tη,v(βη,H)
and for i ∈ {0, 1}, Tη,t(βη,H ∗ i) ⊆ Tη,u(βη,H ∗ i) = Tη,v(βη,H ∗ i). Because η
was defined trivially at any such stage u, we also have that Tη,u(βη,H ∗ i) =
Tη′′,u(γ ∗ i). Finally, when η was challenged high, the challenging strategy
defined ΓTη,t(βη,H∗0)(xη) = 0.

This case splits into the two subcases below. It is possible that η has also
been challenged low at some stage after t and before the current stage. If this
has occurred, then η must be in Subcase 4A.

Subcase 4A: η has not yet found a potential high splitting for Tη,t(βη,H).
Check if there are active strings τ0 and τ1 on Tη′′,s (with τ0 to the right of τ1)
such that Tη′′,s(γ) = Tη,t(βη,H) ⊆ τ0, τ1, U(τ0) = U(τ1) = Gη, ∃wη([η]τ0s (wη) ↓6=
[η]τ1s (wη) ↓) and either τ0 ⊆ Aη′,s or τ1 ⊆ Aη′,s. If not and η is also low
challenged, proceed to Case 5 below. If not and η is not low challenged, then
define Tη,s trivially from Tη′′,s and take outcome η∗L. η remains high challenged.
If there are such strings τ0 and τ1, then fix τ0, τ1 and wη, and consider the
following two subcases of Subcase 4A. (Because the current path goes through
Tη′′,s(γ∗0) and Tη,t(βη,H∗0) ⊆ Tη′′,s(γ∗0), we have that either Tη,t(βη,H∗i) ⊆ τi
for i = 0, 1 or Tη,t(βη,H ∗ 0) ⊆ τ0, τ1. Therefore, the two cases below suffice.)

Subcase 4A(i): τ0 and τ1 satisfy Tη,t(βη,H ∗ i) ⊆ τi. Define Tη,s from Tη′′,s
by searching for splittings, using τ0 and τ1 as the successors of Tη,s(βη,H). η is
no longer challenged high and η ∗H is the next strategy eligible to act. Notice
that we have Tη,t(βη,H ∗ i) ⊆ Tη,s(βη,H ∗ i).

Subcase 4A(ii): Tη,t(βη,H ∗ 0) ⊆ τ0, τ1. Define Tη,s trivially from Tη′′,s.
Freeze the cone above Tη,t(βη,H ∗ 0) and move the current path to be the right-
most active path through Tη,s(βη,H ∗ 1).

Redefine the trees Tµ,s for µ ( η by stretching. Furthermore, stretch
Tη,s(βη,H ∗ 1) to have the same long length as the other stretched nodes. (That

is, set T̂ = Tη,s and redefine Tη,s as follows. For all α such that α ( βη,H ∗ 1 or

α is incomparable to βη,H ∗ 1, set Tη,s(α) = T̂ (α) and U(Tη,s(α)) = U(T̂ (α)).
Define Tη,s(βη,H ∗ 1) = Tλ′′,s(δ) (where δ is as in the stretching process just
completed) and U(Tη,s(βη,H ∗ 1)) = all low states. Extend the definition of Tη,s
trivially from T̂ above this node.) Define ΓTη,s(βη,H∗1∗0)(xη) = 0.

For each R strategy µ such that µ ∗ L ⊆ η, define Xµ to be the finite set
of all x for which µ has seen [µ]τ (x) converge for some τ on Tµ,s such that
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U(τ) = Gµ and Tµ,s(βµ,L ∗ 0) ⊆ τ but µ has not seen [µ]
Tµ,s(βµ,L)
s (x) converge.

(βµ,L is defined by the stretching process in the previous paragraph.) For all µ
with µ ∗L ⊆ η, pass Xµ and βµ,L to µ and challenge µ low. For all µ such that
µ∗H ⊆ η, challenge µ high, pass βµ,H to µ and set xµ = xη. (βµ,H is defined by
the stretching process in the previous paragraph.) End the stage and initialize
all strategies of lower priority than η ∗ L including η ∗ L. At the next η stage
(unless η has been initialized), η will act in Subcase 4B below.

Subcase 4B. At the previous η stage, η acted in Subcase 4A(ii) or η acted
in this subcase and did not call a verification procedure. Let u < s denote the
stage at which η acted in Subcase 4A(ii). Define Tη,s trivially from Tη′′,s. After
the construction, we verify that Tη,s(βη,H ∗1) = Tη,u(βη,H ∗1) and this string has
state Gη ∗L. Furthermore, Tη,u(βη,H ∗ 1 ∗ i) ⊆ Tη,s(βη,H ∗ 1 ∗ i) and the current
path goes through Tη,s(βη,H ∗1∗0). Because Tη,u(βη,H ∗1) was stretched at stage
u, Tη,s(βη,H ∗ 1) has length longer than the [η] use on wη (which is the splitting

witness for τ0 and τ1 from Subcase A). Check if [η]
Tη,s(βη,H∗1)
s (wη) converges.

If not, let η ∗ N act. If so, call a verification procedure with σ0 = βη,H ∗ 1.
At subsequent η stages until the verification procedure finishes, it will end the
stage and initialize strategies of lower priority than η ∗ L including η ∗ L.

When the verification procedure finishes (abusing notation, at stage s), un-
freeze the cone above Tη,t(βη,H ∗ 0) (which was frozen in Subcase 4A(ii)). This
action unfreezes the strings τ0 and τ1 from Subcase 4A(ii). Set τ̂ to be ei-
ther τ0 or τ1, depending on which gives the computation that differs from the
computation given by Tη,u(βη,H ∗ 1) on wη. Move the current path to be the
rightmost active path through τ̂ . Forbid all remaining η frozen cones. De-
fine Tη,s by searching for splitting, taking Tη,s(βη,H ∗ 1) = Tη,u(βη,H ∗ 1) and
Tη,s(βη,H ∗ 0) = τ̂ to make Tη,s(βη,H) high splitting. When this definition is
complete, redefine the trees Tµ,s for µ ( η ∗H by stretching. (Notice that we
stretch Tη,s as part of this stretching process.) Let η ∗H act and η is no longer
challenged high.

Case 5. η was challenged low at stage t < s and passed the set Xη and a
string βη,L. If Xη = ∅, then take outcome η∗L and η is no longer low challenged.
If Xη 6= ∅, then proceed as follows.

η was challenged low either by a verification procedure or by an R strategy
acting in Subcase 4A(ii) of its high challenge. In either case, βη,L is such that
the current path was moved from Tη,t(βµ,L ∗ 0) to Tµ,t(βµ,L ∗ 1) and the cone
above Tη,t(βη,L ∗ 0) was frozen at stage t by the challenging strategy. After the
construction, we verify the following properties. If γ is such that Tη′′,t(γ) =
Tη,t(βη,L), then Tη′′,s(γ) = Tη′′,t(γ). If u is an η stage such that t < u < s, then
Tη,t(βη,L) = Tη,u(βη,L) and Tη,t(βη,L ∗ i) = Tη,u(βη,L ∗ i) for i ∈ {0, 1}. (To be
precise, when η was challenged low at stage t, it is possible that the challenging
strategy stretched the node Tη,t(βη,L ∗ 1). Therefore, the reference to this node
is to the stretched version, if such stretching took place.) Finally, the current
path continues to run through Tη,u(βη,L ∗ 1).

By the definition of Xη, for each x ∈ Xη, there is a corresponding string γx
on Tη,t such that Tη,t(βη,L ∗ 0) ⊆ γx and [η]γxt (x) converges. Consider all nodes
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δ such that Tη′′,s(δ) is on the current path, Tη,t(βη,L ∗1) ⊆ Tη′,s(δ), |Tη′′,s(δ)| is
greater than any of the [η] uses for x ∈ Xη and U(Tη′′,s(δ)) = Gη. If there is no
such δ, then define Tη,s trivially from Tη′′,s and take outcome η ∗N . Otherwise,
let δη denote the shortest length such δ.

Consider each x ∈ Xη in sequential order and check whether [η]
Tη′′,s(δη)
s (x)

converges. If not, then define Tη,s trivially from Tη′′,s and take outcome η ∗N .
If this computation does converge, then check whether it equals [η]γx(x). If so,
then consider the next value in Xη. If not, then unfreeze all cones frozen by the
challenging strategy, so in particular γx is unfrozen. Define Tη,s from Tη′′,s by
searching for splittings. γx and Tη′′,s(δη) will give a new high split on Tη,s so
take outcome η ∗H. (In this case, since the strategy which challenged η extends
η ∗ L, it will be initialized at the end of the stage.) If all of the elements of Xη

have convergent computations which agree with their γx computations, then
define Tη,s trivially from Tη′′,s, declare the low challenge met and take outcome
η ∗ L unless the challenging strategy established a link from η in which case
follow the link.

Verification Procedure.

A verification procedure can be called either by a P strategy η or by an R
strategy η acting in Subcase 4B of the high challenge. In either case, when η
first calls the verification procedure, it has just defined a string σ0 and it has a
witness xη. (The string σ0 should contain a subscript indicating that it is part
of a verification procedure called by η, but we omit this extra piece of notation.)

The verification procedure acts in cycles, beginning with the 0th cycle. When
the nth cycles starts, we will have defined the string σn. If n ≥ 1, then we will
have followed a link from the strategy µn−1 to η such that µn−1 ∗ L ⊆ η and
µn−1 is the lowest priority strategy challenged low by η at the (n − 1)st cycle.
(When the verification procedure is first called, we begin with σ0 and have not
followed any link. To make the notation uniform, we set µ−1 = η and treat the
0th cycle like any other cycle.) The following is the action for the nth cycle of
this verification procedure.

At the start of the nth cycle, the current path goes through Tµn−1,s(σn ∗ 0)
and the node Tµn−1,s(σn ∗ 1) is active. (If n = 0 and the verification procedure
was called by a P strategy µ−1, then we need to replace Tµ−1,s by Tµ′−1,s

. Similar
comments apply throughout the rest of this procedure. If n ≥ 1, then µn−1 is an
R strategy, so no such replacement is necessary.) Furthermore, if n ≥ 1 and t < s
is the stage at which the (n− 1)st cycle started, then Tµn−1,s(σn) = Tµn−1,t(σn)
and Tµn−1,t(σn ∗ i) ⊆ Tµn−1,s(σn ∗ i) for i = 0, 1. During the (n − 1)st cycle,

we defined ΓTµn−1,t
(σn∗0)(xη) = 0. If n = 0, then we have already defined

ΓTµ−1,s
(σ0∗0)(xη) = 0. (We verify all of these properties after the construction.)

Move the current path from Tµn−1,s(σn ∗ 0) to be the rightmost active path
through Tµn−1,s(σn ∗ 1). If n = 0, then declare Tµ−1,s(σ0 ∗ 0) to be η frozen and
if n ≥ 1, then declare Tµn−1,t(σn ∗ 0) to be η frozen. (That is, we freeze the
string that was used in the Γ definition on xη.) For strategies µ ( µn−1, redefine
the trees by stretching. For each R strategy µ such that µ ∗ L ⊆ µn−1, define



35

Xµ to be the finite set of numbers x such that µ has seen [µ]γ(x) converge for
some γ on Tµ,s such that Tµ,s(βµ,L ∗ 0) ⊆ γ, U(γ) = Gµ ∗L and µ has not seen
[µ]Tµ,s(βµ,L)(x) converge. (βµ,L is defined by the stretching process.) If all the
Xµ sets are empty, then the verification procedure is complete and we return to
the action of the strategy that called the verification procedure.

If some Xµ 6= ∅, then set µn to be the lowest priority strategy such that
Xµ 6= ∅. (After the construction, we verify that µn ( µn−1.) Let σn+1 denote
the node such that Tµn,s(σn+1) was redefined to be equal to Tλ′′,s(δ) by the
stretching procedure in the previous paragraph. (That is, Tµn,s(σn+1) is the
least node along the new current path in Tµn,s which was stretched.) Because
of the stretching, the length of Tη,s(σn+1) is large, the current path goes through
Tµn,s(σn+1 ∗ 0) and Tµn,s(σn+1 ∗ 1) is active. Define ΓTµn,s(σn+1∗0)(xη) = 0.

Place a link from µn to η. For all ν such that ν ∗L ⊆ µn ∗L, challenge ν low
and pass βν,L and Xν to ν. For all ν such that ν ∗H ⊆ µn, challenge ν high,
pass βν,H to ν and set the witness xν = xη. (βν,H was defined by the stretching
process above.) If η is an R strategy, initialize all strategies of lower priority
than η ∗ L including η ∗ L. If η is a P strategy, then initialize all lower priority
strategies. End the stage. When η is next eligible to act, we begin the (n+ 1)st

cycle of the verification procedure and check if the verification procedure is now
complete or if we need to go through the whole (n+ 1)st cycle.

This completes the description of the construction. Before we begin the
sequence of lemmas to prove the construction succeeds, we point out several
features of the construction which the reader can check by observation. First,
the places where we may find new high splittings are Case 3, Subcases 4A(i)
and 4B, and Case 5 of an R strategy. In Cases 3, 4A(i) and 5, one half of
the new high split is already on the current path. In Subcase 4B, we explicitly
move the current path so that one half of the new high split (namely τ̂) lies
on the new current path. Therefore, the only time the current path moves is
when we explicitly move it. (That is, we are not in the typical situation of
a full approximation argument in which the current approximation to the set
being constructed is defined to be the rightmost path through the tree. In that
setting, the current approximation is implicitly changed by the addition of new
high splits.)

Second, the movement of the current path is only caused by a verification
procedure or by a high challenged R strategy acting in Subcase 4A(ii) or 4B.
Whenever we explicitly move the current path in one of these cases, we also
stretch nodes along the new current path. Furthermore, these are the only
times when we stretch nodes.

Third, if a node becomes frozen at a stage s, then some strategy must have
moved the current path below this node. This property follows because the
only time nodes are frozen is in Subcase 4A(ii) of a high challenge and in a
verification procedure.

Fourth, links are only established by a verification procedure and these pro-
cedures are only called by P strategies acting in Case 3 of the P action and by
high challenged R strategies acting in Subcase 4B of a high challenge.

Finally, the only time new challenges are issued is by a verification procedure
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or by a high challenged R strategy acting in Subcase 4A(ii). In either of these
cases, the strategy issuing the new challenges ends the current stage. This fact
implies that at any given stage, at most one strategy can issue new challenges.

We say that the current path moves below a node Tη,s(α) if there is a string
β ⊆ α such that either Tη,s(β) ⊆ Aη,s but Tη,s(β) 6⊆ Aµ,t, or Tη,s(β) 6⊆ Aη,s but
Tη,s(β) ⊆ Aµ,t for some strategy µ and stage t ≥ s (with η ⊆ µ if t = s). We
say that the current path moves below level l of Tη,s if the current path moves
below Tη,s(α) for some string α of length l.

We present the series of lemmas to prove that our construction succeeds.
We begin with some terminology and properties of the links. If there is a link
between strategies ν and ν̂ such that ν ( µ ( ν̂, we say that the link jumps
over µ. If µ ∗L ⊆ ν̂, then we say the link lands above µ ∗L. If µ ∗H ⊆ ν̂, then
we say the link lands above µ ∗H. The idea is that a link which jumps over µ
and lands above µ ∗ L (or µ ∗H) gives a way for a strategy extending µ ∗ L (or
µ ∗ H) to be eligible to act without µ acting. The following lemma says that
if µ is low challenged, then there cannot be a link jumping over µ and landing
above µ ∗ L.

Lemma 3.1. The following situation cannot occur at any stage: µ has been
challenged low by µ̂ and there is a link from ν to ν̂ such that ν ( µ and µ∗L ⊆ ν̂.

Proof. Because µ is challenged low by µ̂, we have µ ∗ L ⊆ µ̂. Because the link
between ν and ν̂ can only be established when ν̂ challenges ν low, we have
ν ∗L ⊆ ν̂. Furthermore, ν ( µ ⊆ ν̂ and ν ∗L ( ν̂ together imply that ν ∗L ⊆ µ
and hence ν ∗ L ⊆ µ̂.

For a contradiction, assume that µ̂ challenges µ low at stage s and before this
low challenge is removed (either by being met or by µ̂ being initialized) there is
a link between ν and ν̂ (which may already be present at stage s). Furthermore,
we can assume without loss of generality that µ is such that no strategy η ( µ
is ever in the situation of being challenged low with a link jumping over η and
landing above η ∗ L. (If there were such an η, we consider it instead of µ.) In
particular, there is never a situation in which ν is challenged low with a link
jumping over ν and landing above ν ∗ L. We will refer to this assumption as
our wlog assumption about ν. (This assumption is really about µ but we will
only apply it in this special case concerning ν ( µ.)

First, we show that this situation cannot occur if ν̂ 6= µ̂. Consider when the
link from ν to ν̂ is established. It cannot have been established at stage s since
at any given stage, at most one strategy issues new low challenges. Since we
assume µ̂ challenges µ at stage s and ν̂ 6= µ̂, we cannot also have ν̂ issuing low
challenges and establishing a link at stage s.

Assume that the link from ν to ν̂ is established at u < s and hence ν is
challenged low by ν̂ at stage u < s. In this case, consider how µ̂ comes to be
eligible to act at stage s. If s is a ν stage, then the only possible outcomes
for ν are ν ∗ H and ν ∗ N since ν cannot meet its low challenge at s without
following (and hence removing) the link. Because ν ∗ L ⊆ µ̂, there must be a
link jumping over ν and landing above ν ∗ L at stage s while ν remains low
challenged. However, this contradicts our wlog assumption about ν.



37

Assume that the link from ν to ν̂ is established at u > s and that u is the
first stage at which a link jumping over µ and landing above µ∗L is established.
Because u is a ν̂ stage and there is no link already jumping over µ and landing
above µ∗L, u must also be a µ stage. However, this is impossible since the only
possible outcomes for µ are µ ∗H and µ ∗ N unless µ meets the low challenge
issued by µ̂ to µ at stage s. This completes the proof that we cannot have ν̂ 6= µ̂.

Second, we show that we cannot have µ̂ = ν̂. Assume µ̂ = ν̂. Then µ̂
must issue the low challenges to both ν and µ. Consider when µ̂ issues the low
challenge to ν and establishes the link from ν to ν̂ = µ̂.

Assume the link from ν to µ̂ is established before stage s. In this case, by our
wlog assumption about ν, there cannot be a link jumping over ν and landing
above ν ∗ L at stage s. Therefore, since s is a µ̂ stage and ν ∗ L ⊆ µ̂, s must
also be a ν stage. At stage s, ν either takes outcome ν ∗H or ν ∗N (in which
case µ̂ cannot act at stage s) or ν follows the link to µ̂ (in which case the link
is removed before µ̂ challenges µ low). All cases lead to a contradiction.

Assume the link from ν to µ̂ is established at stage s. Then ν must be the
lowest priority strategy such that µ̂ calculates Xν 6= ∅. Then µ̂ only challenges
a strategy γ low at stage s if γ ∗ L ⊆ µ̂ and γ ⊆ ν. This contradicts the fact
that µ̂ challenges µ low at stage s since ν ( µ.

Assume the link from ν to µ̂ is established at stage t > s and t is the first
stage after s at which such a link is established. t must be a µ̂ stage. If t is
a µ stage, then either we take outcome µ ∗H or µ ∗ N (which contradicts the
fact that t is a µ̂ stage) or we follow the link from µ to µ̂ and remove the low
challenge to µ (which contradicts the fact that µ is still low challenged when the
link from ν to ν̂ is established). Therefore, t cannot be a µ stage and so there
must be a link jumping over µ and landing above µ ∗L established before stage
t by some strategy other than µ̂. In the first case, we showed that this situation
is impossible.

A case analysis similar to the one for Lemma 3.1 proves the following lemma.

Lemma 3.2. If µ is challenged high, then there cannot be a link jumping over
µ and landing above µ ∗H.

Lemma 3.3. If η is challenged low, then no strategy µ with η ∗L ⊆ µ is eligible
to act until the low challenge has been met or is cancelled by initialization.

Proof. Assume that η is challenged low by η̂ at stage s (and hence η∗L ⊆ η̂). At
every η stage until the low challenge is met, η takes either outcome η ∗H (which
causes η̂ to be initialized and the low challenge to be removed) or outcome η∗N .
Therefore, the only way for a strategy µ with η ∗ L ⊆ µ to be eligible to act
while η remains low challenged is to have a link jumping over η and landing
above η ∗ L. Such a link contradicts Lemma 3.1.

Lemma 3.4. A strategy µ can be challenged low by at most one strategy at a
time.
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Proof. Assume that µ is challenged low by µ̂ at stage s. The only strategies ν̂
which can challenge µ low satisfy µ ∗L ⊆ ν̂. By Lemma 3.3, no such strategy is
eligible to act after stage s and before the low challenge issued by µ̂ is met or
cancelled by initialization.

Essentially the same proofs as for Lemmas 3.3 and 3.4 establish the following
two lemmas.

Lemma 3.5. If η is challenged high by η̂, then no strategy µ with η ∗H ⊆ µ is
eligible to act until the high challenge has been met or is cancelled by initializa-
tion.

Lemma 3.6. A strategy µ can be challenged high by at most one strategy at a
time.

It is possible for a strategy η to be challenged both high and low at the same
time. However, if η is challenged high at stage s0 by η̂, then η ∗H ⊆ η̂ so any
low challenges to η issued before stage s0 are removed by initialization at stage
s0. (Also, there is no link jumping over η and landing above η ∗ L at the end
of stage s0.) As long as η acts in Subcase 4A of the high challenge and fails to
find a potential split, it takes outcome η ∗L. A strategy µ with η ∗L ⊆ µ could
challenge η low. Suppose this happens at stage s1 > s0. At s1, η must still
be acting in Subcase 4A of the high challenge and not finding a potential high
split. If η ever finds such a potential high split, then it acts either in Subcase
4A(i) or 4A(ii). In either of these cases, µ (which issued the low challenge to η)
will be initialized. Furthermore, if η continues to act in Subcase 4B of the high
challenge, then it does not take outcome η ∗ L and hence cannot be challenged
low again until it is either initialized or meets its high challenge. The conclusion
of this observation is that η can only be both high and low challenged if the
high challenge comes first and the low challenge comes while η is still acting
in Subcase 4A of the high challenge and has not yet found a potential high
split. Therefore, in our construction, we gave all the necessary instructions for
handling a strategy which is both high and low challenged.

Lemma 3.7. If η calls a verification procedure, no strategy µ with η ( µ is
eligible to act until the verification procedure is met or is cancelled by initializa-
tion.

Proof. Assume that η calls a verification procedure at stage s. η will end every
stage after s at which it is eligible to act until it is either initialized or the
verification procedure is met. Therefore, it suffices to show that there are no
links jumping over η at the end of stage s. If η is a P strategy, then η initializes
all lower priority requirements at stage s and hence there are no links jumping
over η at the end of stage s.

If η is an R strategy, then η must be acting in Subcase 4B of a high challenge
and the verification procedure called by η initializes all strategies below η ∗L at
s. Therefore it suffices to show that there is no link at stage s between strategies
ν and ν̂ where ν∗L ⊆ η and η∗H ⊆ ν̂. Suppose there is such a link. Since η ends
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stage s and does not take outcome η ∗H until after the verification procedure
for the high challenge is met, the link must have been established before stage
s. This means that ν is low challenged by ν̂ before stage s. Consider how η is
eligible to act at stage s. There cannot be a link jumping over ν and landing
above ν ∗ L at stage s by Lemma 3.1, so s must be a ν stage. ν either takes
outcome ν ∗H or ν ∗N (contradicting the fact that s is an η stage) or η meets
the low challenge and follows the link which jumps over η (again contradiction
the fact that s is an η stage).

Lemma 3.8. If η is challenged high, then this high challenge is part of a series
of high challenges started by some P strategy η̂. Furthermore, if η moves the
current path from Tη,s(γ∗0) to Tη,s(γ∗1) or from Tη,s(γ∗1) to Tη,s(γ∗0) during
this series of challenges as part of either Subcase 4A(ii) or Subcase 4B (including
any verification procedures called by this subcase) of the high challenge, then
|γ| > pη̂.

Proof. Suppose that η is challenged high by η0 at s0, so η ∗H ⊆ η0. If η0 is a
P strategy, then η̂ = η0. Otherwise, η0 is an R strategy which is challenging
η high as part of its own high challenge. Therefore, η0 must have been high
challenged by some η1 at s1 < s0, so η0 ∗H ⊆ η1 and hence η ∗H ⊆ η1. If η1
is a P strategy, then η̂ = η1. Otherwise, we repeat the argument just given. It
is clear that tracing this sequence of high challenges back in time must yield a
P strategy η̂ = ηn such that η ∗ H ⊆ η̂ and η̂ issued its original challenges at
stage sn.

When η̂ issues its challenges at stage sn, it moves the current path from
Tη̂′,sn(αη̂ ∗ 0) to Tη̂′,sn(αη̂ ∗ 1). The string αη̂ has length pη̂. Therefore, for any
R strategy µ ⊆ η̂, if γµ is such that Tµ,sn(γµ) = Tη̂′,sn(αη̂), then |γη| > pη̂.
Also, if µ (with µ ∗ H ⊆ η̂) is high challenged during the sequence of high
challenges initiated by the action of η̂ and µ moves the current path at stage
s > sn due to its action in Subcase 4A(ii) or Subcase 4B of the high challenge,
then this movement occurs above the place where η̂ originally moved the path.
The statement of the lemma follows.

Lemma 3.9. Let η be a strategy such that η defines pη at stage t. Unless η is
initialized, the current path cannot move below level pη + 1 of the tree defined
by η′ (if η is a P strategy) or by η′′ (if η is an R strategy) before η defines αη.

Proof. The analysis is the same regardless of whether η is a P or R strategy,
with only a change in notation between whether η works on the tree built by η′

or η′′. Rather than repeating the argument twice, we give the proof in the case
when η is a P strategy.

Assume that no strategy initializes η after stage t and before η defines αη.
Since no strategy to the left of η in the tree of strategies can act without ini-
tializing η, we can assume no such strategy moves the current path before η
defines αη. At stage t, η initializes all strategies of lower priority, hence these
strategies work at or above level pη + 1 in the tree defined by η′ and cannot
move the current path below level pη +1 of the tree defined by η′. Furthermore,
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by Lemma 3.8, no R strategy ν ⊆ η can move the path below this level because
of a series of challenges started by a P strategy of lower priority than η. We are
left to consider the other possible actions of strategies ν such that ν ⊆ η at the
stages before η defines αη.

We split the proof into two cases based on the ways that the current path
can be moved after t and before η defines αη. First, the current path could be
moved by a P strategy ν ⊆ η which calls a verification procedure in Case 3 of
the P action. In this case, ν initializes all lower priority strategies including η
contrary to our assumption.

Second, the current path could be moved by a high challenged R strategy ν ⊆
η acting in Subcase 4A(ii) or 4B of the high challenge (including the verification
procedure called by Subcase 4B). Let ν̂ denote the P strategy which called the
verification procedure starting the sequence of high challenges that led to this
high challenge to ν. As mentioned above, ν̂ must have higher priority than η,
so either ν̂ ⊆ η or ν̂ <L η. If ν̂ starts this sequence of challenges at a stage ≥ t,
then η is initialized when ν̂ acts contrary to our assumption.

If ν̂ starts the sequence of challenges at a stage < t, the since ν̂ has not
completed its verification procedure, we must have ν̂ <L η by Lemma 3.7.
Because a high challenged strategy in this sequence of high challenges only
moves the current path when it issues new high challenges in Subcase 4A(ii) or
4B of the high challenge, we can assume that ν is already high challenged at
stage t. (Otherwise, tracing backwards in time from the stage at which ν is high
challenged after t, we can find an R strategy which is high challenged at stage
t in this sequence of high challenges and which later moves the current path to
issue new high challenges to continue this sequence leading to the high challenge
of ν. We work with this strategy instead.) We must have either ν ∗H ⊆ η or
ν ∗H <L η. If ν ∗H ⊆ η, then by Lemma 3.5, η is not eligible to act until the
high challenge is met or removed by initialization, so η is not eligible to act at
stage t contrary to our assumption. If ν ∗ H <L η, then η has lower priority
than ν ∗ L and hence is initialized when ν moves the current path by acting in
Subcase 4A(ii) or 4B of the high challenge contrary to our assumption.

Lemma 3.10. Assume a P strategy η defines αη at stage s. Then Tη′,s(αη),
Tη′,s(αη ∗ 0) and Tη′,s(αη ∗ 1) are all active at stage s and the current path runs
through Tη′,s(αη ∗ 0). If η is an R strategy that defines αη at stage s, then the
same statement is true when η′′ is substituted for η′.

Proof. As in the proof of Lemma 3.9, we give the proof in the case when η is
a P strategy. Let t < s be the stage such that η defined pη at t and η is not
initialized between defining pη at t and defining αη at s. Let α be the string such
that |α| = pη and Tη,t(α) ⊆ Aη′,t. Because pη is defined large and Tη′,t(α) is
active (as it is on the current path), Tη,t(α∗0) ⊆ Aη′,t and both Tη,t(αη ∗0) and
Tη,t(αη ∗ 1) are active. By Lemma 3.9, the current path does not change below
level pη + 1 in the tree defined by η′ between stages t and s. Therefore, when
η defines αη, we still have Tη,s(α) ⊆ Aη′,s and hence αη = α. Furthermore,
Tη′,s(α ∗ 0) = Tη′,s(αη ∗ 0) is still on the current path (and hence is still active)
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and Tη′,s(α ∗ 1) = Tη′,s(αη ∗ 1) is still active (because nodes can only become
inactive when the current path moves below them).

The analysis given in Lemma 3.9 can be applied in a more general context.
We say that a node Tη,s(α) effects initialization if any number defined to be
large after Tη,s(α) is defined has to be larger than the length of Tη,s(α). That is,
either Tη,s(α) (or any longer node) has been used as an oracle for a computation
viewed in the construction or some parameter has been defined which is larger
than Tη,s(α). We will only apply Lemmas 3.11 and 3.12 in situations in which
α is equal to some parameter in the construction such as αη or βη,H .

Lemma 3.11. Let η be an R strategy, s be an η stage and α be a string such
that Tη,s(α) is defined and effects initialization. For each ν such that ν ∗H ⊆ η,
let γν be such that Tν,s(γν) = Tη,s(α). Assume that for all γ ( γν , Tν,s(γ) is
high ν splitting. Then, for all η stages u ≥ s, Tη,u(α) = Tη,s(α) unless η is
initialized, η finds a new high split below Tη,s(α) or some strategy µ such that
η ⊆ µ moves the current path below Tη,s(α) at a stage t such that s ≤ t < u.
Furthermore, if Tη,s(α) ⊆ Aη,s, then Tη,s(α) remains on the current path unless
η is initialized or some strategy µ such that η ⊆ µ moves the current path below
Tη,s(α) at a stage t such that s ≤ t.

Proof. Unless η is initialized, the value of Tη,s(α) can only change if some R
strategy µ ⊆ η finds a new high split below Tη,s(α) at a future stage or if
Tη,s(α) changes values due to stretching. By the hypotheses, no strategy ν ( η
can find a new high split below this node without moving the path in the tree
of strategies to the left of η and initializing η. Therefore, only η can change the
value of this node by finding a new high split. The value of the node can only
be changed by stretching if the current path moves below this node. Hence, we
can finish the proof by giving an analysis of which strategies µ can move the
current path below this node without initializing η. This analysis is similar to
the one given in the proof of Lemma 3.9.

First, if µ <L η, then µ cannot act without initializing η, so we can assume
no such strategy moves the current path below Tη,s(α). Second, if η <L µ, then
µ is initialized at stage s, so it works higher on the trees than Tη,s(α) at future
stages. Therefore, no such strategy can cause the path to move below Tη,s(α)
and by Lemma 3.8, no R strategy ν ( η can cause the current path to move
below Tη,s(α) because of a series of high challenges initiated by µ such that
η <L µ.

Third, suppose µ ( η moves the current path below Tη,s(α) at a stage t > s.
Let µ̂ denote the P strategy which initiates the series of challenges leading to µ
moving the current path. (As noted at the end of the previous paragraph, we
know that µ̂ is not to the right of η in the tree of strategies.) If µ̂ ⊆ η, then
because s is an η stage, Lemma 3.7 implies that µ̂ must initiate this series of
challenges after stage s. However, in this case, µ̂ initializes η when it calls its
verification procedure to initiate the series of challenges. If µ̂ <L η, then µ̂ must
initiate its series of challenges before stage s and as in the proof of Lemma 3.9,
we can assume that µ is challenged high at stage s. We split into the cases when
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µ ∗H ⊆ η and when µ ∗H <L η. In the first case, Lemma 3.5 contradicts the
fact that s is an η stage. In the second case, η has lower priority than µ ∗L and
hence is initialized when µ moves the current path in either Subcase 4A(ii) or
4B of the high challenge.

We now know that we cannot have η <L µ̂, µ̂ ⊆ η or µ̂ <L η. It remains
to consider the case when η ( µ̂. If µ̂ issues its challenges after stage s, then µ̂
moves the current path after stage s when it issues these challenges (and before
µ moves the current path). Therefore, we have met the conditions of the lemma
in this case. Otherwise, µ̂ calls its verification procedure and issues its first
challenges before stage s. In this case, since µ is high challenged in the series of
challenges started by µ̂, we have µ ∗H ( µ̂. Together with the case assumption
that µ ( η ⊆ µ̂, we have µ ∗ H ⊆ η. Since s is an η stage, µ cannot be high
challenged at stage s by Lemma 3.5. We can assume that µ is the first strategy
such that µ ( η to move the current path below Tη,s(αη) after stage s. There
must be a ν such that ν is high challenged at s (in the series started by µ̂) and
such that ν issues high challenges after stage s which lead to the high challenge
of µ. By the comments above, we know that η ⊆ ν. Therefore, when ν issues
its high challenges after stage s (and before µ moves the current path), ν moves
the current path below Tη,s(αη). Therefore, the conditions of the lemma are
true in this case as well.

Lemma 3.12. Let η be an R strategy, s be an η stage and α be a string such
that Tη,s(α) is defined, effects initialization, has η′′ state Gη and may or may
not be η high splitting. For all η stages u ≥ s, Tη,u(α) = Tη,s(α) unless η is
initialized, η finds a new high split below Tη,s(α) or some strategy µ such that
η ⊆ µ moves the current path below Tη,s(α) at a stage t such that s ≤ t < u.
Furthermore, if Tη,s(α) ⊆ Aη,s, then Tη,s(α) remains on the current path unless
η is initialized or some strategy µ such that η ⊆ µ moves the current path below
Tη,s(α) at a stage t such that s ≤ t.

Proof. This lemma follows immediately from Lemma 3.11.

Lemma 3.13. Assume that an R strategy η defines αη at stage t. Unless η is
initialized, Tη′′,u(αη) = Tη′′,t(αη) ⊆ Aη′′,u for all η stages u > t.

Proof. When η defines αη at stage t, we have U(Tη′′,t(αη)) = Gη. We apply
Lemma 3.12 to this node to show that it cannot change after stage t unless η is
initialized. By Lemma 3.12, the only R strategy which could change the value
of this node by finding a new high splitting is η′′. However, if η′′ ∗ H ⊆ η,
then this node is already η′′ high splitting as are the nodes below it on Tη′′,t.
If η′′ ∗H <L η, then η is initialized when η′′ finds a new high split below this
node. Therefore, unless η is initialized, the value of Tη′′,t(αη) does not change
due to finding a new high splitting.

Next, we consider how Tη′′,t(αη) could change values after t because of
stretching. If this nodes changes values because of stretching, then the cur-
rent path must move below it. Therefore, we can finish the proof by showing
that the current path cannot be moved below Tη′′,t(αη) without initializing η.
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By Lemma 3.12, unless η′′ (and hence η) is initialized or a strategy µ with
η′′ ⊆ µmoves the current path below Tη′′,t(αη), Tη′′,t(αη) remains on the current
path. At stage t, η initializes all lower priority strategies, so each strategy µ
such that η ( µ works with strings which are too long to move the current path
below Tη′′,t(αη). If η moves the current path, then it does so above Tη′′,t(αη)
(since η defines Tη,t(λ) = Tη′′,s(αη) and η only moves the current path on its
own tree) and not below Tη′′,s(αη). If η′ moves the current path, then because
η′ is a P strategy, it initializes η.

It remains to consider the case when η′′ moves the current path below
Tη′′,t(αη) after stage t. Suppose η′′ moves the current path after stage t be-
cause it is high challenged in a series of challenges started by some P strategy
µ̂ with η′′ ∗ H ⊆ µ̂. If the high challenge issued to η′′ occurs before stage t,
then η′′ ∗H <L η by Lemma 3.5 and the fact that t is an η stage. Therefore,
η is initialized when η′′ moves the current path as part of its high challenge. If
the high challenge is issued after stage t, then we break into cases depending on
whether η ( µ̂ or µ̂ = η′. (Since µ̂ is a P strategy and η′′ ⊆ µ̂, these are the
only possibilities.) In the former case, the path is moved above Tη′′,t(αη) and in
the later case, η is initialized when µ̂ initiates the series of challenges by calling
a verification procedure.

Lemma 3.14. Assume that a P strategy η defines αη at stage t.

1. Unless η is initialized, Tη′,u(αη) = Tη′,t(αη) ⊆ Aη,u for all η stages u ≥ t.

2. Unless η is initialized or calls a verification procedure, Tη′,u(αη ∗ i) =
Tη′,t(αη ∗ i) for i = 0, 1 and these nodes remain active at all η′ stages
u ≥ t and Tη,u(αη ∗ 0) ⊆ Aη,u.

Proof. We first establish Property 1. Because U(Tη′,t(αη)) = Gη, we can apply
Lemma 3.12 to Tη′,t(αη). The value of this node can only change if η′ is ini-
tialized, if η′ finds a new high split below this node, or if some strategy µ such
that η′ ⊆ µ moves the current path below this node. We consider each of these
cases separately.

First, if η′ is initialized, then so is η. Second, assume that η′ finds a new
high split below Tη′,t(αη) after stage t. Tη′,t(αη) must not be η′ high splitting
at stage t, so because U(Tη′,t(αη)) = Gη, we must have η′ ∗L ⊆ η or η′ ∗N ⊆ η.
Therefore, η is initialized when η′ finds the new high split. Third, assume that
some µ with η′ ⊆ µ moves the current path below Tη′,t(αη). Because η initializes
all lower priority strategies at stage t, µ must be equal to either η or η′. (If µ
is to the left of η, then η would be initialized when µ acts to move the current
path.) Suppose µ = η. In this case, µ only moves the current path above
Tη′,t(αη). Suppose µ = η′. In this case, since η′ is an R strategy, it only moves
the current path during a high challenge. Suppose η̂ issues the high challenge
to η′, so η′ ∗ H ⊆ η̂. If η′ ∗ H is to the left of η, then η is initialized when η′

moves the current path. If η′ ∗H = η, then η initialized η̂ at stage t and hence
any movement in the current path caused by a series of challenges initialized by
η̂ is above Tη′,t(αη). This completes the proof of Property 1.
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To establish Property 2, we cannot necessarily apply Lemma 3.12 since we
don’t know what the states of Tη′,t(αη ∗ i) are. However, we claim that we can
use Lemma 3.11. To see this fact, we split into two cases. If there is no strategy
ν such that ν ∗ H ⊆ η, then we can apply Lemma 3.12 (since Gη contains all
low states) and the argument is just as before. Otherwise, fix ν to be the lowest
priority strategy such that ν∗H ⊆ η and let γν be such that Tν,t(γν) = Tη′,t(αη).
Since Tν,t(γν) is high ν splitting and none of the strategies between ν and η are
in the high state, we have Tη′,t(αη ∗ i) = Tν,t(γν ∗ i). Since the ν state of Tν,t(γν)
is Gν ∗ H, we have the hypotheses for Lemma 3.11. The rest of the proof of
Property 2 is a similar case analysis to the analysis in the proof of Property 1,
except we use Lemma 3.11 in place of Lemma 3.12.

We now consider the action of strategies which are high challenged or which
call a verification procedure. Let η be a strategy and s be a stage such that
η is either challenged high at s or η begins a verification procedure at stage
s. Assume that η is not initialized before the challenge or verification is met
(if it is ever met) and that every strategy ν ∗ L ⊆ η (or ν ∗ H ⊆ η) which is
low (respectively high) challenged eventually meets its challenge. Furthermore,
assume that η is eligible to act infinitely often after stage s (or at least until
the challenge is met or the verification is complete). We prove the following two
lemmas simultaneously by induction on the length of η under these conditions.

Lemma 3.15. Let η be a strategy that calls a verification procedure at stage
s under these conditions. Let t0 be the stage at which η calls its verification
procedure with σ0 and let tn denote the stage at which we return to the veri-
fication procedure for the nth time (and start the nth cycle). In the following
two properties, we work with the notation σn and µn as in the description of a
verification procedure, we set µ−1 = η and we work with the notation as though
η is an R strategy. (If η is a P strategy, we need to replace Tµ−1

by Tµ′−1
and

Gµ−1
∗ L by Gµ−1

.)

1. When the verification procedure is called at stage t0, we have Tµ−1,t0(σ0 ∗
0) ⊆ Aµ−1,t0 , Tµ−1,t0(σ0 ∗ 1) is active, ΓTµ−1,t0

(σ0∗0)(xη) = 0 and
U(Tµ−1,t0(σ0)) = Gµ−1

∗ L.

2. For n ≥ 1, when we follow the link from µn−1 to η at stage tn and begin the
nth cycle, we have the following properties: Tµn−1,tn−1

(σn) = Tµn−1,tn(σn),
U(Tµn−1,tn(σn)) = Gµn−1 ∗ L, Tµn−1,tn−1(σn ∗ i) ⊆ Tµn−1,tn(σn ∗ i) for
i = 0, 1, Tµn−1,tn(σn ∗ 0) ⊆ Aµn−1,tn and Tµn−1,tn(σn ∗ 1) is active.

Furthermore, there are only finitely many cycles before the verification procedure
is complete. When the verification procedure is complete, all the strings γ such
that the verification procedure defined Γγ(xη) = 0 are currently η frozen.

Lemma 3.16. Assume that η is high challenged at stage s under the conditions
given above.

1. Unless η is initialized or meets its challenge, Tη,s(βη,H) remains the same
and on the current path at future η stages.
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2. At the first η stage s0 > s, U(Tη,s0(βη,H)) = Gη ∗ L and Tη,s(βη,H ∗ i) ⊆
Tη,s0(βη,H ∗ i) for i = 0, 1. The nodes remain the same and active with
Tη,s0(βη,H∗0) on the current path at future η stages unless η acts to change
them.

3. One of the following must occur.

(a) At all future η stages, η acts in Subcase 4A without finding a po-
tential high splitting. In this case, at every future η stage, η either
takes outcome η ∗ L or acts as in a low challenged case if it is later
challenged low.

(b) η eventually acts in Subcase 4A(i) and wins the high challenge.

(c) There is an η stage s1 > s0 at which η acts in Subcase 4A(ii). At
the next η stage s2 > s1, U(Tη,s2(βη,H ∗ 1)) = Gη ∗ L and this node
remains unchanged and on the current path at future η stages unless η
acts to change this. Furthermore, Tη,s1(βη,H ∗1∗i) ⊆ Tη,s2(βη,H ∗1∗i)
for i = 0, 1 and both of these nodes are active. These nodes also
remain the same with Tη,s2(βη,H ∗ 1 ∗ 0) on the current path at future
η stages unless η acts to change this. Either η takes outcome η ∗N
at all future η stages or η eventually meets its high challenge.

4. If η meets the high challenge at s3 > s, then Tη,s(βη,H) = Tη,s3(βη,H),
U(Tη,s3(βη,H)) = Gη ∗H and Tη,s(βη,H ∗ i) ⊆ Tη,s3(βη,H ∗ i) for i = 0, 1.
Furthermore, all strings γ such that η defined Γγ(xη) = 0 in Subcase 4A(ii)
or in a verification procedure called in Subcase 4B are forbidden.

We prove Lemmas 3.15 and 3.16 simultaneously by induction on the length
of η. We begin with Lemma 3.16. Let η̂ be the strategy which challenges η
high at stage s. When η̂ issues the challenge, it moves the current path and
stretches Tη,s(βη,H) to have large length and to have all low states. Furthermore,
Tη,s(βη,H) and Tη,s(βη,H ∗0) are on the current path and Tη,s(βη,H ∗1) is active.
η̂ also challenges each strategy ν such that ν ∗ H ⊆ η high (and by induction
Lemma 3.16 applies to these strategies). For each such strategy ν, Tν,s(βν,H) is
stretched and is equal to Tη,s(βη,H).

Consider Property 1 in Lemma 3.16 and consider the value of Tη,s(βη,H)
after it is stretched. For each ν such that ν ∗H ⊆ η, Tν,s(βν,H) = Tη,s(βη,H).
Furthermore, Tν,s(β

′
ν,H) is high ν splitting. Therefore, we can apply Lemma

3.11 to Tη,s(βη,H). Tη,s(βη,H) can only change if η is initialized, η finds a new
high split below Tη,s(βη,H) or some µ with η ⊆ µ moves the current path below
Tη,s(βη,H). Because Tη,s(β

′
η,H) is already high η splitting, η does not find new

high splits below Tη,s(βη). Because all strategies to the right of η ∗ H are
initialized at stage s when η is high challenged, the only µ 6= η with η ⊆ µ
which can move the current path below Tη,s(βη,H) satisfy η ∗H ⊆ µ. However,
none of these strategies are eligible to act until η meets the high challenge or is
initialized. Finally, η only moves the current path above Tη,s(βη,H) during the
high challenge. Therefore, we have established Property 1.
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Consider Property 2 in Lemma 3.16. By the next η stage s0 > s each
strategy ν with ν ∗H ⊆ η has met its high challenge. By Property 4 of Lemma
3.16, we have Tν,s(βν,H ∗ i) ⊆ Tν,s0(βν,H ∗ i) and U(Tν,s0(βν,H)) = Gν ∗H. Also,
if ν is such that ν ∗ L ⊆ η or ν ∗N ⊆ η, then ν cannot have found a new high
split along the current path without initializing η, so ν does not change the
values of nodes along the current path. Therefore, U(Tη,s0(βη,H)) = Gη ∗L and
Tη,s(βη,H ∗ i) ⊆ Tη,s0(βη,H ∗ i).

We also have the hypotheses for Lemma 3.11 for Tη,s0(βη,H ∗ i) since for any
ν ∗H ⊆ η we have Tν,s0(βν,H) is high ν splitting. Therefore, no strategy ν ( η
can change the values of Tη,s0(βη,H ∗i) for i = 0, 1 or move the current path from
Tη,s0(βη,H ∗ 0) at any η stage after s0 without initializing η. Furthermore, until
η meets its high challenge, it takes either outcome η ∗L or η ∗N . Since all of the
strategies of lower priority than η∗L (including η∗L) were initialized at stage s,
they all work higher on the trees than these nodes and hence cannot move the
current path below any of these nodes. Therefore, unless η moves the current
path, both Tη,s0(βη,H ∗ 0) and Tη,s0(βη,H ∗ 1) remain active with Tη,s0(βη,H ∗ 0)
on the current path at future η stages. Hence, we have established Property 2.

Once we begin Subcase 4A of the high challenge, one of three things must
happen. Either we never find a potential high split or we eventually find a
potential high split and act in either Subcase 4A(i) or4 A(ii). If we never find a
potential high split, then at every future η stage, we either take outcome η ∗ L
(if η is not also low challenged) or we act as in the low challenge case (if η is also
low challenged). This establishes Property 3(a). If we ever act in Subcase 4A(i),
then the high challenge is met and we clearly meet the conditions of Property
4 of Lemma 3.16. This establishes Property 3(b).

Consider what happens if η acts in Subcase 4A(ii) at some stage s1 > s0. In
this case, η moves the current path from Tη,s1(βη,H ∗ 0) to Tη,s1(βη,H ∗ 1) and
stretches Tη,s1(βη,H ∗ 1). η defines ΓTη,s1 (βη,H∗1∗0)(xη) = 0 and performs the
various calculations to issue its challenges. We can apply the same arguments
used to establish Properties 1 and 2 in Lemma 3.16 to Tη,s1(βη,H ∗ 1) to get the
following properties: Tη,s1(βη,H ∗ 1) doesn’t change after this stage; at the next
η stage s2 > s1, U(Tη,s2(βη,H ∗1)) = Gη∗L, Tη,s1(βη,H ∗1∗i) ⊆ Tη,s2(βη,H ∗1∗i),
these nodes remain active and these nodes will not change unless η later changes
them in Subcase 4B. Also, the current path runs through Tη,s2(βη,H ∗ 1 ∗ 0) and
it will continue to run through this node unless η changes this in Subcase 4B.

η acts in Subcase 4B at the next η stage s2 and begins to wait for
[η]Tη,s2 (βη,H∗1)(wη) to converge. (Because Tη,s1(βη,H ∗ 1) was stretched, the
length of Tη,s2(βη,H ∗1) is longer than the use of [η] on wη.) If this computation
never converges, then at all future η stages, η takes outcome η ∗N . If this does
eventually converge at stage t0 ≥ s2, then η calls a verification procedure with
σ0 = βη,H ∗ 1. Notice that we have ΓTη,t0 (σ0∗0)(xη) = 0, the current path runs
through Tη,t0(σ0 ∗ 0), Tη,t0(σ0 ∗ 1) is active and U(Tη,t0(σ0)) = Gη ∗ L when
the verification procedure is called. (These facts verify Property 1 in Lemma
3.15 in the case when η is a high challenged R strategy calling a verification
procedure.) Technically, in our induction, we now need to show that Lemma
3.15 holds. We do this below without assuming anything except the properties
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just listed. Given that Lemma 3.15 holds for η, we know that it terminates
after finitely many stages. When it terminates at stage s3, η declares the high
challenge won and takes outcome η ∗H.

We need to see that the conditions in Property 4 hold in this case. The cone
above Tη,s1(βη,H ∗0) (which has remained frozen since stage s1) is unfrozen and
η uses Tη,s3(βη,H ∗ 1) = Tη,s2(βη,H ∗ 1) and either τ1 or τ0 (in the notation from
the construction case for a high challenged strategy) to make Tη,s3(βη,H) high
splitting. By Property 1, Tη,s(βη,H) = Tη,s3(βη,H). By Property 2 and the fact
that η just found a high split for Tη,s3(βη,H), we have U(Tη,s3(βη,H)) = Gη ∗H.
Since Tη,s(βη,H ∗ 1) ⊆ Tη,s1(βη,H ∗ 1) = Tη,s3(βη,H ∗ 1) and Tη,s2(βη ∗ 0) ⊆ τ0, τ1
(and the cone above Tη,s2(βη ∗ 0) has not changed since it was frozen at stage
s2), Tη,s(βη,H ∗ i) ⊆ Tη,s3(βη,H ∗ i) for i = 0, 1.

Finally, all definitions of the form Γγ(xη) = 0 made by η are either made by
the verification procedure (in which case they are currently η frozen by Lemma
3.15) or made by the action of η in Subcase 4A(ii). The only definition made in
Subcase 4A(ii) is for γ = Tη,s1(βη ∗ 1 ∗ 0). Since this node was frozen when the
verification procedure was called with σ0 = βη ∗1, the oracle string used in each
Γ definition made for xη by η in meeting its high challenge is frozen when the
verification procedure ends. Therefore, all of these oracle strings are forbidden
by η in Subcase 4B when the verification procedure ends. The conditions of
Property 4 are met and we have completed the proof of Lemma 3.16.

Consider Lemma 3.15. To see that Property 1 holds at stage t0, we need to
consider separately the cases when the verification procedure is called by an R
strategy in Subcase 4B of a high challenge and when the verification procedure
is called by a P strategy. If η is an R strategy acting in Subcase 4B, then we
have verified these properties above. If η is a P strategy acting in Case 3, then
σ0 = αη and µ′−1 = η′. By Lemma 3.14, Tη′,t0(αη ∗ 0) = Tη′,t0(σ0 ∗ 0) is on the
current path and Tη′,t0(αη ∗ 1) = Tη′,t0(σ0 ∗ 1) is active when the verification
procedure is called. When αη was chosen at u < t0, U(Tη′,u(αη)) = Gη. If
any higher priority strategy found a new high split to raise the state of some
string below this node after u, then η would have been initialized and αη would
have been redefined. Therefore, U(Tη′,t0(αη)) = Gη. Finally, when αη was
defined at stage u < t0, η picked xη and defined ΓTη′,u(αη∗0)(xη) = 0. Because
Tη′,u(αη ∗ 0) = Tη′,t0(αη ∗ 0), we have all the required properties of σ0 = αη at
stage t0. This establishes Property 1.

At stage t0, the verification procedure moves the current path from
Tµ−1,t0(σ0 ∗ 0) to Tµ−1,t0(σ0 ∗ 1) and freezes the cone above Tµ−1,t0(σ0 ∗ 0).
It redefines Tν,t0 for ν ⊆ µ−1 by stretching and defines Xν for ν ∗ L ⊆ µ−1.
Assume that not all of the Xν are empty. (That is, the verification procedure
does not end at this stage.) We define µ0 to be the least priority strategy such
that Xµ0

6= ∅ and define σ1 so that Tµ0,t0(σ1) is the least node along the current
path on Tµ0,t0 which was stretched. Because the length of Tµ0,t0(σ1) is long and
Tµ0,t0(σ1) is active, the current path runs through Tµ0,t0(σ1∗0) and Tµ0,t0(σ1∗1)
is active. We place a link from µ0 to η, define ΓTµ0,t0 (σ1∗0)(xη) = 0 and issue the
appropriate challenges. The stage ends and either all lower priority strategies
are initialized (if η is a P strategy) or all strategies of lower priority than η ∗ L
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are initialized (if η is an R strategy).
Consider the action of the R strategies ν ⊆ µ0 between stages t0 and t1.

If ν ∗ H ⊆ µ0, then ν is challenged high at stage t0 and βν,H is such that
Tν,t0(βν,H) = Tµ0,t0(σ1) (since σ1 is the stretched node of Tµ0,t0). By our
assumption, ν meets its high challenge at some stage u > t0. By Lemma 3.16,
U(Tν,u(βν,H)) = Gν ∗H and Tν,t0(βν,H ∗ i) ⊆ Tν,u(βν,H ∗ i).

If ν ∗L ⊆ η and ν ⊆ µ0, then by our assumption, ν eventually meets its low
challenge. At each ν stage u at which ν is still low challenged, it defines Tν,u
trivially from Tν′′,u. Furthermore, at stages u after ν has met its low challenge, it
defines Tν,u by searching for high splittings and failing to find them. Therefore,
it does not change any values on Tν,u.

If ν ∗N ⊆ η, then ν must have been high or low challenged before stage t0 by
a strategy to the left of η in the tree of strategies. ν cannot meet this challenge
without initializing η, and therefore ν must take outcome ν ∗N at every ν stage
between t0 and t1. Hence, it defines Tν,u trivially from Tν′′,u at each ν stage u
between t0 and t1.

When µ0 meets its low challenge and follows the link back to η, we have
the following properties. Tµ0,t1(σ1) = Tµ0,t0(σ1) since the current path has not
moved below here and no R strategy has found a high split below here. Each ν
such that ν ∗H ⊆ µ0 has found a ν high split for Tν,t0(βν) = Tµ0,t0(σ1) and no
ν such that ν ∗L ⊆ µ0 or ν ∗N ⊆ µ0 has found a new high split below this node
or changed the values of its nodes below here. Hence, U(Tµ0,t1(σ1)) = Gµ0

∗ L.
Furthermore, since the high splits found by strategies such that ν ∗H ⊆ µ0 have
the property that Tν,t0(βν,H ∗ i) ⊆ Tν,u(βν,H ∗ i) when they are found at stage
u and since the current path does not move below these nodes before stage t1
(by a case analysis as in the proof of Lemma 3.11), we have that Tµ0,t0(σ1 ∗ i) ⊆
Tµ0,t1(σ1 ∗ i), that these nodes are still active and that Tµ0,t1(σ1 ∗ 0) is still on
the current path. Therefore, we have established Property 2 of Lemma 3.15 in
the case when n = 1. Applying this reasoning inductively gives the full version
of Property 2.

It remains to see that the verification procedure only acts finitely often before
ending. For n ≥ 1, consider the definition of µn at stage tn. Because we follow
a link from µn−1 to η at stage tn and because this link is established at stage
tn−1, none of the strategies ν such that µn−1 ( ν and ν ∗L ⊆ η is eligible to act
between stages tn−1 and tn. Therefore, none of these strategies has seen any
new computations and Xν = ∅ for all of these strategies.

Furthermore, we claim that Xµn−1
= ∅ at stage tn. To see this fact, we

need to distinguish Xµn−1
as defined during the (n − 1)st cycle, which we

denote X ′µn−1
, and Xµn−1

as defined during this nth cycle, which we denote
Xµn−1 . Tµn−1,tn−1(σn) was stretched at stage tn−1 so it has length longer
than the [µn−1] use of any number x ∈ X ′µn−1

. Therefore, µn−1 never looks
above this node for computations on elements of X ′µn−1

between stages tn−1
and tn. βµn−1,L is defined at stage tn to be such that when the verification
procedure moves the current path from Tµn−1,tn(σn ∗ 0) to Tµn−1,tn(σn ∗ 1), it
moves from Tµn−1,tn(βµn−1,L ∗ 0) to Tµn−1,tn(βµn−1,L ∗ 1). Therefore, βµn−1,L is
defined at stage tn to be equal to σn. Because Tµn−1,tn−1(σn) = Tµn−1,tn(σn) =
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Tµn−1,tn(βµn−1,L), µn−1 has never looked at computations using oracles above
Tµn−1,tn(βµn−1,L). It follows that Xµn−1 is defined to be ∅ at stage tn and hence
µn ( µn−1. Therefore, we can only return to the verification procedure finitely
often before it discovers that all Xµ = ∅ and ends.

Finally, we need to check that all Γ definitions made by the verification
procedure are frozen when the procedure terminates. In the nth cycle, η defines
ΓTµn,tn (σn+1∗0)(xη) = 0. In the (n + 1)st cycle, η moves the current path from
Tµn,tn+1

(σn+1 ∗ 0) to Tµn,tn+1
(σn+1 ∗ 1). Since Tµn,tn+1

(σn+1) = Tµn,tn(σn+1)
and Tµn,tn(σn+1 ∗ i) ⊆ Tµn,tn+1(σn+1 ∗ i) for i = 0, 1, the node Tµn,tn(σn+1 ∗ 0)
is frozen by η. Therefore, at the start of the (n + 1)st cycle, the Γ definition
made by the verification procedure in the nth cycle is frozen. This completes
the proof of Lemma 3.15.

Having gained some understanding of strategies which are challenged high,
we turn to strategies η which are challenged low. Assume η is challenged low by
η̂. This could happen either because η̂ calls a verification procedure or because
η̂ is challenged high and acting in Subcase 4A(ii). We begin with the case when
η̂ calls a verification procedure. Assume that η is challenged low by η̂ at stage
s as part of the nth cycle of a verification procedure. By setting µ−1 = η̂ and
imagining a “trivial link” from µ−1 to η̂, we can treat the 0th cycle with the same
notation as the nth cycle. In this situation, we have just followed a link from
µn−1 to η̂ and η̂ moves the current path from Tµn−1,s(σn ∗ 0) to Tµn−1,s(σn ∗ 1).
By the proof of Lemma 3.15, we know U(Tµn−1,s(σn)) = Gµn−1 ∗L. (Technically,
if η̂ is a P strategy and n = 0, then we have U(Tµ′−1,s

(σ0)) = Gµ−1 instead.
This minor change in notation is the only difference between η̂ being a P or R
strategy and it does not effect the argument below.) Because η̂ challenges η low
during this cycle, we know η ⊆ µn and η ∗ L ⊆ η̂. βη,L is defined such that the
current path just moved from Tη,s(βη,L ∗ 0) to Tη,s(βη,L ∗ 1). η̂ also redefines
the tree Tη,s by stretching. In the argument below, we consider the trees before
they are stretched by η̂ and we make comments at the end of the proof to take
into account the effect of stretching.

Lemma 3.17. Under these circumstances, U(Tη,s(βη,L)) = Gη ∗ L, even after
η̂ performs its stretching.

Proof. We split into two cases: when there is an R strategy ν such that ν ∗H ⊆
µn−1 and when there is no such strategy. If there is no R strategy ν with
ν ∗H ⊆ µn−1, then Gη contains only low states, so U(Tη,s(βη,L)) = Gη ∗ L.

Assume there is a strategy ν such that ν ∗H ⊆ µn−1. In this case, we first
need a better understanding of where exactly the current path moves. Let ν be
the lowest priority R strategy such that ν ∗H ⊆ µn−1. Consider an R strategy
ν̂ such that ν ∗ H ⊆ ν̂ ⊆ µn−1 and how ν̂ defines its trees at ν̂ stages before
µn−1 follows its link at stage s. Because ν is the lowest priority strategy with
ν ∗H ⊆ µn−1, we know that either ν̂ ∗N ⊆ µn−1 or ν̂ ∗L ⊆ µn−1. If ν̂ ∗N ⊆ η̂,
then Tν̂,s is defined trivially from Tν̂′′,s because trees are always defined trivially
when a strategy takes the N outcome. If ν̂ ∗ L ⊆ η̂, then ν̂ cannot have found
a new high splitting along the current path, so ν̂ searches for new high splits
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and defines Tν̂,s trivially when it doesn’t find any. Therefore, all trees Tν̂,s for
ν ∗H ⊆ ν̂ ⊆ µn−1 are defined trivially.

Let γ be such that Tν,s(γ) = Tµn−1,s(σn). Because all the trees between
ν ∗ H and µn−1 are defined trivially, Tµn−1,s(σn ∗ i) = Tν,s(γ ∗ i). Because
U(Tµn−1,s(σn)) = Gµn−1

∗ L and ν ∗ H ⊆ µn−1, we know that U(Tν,s(γ)) =
Gν ∗ H. Let t ≤ s be the ν stage at which Tν,t(γ) becomes ν high splitting.
Because we chose high splitting extensions for Tν,t(γ) at stage t, the ν′′ state of
each Tν,t(γ ∗ i) is Gν . A case analysis using Lemma 3.11 shows that the values
of Tν,t(γ), Tν,t(γ ∗ 0) and Tν,t(γ ∗ 1) do not change and the current path does
not move below these nodes after ν’s action at stage t and before we follow the
link from µn−1 to η̂ at stage s. Therefore, when we follow the link from µn−1 to
η̂ at stage s, we have that the ν′′ state of each Tν,s(γ ∗ i) is Gν (and they may
or may not be ν high splitting).

At stage s, η̂ moves the current path from Tµn−1,s(σn ∗ 0) to Tµn−1,s(σn ∗ 1)
and hence from Tν,s(γ ∗ 0) to Tν,s(γ ∗ 1). βη,L is defined such that the current
path just moved from Tη,s(βη,L ∗ 0) to Tη,s(βη,L ∗ 1).

We break into cases depending on whether ν ∗ H ⊆ η or η ( ν. (Notice
that η 6= ν since ν ∗ H ⊆ η̂ and η ∗ L ⊆ η̂.) If ν ∗ H ⊆ η, then since all the
trees between ν ∗H and µn−1 are defined trivially at stage s, βη,L is such that
Tν,s(γ) = Tη,s(βη,L) and Tν,s(γ ∗ i) = Tη,s(βη,L ∗ i). Because there are no high
states between ν and η (since ν was lowest priority strategy with ν ∗H ⊆ µn−1),
U(Tη,s(βη,L)) = Gη ∗ L as required.

If η ( ν, then we may have Tν,s(γ) ( Tη,s(βη,L) because Tν,s(γ) is ν high
splitting. However, we do have that Tη,s(βη,L ∗ i) ⊆ Tν,s(γ ∗ i) since γ and βη,L
are such that the current path just moved from Tν,s(γ∗0) to Tν,s(γ∗1) and from
Tη,s(βη,L ∗ 0) to Tη,s(βη,L ∗ 1). Because U(Tν,s(γ)) = Gν ∗H, the ν′′ states of
Tν,s(γ ∗ i) are Gν and η ( ν, it follows that U(Tη,s(βη,L)) = Gη ∗L as required.

Finally, when η̂ redefines the trees by stretching in the verification procedure,
it may be that Tη,s(βη,L ∗ 1) is stretched. However, if it is stretched, then
it is the least node on Tη,s which is stretched, so the stretched value of this
node extends the prestretched value. Hence the state of Tη,s(βη,L) remains
the same. (It is important that we considered the state of Tν,s(γ ∗ 1) before
it is potentially stretched. Tν,s(γ ∗ 1) may be the least node of Tν,s which is
changed by stretching, in which case, U(Tν,s(γ ∗ 1)) has all low states after it is
redefined.)

A similar argument proves the same statement in the case when η is chal-
lenged low by a strategy η̂ which is acting in Subcase 4A(ii) of a high challenge.

Lemma 3.18. Assume η is challenged low at stage s by a strategy η̂ which is
acting in Subcase 4A(ii) of a high challenge. Then U(Tη,s(βη,L)) = Gη ∗ L.

Lemma 3.19. Assume that η is low challenged by η̂ at stage s. Unless η is
initialized, we have the following properties.

1. At least until η meets its low challenge, Tη,s(βη,L) remains unchanged at
future η stages. Tη,s(βη,L∗1) may be stretched at stage s, but then remains
unchanged and on the current path at future η stages.
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2. Either η takes η ∗N at every future η stage or η eventually meets the low
challenge or η finds a new high split using a number from Xη.

Proof. Property 2 follows immediately by inspecting the action of a low
challenged strategy. We show Property 1. By Lemmas 3.17 and 3.18,
U(Tη,s(βη,L)) = Gη∗L. By the definition of βη,L, the current path just moved to
Tη,s(βη,L ∗1) and this node may have been stretched. Consider which strategies
could change Tη,s(βη,L ∗ 1) or move the current path below this node without
initializing η. Obviously nothing to the left of η can cause these changes and
because all strategies to the right of η are initialized by η̂ when η is challenged,
they work higher on the trees. The only strategies ν with η ( ν which are
eligible to act before η meets its challenge satisfy η ∗ N ⊆ ν. Since η ∗ L ⊆ η̂,
these strategies are initialized by η̂ at stage s and work higher on the trees.

Consider a strategy ν ( η. If ν is a P strategy, then it initializes all lower
priority strategies including η when it moves the current path. If ν is an R
strategy and ν ∗ L ⊆ η or ν ∗ N ⊆ η, then ν cannot find high splits below
Tη,s(βη,L) or move the current path without initializing η. If ν ∗ H ⊆ η, then
Tη,s(βη,L) is already ν high splitting since U(Tη,s(βη,L)) = Gη ∗ L. Therefore,
any new high splits would be above this node. Furthermore, ν is challenged high
by η̂ at stage s so if it moves the current path, it does so from Tν,s(βν,H ∗ 0) to
Tν,s(βν,H ∗ 1). Because ν ∗ H ⊆ η̂, Tν,s(βν,H) was stretched at stage s and so
Tη,s(βη,L ∗ 1) ⊆ Tν,s(βν,H). Therefore, any movement of the path caused by ν
will not effect Tη,s(βη,L ∗ 1). This establishes Property 1.

We define the true path in the tree of strategies as usual: an Re or Pe
strategy η is on the true path if and only if η is the leftmost strategy acting
for Re or Pe which is eligible to act infinitely often. We next show that various
properties hold of strategies on the true path and that the true path is infinite.

Lemma 3.20. Assume that η is on the true path.

1. η is initialized only finitely often.

2. If η is never initialized after stage t, then for all µ∗L ⊆ η, µ meets all low
challenges issued after t and for all µ ∗H ⊆ η, µ meets all high challenges
issued after t.

3. pη and αη are eventually permanently defined. Furthermore, if they are
permanently defined at stage s, then Tη′′,s(αη) (if η is an R strategy) or
Tη′,s(αη) (if η is a P strategy) has reached a limit and is on the current
path at all future stages. Therefore, Tη,s(λ) reaches its limit at stage s.

4. η has a successor on the true path.

Proof. We proceed by induction on the length of η. Let s be an η stage such
that no strategy µ ( η is initialized after s, both pµ and αµ are permanently
defined before stage s and no strategy to the left of η in the tree of strategies is
eligible to act after s.
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To prove Property 1, we examine how strategies ν ( η could end a stage
after s and initialize η. If ν ( η is a P strategy, then ν only ends a stage and
initializes lower priority strategies when it acts in Case 1 or Case 2 or calls a
verification procedure in Case 3. Since pν and αν are permanently defined by
stage s, ν does not act in either Case 1 or 2 after stage s. Since s is an η stage,
ν cannot be in the middle of a verification procedure at stage s (by Lemma 3.7).
Suppose η calls a verification procedure after stage s. This means ν has not yet
reached Case 4 of the P action at stage s, so ν ∗W ⊆ η. Applying Property
2 of Lemma 3.20 inductively to ν and using the fact that ν is not initialized
after stage s, we conclude from Lemma 3.15 that this verification procedure
eventually ends and ν acts in Case 4 of the P action. After this stage, ν takes
outcome ν ∗ S contradicting the fact that no strategy to the left of η acts after
stage s. Therefore, ν does not initialize η after stage s.

If ν ( η is an R strategy, then ν only ends a stage and initializes lower
priority strategies when it acts in Case 1 or Case 2 or Subcases 4A(ii) or 4B
of the high challenge R action. As above, ν does not act in Case 1 or Case 2
after stage s. When ν acts in Subcase 4A(ii) (and later in Subcase 4B) of a high
challenge, it initializes all strategies of lower priority than ν ∗L (including ν ∗L).
Therefore, if ν ∗H ⊆ η, then η is not initialized by ν after stage s. Otherwise,
suppose ν ∗ L ⊆ η or ν ∗N ⊆ η and consider what happens when ν acts in one
of these subcases. Suppose ν acts in Subcase 4A(ii) after stage s. ν initializes
η and ends the stage. Applying Property 2 of Lemma 3.20 inductively to ν
and using the fact that ν is not initialized after s, we conclude from Lemma
3.16 that ν either takes outcome ν ∗ N at all future stages (and hence does
not initialize η again) or ν eventually calls a (finitary) verification procedure in
Subcase 4B and wins the high challenge. However, in the latter case, ν takes
outcome ν ∗ H which moves the path in the tree of strategies to the left of η
after stage s contrary to our assumption. Therefore, after stage s, ν initializes
η at most once. This completes the proof of Property 1.

We show Property 2 by induction on µ. Assume that µ ∗ L ⊆ η. We
inductively apply Property 2 in Lemma 3.20 together with Property 2 in Lemma
3.19 to µ. If µ is challenged low after stage s, then either µ eventually meets
this challenge or at all future µ stages µ takes outcome µ ∗ N . Because there
cannot be a link jumping over µ∗L while µ is low challenged, the latter situation
contradicts the fact that η is on the true path.

Assume that µ∗H ⊆ η and µ is challenged high after stage s. We inductively
apply Property 2 of Lemma 3.20 together with Lemma 3.16 to µ. If µ fails
to meet the high challenge, then either µ never finds a potential high split
in Subcase 4A or it eventually acts in Subcase 4A(ii). If µ eventually acts
in Subcase 4A(ii) but does not meet the high challenge, then µ remains high
challenged forever and takes outcome µ ∗N at every future µ stage. Since there
are no links jumping over µ ∗H while µ is high challenged, this contradicts the
fact that η is on the true path. If µ never finds a potential high split in Subcase
4A, then at every future µ stage either µ takes outcome µ ∗ L (if µ is not also
low challenged) or µ acts as in the low challenge case. If µ acts in the low
challenge case, it cannot find a new high split (since otherwise it would have
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found it when it looked in Subcase 4A in the high challenge action) so it either
takes outcome µ ∗L or µ ∗N . Since it is impossible for µ to take outcome µ ∗H
in this situation and since there are no links jumping over µ ∗H when µ is high
challenged, this contradicts the fact that η is on the true path. This completes
the proof of Property 2.

To see Property 3, notice that pη is permanently defined at the first η stage
after which η is never initialized again. η now begins to look for a node α of
length pη such that Tη′′,s(α) (if η is an R strategy) or Tη′,s(α) (if η is a P
strategy) is on the current path and has state Gη. Because pη is defined to be
large, this node starts out with all low states. If Gη contains all low states, we
pick αη at the next η stage. Otherwise, Gη has at least one high state, so η
ends the stage and tries again at each subsequent η stage. Each strategy ν such
that ν ∗H ⊆ η finds a new high split along the current path each time it takes
outcome ν ∗H. Therefore, each time η is eligible to act, the state of some node
on the current path has increased. Since η is eligible to act infinitely often and
pη does not change, η must eventually see a suitable node on the current path
with state Gη and define αη. The rest of Property 3 follows by Lemmas 3.13
and 3.14. This completes the proof of Property 3.

Finally, we verify Property 4. Assume s is an η stage such that η has
permanently defined pη and αη by stage s. If η is a P strategy, then η defines
xη permanently at the same stage as it defines αη. Either xη eventually enters
Wη after stage s or it does not. If xη never enters Wη, then η takes outcome
η ∗W at every future η stage, so η ∗W is on the true path. If xη eventually
enters Wη, then η calls a verification procedure at the next η stage. By Lemma
3.15 and Property 2 of Lemma 3.20, this verification procedure is finite. When
it ends, η acts in Case 4 of the P strategy and takes outcome η ∗ S. At every
future η stage, η takes outcome η ∗ S, so η ∗ S is on the true path.

Assume that η is an R strategy. After stage s, η never acts in Cases 1 or 2
for an R strategy. Therefore, the only times that η ends a stage after s is when
η acts in Subcase 4A(ii) or in a verification procedure called by Subcase 4B of a
high challenge. We split into three cases depending on whether η is challenged
infinitely often or finitely often and whether it meets the last high challenge (if
it is challenged high only finitely often).

First, suppose that there is a stage t > s after which η is never challenged
high and that η has met its last high challenge by stage t. Because the only
times that η can end the stage are during a high challenge, η will take one of
its three outcomes at every η stage after t. Because η is eligible to act infinitely
often, at least one of its successors must be eligible to act infinitely often. The
leftmost such outcome is on the true path.

Second, suppose that η is challenged high infinitely often. Let t1 < t2 < · · ·
denote the stages after s at which some strategy issues a high challenge to η.
Because η can be high challenged by at most one strategy at a time, η must
either meet the high challenge issued at ti before ti+1 or the challenge issued
at ti must be removed by initialization before stage ti+1. Let η̂ be the strategy
that issues the high challenge at stage ti. We know η ∗H ⊆ η̂ and no strategy ν
with η ∗H ⊆ ν is eligible to act until η meets the challenge or it is removed by



54 CHAPTER 3. FORMAL CONSTRUCTION

initialization. Because of these facts and because η ∗H is the left most outcome
of η, the only strategies that could remove the challenge by initialization are
those of higher priority than η.

Suppose ν has higher priority than η and ν initializes η̂. If ν is to the left
of η or ν ( η is a P strategy, then ν also initializes η contrary to assumption.
If ν ⊆ η is an R strategy, then (since ν doesn’t act in Cases 1 or 2 after stage
s), ν acts in either Subcase 4A(ii) or 4B of a high challenge and initializes all
strategies of lower priority than ν ∗L. Therefore, η̂ has lower priority than ν ∗L.
Because ν ⊆ η ⊆ η̂, we must have either ν ∗ L ⊆ η̂ or ν ∗ N ⊆ η̂. Putting
together the facts that ν ⊆ η, η ∗ H ⊆ η̂ and either ν ∗ L ⊆ η̂ or ν ∗ N ⊆ η̂
implies that either ν ∗ L ⊆ η or ν ∗ N ⊆ η. Therefore, when ν initializes η̂,
it also initializes η contrary to our assumption. Hence, the challenge issued
by η̂ cannot be removed by initialization after stage s, so η must meet each of
these high challenges. When η meets a high challenge, it takes outcome η ∗H.
Therefore, η ∗ H is eligible to act infinitely often. Since η ∗ H is the leftmost
outcome of η, it must be on the true path.

Third, suppose that η is only challenged high finitely often after s but it
fails to meet the last high challenge. Let t > s be the stage at which this last
high challenge is issued. We split into cases depending on how η acts while
trying (and failing) to meet this high challenge. η either acts in Subcase 4A at
every future η stage (and fails to find a potential high split) or η eventually acts
in Subcase 4A(ii). (η cannot act in Subcase 4A(i) since it would win the high
challenge in that subcase.) If η ever acts in Subcase 4A(ii), then by Lemma
3.16, η must either win the high challenge or take outcome η ∗N at every future
η stage. Since η does not win the challenge, η ∗N is on the true path.

Suppose η never finds a potential high split in Subcase 4A of the high chal-
lenge. At every η stage after t, η either takes outcome η ∗ L or acts as a low
challenged strategy (if η is also low challenged). The only possible outcomes for
a low challenged strategy are L and N . Therefore, at every future η stage, η
either takes outcome η∗L or η∗N , so one of these must be on the true path.

Lemma 3.21. A = limsAs is a ∆0
2 set.

Proof. Let η0 ⊆ η1 ⊆ η2 ⊆ · · · be the sequence of R strategies on the true
path and let s0 < s1 < s2 < · · · be a sequence of stages such that for all k, sk
is an ηk stage by which αηk has been permanently defined. By Lemma 3.20,
Tηk,sk(λ) = Tη′′k ,sk(αηk) has reached its limit and is contained in the current
path at all future stages. Therefore, A is determined up to the length of this
node at stage sk.

We know that for an R strategy η on the true path, Tη,s(λ) reaches a limit.
We need to show that various other nodes also approach limits.

Lemma 3.22. Let η be an R strategy with η∗H on the true path. Let t be a stage
such that αη is defined permanently by stage t (and hence η is not initialized
after t). For any α and any s > t, if U(Tη,s(α)) = Gη ∗H and Tη,s(α) becomes
high splitting at stage s, then Tη,s(α) has reached a limit.
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Proof. By Lemma 3.12, Tη,s(α) can only change if it is stretched because the
current path is moved below Tη,s(α) by a strategy µ such that η ⊆ µ. However,
if any such strategy moves the current path below Tη,s(α) at stage u ≥ s and
redefines Tη,u by stretching, then the least stretched node on Tη,u has state Gη ∗
L. Since Tη,s(α) already has state Gη ∗H, it cannot be changed by stretching.

Lemma 3.23. Let η be an R strategy on the true path. There is a sequence of
strings αj and η stages tj indexed by j ∈ ω such that α0 = λ, αj+1 is either
αj ∗ 0 or αj ∗ 1, Tη,tj (αj) has reached its limit denoted by Tη(αj), U(Tη,tj (αj))
is either Gη ∗ L or Gη ∗H, Tη,tj (αj) ⊆ Aη,tj and the current path never moves
below Tη,tj (αj) after stage tj. (Hence Tη,tj (αj) = Tη(αj) ⊆ A.) In addition,
the following properties hold.

1. U(Tη,s(αj)) may change at a later stage s > tj, but it reaches a limit
denoted by U(Tη(αj)) which is either Gη ∗L or Gη ∗H. Furthermore both
successor nodes Tη,s(αj ∗ i) eventually reach limits.

2. If η ∗H is on the true path, then U(Tη(αj)) = Gη ∗H.

3. If η∗L is on the true path, then there is an n such that U(Tη(αj)) = Gη∗L
for all j ≥ n.

4. If η ∗N is on the true path, then there is a stage t such that Tη,s is defined
trivially from Tη′′,s at all η stages s > t.

Proof. The proof proceeds by induction on η and for each fixed η by induction
on j. Let t0 be a stage such that αη is permanently defined by stage t0 and
such that if η ∗ L (or η ∗N) is on the true path, then η ∗H (respectively η ∗H
and η ∗ L) is never eligible to act after stage t0. By Lemma 3.20, Tη,t0(λ) =
Tη′′,t0(αη) ⊆ Aη,t0 has reached its limit, U(Tη,t(λ)) = Gη (and may or may not
be high [η] splitting), and the current path never moves below this node after
stage t0. Therefore, the statement in the main body of the lemma is true when
j = 0. Assume by induction that Tη,tj (αj) satisfies the conditions in the main
body of the lemma. We need to show that Properties 1–4 hold as well.

Before proving these properties, consider what changes can take place in Tη,tj
after stage tj . No R strategy of higher priority can find a new high splitting
at or below Tη,tj (αj). Therefore, these strategies do not cause a change in
Tη,tj (αj ∗ i) after stage tj . Consider how the current path could move below
Tη,tj (αj ∗i) after stage tj (which must occur if these nodes change value because
of stretching). Let η̂ be a P strategy which initiates a series of challenges (via a
verification procedure) that cause the current path to move below Tη,tj (αj ∗ i)
after stage tj . We split into cases depending on whether η̂ calls its verification
procedure at a stage < tj or ≥ tj .

Assume η̂ calls its verification procedure before stage tj . We further split
into cases depending on the relative positions of η and η̂ in the tree of strategies.
If η <L η̂, then since tj is an η stage, η̂ is initialized at the end of stage tj and
its series of challenges is removed by initialization. If η̂ ( η, then η is not
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eligible to act until the verification procedure is complete. In this case, since tj
is an η stage, the verification procedure must be complete by stage tj and hence
there are no challenges left to move the path. If η ⊆ η̂, then all the challenges
issued to strategies ν ( η in the series initiated by η̂ before tj have been met
(again since tj is an η stage). Therefore, we only need to consider the action of
strategies ν such that η ⊆ ν ⊆ η̂ after stage tj (which we handle in a separate
case below).

Finally, assume that η̂ <L η. In this case, let ν be the highest priority
strategy currently challenged in the series of challenges initiated by η̂. In ν is
challenged low, then ν ∗L ⊆ η̂. Since tj is an η stage, we cannot have ν ∗L ⊆ η.
Therefore, η is to the right of ν ∗ L in the tree of strategies. If ν ever meets
its low challenge or finds a new high split using a number from Xν , then ν will
move the path in the tree of strategies to the left of η after stage tj , contrary
to our assumption. Therefore, this low challenge is never met or removed by
initialization, so the series of challenges issued by η̂ never moves the current
path after tj . If ν is challenged high, then ν ∗H ⊆ η̂. Again, because tj is an
η stage, η must have lower priority than ν ∗ L. Therefore, if ν ever moves the
path in either Subcase 4A(ii) or 4B of the high challenge, it initializes η after tj
contrary to assumption.

We now have established that if η̂ starts a series of challenges before tj that
has not terminated by tj and this series of challenges causes the current path
to move below Tη,tj (αj ∗ i) after stage tj , then some strategy ν such that η ⊆ ν
must move the current path. On the other hand, if η̂ does not start its series
of challenges until after tj and this series of challenges moves the current path
below Tη,tj (αj ∗ i) after stage tj , then η̂ itself moves the current path below
Tη,tj (αj ∗ i) after tj . The key point is that in either case, if the current path
is moved below Tη,tj (αj ∗ i) at a future stage t ≥ tj , then the movement is
caused by a strategy ν such that η ⊆ ν and hence the current path is moved
on the tree Tη,t at this future stage t. Because the current path runs through
Tη,tj (αj) permanently after stage tj , the only places where this movement can
take place are from Tη,t(αj ∗0) to Tη,t(αj ∗1) or from Tη,t(αj ∗1) to Tη,t(αj ∗0).
Because the value of Tη,tj (αj) does not change after stage tj , the least nodes
which could be stretched in either of these cases are Tη,t(αj ∗ 1) (in the first
case) and Tη,t(αj ∗ 0) (in the second case). However, in either of these cases,
the stretched value of Tη,t(αj ∗ i) extends the prestretched value. Therefore, the
state of Tη,tj (αj) cannot be lowered because of stretching.

Consider Property 1. By the comments in the previous paragraph, the state
of Tη,tj (αj) cannot be lowered because of stretching. Therefore, if η eventually
finds a high split for Tη,tj (αj), then the final state of this node is Gη ∗H and
otherwise the final state is Gη ∗L. Furthermore, the current path can only move
between Tη,t(αj ∗0) and Tη,t(αj ∗1) finitely many times after tj . (Roughly, it can
move back and forth between these nodes at most once for each strategy ν which
is high challenged at t ≥ tj and has βν,H defined so that Tη,t(αj) = Tν,t(βν,H).)
Therefore, each of the nodes Tη,tj (αj ∗ i) can be changed at most finitely often
because of stretching and at most once by η finding a new high splitting after
stage tj . Hence, there is a stage s0 > tj at which these nodes have reached their
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limits and the current path does not move again below them. Set αj+1 = αj ∗ 0
or αj ∗ 1 depending on which one the current path goes through permanently.
Since Lemma 3.23 applies inductively to the R strategies ( η, the state of
Tη,s(αj+1) must eventually reach Gη ∗ L at some later stage and we set tj+1

equal to this stage. Notice that the hypotheses for the main body of Lemma
3.23 are now satisfied for j + 1.

Consider the case when η ∗H is on the true path. Because η ∗H is eligible
to act infinitely often and each time η ∗H is eligible to act η finds a new high
splitting along the current path, η must eventually find a high splitting for
Tη,tj (αj). This establishes Property 2.

Consider the case when η∗L is on the true path. By our assumption, η never
takes outcome η ∗ H after stage t0. Therefore, η never finds a new high split
along the current path after this stage. Therefore, the only high splits which
occur in the trees Tη,s for s ≥ t0 are the ones that are already present at stage
t0. This fact implies Property 3.

Consider the case when η ∗ N is on the true path. By our assumption on
stage t0 in the first paragraph of this proof, η never takes outcome η ∗ L or
η ∗ H after t0. Therefore, Property 4 follows from the fact that whenever η
takes outcome η ∗N , it defines Tη,s trivially from Tη′′,s.

We turn to checking that ΓA is defined correctly so that ΓA = B. First, we
verify that ΓA(x) = 1 if and only if x ∈ B, and (after an additional technical
lemma), we check that if x 6∈ B, then ΓA(x) = 0. Note that x is enumerated
into B if and only if x = xη for a P strategy η which acts in Case 4.

Lemma 3.24. For all x, ΓA(x) = 1 if and only if x = xη for some P strategy
x which reaches Case 4 of its action and hence x ∈ B.

Proof. Case 4 of a P strategy is the only place where computations of the form
Γγ(x) = 1 are defined. Therefore, if ΓA(x) = 1, then x = xη for some P strategy
η which acts in Case 4.

For the other direction, assume that η is a P strategy which acts in Case 4
with xη at stage s. To get to Case 4, η must have called a verification procedure
at some stage t < s which finished at stage s. When the verification procedure
is called, the only Γ definition for xη is ΓTη,t(αη∗0)(xη) = 0. η sets σ0 = αη when
it calls the verification procedure, so this procedure freezes Tη,t(αη ∗0). Because
the verification procedure eventually finishes, all of the challenges issued by this
procedure must be met (and all the challenges they issue must be met, etc.) so
Lemma 3.15 applies. Therefore, at stage s, all strings γ such that Γγ(xη) = 0 are
frozen by the verification procedure. η forbids all of these frozen strings, so the
current path will never again pass through any of these strings. Furthermore, it
picks a large value n and defines Γγ(xη) = 1 for all strings γ of length n which
have not been forbidden by η. Whatever A turns out to be, it must contain one
of these strings and therefore ΓA(xη) = 1 as required.

Lemma 3.25. Let η be a P strategy which initiates a series of challenges by
calling a verification procedure. If ν is an R strategy which is challenged high in
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this series of challenges at stage s and ν is passed xν and βν,H , then xν = xη
and ΓTν,s(βν,H∗0)(xν) = 0.

Proof. We proceed by induction on the depth in the series of challenges. That
is, a strategy challenged high by η is challenged at depth 1. If ν̂ is challenged
high at depth n by η and ν is challenged high by ν̂, then ν is challenged at
depth n+ 1.

The base case is when ν is challenged high by the nth cycle in the verification
procedure called by η. In this case, (following the notation of the verification
procedure) η defines ΓTµn,tn (σn+1∗0)(xη) = 0 and passes xν = xη and βν,H to ν.
Because βν,H is the least node which is stretched on Tν,tn in this cycle, we have
Tν,tn(βν,H ∗0) = Tµn,tn(σn+1 ∗0). Hence the result holds for this high challenge.

For the induction case, assume that ν̂ has been high challenged in the series
of challenges (say at stage u) and ν̂ challenges ν high. By induction, xν̂ = xη
and ΓTν̂,u(βν̂,H∗0)(xν̂) = 0. Let s0 be the next ν̂ stage after it is challenged high.
By Lemma 3.16, Tν̂,u(βν̂,H ∗ 0) ⊆ Tν̂,s0(βν̂,H ∗ 0), so ΓTν̂,s0 (βν̂,H∗0)(xν̂) = 0. In
order to challenge ν high, ν̂ must act in Subcase 4A(ii) at a stage s1 > s0. When
ν̂ challenges ν high, it moves the current path to Tν̂,s1(βν̂,H ∗ 1), stretches the
trees and defines ΓTν̂,s1 (βν̂,H∗1∗0)(xν̂) = 0. It sets xν = xν̂ = xη and passes
βν,H to ν. Because βν,H is the least node on Tν,s2 which is stretched, we have
Tν,s2(βν,H ∗0) = Tν̂,s2(βν̂,H ∗1∗0). Hence the result holds for this high challenge.

If all the challenges issued by ν̂ at s2 are met, then ν̂ begins to act in
Subcase 4B of the high challenge. Suppose ν̂ calls a verification procedure at
stage s3. A similar argument shows that the high challenges issued by each of
the cycles of the verification procedure have the required properties. Because
a high challenged strategy ν̂ only issues more high challenges through Subcase
4A(ii) and 4B, this step completes the proof.

Lemma 3.26. For all x, if x 6∈ B, then ΓA(x) = 0.

Proof. As noted before Lemma 3.24, x ∈ B if and only if x = xη for a P strategy
η which reaches Case 4 of the P action. Therefore, if x 6∈ B, either x is never
equal to xη for a P strategy η or x is equal to xη for some P strategy η but
η is initialized before reaching Case 4 or x is permanently equal to xη for a P
strategy η but η never reaches Case 4.

First, suppose that x is never equal to xη. At the end of stage x, we define
ΓY (x) = 0 for all Y . Second, suppose x = xη but η is initialized at stage s
after xη = x is defined. Without loss of generality, assume s ≥ x. At the end of
stage s, η is initialized so x is not longer of the form xη. Therefore, we define
ΓY (x) = 0 for all Y . It is clear that in either of these cases, ΓA(x) = 0.

Third, suppose that xη is defined to be x at stage s, η is never initialized
after stage s and η never reaches Case 4. In this case, αη is permanently defined
at stage s and we set ΓTη′,s(αη∗0)(x) = 0. By Lemma 3.10, Tη′,s(αη ∗ 0) is on
the current path. We split into two subcases. For the first subcase, suppose η
never calls a verification procedure. By Lemma 3.14, Tη′,s(αη ∗ 0) remains on
the current path forever, so ΓA(x) = 0.
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For the other subcase, suppose that η does call a verification procedure
with σ0 = αη in Case 3 of the P action. Because η does not reach Case 4,
this verification procedure does not finish but also does not end because of
initialization. Therefore, some challenge in the series of challenges initiated by
η is never met. We need to examine which strategies can move the current
path below Tη′,s(αη ∗ 0) and check that each time the current path is moved
by a strategy challenged in this series of challenges, the strategy moving the
current path makes new Γ definition for xη = x which remains on the current
path unless another strategy which is also challenged in the series of challenges
initiated by η moves the current path later. The last such strategy to move the
current path will put up a Γ definition for xη = x using an oracle string which
remains on the current path forever and hence is an initial segment of A.

When η calls the verification procedure in Step 3 of a P action at stage t0 (to
follow the notation of the verification procedure) with the witness xη, no strategy
to the left of η is ever eligible to act again since we assume this verification
procedure is not removed by initialization. By Lemma 3.7, no strategy µ such
that η ( µ is eligible to act after t0 since we assume this procedure is never
completed. Also, η initializes all strategies of lower priority, so they work higher
on the trees.

If µ ⊆ η is a P strategy, then µ cannot move the current path without
initializing η contrary to our assumption. An R strategy µ with µ with µ∗L ⊆ η
or µ ∗ N ⊆ η does not move the current path, so we are left to consider R
strategies µ with µ ∗H ⊆ η.

If µ∗H ⊆ η, then µ could move the current path in Subcase 4A(ii) or 4B of a
high challenge issued in the series of challenges initiated by η. In this case, when
µ moves the current path, it initializes all strategies of lower priority than µ ∗L
(including µ ∗L). Therefore, these strategies are again forced to work higher on
the tree than the new Γ definitions set up by µ (which we will examine below)
and so they cannot move the path below the oracle string used by µ in its new
Γ definition. Finally, notice that by Lemma 3.25, xµ = xη so the Γ definitions
made by µ are for xη.

We split the remainder of the proof into two cases which correspond to the
two ways the current path can be moved below a string used as a Γ definition on
xη. Because one of the cycles in the verification procedure called by η does not
end, we assume it is the nth cycle. (We follow the notation of the verification
procedure and the notation used in Lemma 3.15. In particular, we assume this
nth cycle starts at stage tn by following a link from µn−1 and that it defines µn
and continues the verification procedure.) The first case is when η moves the
current path in the nth cycle but none of the strategies it challenges high move
the current path after stage tn. The second case is when at least one of the
high challenged strategies such that ν ∗H ⊆ µn does move the current path in
Subcase 4A(ii) or 4B of the high challenge.

First, suppose that in the nth cycle of the verification procedure called by
η, none of the R strategies challenged high move the current path. For the
nth cycle, η defines ΓTµn,tn (σn+1∗0)(xη) = 0 and initializes all lower priority
strategies. We claim that the current path continues to go through Tµn,tn(σn+1∗
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0) at all future stages (and hence ΓA(xη) = 0). The strategies to the left of η
are never able to act after stage tn (since they would initialize η), the strategies
ν such that ν ⊆ µn do not move the current path by assumption and the
strategies ν such that µn ∗ N ⊆ ν or ν is to the right of µn in the tree of
strategies are initialized at stage tn by η and hence work higher on the trees
than Tµn,tn(σn+1 ∗ 0). Furthermore, because the nth cycle for η never ends, one
of the strategies ν ⊆ µn never meets its low or high challenge. Therefore, the
only strategies eligible to act after stage tn are to the right of µn, satisfy ν ⊆ µn
or satisfy µn ∗N ⊆ ν (since if µn ever took outcome µn ∗L, it would follow the
link back to η ending the nth cycle). None of these strategies move the current
path below Tµn,tn(σn+1 ∗ 0), so it remains on the current path forever.

Second, suppose that some strategy ν which is high challenged in the series
of challenges initiated by η does move the current path. By Lemma 3.25, when
ν is challenged high at stage t ≥ tn, then ΓTν,t(βν,H∗0)(xν) = 0 and xν = xη.
(Remember that ν is challenged high in the series of challenges initiated by η,
so it may not have been directly challenged high by η.) Whenever ν acts to
move the current path, it puts up a new Γ definition for xν .

In particular, if ν acts in Subcase 4A(ii) at stage s1 > t, it defines
ΓTν,s1 (βν,H∗1∗0)(xη) = 0 and issues high challenges to µ such that µ ∗H ⊆ ν. If
one of these high challenged strategies µ moves the current path, it takes over
the Γ definition on xµ = xν = xη. If we return to ν at stage s2 > s1, then by
Lemma 3.16, Tν,s1(βν,H ∗ 1 ∗ 0) ⊆ Tν,s2(βν,s2 ∗ 1 ∗ 0), Tν,s2(βν,H ∗ 1 ∗ 0) is on
the current path and it remains on the current path unless ν calls a verification
procedure in Subcase 4B of the high challenge. Therefore, if ν never calls this
verification procedure, the computation ΓTν,s2 (βν,H∗1∗0)(xν) = 0 implies that
ΓA(xη) = 0 as required.

Suppose ν does call a verification procedure in Subcase 4B of its high chal-
lenge. This verification procedure takes over the Γ definitions on xν . Either
some cycle of this verification procedure doesn’t finish or the verification pro-
cedure does finish. In the former case, suppose the nth cycle is started but not
finished. If none of the strategies challenged high by this cycle move the current
path, then the argument given above in the similar case for η tells us that the
Γ definition made by ν for xν in the nth cycle implies ΓA(xν) = ΓA(xη) = 0 as
required. If one of the strategies challenged high by the nth cycle in ν’s verifica-
tion procedure does move the current path, then it takes over the Γ definition
on xν (and we repeat this argument for that strategy).

Finally, consider the latter case in the previous paragraph: the verification
procedure called by ν ends and ν meets its high challenge at stage s3 > s2. In
this case, the current path is moved to pass through Tν,s3(βν,H ∗ 0). By Lemma
3.16, Tν,t(βν,H ∗ 0) ⊆ Tν,s3(βν,H ∗ 0) (recall that t was the stage at which ν was
challenged high), so we have ΓTν,s3 (βν,H∗0)(xν) = 0. The string Tν,s3(βν,H ∗ 0)
remains on the current path unless another strategy moves the current path
below this node. However, ν takes outcome ν ∗ H at stage s3, so it initializes
all strategies to the right of ν ∗ H and none of these strategies can move the
current path below this node. If ν is the last strategy which is high challenged
in the series of challenges initiated by η and which moves the current path, then
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Tν,s3(βν,H ∗ 0) remains on the current path forever and we have ΓA(xν) = 0 as
required. Otherwise, the next strategy which is in this series and which moves
the current path takes over the Γ definition on xη. The last such strategy to
move the current path leaves a Γ definition on xη for which the oracle string
remains on the current path forever.

We get the following result as an immediate consequence of Lemmas 3.24
and 3.26.

Lemma 3.27. ΓA = B, so B ≤T A.

Lemma 3.28. All P requirements are met, so B is a noncomputable c.e. set.

Proof. Fix a P requirement and let η be the strategy on the true path for this
requirement. Let xη be the final witness for η and assume it is defined by stage
s. If xη 6∈Wη, then η takes outcome η ∗W at every η stage after s and η never
acts in Step 4 of the P action. Therefore, xη 6∈ B and P is won.

If xη ∈ Wη, then there is an η stage after s at which η calls the verification
procedure in Step 3. By Lemma 3.15, this procedure ends after finitely many η
stages so η eventually reaches Step 4 and enumerates xη into B winning P .

To complete our proof, we give the computation lemmas showing that A has
minimal wtt degree.

Lemma 3.29. If η ∗N is on the true path, then [η]A is not total.

Proof. Fix an η stage s such that η takes outcome η ∗N at every η stage after
s. Because η takes outcome η ∗N at stage s, either η is acting in Subcase 4B of
a high challenge or η is low challenged. We consider each of these possibilities
separately.

Assume that η has been high challenged by η̂ before stage s and that η acts
in Subcase 4B of the high challenge for the first time at stage s. At the previous
η stage t < s, η must have acted in Subcase 4A(ii) of the high challenge and
defined the parameter wη. As in the proof of Lemma 3.16, Tη,s(βη,H∗1∗0) ⊆ Aη,s
and the length of this node is longer than the use of [η] on wη. The current
path is not moved below Tη,s(βη,H ∗ 1 ∗ 0) unless η moves it because it sees
[η]Tη,s(βη,H∗1∗0)(wη) converge. However, if η sees this computation converge, it
moves the current path and takes outcome η ∗H, contrary to our assumption.
Therefore, η never sees this computation converge and the current path never
moves below Tη,s(βη,H ∗ 1 ∗ 0). Because the use of [η] on wη is less than the
length of Tη,s(βη,H ∗ 1 ∗ 0) and this node remains forever on the current path,
we have that [η]A(wη) diverges and hence [η]A is not total.

Assume that η is low challenged by η̂ at stage t < s and s is the first η
stage after t. By Lemma 3.19 (and because η never meets this low challenge),
Tη,s(βη,L ∗ 1) remains on the current path forever. By Lemma 3.23, there is a
stage u > s and a string γ such that βη,L ∗ 1 ⊆ γ, Tη,u(γ) has reached its limit,
U(Tη,u(γ)) = Gη ∗ L, Tη,u(γ) ⊆ A and the length of Tη,u(γ) is longer than the
[η] use of any number in Xη. If [η]Tη,u(γ)(x) converges for each x ∈ Xη, then
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eventually η sees these computations and either meets its low challenge (taking
outcome η ∗ L) or finds a new high split (taking outcome η ∗H). Either option
violates our assumptions and hence there must be at least one number x ∈ Xη

for which [η]Tη,u(γ)(x) diverges. Because Tη,u(γ) ⊆ A and the length of Tη,u(γ)
is longer than the [η] use of each x ∈ Xη, there must be at least one number
x ∈ Xη for which [η]A(x) diverges. Therefore, [η]A is not total.

Lemma 3.30. Let η be an R strategy such that η ∗ L is on the true path. If
[η]A is total, then [η]A is computable.

Proof. Let s be a stage such that αη is permanently defined by s and η never
takes outcome η∗H after s. By Lemma 3.20 (since η∗L is never initialized after
s), η meets all low challenges issued after stage s. Furthermore, if µ ∗ L ⊆ η,
then µ meets all low challenges after stage s and if µ ∗H ⊆ η, then µ meets all
high challenges after s.

To calculate [η]A(x), let t0 > s be an η stage and let γ0 be a string such
that η takes outcome η ∗ L at t0, Tη,t0(γ0) ⊆ Aη,t0 , U(Tη,t0(γ0)) = Gη ∗ L and

[η]
Tη,t0 (γ0)
t0 (x) converges. (Such t0 and η0 must exist by Lemma 3.23 since [η]A

is total.) We claim that [η]A(x) = [η]
Tη,t0 (γ0)
t0 (x).

To prove the claim, we need to examine how the current path could be moved
below Tη,t0(γ0). Suppose µ moves the current path below this node after stage
t0. We cannot have µ <L η (since these do not act after stage s), η <L µ or
η ∗N ⊆ µ (since these strategies are initialized at t0). Suppose µ ( η. µ cannot
be a P strategy, since it would initialize η when it moved the path. If µ is an
R strategy, then it can only move the current path when it is high challenged.
If µ ∗ L ⊆ η or µ ∗N ⊆ η, then µ would initialize η when it moved the current
path. Therefore, assume µ ∗ H ⊆ η. By Lemma 3.2, µ is not high challenged
when η acts at stage t0. Therefore, it must become high challenged later before
moving the current path. However, if γµ is such that Tµ,t0(γµ) = Tη,t0(γ0), then
Tµ,t0(γµ) is already µ high splitting. Therefore, any movement of the current
path by µ in a high challenge would be above this node. It follows that no
strategy µ ( η moves the current path below this node after stage t0.

We also cannot have µ = η since η can only be high challenged by strategies
extending η ∗H and no such strategy is eligible to act after stage s. Therefore,
the only strategies µ which could move the current path below Tη,t0(γ0) after
stage t0 satisfy η ∗ L ⊆ µ.

Let µ be the first strategy which causes such a movement in the current
path below Tη,t0(γ0) after stage t0 and let u1 > t0 be the stage at which it
moves the current path. To be specific with our notation, we assume that µ
is a P strategy which is just calling a verification procedure. However, similar
arguments handle the cases when µ is an R strategy acting in Subcase 4A(ii) or
4B of a high challenge and when µ is either a P or R strategy which is returning
to a previously called verification procedure.

In this situation, µ moves the current path from Tµ′,u1
(αµ∗0) to Tµ′,u1

(αµ∗1)
and defines βη,L to be the string such that the current path moved from
Tη,u1

(βη,L ∗ 0) to Tη,u1
(βη,L ∗ 1). Because this movement is below Tη,t0(γ0),
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we have Tη,u1(βη,L ∗ 0) ⊆ Tη,t0(γ0). If [η]Tη,u1 (βη,L)(x) converges, then we
must have [η]Tη,u1 (βη,L)(x) = [η]Tη,t0 (γ0)(x) and hence this movement of the
current path does not effect our computation procedure. Therefore, assume
that [η]Tη,u1 (βη,L)(x) diverges. In this case, x ∈ Xη, so µ challenges η low and
any link which is placed by µ is from a strategy ν such that η ⊆ ν.

By the comments in the first paragraph of this proof, the challenges issued
by µ to higher priority strategies than η are eventually met and η eventually
meets the low challenge. Let t1 > u1 be the stage at which η meets this low
challenge. At this stage, η has found a string γ1 such that Tη,t1(γ1) ⊆ Aη,t1 ,

U(Tη,t1(γ1)) = Gη ∗L and [η]
Tη,t1 (γ1)
t1 (x) converges and is equal to [η]

Tη,t0 (γ0)
t0 (x).

We can now repeat this argument. Let µ2 be the first strategy which moves the
current path below Tη,t1(γ1) at some stage u2 ≥ t1. µ2 must satisfy η ∗L ⊆ µ2.
Just as above, there would be a stage t2 > t1 and a string γ2 such that Tη,t2(γ2) is

on the new current path Aη,t2 , U(Tη,t2(γ2)) = Gη∗L and [η]
Tη,t2 (γ2)
t2 (x) converges

and is equal to [η]
Tη,t1 (γ1)
t1 (x) = [η]

Tη,t0 (γ0)
t0 (x). Because [η] is a wtt procedure

and because the current path settles down on longer and longer initial segments,
these path movements below the use of [η] on x can only happen finitely often.

Therefore, by induction we get that [η]
Tη,t0 (γ0)
t0 (x) = [η]A(x).

Lemma 3.31. Let η be an R strategy such that η ∗ H is on the true path. If
[η]A is total, then A ≤wtt [η]A.

Proof. Fix η such that η ∗ H is on the true path and [η]A is total. Let sλ
be a stage such that Tη,sλ(λ) has reached its final value (and hence η is never
initialized after sλ) and U(Tη,sλ(λ)) = Gη ∗H. We have Tη,sλ(λ) ⊆ Aη,sλ . By
Lemma 3.20, Tη,sλ(λ) has reached its final value and Tη,sλ(λ) = Tη(λ) ⊆ A. We
define a Turing procedure ∆X

η for any oracle X, show that if X = [η]A, then

∆X
η = A, and finally show that ∆η has computably bounded use for any oracle

and hence is a wtt procedure.

Fix any oracle set X. We define ∆X
η by defining a (possibly finite) sequence

of strings λ = σ0 ⊆ σ1 ⊆ · · · and stages sλ = t0 < t1 < · · · using oracle
questions answered by X. At each stage ti we will have the following properties:
Tη,ti(σi) ⊆ Aη,ti and U(Tη,ti(σi)) = Gη ∗H (and hence Tη,ti(σi) has reached its
final value by Lemma 3.22). The comments in the first paragraph explain why
these properties hold for σ0 and t0. Once σi and ti are calculated, let li = the
length of Tη,ti(σi) and set ∆X

η � li = Tη,ti(σi).

Assume we have used X to calculate σi and ti. Because U(Tη,ti(σi)) = Gη ∗
H, there is a splitting witness xi such that [η]

Tη,ti (σi∗0)
ti (xi) and [η]

Tη,ti (σi∗1)
ti (xi)

converge and are unequal. Check which computation agrees with X(xi) and set

σi+1 = σi ∗ 0 or σi ∗ 1 so that [η]
Tη,ti (σi+1)
ti (xi) = X(xi). Wait for a stage ti+1

such that Tη,ti+1
(σi+1) ⊆ Aη,ti+1

and U(Tη,ti+1
(σi+1)) = Gη ∗ H. If we never

see such a stage, then ∆X
η diverges on all inputs ≥ li. If we do see such a stage,

then let li+1 = the length of Tη,ti+1
(σi+1) and set ∆X

η � li+1 = Tη,ti+1
(σi+1).

This completes the description of ∆η.
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Next, we check that if X = [η]A, then ∆X
η = A. To prove this fact, we

show by induction on i that σi exists and Tη,ti(σi) ⊆ A. When i = 0, this is
clear. Assume that σi is defined and Tη,ti(σi) ⊆ A. Let xi be a number such

that [η]Tη,ti (σi∗0)(xi) and [η]
Tη,ti (σi∗1)
ti (xi) converge and are unequal. By Lemma

3.22 and the proof of Lemma 3.23, we know that Tη,ti(σi) has reached its final
value. Furthermore, we know that the values of Tη,ti(σi ∗ 0) and Tη,ti(σi ∗ 1)
can change at most finitely often after stage ti, that these changes are due to
stretching, and that the stretched values of these nodes always extended their
prestretched values. Therefore, one of the strings Tη,ti(σi ∗ 0) or Tη,ti(σi ∗ 1)
has to be an initial segment of A and because X = [η]A, σi+1 must be defined
such that Tη,ti(σi+1) ⊆ A. Eventually, the current path has to run through
Tη,ti(σi+1) (although this node may have been stretched by the time it does)
and because η ∗H is on the true path, there must be a stage ti+1 > ti such that
Tη,ti(σi+1) ⊆ Tη,ti+1(σi+1) ⊆ Aη,ti+1 and U(Tη,ti+1(σi+1)) = Gη ∗H. Therefore,
we eventually define ti+1 and have Tη,ti+1

(σi+1) ⊆ A as required.

Finally, we show that the use of ∆η is computably bounded for all oracles
and hence it is a wtt procedure. To bound the use of this procedure on input
m, calculate as follows. Wait for a stage t ≥ sλ such that t > m and there is a
string σ such that Tη,t(σ) ⊆ Aη,t, U(Tη,t(σ)) = Gη ∗ H, Tη,t(σ) becomes high
splitting at t and the length of Tη,t(σ) is greater than m. (Because [η]A is total
and η ∗ H is on the true path such a pair σ and t must exist.) Let k be the
maximum of all [η] high splitting witnesses seen by η during the course of the
construction up to stage t. We claim that the use of ∆η on input m for any
oracle X is bounded by k.

To prove our claim, let X be any oracle and let σi and ti be the last pair
defined by the procedure ∆X

η by the stage t indicated above for use calculation
on m. (Because σ0 and t0 are defined at stage sλ and t ≥ sλ, i ≥ 0 is defined.)
Let xi be the splitting witness for this pair of strings, let σi+1 be either σi ∗ 0
or σi ∗ 1 depending on which gives the computation that agrees with X(xi) and
let li denote the length of Tη,ti(σi). Because the string σi is defined by stage t,
we know k ≥ xi. Furthermore, all the splitting witnesses which have been used
to determine σi are ≤ k. If m < li, then ∆X

η has already converged on m and
has use ≤ k since the splitting witnesses (which are the only values of X which
we consult) are all ≤ k.

Assume m ≥ li. First, we claim that at stage t, U(Tη,t(σi+1)) = Gη ∗L. This
follows because we only look for high splits along the current path. Therefore,
if U(Tη,t(σi+1)) = Gη ∗ H, then at some stage u between ti and t, we had
Tη,u(σi+1) ⊆ Aη,u and it became high splitting. However, in this case, ti+1 =
u ≤ t, contradicting the fact that ti+1 is not yet defined at stage t.

Second, we claim that at stage t, Tη,t(σi+1) is not on the current path. This
follows because at stage t, we just found that a new node Tη,t(σ) on the current
path which is high splitting. Furthermore, Tη,t(σ) has length > m. Hence
Tη,t(σ) is not equal to Tη,t(σi) (which has length ≤ m), so t > ti. Thus, if
Tη,t(σi+1) were along the current path as well, then it would be high splitting
and we would have defined ti+1 by stage t.
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Therefore, we know that at stage t, Tη,t(σi+1) is not on the current path
and it has state Gη ∗ L. There are now two possibilities. First, it is possible
that there is never a stage ti+1. In this case, ∆X

η never consults the oracle again
(and so has use bounded by k) and diverges on m. Second, it is possible that
there is a stage ti+1 > t. In this case, some P or R strategy must move the
current path so that it passes through Tη,t(σi+1) at a stage u > t. Because t is
an η stage at which η takes outcome η ∗H, all strategies to the right of η ∗H
in the tree of strategies are initialized at t and work higher on the trees. By
Lemma 3.2, if ν ∗ H ⊆ η, then ν is not high challenged at stage t. Therefore,
the first strategy to move the current path so that it passes through Tη,t(σi+1)
must satisfy η ∗ H ⊆ µ. Let u > t be the stage when µ moves the current
path. Because η ∗ H ⊆ µ, U(Tη,u(σi)) = Gη ∗ H and Tη,u(σi+1) = Gη ∗ L
(before it is stretched), Tη,u(σi+1) is stretched to have long length when µ
moves the current path. In particular, Tη,u(σi+1) has length longer than m.
Therefore, when Tη,u(σi+1) later reaches state Gη ∗ H and ti+1 is defined, we
set li+1 = the length of Tη,ti+1

(σi+1), so li+1 > m and ∆X
η � li+1 = Tη,ti+1

(σi+1).
Furthermore, we know that Tη,ti+1(σi ∗0) extends Tη,ti(σi ∗0) and Tη,ti+1(σi ∗1)
extends Tη,ti(σi ∗ 1). Therefore, xi ≤ k is still a splitting witness for these two
nodes. Hence, we do not need any more of the oracle X to calculate ∆X

η � li+1.
This completes the proof that the use is bounded by k.

This concludes the proof of the main theorem, Theorem 1.1.
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Chapter 4

Limiting results

In this chapter, we prove Theorems 1.2 and 1.3 giving limitations on possible
extensions of Theorem 1.1. For convenience, we restate these theorems here.

Theorem 1.2. No c.e. Turing degree can contain a set of which is wtt-minimal.

Theorem 1.3. Let V be a promptly simple c.e. set and let A be a ∆0
2 set such

that A ≥T V . There exists a c.e. set B such that 0 <T B ≤wtt A.

To prove Theorem 1.2, we need to show that for any set A of c.e. degree,
there is a set B such that ∅ <T B <wtt A. In Section 4.1, we prove that
such a set B cannot be obtained uniformly from A. In Section 4.2, we prove
Theorem 1.2 under the assumption that A has an almost c.e. approximation
(which is defined in that section) and we develop a closely related method for
approximating general sets of c.e. Turing degree. We complete the proof of
Theorem 1.2 in Section 4.3 and we prove Theorem 1.3 in Section 4.4.

4.1 Uniformity issues

Consider how we might try to alter the proof of Theorem 1.1 to make the set A
have c.e. Turing degree. As before we build A via a ∆0

2 approximation As and
our R requirements (to make A have minimal wtt degree) remain the same.

To ensure that A has c.e. Turing degree, we build a modulus function for A.
Recall that a total function f is a modulus function for a ∆0

2 approximation As
to A if the following condition holds for every x.

∀s ≥ f(x)∀y ≤ x (y ∈ As ⇔ y ∈ A)

In other words, the ∆0
2 approximation has settled to its limiting values on all

numbers up to x by stage f(x). By the Modulus Lemma, A has c.e. Turing
degree if and only if there is a ∆0

2 approximation As to A such that A can
compute a modulus for this approximation. Therefore, rather than directly
constructing a c.e. set B as in the proof of Theorem 1.1, we can build a Turing

67
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functional Φ such that ΦA is a modulus function for our approximation As. To
ensure that A is not computable, we need to satisfy diagonalization requirements
Pe for each index e (described below).

We begin with a proposition that says we can carry out such a construction
as long as we consider only a single R requirement. The proof of this propo-
sition is similar to (but considerably simpler than) the proof of Theorem 1.1,
so we merely sketch the argument. To simplify the technical details in this
sketch, we will be somewhat informal about the diagonalization requirements
Pe. We view Pe as requiring that we respond to some Σ0

1 event dictated by We

(namely a designated witness entering We) by moving the approximation As at
a predetermined place. More formally, we would define an auxiliary c.e. set B
and a Turing functional Γ such that ΓA = B and our requirement Pe would be
B 6= We. To avoid complicated our sketch with standard details for constructing
Γ and B, we limit our Pe strategies to moving the current path and forbidding
cones.

Proposition 4.1. For any wtt-functional [e], we can build a non-computable set
A of c.e. Turing degree such that if [e]A is total, then either [e]A is computable
or [e]A ≥wtt A.

Proof. We build a computable approximation As to A and a Turing functional
Φ such that ΦA is a modulus function for this approximation. Because we are
only concerned with the R requirement given by [e], we build a single sequence
of computable trees Te,s and hence we drop the index e on these trees. To
build Ts, we attempt to find [e]-splits along the current path As and we will
use stretching when we need to verify computations through low challenges. As
usual, we obtain A ≤wtt [e]A if the nodes of Ts along As are all eventually in
the high state, while [e]A will be computable if sufficiently long nodes remain
in the low state permanently.

Later, we will want to use the fact that this construction is uniform in the
index e. To ensure this uniformity, we need to allow parts of the trees Ts to be
in a non-total state while we wait for low challenges to be met.

The basic strategy for Pe is to choose a node α such that Ts(α) and T (α ∗0)
are on the current path and a large diagonalizing witness x. If x later enters
We, Pe would like to move the current path from Ts(α ∗ 0) to Ts(α ∗ 1) and
forbid the cone above Ts(α ∗ 0) so that this movement is permanent. If Ts(α)
is in the high [e]-state, then there is no problem with immediately forbidding
Ts(α ∗ 0) as there is only one R requirement. However, if Ts(α) is in the low
[e]-state, then we would like to stretch Ts(α ∗ 1) to have length longer than any
oracle Ts(β) with α∗0 ⊆ β used in a computation [e]Ts(β)(y) we have seen so far
and challenge Pe to verify these computations using the new value of Ts(α ∗ 1)
as the oracle. (Below, we refer to this process simply as stretching Ts(α ∗ 1).)
There are three possible outcomes: we verify all of the previous computations
allowing the construction to continue in the low state using Ts(α ∗ 1) in place
of Ts(α ∗ 0) giving us permission to forbid Ts(α ∗ 0), we find a computation
allowing us to put up a new high split and make progress towards making the
sequence of trees high splitting (and hence abandon this attempt at satisfying
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Pe), or we have some computation which is never verified ensuring that [e]A is
not total as long as Ts(α ∗ 1) remains on the current path.

The basic strategy for defining ΦA is to choose strings δ such that Ts(δ) is on
the current path As and define ΦTs(δ)(|Ts(δ′)|) = s at stage s. This definition
makes a promise that if Ts(δ) is an initial segment of A, then the approximation
to A never changes below |Ts(δ′)| after stage s. In other words, if we ever
move the current path away from Ts(δ

′) at a future stage, then Ts(δ) must
be immediately forbidden. For this strategy to succeed, we need to eventually
choose strings δ of arbitrarily long length for which we make such definitions
and Ts(δ) is an initial segment of A.

There is a significant conflict between the strategies for Pe and for defining
ΦA. Suppose Pe has chosen a node α with Ts(α) in the low state and would
like to diagonalize at Ts(α) if x later enters We. While waiting for x to enter
We, we need to make definitions for ΦA involving strings δ extending α ∗ 0. For
example, we may define ΦTs0 (α∗0∗0)(|Ts0(α ∗0)|) = s0 at some stage s0 > s. If x
enters We at stage s1 > s0 (with Ts1(α) still in the low state), then Pe wants to
move the current path from Ts1(α ∗ 0) to Ts1(α ∗ 1) and freeze (but not forbid)
Ts1(α ∗ 0). Until the low challenge is met, we cannot forbid Ts1(α ∗ 0) because
we may need to use an extension of Ts1(α ∗ 0) as half of a new high split if we
get a different computation using (the stretched) Ts1(α ∗ 1) as oracle. However,
as soon as we move the current path away from Ts1(α ∗ 0) = Ts0(α ∗ 0), the
promise accompanying the definition of ΦTs0 (α∗0∗0)(|Ts0(α ∗ 0)|) = s0 requires
us to immediately forbid Ts0(α ∗ 0 ∗ 0) = Ts1(α ∗ 0 ∗ 0). But, we may well have
seen computations using oracles extending Ts0(α ∗ 0 ∗ 0) so we are prohibited
from forbidding this node until the computations are verified.

To solve this conflict, we modify the Pe strategy to issue a sequence of low
challenges allowing it to move the current path at a decreasing sequence of
nodes eventually culminating in moving the current path at the diagonalizing
node. Let s be a stage at which Pe sees its witness xe enter We and wants to
move the current path from Ts(αe ∗ 0) to Ts(αe ∗ 1) where Ts(αe) is in the low
state. For k ≤ s, let γk be the string of length k such that Ts(γk) is on the
current path As. For simplicity of notation, we assume γk = 0k and we assume
that we have not looked at any computations using an oracle extending Ts(γs).
Some of these strings γk may have been used to make Φ definitions of the form
ΦTs(γk+1)(|Ts(γk)|) = ΦTs(γk∗0)(|Ts(γk)|) ≤ s. Again, to simplify the notation,
assume that strings of the form γ2` have been used in the Φ definitions and that
the stage s is even. Throughout the description below, we assume no new high
splits are found below Ts(αe) and so all the nodes mentioned retain their values
unless they are stretched.

Pe begins by stretching Ts(γs−2 ∗ 1) and moving the current path from
Ts(γs−2 ∗ 0) = Ts(γs−1) to (the stretched) Ts(γs−2 ∗ 1). Since s is even, we
have defined ΦTs(γs)(|Ts(γs−1)|) = s, and hence must forbid Ts(γs). However,
this action is fine because we have not seen any computations using oracles ex-
tending Ts(γs). Notice that Ts(γs−2 ∗ 0) = Ts(γs−1) is not forbidden because
Ts(γs−2 ∗ 0 ∗ 1) = Ts(γs−1 ∗ 1) remains a viable extension of this node.

Pe challenges [e]Ts(γs−2∗1) to verify all of the computations which used oracles



70 CHAPTER 4. LIMITING RESULTS

extending Ts(γs−2 ∗ 0) = Ts(γs−1). Because Ts(γs−2 ∗ 1) was stretched, we do
not need to look at any oracles extending Ts(γs−2 ∗ 1) during this verification
process. Furthermore, we set ΦTs(γs−2∗1∗0)(|Ts(γs−2 ∗ 1)|) = s to make progress
on the definition of ΦA. While waiting for these computations to converge, we
launch versions of each P requirement to work in the cone above Ts(γs−2 ∗1∗0).
Because these versions of the P requirements can assume [e]A will be partial (as
we haven’t verified the low challenge yet), they can immediately forbid nodes
when they need to diagonalize. Therefore, if the low challenge is not met, [e]A

will be partial and we will still guarantee that A is not computable and ΦA

is a modulus function (as we also continue to make definitions for ΦA above
Ts(γs−2 ∗ 1)).

Assume that the low challenge is eventually met at stage s1 > s. At
this point, all of the computations which used oracles extending Ts(γs−2 ∗ 0)
are now held by Ts1(γs−2 ∗ 1) and therefore, we have permission to forbid
Ts(γs−2 ∗ 0) = Ts1(γs−2 ∗ 0) = Ts1(γs−1). Pe now moves the current path for
the second time as follows. We stretch Ts1(γs−3 ∗ 1) = Ts(γs−3 ∗ 1) to have long
length and move the current path from Ts(γs−3 ∗ 0) = Ts(γs−2) to Ts(γs−3 ∗ 1).
(These nodes have retained their values at s1 except for the stretching.) Because
ΦTs(γs−2∗1∗0)(|Ts(γs−2 ∗1)|) = s and we moved the path below Ts(γs−2 ∗1), this
action requires us to forbid the cone above Ts(γs−2 ∗ 1 ∗ 0) which is allowed
because we did not look at any computations in this cone during the low chal-
lenge. However, the node Ts(γs−2 ∗ 1) remains viable and since it holds the
computations originally obtained above Ts(γs−2 ∗ 0) = Ts(γs−1), we can forbid
the cone above Ts(γs−1) as well.

We now issue the second low challenge for [e]Ts1 (γs−3∗1) to verify the com-
putations which have been obtained using oracles extending Ts1(γs−3 ∗ 0) =
Ts(γs−2). The argument repeats exactly as above. Because Ts1(γs−3 ∗ 1) was
stretched, we do not need to look at computations involving nodes extending
Ts1(γs−3 ∗ 1) during the verification. We define ΦTs1 (γs−3∗1∗0)(|Ts1(γs−3 ∗ 1)|) =
s1 to extend the definition of ΦA. Each P strategy will start a version working
in the cone above Ts1(γs−3 ∗ 1 ∗ 0) assuming that the low challenge is never
verified. If we never verify the low computations, then we win because [e]A

is partial and we still ensure A is not computable and ΦA is a modulus func-
tion. If the low challenge is met at s2 > s1, then we have permission to forbid
Ts(γs−2) = Ts2(γs−2) as the computations are now held by Ts1(γs−3 ∗ 1).

The pattern now repeats, but there is one final comment to make about
this process. We stretch Ts2(γs−4 ∗ 1) = Ts(γs−4 ∗ 1) and move the current
path from Ts2(γs−4 ∗ 0) = Ts(γs−3) to (the stretched) Ts2(γs−4 ∗ 1). Because s
was an even stage, s − 2 is even and hence at stage s, we had already defined
ΦTs(γs−2)(|Ts(γs−3)|) ≤ s. Therefore, moving the path away from Ts(γs−3)
requires us to immediately forbid Ts(γs−2). However, we have just obtained
permission to forbid Ts(γs−2). In general, our method of working down the
current path in this inductive manner is set up to give us permission to forbid
the strings required by the definitions of Φ.

Continuing in this manner and using the fact that αe is one of the γk nodes
(and assuming the low challenges are all met), we eventually arrive at a stage u
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such that (our stretched) Tu(αe ∗ 0 ∗ 1) holds all of the computations originally
seen with oracles extending Ts(αe ∗ 0 ∗ 0). At this point, we have solved our
original conflict as we have permission to stretch Tu(αe ∗ 1) = Ts(αe ∗ 1), move
the current path from Tu(αe ∗ 0) = Ts(αe ∗ 0) to Tu(αe ∗ 1) and immediately
forbid Tu(αe∗0∗0) = Ts(αe∗0∗0). We issue one last low challenge for [e]Tu(αe∗1)

to verify the computations using oracles extending Tu(αe∗0) = Ts(αe∗0). If this
low challenge is never met, our construction succeeds because of the versions of
P strategies working above Tu(αe ∗1) under the assumption that [e]A is partial,
and if the low challenge is met, we win Pe by forbidding Ts(αe ∗ 0).

This completes our informal description of a Pe strategy which guesses Ts is
eventually permanently in the low state. As there are no additional conflicts, it
is straightforward to turn this description into a formal argument.

Corollary 4.2. There is no wtt-functional [e] such that for every noncom-
putable set A of c.e. Turing degree, [e]A is total and ∅ <T [e]A <wtt A.

By Corollary 4.2, we cannot use a single wtt-procedure to uniformly pro-
duce witnesses to Theorem 1.2. However, we could ask about other forms of
uniformity. Is there is a method of indexing sets of c.e. Turing degree and a
partial computable function f such that for a noncomputable set A with in-
dex e (in our indexing method), we are guaranteed that f(e) is defined and
∅ <T [f(e)]A <wtt A? We end this section by showing that this is not possible
for two natural methods of indexing sets of c.e. Turing degree.

Let Ze denote the e-th Σ0
2 set with the approximation Ze,s given by the e-th

Σ0
2 predicate. We say 〈e, i〉 is an c.e. degree index for a ∆0

2 set A of c.e. degree if
A = Ze and ΦAi is a modulus function for As = Ze,s. The proof of Proposition
4.1 is uniform relative to this indexing method in the sense that the proof
produces a computable function g(r) such that g(r) = 〈e, i〉 where 〈e, i〉 is a
c.e. degree index for a noncomputable set A of c.e. Turing degree such that if
[r]A is total, then either [r]A is computable or A ≤wtt [r]A.

Of course, we can give other types of indices for a set A of c.e. degree. For
example, we could index A by 〈e, k, i, j〉 where A = Ze, A = ΦWk

i and Wk = ΦAj .
By the proof of the Modulus Lemma, we can uniformly translate between indices
of these two different forms. Therefore, the results below apply to this type of
indexing as well.

To get our strong non-uniformity result, we will use the relativized version
of the Recursion Theorem with Parameters which says that for any computable
function f(x, y), there is a computable function n(y) such that for all oracles A
and for all y, ΦAn(y) = ΦAf(n(y),y) as partial functions. (See Soare [34] Chapters II

and III.) Moreover, by the proof of this theorem, these functions have identical
use functions. We will use this property to give a version of the recursion
theorem for wtt-indices.

Because we will shift between different types of indices, recall that an index
for a wtt-functional is a pair 〈e, i〉 where e is an index for a Turing functional Φe
and i is an index for a partial computable function ϕi. We compute [〈e, i〉]A(n)
by first calculating ϕi(0), . . . , ϕi(n). If any of these computations fail to con-
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verge, then [〈e, i〉]A(n) diverges without asking an oracle question. Otherwise,
we calculate ΦAe (n). We set [〈e, i〉]A(n) = ΦAe (n) if the computation converges
and never quarries the oracle about a number x > ϕi(n), and the computation
[〈e, i〉]A(n) diverges otherwise.

In general, for a partial computable function ϕi and a Turing functional Φe,
we say ϕi bounds the use of Φe if for all oracles A and all inputs n such that
ΦAe (n) converges, we have that ϕi(0), . . . , ϕi(n) also converge and the computa-
tion ΦAe (n) never quarries the oracle about a number x > ϕi(n).

To move from wtt-indices to Turing indices for functionals, we fix a com-
putable function T (e, i) which gives the Turing index for the wtt-functional
[〈e, i〉]. Note that if ϕi is a total computable function, then for every A and
n, ϕi(n) bounds the use of ΦAT (e,i) = [〈e, i〉]A in the usual sense. Furthermore,
if ϕi is partial, then ϕi bounds the use of ΦT (e,i) in the sense of the previous
paragraph and for every oracle A, ΦAT (e,i) is partial. More importantly for the

proof below, if Φe is a Turing functional such that ϕi (whether partial or total)
bounds the use of ΦAe for every A, then ΦAe = [〈e, i〉]A for every A. That is, Φe
and [〈e, i〉] are equal as functionals.

The next proposition gives a version of the recursion theorem for wtt-indices.
In the statement of this proposition, we think of the computable function f as
a mapping between wtt-indices.

Proposition 4.3. Let f(x, y) : N2 → N2 be a computable function. There is a
wtt-index 〈e, i〉 such that for all A, [〈e, i〉]A = [f(e, i)]A.

Proof. Let h(x, y) = T (f(x, y)). Since h(x, y) is a computable function from N2

to N, the relativized version of the Recursion Theorem with Parameters gives
us a computable function n(y) such that for all A and y, we have ΦAh(n(y),y) =

ΦAn(y) as partial functions and the uses of these computations are identical. By

the definitions of the functions h and T , ΦAh(n(y),y) = [f(n(y), y)]A for all A.

Therefore, the use of ΦAh(n(y),y), and hence also the use of ΦAn(y), is bounded by

ϕπ2(f(n(y),y)) where π2(〈u, v〉) = v is the second projection function on pairs.

Let k(y) be the computable function defined by k(y) = π2(f(n(y), y)). By
the Recursion Theorem, there is an index a such that ϕk(a) = ϕa as partial
computable functions. By the definition of k, we have

ϕπ2(f(n(a),a)) = ϕa

and so the use of ΦAn(a) is bounded by ϕa for every A. Therefore, we have

ΦAn(a) = [〈n(a), a〉]A and

[f(n(a), a)]A = ΦAh(n(a),a) = ΦAn(a) = [〈n(a), a〉]A

as required to prove the proposition with e = n(a) and i = a.

We end this section with the stronger non-uniformity result.
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Proposition 4.4. There is no partial computable function f(x, y) such that for
every pair 〈x, y〉 which is a c.e. degree index for a noncomputable ∆0

2 set (that
is, A = Zx is not computable and ΦAy is a modulus function for A), f(x, y)

converges and ∅ <T [f(x, y)]A <wtt A.

Proof. Suppose there is such a partial computable function f(x, y). Let g(e, i)
be the function witnessing the uniformity in the proof of Proposition 4.1. That
is, for all wtt-indices 〈e, i〉, g(e, i) = 〈x, y〉 where 〈x, y〉 is the c.e. degree index for
a noncomputable set A such that if [〈e, i〉]A is computable, then either [〈e, i〉]A
is computable or A ≤wtt [〈e.i〉]A. Note that the composition f ◦ g : N2 → N2 is
a total computable function.

Applying Proposition 4.3 to f ◦ g we get a pair 〈e, i〉 such that [〈e, i〉]X =
[f(g(e, i))]X for all sets X. Let A be the noncomputable set with c.e. degree
index g(e, i). The properties of f tell us that ∅ <T [f(g(e, i))]A <wtt A, so in
particular, [f(g(e, i))]A is total. Therefore, [〈e, i〉]A is also total. Since g(e, i)
is the c.e. degree index of A, the properties of g tell us that either [〈e, i〉]A =
[f(g(e, i))]A is computable or A ≤wtt [〈e, i〉]A = [f(g(e, i))]A, both of which give
a contradiction.

4.2 Almost c.e. approximations

Over the next two sections, we present the proof of Theorem 1.2. In this section,
we identify a specific type of approximation, called an almost c.e. approxima-
tion, such that if A has an almost c.e. approximation then it is straightforward
to verify that there is a c.e. set B ≤wtt A of the same Turing degree as A.
Thus, if such a set A is not computable, it cannot have minimal wtt-degree.
After completing this case, we show that any set with c.e. Turing degree has
an approximation which possesses most of the properties of an almost c.e. ap-
proximation. We will use this approximation to complete our proof in the next
section.

Definition 4.5. A set A has an almost c.e. approximation if there exists a com-
putable sequence of finite strings {σi[s] | i < s, s ∈ ω} satisfying the following
properties for every i < s.

(P1) σi[s] ⊆ σi+1[s].

(P2) σi[s] and σi[s+ 1] are either equal or incomparable.

(P3) If σi[s] and σi[s+1] are incomparable, then σi[t] and σi[s] are incomparable
for every t ≥ s+ 1.

(P4) For each i, lims σi[s] exists and A =
⋃
i lims σi[s].

An almost c.e. approximation of A is a sequence of “marked” initial segments
σ0[s] ⊆ σ1[s] ⊆ · · · ⊆ σs−1[s] ⊆ As at each stage s such that each time we move
away from a marked segment (i.e. σi[s] 6⊆ As+1), we cannot return to extend
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this marked segment at any future stage t > s+1 (i.e. σi[s] 6⊆ At). For example,
every c.e. set A has an almost c.e. approximation by setting σi[s] = As � i.

If A has an almost c.e. approximation, then A is clearly ∆0
2. However, an

almost c.e. approximation might not be either a left or right c.e. approximation
since we might restore part (but not all) of σi[s] at a future stage t after σi[s] 6⊆
As+1. We say that these approximations are almost c.e. because they act as c.e.
approximations to A modulo the marked segments. That is, σi[s] is a correct
initial segment of A as long as ∀t ≥ s (σi[s] ⊆ At), but as soon as this Π0

1

statement fails, we know that σi[s] is not a correct initial segment.

Proposition 4.6. If A has an almost c.e. approximation then there is a c.e. set
B such that A ≤T B ≤wtt A.

Proof. Fix an almost c.e. approximation {σi[s] | i < s, s ∈ ω} of A. For each
i < s let qsi = max{|σi[t]| | t ≤ s} and note that lims q

s
i exists since lims σi[s]

exists. Let B be the set of all triples 〈σ, q, i〉 such that for some s, σ = σi[s],
q = qsi and σi[s] 6= σi[s+ 1].

From its definition, B is a c.e. set. In particular, a triple 〈σ, q, i〉 is only
eligible to be enumerated into B if it has the form 〈σi[t], qti , i〉 with σi[t] and qti
calculated at some stage t of our almost c.e. approximation. Given such a triple
〈σi[t], qti , i〉, we eventually enumerate this triple into B if and only if σi[t] 6⊆ A.
For one direction, if σi[t] 6⊆ A, then we eventually see a stage s ≥ t such that
σi[t] = σi[s] 6⊆ As+1 and hence σi[s] 6= σi[s + 1]. For the other direction, if
σi[t] ⊆ A, then by Property (P3) of Definition 4.5, σi[t] = σi[s] for all s ≥ t.

To see that A ≤T B, for each i, we search for the least stage s such that
〈σi[s], qsi , i〉 6∈ B. By the previous paragraph, such s exists and is the least stage
such that σi[s] ⊆ A (or equivalently, the least stage such that σi[s] = limt σi[t]).
Since A =

⋃
i limt σi[t], this process suffices to compute A.

To see that B ≤wtt A, fix a triple 〈σ, q, i〉. We search for the first stage
s such that either qsi > q or σi[s] ⊆ A. Because there are only finitely many
possible values for strings σi[t] of length less than q and because the values of
qti are non-decreasing in t, the existence of this stage s follows from Property
(P3) of Definition 4.5. Furthermore, to compute s, we only need access to the
first q many bits of A.

Suppose qsi > q. Because the values qti are non-decreasing in t, we will not
enumerate 〈σ, q, i〉 into B after stage s. Therefore, 〈σ, q, i〉 ∈ B if and only if
there is a stage t < s such that σ = σi[t], q = qti and σi[t] 6= σi[t+ 1].

On the other hand if σi[s] ⊆ A then for every t ≥ s we have σi[t] = σi[s] and
qti = qsi , which again means that 〈σ, q, i〉 ∈ B if and only if there is some t < s
so that σ = σi[t], q = qti and σi[t] 6= σi[t+ 1].

Corollary 4.7. If A has an almost c.e. approximation, then A is not wtt-
minimal.

Proof. Corollary 4.7 follows immediately from Proposition 4.6 because the non-
computable c.e. wtt-degrees are dense.
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Corollary 4.7 completes the proof of Theorem 1.2 in the case when A has an
almost c.e. approximation. Our next goal is to show that if A has c.e. Turning
degree, then A can be approximated using strings which have Properties (P1),
(P2) and (P4) from Definition 4.5.

Fix a set A of non-computable c.e. Turing degree. As noted in the previous
section, by the Modulus Lemma, there is a ∆0

2 approximation As to A such that
A can compute a modulus for this approximation. We fix such an approximation
As and a Turing functional Ψ such that ΨA is a modulus for the approximation
As. Without loss of generality, we assume that if ΨAs(x)[s] converges, then
ΨAs(y)[s] also converges for all y < x.

We use the fixed ∆0
2 approximation As and functional Ψ to define a finite

set of strings at each stage s which will eventually give us a approximation to
A similar to an almost c.e. approximation. At each stage s, we compute a finite
sequence α0[s], . . . , αks [s] of initial segments of As as follows. Set α0[s] = As �
0 = 〈As(0)〉. If αi[s] is defined, then we define αi+1[s] to be the first string
found satisfying

(C1) αi[s] ⊆ αi+1[s] ⊆ As and

(C2) Ψαi+1[s](|αi[s]|)[s] converges.

If no such string αi+1[s] is found, then our sequence of approximating strings
ends with αi[s] and we set ks = i. To be more precise about the search procedure
to define αi+1[s], we first check whether ΨAs(|αi[s]|)[s] converges. If so, we take
αi+1[s] to be the shortest initial segment of As such that this computation does
not query any bits greater than |αi+1[s]| (so it satisfies (C2)) and such that it
is also long enough to satisfy (C1). Note that the sequence α0[s], . . . , αks [s] is
uniformly computable in s.

It is straightforward to check by induction on i that αi[s] is defined for
cofinitely many stages s and that lims αi[s] = αi exists and is an initial segment
of A. We want to make the set of these approximating sequences look more like
an almost c.e. approximation by speeding up the computation procedure ΨA to
ensure that at stage s, we define αi[s] for all i < s. That is, we want to think
of αi[s] performing the same approximating task as σi[s].

Definition 4.8. We say that s is an n-modulus stage if for all x ≤ n, there
is a t ≤ s such that ΨAs(x)[s] = t and for all stages u such that t ≤ u ≤ s,
Au � x = At � x.

Intuitively, s is an n-modulus stage if ΨAs [s] converges on all inputs up to
n and the output stages are consistent (as far as we can tell at stage s) with
ΨA being a modulus function for A. Since ΨA is a modulus function for A, it
follows that for each n, there will be cofinitely many n-modulus stages.

Definition 4.9. We say that s is an `-approximation stage if α0[s], . . . , α`−1[s]
are defined and s is an |α`−1[s]|-modulus stage.

That is, s is an `-approximation stage if αi[s] is defined for all i < ` and
for every x ≤ |α`−1[s]|, the computations ΨAs(x)[s] are consistent (as far as we
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can tell at stage s) with ΨA being a modulus function. Again, because ΨA is a
modulus function, there are cofinitely many `-approximation stages for each `.

Let 0 = t0 < t1 < t2 < · · · be a sequence of stages such that for s > 0, ts
is an s-approximation stage. We speed up our computations to run along these
chosen stages so we can treat stage s as an s-approximation stage. That is, we
assume that at stage s, the strings αi[s] are defined for i < s and that for all
x ≤ |αs−1[s]|, the computation ΨAs(x)[s] = t converges with t ≤ s and for all u
such that t ≤ u ≤ s, Au � x = At � x.

In particular, we now have an approximation to A by finite strings in stages
given by {αi[s] | i < s, s ∈ ω}. In the remained of this section, we verify
properties of these approximating sequence and show that they closely resemble
an almost c.e. approximation. First, we show that they satisfies Properties (P1)
and (P4) of an almost c.e. approximation.

Lemma 4.10. Our sequences {αi[s] | i < s, s ∈ ω} satisfy αi[s] ⊆ αi+1[s].
Furthermore, lims αi[s] exists and is an initial segment of A.

Proof. The first statement is just the the condition (C1). The proof of the
second statement is a straightforward induction on i. The base case is clear since
α0[s] = 〈As(0)〉 and As is a ∆0

2 approximation for A. For the induction case,
let si denote a stage such that αi[si] has reached its limiting value. The value
of αi+1[s] will stabilize by stage s > si such that ΦAs(|αi[si]|)[s] converges and
As is correct up to the maximum of |αi[si]| and the use of the computation.

Lemma 4.11. Let i < s < t be such that αi[s] ⊆ At. For all j ≤ i, we
have αj [t] = αj [s], and for all j < i and all u satisfying s ≤ u ≤ t, we have
αj [u] = αj [s].

Proof. We proceed by induction of i. Since α0[s] = 〈As(0)〉, the statement is
clear for i = 0. Assume the lemma holds for i and we prove it for i+1. Fix t > s
such that αi+1[s] ⊆ At. Since αi[s] ⊆ αi+1[s] ⊆ At, the induction hypothesis
gives that αj [t] = αj [s] for all j ≤ i and that αj [u] = αj [s] for all j < i and
s ≤ u ≤ t. Because αi[t] = αi[s] and αi+1[s] ⊆ At, we have that ΦAt(|αi[t]|)[t]
converges by the same computation as ΦAs(|αi[s]|)[s], and therefore, that αi+1[t]
is chosen to be the same initial segment as αi+1[s].

To complete the proof, assume for a contradiction that there is a stage u
with s < u < t such that αi[u] 6= αi[s]. Fix such a stage u. Since αi+1[s] is
defined, we know that

Ψαi+1[s](|αi[s]|)[s] = s′ ≤ s.

As above, since s < t, αi[s] = αi[t] and αi+1[s] ⊆ At, we have

ΨAt(|αi[t]|)[t] = s′.

Because t is an |αi[t]|-modulus stage, we have

Av � |αi[t]| = As′ � |αi[t]|
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for all stages v such that s′ ≤ v ≤ t. However, s′ ≤ s < u < t and αi[s] = αi[t],
so we conclude that

Au � |αi[s]| = As � |αi[s]| = αi[s]

and hence αi[s] ⊆ Au. By the induction hypothesis, αi[u] = αi[s] contradicting
our assumption that αi[u] 6= αi[s] and concluding the proof.

The next lemma shows that these approximating strings also satisfy Property
(P2) of an almost c.e. approximation.

Lemma 4.12. For all s and all i < s, αi[s] and αi[s + 1] are either equal or
incomparable.

Proof. The proof proceeds by induction on i with the case i = 0 holding trivially
by definition. For the induction case, assume i > 0 with αi[s] and αi[s + 1]
comparable. It follows that αi−1[s] and αi−1[s + 1] are comparable and hence
equal. In particular, |αi−1[s]| = |αi−1[s + 1]|. If αi[s + 1] ( αi[s] ⊆ As,
then the string αi[s + 1] was available as a potential value to be chosen for
αi[s] (i.e. it is an initial segment of As extending αi−1[s] and is long enough to
use as an oracle for the convergent computation on |αi−1[s]|) and so we would
have chosen αi[s] to be the shorter string αi[s+ 1]. Therefore, we cannot have
αi[s+ 1] ( αi[s] ⊆ As. So, we must have αi[s] ⊆ αi[s+ 1] ⊆ As+1 and hence by
Lemma 4.11, αi[s] = αi[s+ 1].

In this proof, we use the fact that s+ 1 > s but we never use the fact that
s + 1 is the stage immediately after s. Therefore, this proof really shows that
comparable strings αi[s] and αi[t] at stages s < t must be equal. We will use this
property repeatedly in the verification of the construction in the next section.

Lemma 4.13. For all stages s < t and indices i < s, if αi[s] and αi[t] are
comparable, then αi[s] = αi[t].

Our next fact shows that although the strings αi[s] may not satisfy Property
(P3) of an almost c.e. approximation, they do satisfy a similar property. We
can have stages s < u < t such that αi[s] 6= αi[u] but αi[s] = αi[t]. However,
when this happens, we can guarantee that the value of αi+1[t] is not equal to
any value of this string prior to stage s.

Lemma 4.14. Suppose αi[s] is defined and αi[s] 6⊆ Au for some u > s. At
every future stage t > u, if αi[s] ⊆ At, then αi+1[t] 6= αi+1[s′] for all s′ ≤ s.

Proof. Suppose that αi[s] 6⊆ Au for some u > s and fix a stage t > u such that
αi[s] ⊆ At. Assume for a contradiction that αi+1[t] = αi+1[s′] for a fixed s′ ≤ s.

By Lemma 4.11, αi[s] ⊆ At implies αi[s] = αi[t]. Similarly, αi[s
′] ⊆

αi+1[s′] = αi+1[t] ⊆ At implies αi[s
′] = αi[t] and hence αi[s

′] = αi[s]. However,
since αi[s] 6⊆ Au, we know that αi[s] 6= αi[u] and so αi[s

′] 6= αi[u]. Putting these
facts together, we have stages s′ < u < t with αi[u] 6= αi[s

′] and αi+1[s′] ⊆ At
contradicting Lemma 4.11.
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We next give a slight strengthening of this lemma. We say that a string αi[s]
is new if αi[s] 6= αi[s

′] for all s′ < s. Similarly, we say αi[s] was new at stage t
(or first appeared at stage t) if t ≤ s, αi[s] = αi[t] and αi[t] was new.

Lemma 4.15. If s0 < s1 < s2 are stages such that αi[s0] 6= αi[s1] but αi[s0] =
αi[s2], then αi+1[s2] 6= αi+1[s′] for all s′ ≤ s1. In particular, if αi+1[s2] was
new at stage t, then s1 < t.

Proof. The second statement in the lemma follows immediately from the first
statement. To prove the first statement, fix stages s0 < s1 < s2 and an index
i as described. Suppose for a contradiction that αi+1[s2] = αi+1[s′] for some
s′ ≤ s1, and hence that αi+1[s′] ⊆ As2 . By Lemma 4.11, αi[s

′] = αi[s2] (and
hence αi[s

′] = αi[s0]) and for all stages u such that s′ ≤ u ≤ s2, αi[u] = αi[s
′].

In particular, since s′ ≤ s1 ≤ s2, we have αi[s1] = αi[s
′] and therefore αi[s1] =

αi[s0] for the desired contradiction.

Before finishing this section, we want to slightly alter our definition of the
sequence of strings αi[s] by adding two stretching conditions in the case when
i > 0. First, by Lemma 4.15, we know that if s0 < s1 with αi[s0] 6= αi[s1], then
the values of αi+1[t] for t > s1 are all initially chosen after stage s1. In such a
situation, we want to choose the strings αi+1[t] to have length longer than s1.
Second, when a value αi+1[s] is new (i.e. αi+1[s] 6= αi+1[s′] for all s′ < s), we
want to choose αi+1[s] so that its length is at least as long as the lengths of the
values of αi+1[s′] for s′ < s.

Formally, we define α0[s] = As � 0 = 〈As(0)〉 and we choose αi+1[s] to satisfy

(C1) αi[s] ⊆ αi+1[s] ⊆ As,

(C2) Ψαi+1[s](|αi[s]|)[s] converges,

(C3) if there are stages s0 < s1 < s with αi[s0] = αi[s] and αi[s0] 6= αi[s1],
then |αi+1[s1]| > s1, and

(C4) if αi+1[s] 6= αi+1[s′] for all s′ < s, then |αi+1[s]| ≥ max{|αi+1[s′]| | s′ < s}.

To incorporate these stretching conditions, when defining αi+1[s], we first check
whether there is a stage u < s such that αi[s] = αi[u] and αi+1[u] ⊆ As. If so,
we set αi+1[s] = αi+1[u] for the least such state u. Otherwise, we choose αi+1[s]
to be the least initial segment of As satisfying (C1)-(C4). By speeding up our
computations as before, we assume that at stage s, the strings α0[s], . . . , αs−1[s]
are defined. With minor changes, the arguments for the properties given in
Lemmas 4.10 through 4.15 go through so we maintain these properties.

4.3 Proof of Theorem 1.2

We turn to the proof of Theorem 1.2. Fix a set A of noncomputable c.e. degree
and by Corollary 4.7 assume that A does not have an almost c.e. approximation.
We use this assumption in an essential way during the construction.
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We need to construct a noncomputable set C such that C ≤wtt A and
A 6≤wtt C. In fact, C will have the stronger property that A 6≤T C. We meet
the following requirements:

Pe : C 6= ∆e

Re : ΦCe 6= A

where ∆e is the eth partial computable function and Φe is the eth Turing func-
tional. The construction is finite injury and the requirements are given priority
P0 < R0 < P1 < · · · .

4.3.1 Definition of C ≤wtt A

The reduction C ≤wtt A will have identity bounded use. We indirectly build C
using the notion of marks. At each stage of the construction we may declare an
unmarked number marked (marking a number), or declare an already marked
number unmarked (removing a mark). Since competing R requirements may
have different views about wanting to have a number marked or unmarked, we
will allow a number to be conditionally unmarked with respect to a neighbor-
hood.

A neighborhood N(i, s) is specified by an index i and a stage s. The neigh-
borhood N(i, s) is the set of all X such that αi[s] ⊆ X and αi+1[t] 6⊆ X for
any t ≤ s. Therefore a neighborhood N(i, s) contains the possible values for A
if it is the case that the approximation for A moves away from αi[s] but later
returns to αi[s]. The neighborhood N(i, s) is said to apply at stage u > s (or be
applicable at u) if Au ∈ N(i, s).

Each number may be declared marked at most once. The marking of a
number is global and applies to all neighborhoods. A number can be declared
unmarked with respect to some neighborhood only if it is already marked. We
will ensure during the construction that a mark on m can only be placed after
stage m.

Intuitively, if a number x has been marked but has not been unmarked with
respect to an applicable neighborhood at a stage s, we will have (as long as it
is consistent to do so) Cs(x) = 1, and Cs(x) = 0 otherwise. Formally, we have
the following definition.

Definition 4.16. We define the stage s approximation Cs of C as follows. For
each x < s if At � x 6⊆ As for every x < t < s, then Cs(x) = 1 if and only if there
is a mark on x which has not yet been removed with respect to a neighborhood
that currently applies. Otherwise, Cs(x) = Ct(x) for the least stage t such that
x < t < s such that At � x ⊆ As.

The following lemma shows this definition ensures C ≤wtt A as required.

Lemma 4.17. For every x and s > t > x, if At � x ⊆ As then Cs(x) = Ct(x).
Hence C = lims Cs exists and C is computable from A with identity bounded
use.



80 CHAPTER 4. LIMITING RESULTS

Proof. The first statement follows by a straightforward induction on s. To see
that C = lims Cs exists, fix x and let s′ > x be such that As � x = A � x for all
s ≥ s′. Since Cs(x) = Cs′(x) for all s ≥ s′, lims Cs(x) exists.

To compute C(x) from A, let s > x be the least stage such that As � x =
A � x. Since s is chosen least, At � x 6⊂ As for all t such that x < t < s. By
definition, Cs(x) = 1 if and only if there is a mark on x at stage s which has
not been removed with respect to a neighborhood containing As. By the first
statement in the lemma, C(x) = Cs(x) and hence we can determine the value
of C(x) using only A � x.

4.3.2 Informal description of the Pe strategy

We describe the basic strategy to meet a single Pe requirement. Pe defines
a sequence of followers pe(0) < pe(1) < · · · at stages se(0) < se(1) < · · · and
attempts to use αpe(i)[se(i+1)] to compute A. In addition, Pe defines a sequence
of marked numbers me(0) < me(1) < · · · with me(i) marked at stage se(i+ 1)
and tries to ensure that for some i, we have C(me(i)) = 1 6= ∆e(me(i)). Because
A is not computable, one of these diagonalization attempts will succeed.

At stage se(i+1), Pe declares that it has computed A up to |αpe(i)[se(i+1)]|
to be equal to αpe(i)[se(i + 1)] and it marks a number me(i) for which it has
seen ∆e(me(i)) = 0. If for all t ≥ se(i+1), αpe(i)[se(i+1)] = αpe(i)[t], then Pe’s
declared computation is correct. Since A is not computable, there must be a
follower pe(i) and stage t > se(i+1) such that αpe(i)[t] 6= αpe(i)[se(i+1)]. Under
the right circumstances, the movement of A from Ase(i+1) to At will cause the
mark on me(i) to change the definition of Cse(i+1)(me(i)) = 0 to Ct(me(i)) = 1
permanently.

More formally, Pe acts as follows.

1. Choose pe(0) large at stage se(0). Assume that pe(i) is the largest defined
follower and pe(i) was chosen at stage se(i).

2. Wait for a stage s > se(i) at which there is a fresh number m (unmarked
and unused by any other requirement) such that

(a) me(i− 1) < m < s (where me(−1) = 0),

(b) Cs � m = ∆e,s � m (so Cs(m) = ∆e,s(m) = 0 because m is un-
marked),

(c) αpe(i)+1[u] = αpe(i)+1[m] for all stages u such that m ≤ u ≤ s, and

(d) |αpe(i)+1[u]| < m for all stages u ≤ s.

3. When Pe sees such a stage s and witness m, it

(a) sets me(i) = m and marks me(i),

(b) sets se(i+ 1) = s and chooses pe(i+ 1) large,

(c) declares it has computed A � |αpe(i)[se(i+1)]| = αpe(i)[se(i+1)], and

(d) returns to Step 2 with i incremented to i+ 1.
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To see why this strategy should succeed, recall that αpe(i)[s] takes only
finitely many values as s increases because it has a limit. Therefore, there
will be cofinitely many stages at which there is a (fixed) witness m satisfying
the conditions in 2(a), 2(c) and 2(d). If 2(b) is never satisfied at any of these
stages, then C 6= ∆e and Pe is won. However, as noted above, if Pe produces
infinitely many followers and for every t > se(i+ 1), αpe(i)[se(i+ 1)] = αpe(i)[t],
then A would be computable. Therefore, we consider the least index i and least
stage t > se(i + 1) at which αpe(i)[t] 6= αpe(i)[se(i + 1)]. Since ∆e(me(i)) = 0,
we need to explain why C(me(i)) = 1. In fact, we show that Ct′(me(i)) = 1 for
all t′ ≥ t.

Fix a stage t′ ≥ t. To determine the value of Ct′(me(i)), let s ≤ t′ be the
least stage such that me(i) < s and At′ � me(i) = As � me(i). If se(i + 1) < s,
then since me(i) is marked at stage se(i + 1), it follows from the definition of
C that Cs(me(i)) = 1 and hence by Lemma 4.17, Ct′(me(i)) = Cs(me(i)) = 1.
Therefore, it suffices to show that we cannot have s ≤ se(i+ 1).

Suppose for a contradiction that At′ � me(i) = As � me(i) with s ≤ se(i+1).
By Condition 2(d) when me(i) is defined at stage se(i+1), |αpe(i)+1[s]| < me(i)
and hence αpe(i)+1[s] ⊆ At′ . By Lemma 4.11, for all stages u such that s ≤ u ≤
t′, αpe(i)[u] = αpe(i)[s]. However, we have s ≤ se(i + 1) < t ≤ t′, so it follows
that αpe(i)[se(i+ 1)] = αpe(i)[t] for the desired contradiction.

This completes the initial description of the Pe strategy. Based on our
explanation for why the strategy will succeed, it might appear that the set C
will be computably enumerable. To see why this appearance is deceptive, notice
that Conditions 2(b) and 2(c) have the potential to make me(i) much larger than
|αpe(i)+1[se(i+ 1)]|. Let m = me(i) and s = se(i+ 1). Consider the case when
there is an index j > pe(i) + 1 such that |αj [s]| < m < |αj+1[s]|. (See Figure
4.1.) By Condition 2(b), we know Cs(m) = 0. We could have a stage t0 > s
such that αj [t0] 6= αj [s] and hence the approximation At0 differs from As below
m. If At0 � m appears as an initial segment of the approximation to A for the
first time at stage t0, then by definition, Ct0(m) = 1. However, at a later stage
t1 > t0, we could have αj [t1] = αj [s]. Since αj [t1] is returning to the previous
value αj [s] after changing at t0, we know αj+1[t1] differs from αj+1[u] for all
u ≤ t0. However, since m < |αj+1[s]|, we could have αj+1[t1] � m = αj+1[s] � m,
in which case At1 � m = As � m and so by definition, Ct1(m) = 0. Thus, our
approximation to C need not be a c.e. approximation.

This example also illustrates the general problem we need to confront with
the Re strategies. To make the problem for an Re strategy easier to illustrate
(see Figure 4.2 for a picture), suppose that in the example above, |αj+1[t0]| > m
(as shown in Figure 4.1). At stage t2 > t1, the opponent is free to move the
approximation At2 so that At2 � m = At0 � m by making αj [t2] = αj [t0]. This
change at stage t2 causes Ct2(m) = 1. Later, the opponent can give us a stage
t3 > t2 at which αj [t3] = αj [t1] = αj [s]. While this change in the approximation
to A back to extending αj [s] causes αj+1[t3] to differ from αj+1[u] for u ≤ t2,
there is nothing to stop αj+1[t3] � m = αj+1[s] � m and hence causing the value
of Ct3(m) to change back to Ct3(m) = 0.

By following this strategy, the opponent has created a split using the values
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αj+1[s] αj+1[t1] αj+1[t0]

height m

αj [s] = αj [t1] αj [t0]

αj−1[s]

Figure 4.1: The set C need not be computable enumerable.

αj+1[t1] αj+1[t3] αj+1[t0] αj+1[t2]

αj+1[s]

height m

αj [s] = αj [t1] = αj [t3] αj [t0] = αj [t2]

αj−1[s]

Figure 4.2: The opponent can define a split allowing C to compute A if we are
not careful.

of αj [s] and αj [t0] and has threatened to start building a splitting tree which
could be used to compute A from C. That is, if left unchecked, the opponent can
guarantee that if C(m) = 0, then αj [s] ⊆ A and if C(m) = 1, then αj [t0] ⊆ A.
If we are not careful, the opponent can use infinitely many P strategies together
to construct a splitting tree allowing C to compute A. Preventing the opponent
from constructing such a tree will be the main goal of the R requirements.

4.3.3 Informal description of an Re strategy

The main goal of the Re strategy is to prevent the opponent from building an
e-splitting tree that enables C to compute A. Re defines a sequence of indices
re(0) < re(1) < · · · and attempts to use the strings αre(i) at certain specific
stages to define an almost c.e. approximation to A. The fact that A does not
have an almost c.e. approximation will prevent Re from acting infinitely often
and hence there will be a finite stage at whichRe becomes satisfied. Because the
R requirements do not mark numbers, and hence do not cause any numbers to
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enter C, we describe the action of a single Re in the presence of P requirements
of lower priority which are marking numbers.

When Re is first eligible to act, it defines the index re(0) large and begins
to wait for a stage s0 at which αre(0)+1[s0] ⊆ ΦCe [s0] with some use u0 < s0.
When such a stage s0 appears, Re defines re(1) to be a large index and sets
σ0
e,0 = αre(0)[s0]. In general, the string σie,n with be the n-th string defined

in the i-th level of a potential almost c.e. approximation to A. (In the end,
if Re acts infinitely often, we will thin out this collection of strings to get the
actual almost c.e. approximation of A.) Furthermore, for all marked numbers
m ≥ |αre(0)+1[s0]| such that Cs0(m) = 0, Re removes the mark on m with
respect to the neighborhood N(re(0), s0). (The reason for this removal will be
explained below.)

Consider what can happen to αre(0)[s] for s > s0. If αre(0)[s] = αre(0)[s0]
for all s > s0, then we have made progress towards computing A. Since A
is not computable, this behavior cannot continue indefinitely for larger indices
re(i). Therefore, the interesting case is when there is a stage s1 > s0 at which
αre(0)[s1] 6= αre(0)[s0]. If we were lucky enough to have Cs1 � u0 = Cs0 � u0,
then we would have αre(0)[s1] 6⊆ ΦCe [s1] because the use of the computation
from stage s0 showing αre(0)+1[s0] ⊆ ΦCe [s0] has been preserved. In this case,
we would have (at least temporarily) satisfied Re. However, the use u0 could
be large and so, as we saw in the examples from the informal P strategies, the
opponent can arrange things so that Cs1 � u0 6= Cs0 � u0.

However, we have gained control over what would happen if there were a
stage s2 > s1 at which αre(0)[s2] reverted back to αre(0)[s0]. Suppose that
s2 > s1 is the least stage at which αre(0)[s2] = αre(0)[s0]. By Lemma 4.15,
αre(0)+1[s2] 6= αre(0)+1[t] for all t ≤ s1. Furthermore, by the stretching condition
(C3), |αre(0)+1[s2]| > s1. Since u0 < s0, we have |αre(0)+1[s2]| > u0. We
claim that C[s2] � u0 = C[s0] � u0. To prove this claim it suffices to show
that Cs0(m) = Cs2(m) for all numbers m < u0 which have been marked at
some stage before s0 because Re initializes the P strategies at stage s0 so any
number marked after s0 will be chosen large and hence will be greater than u0.
Fix m < u0 which is marked before stage s0 and we break into cases to show
Cs0(m) = Cs2(m).

First, suppose m ≤ |αre(0)[s0]|. Since αre(0)[s2] = αre(0)[s0], we have As2 �
m = As0 � m and hence Cs2(m) = Cs0(m) by Lemma 4.17.

Second, suppose m ≥ |αre(0)+1[s0]|. In this case, we claim that As2 � m
first appears as an approximation to A at stage s2 and hence (by definition)
Cs2(m) = 1 if and only if there is a mark on m which applies at stage s2. Before
proving the claim, we show that Cs2(m) = Cs0(m) follows from the claim. Recall
that since m ≥ |αre(0)+1[s0]|, when Re acts at stage s, it removes the mark on
m with respect to the neighborhood N(re(0), s0) if Cs0(m) = 0. If Cs0(m) = 1,
then the mark on m was not removed at stage s0 and hence Cs2(m) = 1. On
the other hand, if Cs0(m) = 0, then the mark on m was removed at stage s0
with respect to the neighborhood N(re(0), s0). This neighborhood applies at
s2 because αre(0)[s2] has reverted back to αre(0)[s0] after changing values at s1.
Therefore, the mark on m does not apply at s2 and hence Cs2(m) = 0.
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We now prove that claim. If As2 � m = At � m for some t ≤ s1, then we
would have αre(0)+1[s2] = αre(0)+1[t] for a contradiction. Therefore, As2 � m
first appears after stage s1. Since |αre(0)[s0]| < m and s2 is the first stage
after s1 at which αre(0)[s2] = αre(0)[s0], As2 � m 6= At � m for all t such that
s1 ≤ t < s2. This completes the proof of the claim and finishes the second case.

Finally, suppose |αre(0)[s0]| < m < |αre(0)+1[s0]|. Because m <
|αre(0)+1[s0]|, the mark on m is not removed when Re acts at s0. Assume
m = mj(k) is marked by Pj at stage t0 < s0 with associated string αpj(k)[t0].
By Conditions 2(c) and 2(d) in the action of Pj , we know that αpj(k) is constant
on the interval [m, t0] of stages and that |αpj(k)+1[t]| < m for all t ≤ t0. Since Pj
has lower priority thanRe, we have re(0) < pj(k) and hence |αre(0)+1[t]| < m for
all t ≤ t0. Because m is marked at stage t0 and the mark is not removed at stage
s0, we know that Cs(m) = 1 for any stage s > t0 at which As � m 6= At0 � m.

We claim that Cs0(m) = Cs2(m) = 1. To see that Cs0(m) = 1, note that
if As0 � m = At0 � m, then we would have αre(0)+1[s0] = αre(0)+1[t0] because
|αre(0)+1[t0]| < m. Therefore, we would have |αre(0)+1[s0]| < m contradicting
our case assumption on the size of m. Similarly, to see that Cs2(m) = 1,
note that if As2 � m = At0 � m, then we would have αre(0)+1[s2] = αre(0)+1[t0].
However, αre(0)+1[s2] 6= αre(0)+1[t] for all t ≤ s1 giving the desired contradiction.

This completes the proof that Cs2 � u0 = Cs0 � u0. What does this fact tell
us about the construction? If As ever moves away from σ0

e,0 at stage s1 and

later returns to σ0
e,0 at stage s2, then the computation αre(0)+1[s0] ⊆ ΦCe [s2]

holds because the use of the computation αre(0)+1[s0] ⊆ ΦCe [s0] was preserved.
However, the strings αre(0)+1[s2] and αre(0)+1[s2] are incomparable and hence
αre(0)+1[s2] 6⊆ ΦCe [s2]. Therefore, Re looks (at least temporarily) satisfied at s2.

The general strategy for Re uses this procedure to define the sequence
re(0) < re(1) < · · · of witness indices and the strings σie,n of potential members
of an almost c.e. approximating family. At stage s, we fix the largest index i (if
any) such that σie,n ⊆ As for some n (and let i = −1 if there is no such index).

If αre(i+1)+1[s] ⊆ ΦCe [s], then we set σi+1
e,k = αre(i+1)+1[s] and define re(i + 2)

large (if it is not yet defined). As a technical point, in the full construction, it
will be convenient to keep the indices re(i) for different values of e and i spread
out. Therefore, in addition to choosing re(i+ 1) large, we will also make sure it
is even.

The key property of each of these σie,n strings is similar to that shown for σ0
e,0.

Suppose σie,n = αre(i)[s0] is defined at stage s0. If the approximation As ever

moves away from σie,n after s0 and later returns to σie,n at stage s′ > s0, then

αre(i)[s
′] 6⊆ ΦCe [s′] and we have (at least temporarily) satisfied Re. In the end,

either we settle permanently on such a string σie,n (and win Re permanently) or

we stop seeing correct computations ΦCe [s] for initial segments of A (and hence
win Re) or Re acts infinitely often. If Re acts infinitely often, then we can
restrict our attention to stages at which we define strings σie,n. By the argument

given for σ0
e,0, we know that whenever we return to a previously defined σie,n we

do not have the appropriate computations to define a new σ string. Therefore,
by restricting to these stages, once we move away from a string σie,n, we can
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never return to this string. This property is exactly the property of an almost
c.e. approximation that is missing from the set of αk[s] strings. In this way,
we will extract an almost c.e. approximation for A in the case when Re acts
infinitely often. Since A does not have an almost c.e. approximation, the action
of Re must be finitely and we eventually win Re permanently.

4.3.4 Formal construction

Each Re requirement defines an increasing sequence of parameters re(0) <
re(1) < · · · and uses the associated strings αre(i)[s] to build a c.e. set of
strings {σie,u | i, u ∈ ω} which threatens to generate an almost c.e. approxi-
mation to A. Each Pe requirement defines an increasing sequence of parameters
pe(0) < pe(1) < · · · with associated marks me(i). It uses αpe(i) to attempt
to compute A and uses me(i) to attempt to diagonalize making C noncom-
putable. During the construction the P requirements will place marks while the
R requirements will remove them with respect to certain neighborhoods.

At stage 0, we initialize every requirement. This means we make every
parameter associated with a requirement undefined. As usual we assume that
the value of the parameters re(i), pe(i) and me(i) are always larger than the last
stage where the requirement is initialized. When Pe is initialized, the parameters
me(i) become undefined but we do not remove the marks previously set by Pe.
Once set, a mark can only be removed by an R requirement.

At stage s > 0, we define what it means for a requirement to require and to
get attention.

For Pe, let i0 be the largest number (if any) such that pe(i0) is currently
defined. Pe requires attention if one of the following holds.

(Pe.1) The number i0 is undefined, i.e. pe(0) is not currently defined.

(Pe.2) There is a number m < s never used by any requirement such that

• αpe(i0)[t] = αpe(i0)[m] for all stages t such that m ≤ t ≤ s,

• m > |αpe(i0)+1[u]| for u ≤ s,

• m > me(i0 − 1) and

• ∆e � m = Cs � m.

To give Pe attention in (Pe.1), we set pe(0) to be a large number. In (Pe.2),
we set me(i0) = m, set pe(i0 + 1) to be a large number and mark the number
me(i0).

For Re, let i be the largest such that σie,u ⊆ As for some u, and i = −1 if
no such i is found. Re requires attention if one of the following holds.

(Re.1) re(0) is undefined.

(Re.2) αre(i+1)+1[s] ⊆ ΦCe [s].
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To give Re attention in (Re.1), we set r(0) to be a large even number. In
(Re.2), we declare σi+1

e,v = αre(i+1)[s] for the least v such that σi+1
e,v has not

yet received a value. If re(i + 2) is undefined, we pick a large even value for
it and otherwise we leave the value as previously defined. For every number
n > |αre(i+1)+1[s]| such that Cs(n) = 0, we remove the mark on n with respect
to the neighborhood N(re(i+ 1), s).

At stage s the construction, we pick the highest priority requirement re-
quiring attention from amongst the first s many requirements, give it attention
according the description above, initialize all lower priority requirements and go
to the next stage. This ends the description of the construction.

4.3.5 Verification

The verification of the construction is given by the following series of lemmas.

Lemma 4.18. Fix a number m marked by a P requirement at stage s1. If the
mark on m is removed with respect to a neighborhood N(r1, t1) which applies at
As, then s1 < t1 < s.

Proof. Since marks are not removed before they are set, we have s1 < t1. For
the neighborhood N(r1, t1) to apply to As, we must have t1 ≤ s and furthermore
αr1+1[u] 6⊆ As for all u ≤ t1, which implies that t1 < s.

Lemma 4.19. For each m, k and stages t < s, if there are requests to remove
the mark on m with respect to both N(k, t) and N(k, s), then αk[s] 6= αk[t].

Proof. Suppose the mark on m is removed with respect to N(k, t) by Re. At
stage t, we must have k = re(i + 1) where i is the largest number such that
σie,u ⊆ At for some u. Furthermore, m > |αre(i+1)+1[t]| = |αk+1[t]| and we set

σi+1
e,v = αre(i+1)[t] = αk[t] for some v.

Assume the mark on m is removed with respect to N(k, s) at a stage s > t.
Because k = re(i + 1) at stage t and because we always choose witnesses for
R requirements fresh, the removal of the mark on m with respect to N(k, s)
must be done by the requirement Re and this requirement cannot have been
initialized between stages t and s. Therefore, σi+1

e,v = αk[t] has retained its value
at stage s.

Assume for a contradiction that αk[s] = αk[t]. Then σi+1
e,v = αk[s] ⊆ As

at stage s. By construction, if Re removes a mark at stage s, it must be with
respect to a neighborhood of the form N(re(j+1), s) for j ≥ i+1. In particular,
the first coordinate of this neighborhood cannot be equal to k, giving the desired
contradiction.

Lemma 4.20. Let s1 < s2 be stages and m be a number such that there is a
mark on m which applies at s2. Assume the mark on m was set before s1 and
that As1 � m 6⊂ Av for all v such that m < v < s1. If As1 � m = As2 � m, then
the mark on m also applies at the earlier stage s1.
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Proof. Assume for a contradiction that the mark on m does not apply at stage
s1. Since the mark was set before s1, the mark must have been removed with
respect to some neighborhood N(k, s0) at a stage s0 < s1 such that N(k, s0)
applies at stage s1. The mark on m must be set before it is removed at s0, so
m < s0. The neighborhood N(k, s0) applies at s1, so we have αk[s0] ⊆ As1 but
αk+1[u] 6⊆ As1 for all u ≤ s0. Since the mark on m is removed at s0, we have
m > |αk+1[s0]|. Because |αk[s0]| < |αk+1[s0]| < m and αk[s0] ⊆ As1 , we have
αk[s0] ⊆ As1 � m.

Claim 4.21. As1 � m is incomparable with each αk+1[u] for all u ≤ s0.

Before proving this claim, we show how to use it to finish the proof of Lemma
4.20. To do so, we show that the neighborhood N(k, s0) applies at s2 and hence
the mark on m doesn’t apply at s2 giving the desired contradiction. We need to
check the two conditions for N(k, s0) to apply at s2. First, αk[s0] ⊆ As2 because
αk[s0] ⊆ As1 � m = As2 � m. Second, for each u ≤ s0, αk+1[u] 6⊆ As2 because
αk+1[u] is incomparable with As1 � m = As2 � m by the claim. Therefore, if we
can verify the claim, the proof will be complete.

To prove the claim, fix u ≤ s0 and we split into several cases. If |αk+1[u]| ≤
m, then since αk+1[u] 6⊆ As1 , it follows that αk+1[u] is incomparable with As1 �
m. Therefore, we can assume that |αk+1[u]| > m. If m < u, then we have
m < u ≤ s0 < s1 and so m < u < s1. It follows that As1 � m 6⊆ Au by
the condition on s1 in the statement of the lemma (setting v = u). Since
αk+1[u] ⊆ Au, we have As1 � m 6⊆ αk+1[u] and so these strings are incomparable
as required.

The final case to consider to prove the claim is when |αk+1[u]| > m and u ≤
m. We show that this case cannot occur given the assumptions of the lemma.
Since αk+1[u] is defined, we know k + 1 ≤ u and hence k < u ≤ m < s0 < s1.
Let Ri be the requirement that removes the mark on m, so k = ri(n) for some n.
Let Pj be the requirement which sets the mark on m = mj(`) for some `, which
must occur before the mark is removed at stage s0. Ri cannot be initialized
between the stage at which is defines k = ri(n) and stage s0 when it removes the
mark on m with respect to N(k, s0). If Ri defines ri(n) = k after the mark on
m is set by Pj , then Ri would define ri(n) = k > m. Since k < m, this implies
that Ri must define ri(n) = k before the mark is set on m by Pj . Therefore, Pj
must have lower priority than Ri because otherwise it would initialize Ri (and
cancel ri(n) = k) when it sets the mark on m.

By the previous paragraph, we know that the order of events is as follows. Ri
defines ri(n) = k initializing the lower priority Pj . Later, Pj defines pj(`) > k
and eventually sets a mark on m = mj(`), necessarily at a stage after m. When
Pj sets the mark on m, it chooses m greater than the maximum of all values of
|αpj(`)+1[w]| for all w ≤ the stage at which the mark is set. Since the mark is
set after stage m, u ≤ m and k < pj(`), it follows that |αk+1[u]| < m. However,
our case assumption was that |αk+1[u]| > m so we have obtained the desired
contradiction.
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Lemma 4.22. Suppose that requirement P marks a number m = m(i0) at stage
s0. If s > s0 is such that αp(i0)[s0] 6⊆ As, then at every future stage s′ ≥ s, as
long as m is still marked (i.e. the mark has not be removed with respect the a
neighborhood applicable at s′), we have Cs′(m) = 1.

Proof. Let p = p(i0). First, we show that if s1 > s0 is the least stage such that
αp[s0] 6⊆ As1 , then assuming m is still marked at s1, Cs1(m) = 1. Since the
mark on m has not been removed with respect to a neighborhood which applies
at s1, by the definition of Cs1(m), it suffices to show that Av � m 6⊆ As1 for all
stages v such that m < v < s1.

When m is marked at stage s0, Condition (P.2) must hold, so for all v such
that m ≤ v ≤ s0, we have αp[v] = αp[s0]. Furthermore, by the choice of s1, we
have αp[v] = αp[s0] for all v such that s0 ≤ v < s1, and therefore, αp[v] = αp[s0]
for all v such that m ≤ v < s1.

In addition, when m is marked at stage s0, we have m > |αp+1[s0]| >
|αp[s0]|. By the previous paragraph, this inequality implies m > |αp[v]|, and
hence αp[v] ⊆ Av � m, for all m ≤ v < s1. Since αp[v] = αp[s0] 6⊆ As1 , we have
shown that Av � m 6⊂ As1 for all v such that m ≤ v < s1 as required to prove
the lemma for s1.

To complete the proof, we consider stages s′ > s1 such that the mark has not
been removed from m with respect to a neighborhood applicable at s′. Assume
for a contradiction that s′ > s is the least stage such that m is marked at s′ but
Cs′(m) = 0. We verify three claims and then break our proof into cases.

Our first claim is that there is a stage v such that m < v < s′ with Av �
m ⊂ As′ . If there were no such stage v, then since there is a mark on m at s′,
we would define Cs′(m) = 1. Therefore, fix the least v such that m < v < s′

and Av � m ⊂ As′ .
Our second claim is that Cv(m) = 0. By Lemma 4.17, Av � m ⊂ As′ implies

Cs′(m) = Cv(m) and hence Cv(m) = 0.
Finally, our third claim is that the mark on m does not apply at v. By the

minimality of v, Aw � m 6⊂ Av for all m < w < v. Therefore, if a mark on m
applied at v, we would define Cv(m) = 1 contrary to our second claim. We now
split into cases depending on whether v > s0 or v ≤ s0.

For the first case, assume that s0 < v. By the minimality of v, the fact that
s0 < v < s′ with the mark on m set at s0 and the assumption that the mark
on m applies at s′, it follows from Lemma 4.20 that the mark on m applies at
stage v (setting the values s1 = v and s2 = s′ in Lemma 4.20). This conclusion
contradicts the third claim above.

For the second case, assume that v ≤ s0. In this case, we have m < v ≤
s0 < s1. By the second paragraph of this proof, these inequalities imply that
αp[v] = αp[s0]. Since P marks m at s0, we have m > |αp+1[v]| > |αp[v]|. Since
Av � m ⊂ As′ , it follows that αp[s0] ⊆ As′ and αp+1[v] ⊆ As′ , and hence
αp[s0] = αp[s

′] and αp+1[v] = αp+1[s′]. We now have that s0 < s1 < s′ with
αp[s0] = αp[s

′] but αp[s0] 6= αp[s1]. Therefore, αp[s
′] is reverting to a previously

defined value and so by Lemma 4.15, αp+1[s′] 6= αp+1[t] for all t ≤ s1. In
particular, αp+1[s′] 6= αp+1[v] giving the desired contradiction.
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Lemma 4.23. Let s be a stage and let m be a number which is marked at stage
s1 < s such that the mark on m has been removed with respect to a neighborhood
N(r1, t1) which applies at As. If αr+1[s] 6= αr+1[u] for all stages u such that
s1 < u < s, then r1 ≤ r.

Proof. Since the mark is removed with respect to N(r1, t1) which applies to As,
we have s1 < t1 < s (by Lemma 4.18) and αr1 [t1] ⊆ As. Since αr1 [t1] ⊆ As,
we have αr1 [t1] = αr1 [s]. Suppose for a contradiction that r < r1. Because
αr1 [t1] = αr1 [s] and r + 1 ≤ r1, we have αr+1[s] = αr+1[t1] contradicting the
assumption on the values of αr+1.

We say that At � m is new at t if m < t and At � m 6= Au � m for all u such
that m < u < t. Note that if At � m is new, then Ct(m) = 1 if and only if there
is a mark on m which has not been removed with respect to a neighborhood
which applies to At. Similarly, if v ≤ t is such that Av � m is new at v and
At � m = Av � m , then Ct(m) = 1 if and only if there is a mark on m at stage
v which has not been removed with respect to a neighborhood which applies to
Av.

Lemma 4.24. Fix Re and assume it is never initialized again. Let s0 be a stage
at which Re defines re(i) = r, let s2 > s0 be such that Re defines σie,n = αr[s2]
and let s3 > s2 be the least stage such that αr[s3] 6= αr[s2]. For all t > s3, if
αr[t] = αr[s2], then Ct � s2 = Cs2 � s2.

Lemma 4.24 is the heart of our verification. To see why, notice that the at
stage s2, we have αr+1[s2] ⊆ ΦCe [s2] because Re defines σie,n = αr[s2] and the
use of this computation is bounded by s2. Lemma 4.24 implies that Ct and
Cs2 agree up to this use and therefore αr+1[s2] ⊆ ΦCe [t]. Since αr[s2] = αr[t]
but αr[s2] 6= αr[s3], we know αr+1[t] is incomparable with αr+1[s2] and hence
αr+1[t] 6⊆ ΦCe [t].

Proof. Fix s0 < s2 < s3 as in the statement of the lemma. By the stretching
condition (C3), we have |αr+1[t]| ≥ s2. Since C is computed from A with
identity bounded use, the value of Ct � s2 is determined by the string αr+1[t].

Consider which numbers m ≤ s2 could potentially lead to a difference be-
tween Ct(m) and Cs2(m). If m ≤ |αr[s2]|, then Ct(m) = Cs2(m) because
αr[t] = αr[s2] and the computation of C from A has identity bounded use. If
m is never marked, then Ct(m) = Cs2(m) = 0. Therefore, we may assume that
m > |αr[s2]| and that m is marked at some stage.

If m is marked by a P strategy of higher priority than Re, then P initializes
Re when m is marked. This marking must come before re(i) = r is defined
at stage s0 as Re is never initialized after s0 by assumption. In this case, Re
would define re(i) = r > m, so m < r < |αr[s2]| contrary to our assumption
(from the previous paragraph) that m > |αr[s2]|. Therefore, we may assume
m is marked by a P strategy of lower priority than Re. If the lower priority P
strategy marked m before stage s0, then we would also define re(i) = r > m, so
we may assume that P marks m after stage s0.
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When Re defines σie,n = αr[s2] at stage s2, it initializes all lower priority
P strategies. Before a lower priority strategy Pj can mark another number
m = mj(k), it must first define pj(k) and m must be a stage number after
αpj(k) has been defined. So, if m is marked after Pj is initialized at s2, then
s2 < m. Therefore, we can assume that m is marked before stage s2.

Summing up this discussion, it suffices to prove that Ct(m) = Cs2(m) for all
numbers m > |αr[s2]| which are marked by a lower priority strategy P between
stages s0 and s2. For the remainder of the proof, assume that P = Pj is a
strategy of lower priority than Re which marks m = mj(k) at stage s1 with
s0 < m < s1 < s2. Let p = pj(k) be the associated index value at stage s1 and
let αp[s1] be the associated string. By the conditions in (Pj .2), the string αp is
constant on the interval [m, s1] of stages. By the initialization at s0, we have
r < p and hence the strings αr and αr+1 are also constant on the interval [m, s1]
of stages. When P marks m at s1, it satisfies |αp+1[u]| < m for all u ≤ s1 and
hence |αr+2[u]| < m for all u ≤ s1. To complete the proof, we need to show that
Ct(m) = Cs2(m) where t > s3 is an arbitrary stage at which αr[t] = αr[s2]. We
summarize this information for later reference.

(A1) The events at stages s0 < m < s1 < s2 < s3 < t are as follows.

• At s0, Re defines re(i) = r.

• At s1, the lower priority P marks m with associated string αp[s1].

• The strings αp, αr and αr+1 are constant on the stages in [m, s1].

• At s2, Re defines σie,n = αr[s2].

• The stage s3 > s2 is the least such that αr[s3] 6= αr[s2].

• At t > s3, we have αr[t] = αr[s2].

(A2) |αr[s2]| = |αr[t]| < m < s2 ≤ |αr+1[t]|.

(A3) r < p and |αr+2[u]| < m for all u ≤ s1.

For the remainder of this proof, fix v to be the least stage such thatm < v ≤ t
and Av � m = At � m. Thus, Av � m is new at stage v and Ct(m) = Cv(m).
Similarly, fix v2 to be the least stage such that m < v2 ≤ s2 and Av2 � m =
As2 � m. Again, Av2 � m is new at stage v2 and Cs2(m) = Cv2(m). Because
αr[s2] = αr[t] has length less than m, we have

αr[v2] = αr[s2] = αr[t] = αr[v]. (4.1)

If At � m = As2 � m, then we immediately get Ct(m) = Cs2(m). Therefore, we
can assume that v 6= v2 and v 6= s2.

Claim 4.25. |αr+1[v]| > m and αr+1[v] 6= αr+1[u] for all u < v.

Proof. Suppose |αr+1[v]| ≤ m. Since Av � m = At � m and |αr+1[v]| ≤ m, we
have αr+1[t] = αr+1[v] by Lemma 4.11 and hence |αr+1[t]| ≤ m contradicting
(A2). For the second statement, we have αr+1[v] 6= αr+1[u] for all u ≤ s1 since
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|αr+1[u]| < m for u ≤ s1 by (A3). Because Av � m is new at v, we know
Av � m 6= Au � m for all u such that m < u < v. Since Av � m ⊆ αr+1[v], it
follows that αr+1[v] 6= αr+1[u] for all u such that m < u < v. Since m < s1,
these two cases cover all u < v.

Claim 4.26. s1 < v.

Proof. Suppose v ≤ s1. By (A3), |αr+1[v]| < m which contradicts Claim 4.25.

The importance of Claim 4.26 is that we know m has been marked by P
before stage v. Therefore, Cv(m) = 1 (and hence Ct(m) = 1) if and only if the
mark on m has not been removed with respect to a neighborhood which applies
to Av.

Claim 4.27. If an R requirement removes the mark on m with respect to a
neighborhood N(r1, t1) which applies to Av, then r1 ≤ r.

Proof. Since the mark on m is set at s1 < v and αr+1[v] 6= αr+1[u] for u < v,
this claim follows from Lemma 4.23.

The final claim is stated in a general form because we will later apply it in
cases with k = r + 1 and k = r + 2.

Claim 4.28. For any index k, if |αk[s2]| ≥ m, then |αk[v2]| ≥ m and αk[v2] 6=
αk[u] for all u such that m < u < v2 and hence for all u such that s1 < u < v2.

Proof. For a contradiction, assume that |αk[v2]| < m. Because Av2 � m = As2 �
m, we have αk[s2] = αk[v2] and hence |αk[s2]| < m contradicting the hypothesis
of this claim. For the second part, assume m < u < v2. If |αk[u]| < m then
αk[u] 6= αk[v2] because |αk[v2]| ≥ m. If |αk[u]| ≥ m, then αk[u] 6= αk[v2] since
Au � m 6= Av2 � m (because Av2 � m is new at v2) and Av2 � m ⊆ αk[v2].

We now proceed to the main part of the proof of Lemma 4.24 by breaking
into three cases.

Case 1. Assume that Cs2(m) = 1. Our goal is to show that Cv(m) = 1.
As noted after Claim 4.26, it suffices to show that the mark on m has not been
removed with respect to a neighborhood N(r1, t1) which applies to Av. For a
contradiction, assume that the mark has been removed by some R requirement
with respect to such a neighborhood N(r1, t1). By Claim 4.27, r1 ≤ r. Since
m is marked at s1 and N(r1, t1) applies to Av, we have s1 < t1 < v by Lemma
4.18. Furthermore, because N(r1, t1) applies to Av, αr1 [t1] ⊆ Av and so

αr1 [t1] = αr1 [v] (4.2)

but αr1+1[u] 6⊆ Av for all u ≤ t1. We break into cases depending on whether
r1 = r or r1 < r.

First, suppose that r1 = r. Since r = re(i) is an Re parameter, the removal
of the mark with respect to the neighborhood N(r1, t1) is done by Re at stage
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t1 in conjunction with defining σie,n′ = αr1 [t1] for some n′. Because r1 = r and
αr1 [t1] = αr1 [v] by Equation (4.2), we have by Equation (4.1) that

αr1 [t1] = αr1 [v] = αr[v] = αr[s2] = σie,n.

Therefore, the removal of the mark on m is done by Re when it defines σie,n =
αr[s2] and so t1 = s2. However, Cs2(m) = 1, so Re does not remove the mark
on m at t1 = s2 giving the desired contradiction.

Second, suppose that r1 < r. We claim that the neighborhood N(r1, t1)
applies to Av2 . This claim gives the desired contradiction because Av2 � m is
new at v2 so the value of Cv2(m) is determined by whether there is a mark on m
which applies at stage v2. Since the mark on m has been removed with respect
to N(r1, t1) which applies to Av2 , we conclude that Cv2(m) = 0 contradicting
the case assumption that Cs2(m) = Cv2(m) = 1.

It remains to show that the neighborhood N(r1, t1) applies to Av2 . Because
r1 + 1 ≤ r, Equation (4.1) implies

αr1+1[v2] = αr1+1[s2] = αr1+1[t] = αr1+1[v]. (4.3)

First, we check that t1 < v2. Suppose for a contradiction that v2 ≤ t1. By
Equation (4.3), αr1+1[v2] = αr1+1[v]. However, since N(r1, t1) applies to Av,
αr1+1[v] 6= αr1+1[u] for all u ≤ t1, and so in particular, αr1+1[v] 6= αr1+1[v2] for
the desired contradiction.

Second, we check that αr1 [t1] ⊆ Av2 . Since αr1 [t1] = αr1 [v] by Equation (4.2)
and αr1 [v] = αr1 [v2] by Equation (4.3), we conclude that αr1 [t1] = αr1 [v2] ⊆
Av2 .

Finally, we check that αr1+1[u] 6⊆ Av2 for all u ≤ t1. Suppose for a con-
tradiction that αr1+1[u] ⊆ Av2 and u ≤ t1. Because αr1+1[u] ⊆ Av2 , we have
αr1+1[u] = αr1+1[v2] and since αr1+1[v2] = αr1+1[v] by Equation (4.3), we con-
clude that αr1+1[u] = αr1+1[v] and thus αr1+1[u] ⊆ Av. However, since u ≤ t1
and the neighborhood N(r1, t1) applies to Av, we know αr1+1[u] 6⊆ Av giving the
desired contradiction. This completes the proof that the neighborhood N(r1, t1)
applies to Av2 and so completes the proof of Case 1.

Case 2. Assume that v > s2 and Cs2(m) = 0. Our goal is to show
that Cv(m) = 0. We split into cases depending on whether m > |αr+1[s2]| or
|αr+1[s2]| ≤ m.

For the first case, suppose that m > |αr+1[s2]|. Since Cs2(m) = 0, Re
removes the mark on m with respect to the neighborhood N(r, s2) at stage s2
when it defines σie,u = αr[s2]. We will show that the neighborhood N(r, s2)
applies to Av completing this case because Av � m is new at v and hence
Cv(m) = 0 because the mark on m does not apply at stage v.

To see that N(r, s2) applies to Av, note that s2 < v by our Case 2 assumption
and αr[s2] = αr[v] ⊆ Av by Equation (4.1). Finally, αr+1[u] 6⊆ Av for all
u ≤ s2 by Claim 4.25 and our Case 2 assumption that s2 < v. Therefore, the
neighborhood N(r, s2) applies to Av completing the first case.

For the second case, assume m ≤ |αr+1[s2]|. We claim that m ≤ |αr+1[v2]|.
To see why, suppose |αr+1[v2]| < m. Since Av2 � m = As2 � m, it follows
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that αr+1[v2] = αr+1[s2] and hence |αr+1[s2]| < m, contradicting our case
assumption that m ≤ |αr+1[s2]|. Therefore, m ≤ |αr+1[v2]|.

Next, we claim that s1 < v2, so P has marked m before stage v2. To see
why, suppose that v2 ≤ s1. By (A3), |αr+1[v2]| < m contradicting the fact that
m ≤ |αr+1[v2]|.

Because Av2 � m is new at v2 and Av2 � m ⊆ αr+1[v2], we have αr+1[v2] 6=
αr+1[u] for all u such that m < u < v2. Since m < s1 < v2, we know

αr+1[v2] 6= αr+1[u] for all s1 ≤ u < v2 (4.4)

At this point, we know Av2 � m is new at v2, Cv2(m) = Cs2(m) = 0 and P
marks m before stage v2. Therefore, the mark on m must have been removed
by some R requirement with respect to a neighborhood N(r1, t1) which applies
to Av2 and so

s1 < t1 < v2. (4.5)

By Lemma 4.23 and Equation (4.4), we have r1 ≤ r. Because N(r1, t1) applies
to Av2 , we know that αr1 [t1] ⊆ Av2 and αr1+1[u] 6⊆ Av2 for all u ≤ t1. We
will show that the neighborhood N(r1, t1) applies to Av which implies that
Cv(m) = 0 as required.

We check the three conditions for N(r1, t1) to apply to Av. First, by Equa-
tion (4.5) and our Case 2 assumption that s2 < v, we have t1 < v2 ≤ s2 < v
and so t1 < v.

Second, we claim that αr1 [t1] ⊆ Av. Since αr1 [t1] ⊆ Av2 , we have αr1 [t1] =
αr1 [v2]. Because r1 ≤ r and αr[v2] = αr[v] by Equation (4.1), we conclude that
αr1 [t1] = αr1 [v] and hence αr1 [t1] ⊆ Av.

Finally, we claim that αr1+1[u] 6⊆ Av for all u ≤ t1. If r1 = r, this fact
follows from Claim 4.25 because t1 < v. If r1 < r, then r1 + 1 ≤ r and
so αr1+1[v] = αr1+1[v2] by Equation (4.1). Since αr1+1[v2] 6= αr1+1[u] for all
u ≤ t1, it follows that αr1+1[v] 6= αr1+1[u] for all u ≤ t1 and hence αr1+1[u] 6⊆ Av
for all u ≤ t1. This completes the proof that the neighborhood N(r1, t1) applies
to Av and so completes the proof of Case 2.

Case 3. Assume that v < s2 and Cs2(m) = 0. Our goal is to show that
Cv(m) = 0. We split into cases for |αr+1[s2]| ≤ m and |αr+1[s2]| > m.

For the first case, suppose that |αr+1[s2]| ≤ m. We claim that αr+1[s2] =
αr+1[u] for some u < v. To see why, note that |αr+1[s2]| ≤ m < |αr+1[v]|
by Claim 4.25. If αr+1[s2] first appeared after stage v, then by the stretching
convention (C4), we would have |αr+1[s2]| ≥ |αr+1[v]|. Therefore, αr+1[s2] must
be returning to a previous value from before stage v.

Let u2 < v be the least stage such that αr+1[u2] = αr+1[s2], so αr+1[u2] 6=
αr+1[x] for all x < u2. Since |αr+1[s2]| ≤ m and Av2 � m = As2 � m, we have
αr+1[s2] = αr+1[v2]. Therefore, αr+1[u2] = αr+1[v2] = αr+1[s2] but αr+1[v]
differs from these strings. Summarizing, we have

u2 < v < s2 with αr+1[u2] = αr+1[v2] = αr+1[s2] but αr+1[u2] 6= αr+1[v].
(4.6)
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We claim that s1 < v2. Suppose for a contradiction that v2 ≤ s1. By (A3),
|αr+2[v2]| < m, and so because Av2 � m = As2 � m, we have αr+2[v2] = αr+2[s2].
Our goal is to show this equality is impossible under the current assumptions.
By Claim 4.26, our Case 3 assumption that v < s2 and our local assumption
that v2 ≤ s1, these stages are ordered as v2 ≤ s1 < v < s2. By Equation (4.6),
αr+1[v2] = αr+1[s2] but αr+1[v2] 6= αr+1[v]. Therefore, αr+2[s2] cannot return
to the value of αr+2[v2] giving the desired contradiction.

Since s1 < v2, P has marked m before stage v2. Since Cv2(m) = Cs2(m) = 0
and Av2 � m is new at v2, the mark on m must have been removed by an
R requirement with respect to a neighborhood N(r1, t1) which applies to Av2 .
Therefore, we have

s1 < t1 < v2 and αr1 [t1] = αr1 [v2] but αr1+1[u] 6⊆ Av2 for all u ≤ t1. (4.7)

We claim that r1 ≤ r. Because r1 and r are parameters chosen by R re-
quirements, they are both even. Therefore, it suffices to show that r1 ≤ r + 1.
By Equation (4.6), we have u2 < v < s2, αr+1[u2] = αr+1[s2] and αr+1[v] 6=
αr+1[u2], and hence we conclude that αr+2[s2] 6= αr+2[u] for all u ≤ v. In par-
ticular, by our stretching convention (C4), |αr+2[s2]| ≥ |αr+2[u]| for all u ≤ v.
Because |αr+1[v]| ≥ m, we have |αr+2[s2]| ≥ m. By Claim 4.28 with k = r + 2,
αr+2[v2] 6= αr+2[u] for all u such that s1 < u < v2. It follows by Lemma 4.23
that r1 ≤ r + 1 and hence r1 ≤ r.

To show Cv(m) = 0 and complete the first case, it suffices to show that this
neighborhood N(r1, t1) applies to Av.

First, we show that t1 < v. Assume for a contradiction that v ≤ t1. Since
u2 < v by Equation (4.6) and t1 < v2 by Equation (4.7), we have u2 < v ≤
t1 < v2. Because αr+1[u2] = αr+1[v2] by Equation (4.6) and r1 ≤ r, we have
αr1+1[u2] = αr1+1[v2]. However, u2 < t1 and αr1+1[u2] = αr1+1[v2] contradict
the fact from Equation (4.7) that αr1+1[u] 6⊆ Av2 for all u ≤ t1. Thus, we have
shown t1 < v.

Second, we show that αr1 [t1] ⊆ Av. Since r1 ≤ r and, by Equation (4.1),
αr[v] = αr[v2], we have αr1 [v] = αr1 [v2]. But, by Equation (4.7), αr1 [t1] =
αr1 [v2], and so αr1 [t1] = αr1 [v] ⊆ Av as required.

Third, we show that αr1+1[u] 6⊆ Av for all u ≤ t1. If r1 = r, then this follows
by Claim 4.25 and the fact that t1 < v. If r1 < r, then r1 + 1 ≤ r and so
αr1+1[v] = αr1+1[v2] by Equation (4.1). Since, by Equation (4.7), αr1+1[v2] 6=
αr1+1[u] for all u ≤ t1, it follows that αr1+1[v] 6= αr1+1[u] for all u ≤ t1 and
hence αr1+1[u] 6⊆ Av for all u ≤ t1. This completes the first case in Case 3.

The remaining case in Case 3 is when m < |αr+1[s2]|. By Claim 4.28 with
k = r+1, m ≤ |αr+1[v2]| and αr+1[v2] 6= αr+1[u] for all u such that s1 < u < v2.
Note that we do have s1 < v2 (i.e. this interval of stages for u is not empty)
since if v2 ≤ s1, then by (A3), we would have |αr+1[v2]| < m for the desired
contradiction.

Since P marked m at stage s1 < v2 and Cv2(m) = 0 by our Case 3 assump-
tion, the mark on m must have been removed by an R requirement with respect
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to a neighborhood N(r1, t1) which applies to Av2 . Thus, we have

s1 < t1 < v2 and αr1 [t1] = αr1 [v2] but αr1+1[u] 6⊆ Av2 for all u ≤ t1. (4.8)

Because s1 < v2 and αr+1[v2] 6= αr+1[u] for all u such that s1 < u < v2, it
follows by Lemma 4.23 that r1 ≤ r. To prove Cv(m) = 0 and complete our final
case, it suffices to show that the neighborhood N(r1, t1) applies to Av.

First, we show that t1 < v. For a contradiction, assume that v ≤ t1. If
r1 < r, then αr1+1[v] = αr1+1[v2] by Equation (4.1) and so αr1+1[v] ⊆ Av2 .
Since v ≤ t1, this contradicts Equation (4.8). Therefore, assume that r1 = r.
In this case, the neighborhood is N(r, t1) so the removal is done by Re. When
Re acts at t1 to remove the mark on m with respect to N(r, t1), it defines
σie,u′ = αr[t1] for some u′. Since t1 < s2 and Re defines σie,n = αr[s2] at s2,
this implies αr[t1] 6= αr[s2]. However, since r1 = r and αr1 [t1] = αr1 [v2] by
Equation (4.8), we have αr[t1] = αr[v2]. But, αr[v2] = αr[s2] by Equation (4.1)
and hence αr[t1] = αr[s2] for the desired contradiction.

Second, αr1 [t1] ⊆ Av because αr1 [t1] = αr1 [v2] (by Equation (4.8)) and
αr1 [v2] = αr1 [v] (by Equation (4.1) and r1 ≤ r), so αr1 [t1] = αr1 [v].

Finally, we show that αr1+1[u] 6⊆ Av for all u ≤ t1. If r1 = r, then this
follows from Claim 4.25 since t1 < v. Therefore, suppose r1 < r and u ≤ t1 with
αr1+1[u] ⊆ Av, so αr1+1[u] = αr1+1[v]. Since αr[v] = αr[v2], we have αr1+1[v] =
αr1+1[v2] and hence αr1+1[u] = αr1+1[v2] contradicting Equation (4.8). This
completes the proof of Case 3 and finishes the proof of our lemma.

Lemma 4.29. Each requirement is initialized finitely often.

Proof. We proceed by induction on the ordering of requirements. Assume the
requirement Pe is initialized finitely often. We argue that Pe receives attention
finitely often. For a contradiction, suppose Pe receives attention infinitely often.

Consider the final version of Pe (i.e. assume we are past the last stage at
which Pe is initialized). Marks set by the final version of Pe cannot be removed
by a higher priority R strategy since the removal would initialize Pe. Also,
when a mark is set by the final version of Pe, Pe initializes all lower priority R
strategies. Any parameters chosen by these lower priority strategies in the future
will be too large to remove the mark set by Pe. Therefore, no number marked
by the final version of Pe is removed with respect to any neighborhood. Because
Pe acts infinitely often, pe and me are defined on all inputs. Let u0 < u1 < · · ·
be the stages such that pe(i + 1) and me(i) are defined at stage ui. At stage
ui, condition (Pe.2) holds and since me(i) is first marked at stage ui, we must
have Cui(me(i)) = 0 and hence ∆e(me(i)) = 0.

Claim 4.30. For all i and all s > ui, αpe(i)[ui] ⊆ As.

Proof. For a contradiction, fix s > ui such that αpe(i)[ui] 6⊆ As. Since the
mark on me(i) is never removed with respect to any neighborhood, we have
Cs′(me(i)) = 1 for all s′ ≥ s by Lemma 4.22. Fix j > i such that s < uj . Con-
dition (Pe.2) holds at uj with t = me(j), so ∆e(me(i)) = Cuj (me(i)) because
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me(i) < me(j). However, ∆e(me(i)) = 0 and Cuj (me(i)) = 1 for the desired
contradiction.

By Claim 4.30, αpe(i)[ui] ⊆ A for every i and hence A is computable giving
the contradiction which establishes that Pe receives attention only finitely often.

We turn toRe. Assume that Re is initialized finitely often and we work after
the last stage at which Re is initialized so that any parameter re(i) or string
σie,u which is defined retains its value through the remainder of the construction.
Suppose for a contradiction that Re receives attention infinitely often. In this
case, (Re.2) must apply infinitely often. For each defined string σie,u, we have

σie,u = αre(i)[s] where s is the stage at which σie,u is defined. For any fixed i,
there are only finitely many versions of αre(i)[s] (as a function of s) and hence
there are only finitely many strings σie,u defined for any fixed i. Therefore, as
(Re.2) applies infinitely often, we must eventually define re(i) for each i.

To obtain a contradiction, it suffices to define an almost c.e. approximation
σ̂i[s] for A. Fix a sequence of stages t0 < t1 < · · · such that for all s and all
i < s, there is a u such that σie,u ⊆ Ats and such that (Re.2) applies at stage
ts. Note that the value of u depends on both i and s and that at stage ts,
σie,u = αre(i)[ts]. Setting i = s − 1 shows there is a defined string σs−1e,u ⊆ Ats
so that σse,u = αre(s)[ts] is defined (for some u) at stage ts if it is not already
defined.

For all s and all i < s, we define

σ̂i[s] = σie,u = αre(i)[ts].

To complete the proof of this lemma, it suffices to show that these strings form
an almost c.e. approximation to A. We check Conditions (P1)-(P4) of Definition
4.5.

For Condition (P1), fix s and i < s − 1. We have σ̂i[s] ⊆ σ̂i+1[s] because
σ̂i[s] = αre(i)[ts], σ̂i+1[s] = αre(i+1)[ts] and αre(i)[ts] ⊆ αre(i+1)[ts]. For Con-
dition (P2), we need to show that if σ̂i[s] and σ̂i[s + 1] are comparable, then
σ̂i[s] = σ̂i[s + 1]. However, σ̂i[s] = αre(i)[ts] and σ̂i[s + 1] = αre(i)[ts+1]. By
Lemma 4.13, if αre(i)[ts] and αre(i)[ts+1] are comparable, then they are equal.
For Condition (P4),

lim
s
σ̂i[s] = lim

s
αre(i)[ts]

exists and is an initial segment of A.
It remains to verify Condition (P3). Fix s and i < s such that σ̂i[s] and

σ̂i[s+1] are incomparable and fix k > s+1. We show that σ̂i[s] is incomparable
with σ̂i[k]. Since σ̂i[s] = αre(i)[ts] and σ̂i[k] = αre(i)[tk] ⊆ Atk , it suffices
to show that if t > ts+1 and αre(i)[ts] ⊆ At then (Re.2) does not hold at
stage t. Therefore, fix t > ts+1 and assume that αre(i)[ts] ⊆ At and hence
αre(i)[ts] = αre(i)[t]. Fix u such that σ̂i[s] = σie,u so that we have

σ̂i[s] = σie,u = αre(i)[ts] ⊆ At. (4.9)

We show that (Re.2) does not apply at t.
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Let s2 ≤ ts be the stage at which σie,u = αre(i)[s2] is defined. Since

σie,u = αre(i)[s2] = αre(i)[ts] and αre(i)[ts] = αre(i)[t], it follows that αre(i)[s2] =
αre(i)[t]. However, σ̂i[s] = αre(i)[ts] and σ̂i[s + 1] = αre(i)[ts+1] are incompara-
ble, so αre(i)[ts] 6= αre(i)[ts+1] and hence αre(i)[s2] 6= αre(i)[ts+1]. Altogether, we
have s2 < ts+1 < t with σie,u = αre(i)[s2] defined at stage s2, αre(i)[s2] = αre(i)[t]
and αre(i)[s2] 6= αre(i)[ts+1]. Therefore, by Lemma 4.24, Ct � s2 = Cs2 � s2.

Condition (Re.2) applies at stage s2 when σie,u = αre(i)[s2] is defined so

αre(i)+1[s2] ⊆ ΦCe [s2]. Let U < s2 denote the use of this computation. Since
αre(i)[s2] = αre(i)[t] 6= αre(i)[ts+1] with s2 < ts+1 < t, αre(i)[t] is returning to a
previous value after changing at stage ts+1. Therefore, αre(i)+1[t] 6= αre(i)+1[s2]
and hence these strings are incomparable.

We are now in a position to show that (Re.2) does not apply at t. Because
σie,u ⊆ At by Equation (4.9), we need (at least) αre(i+1)+1[t] ⊆ ΦCe [t] for (Re.2)

to apply at t. However, because Ct � s2 = Cs2 � s2, we have αre(i)+1[s2] ⊆ ΦCe [t]
and hence αre(i)+1[t] 6⊆ ΦCe [t] because αre(i)+1[t] and αre(i)+1[s2] are incompa-
rable. Therefore, αre(i+1)+1[t] 6⊆ ΦCe [t] as well and hence (Re.2) cannot apply
at t as required.

Lemma 4.31. Each requirement is satisfied.

Proof. By Lemma 4.29, each requirement receives attention finitely often. Ob-
viously for Pe we cannot have ∆e = C, and for Re we cannot have ΦCe = A,
otherwise the requirement would act infinitely often.

This ends the proof of Theorem 1.2.

4.4 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. For convenience, we restate it here.
We refer the reader to Soare [34] for information on promptly simple sets and
degrees, although below we state the property of promptly simple sets which we
will use in the construction.

Theorem 1.3. Let V be a promptly simple c.e. set and let A be a ∆0
2 set such

that A ≥T V . There exists a c.e. set B such that 0 <T B ≤wtt A.

Before presenting the formal construction, we fix notation and give an intu-
itive sketch of how to meet one requirement. Let V and A be as in the statement
of the theorem and fix a Turing reduction ΓA = V . We speed up the ∆0

2 ap-
proximation to A, the enumeration of V and the reduction Γ so that the length
of agreement function

l(s) = max{x | ∀y ≤ x (ΓAss (x) ↓= Vs(x))}.

satisfies l(s + 1) > l(s) for all s. That is, we assume that every stage of our
construction is expansionary. For x ≤ l(s), we use γ(x, s) to denote the use of
ΓAss (x).
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Because V is promptly simple, there is a fixed computable function p(s) for
which we have the following property for all e (see Soare [34] Chapter XIII,
Theorem 1.7):

We infinite ⇒ ∃∞x∃s(x ∈We at s ∧ Vs � x 6= Vp(s) � x).

The notation We at s means that x ∈We,s and x 6∈We,s−1.
To make B noncomputable, we meet the requirement

Re : B 6= We

for every e. Re is met by choosing a witness which we attempt to put into B if
it ever enters We. To make B ≤wtt A, we use permitting to guarantee that

As � x = A � x ⇒ Bs � x = B � x

for every x, so the computation of B from A has identity bounded use.
Consider a single Re requirement in the presence of our permitting. We

attempt to meet Re in cycles (which may be initialized by higher priority re-
quirements, but only finitely often). The prompt simplicity of V will insure that
only finitely many cycles are needed for Re.

Assume that the nth cycle for Re starts at stage s. Pick a large prefollower
zn. (In the formal construction, we will denote such a witness by ze,n to indicate
it is the nth prefollower for Re. For now, we leave off the subscript e since we are
only considering one requirement.) Wait for a stage s1 > s such that l(s1) > zn.
At stage s1, pick a large follower ys1n such that ys1n > γ(zn, s1) and ys1n 6∈We,s1 .
Notice that if there is a change in Vs1 � zn, then there must be a corresponding
change in As1 � γ(zn, s1), which we would like to use as a permission to put ys1n
into B.

We say ys1n is realized at t > s1 if ys1n ∈ We,t. We say that ys1n is canceled
at stage t > s1 if γ(zn, t) 6= γ(zn, s1) and ys1n has not yet been realized. If ys1n
is canceled at stage t, then we pick a new large follower ytn > γ(zn, t) such that
ytn 6∈ We,t. Since t > s1, we have l(t) > l(s1) > zn and so the computation

ΓAtt (zn) does converge and γ(zn, t) is defined. In general, we use the notation
ytn for the follower of zn at stage t, if there is one. Because there is a final use
γ(zn) for ΓA(zn), the sequence of followers for any given prefollower zn is finite
and must eventually settle down on a single follower.

Assume that at some stage s2 > s1, the current follower ys2n becomes realized
(that is, it enters We at s2). We want to use the prompt simplicity of V to
get permission to put ys2n into B. Two technical problems arise at this point.
Prompt simplicity tells us that if We is infinite, then there are infinitely many
numbers x ∈ We for which if x enters We at stage t, then a number below x
must enter V between stage t and stage p(t). The first technical problem is
that ys2n may not be one of these infinitely many elements of We for which the
condition of prompt simplicity holds. The second technical problem is that even
if ys2n is one of the numbers for which the condition of prompt simplicity holds,
it only causes a number below ys2n (and not necessarily below zn) to enter V .
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Numbers below ys2n are potentially too large to force the desired change in A
below γ(zn, s2) when they enter V . Recall that we want a number below zn to
enter V in order to force a permanent change in A below γ(zn, s2), which we
can use (since γ(zn, s2) < ys2n ) as permission to put ys2n into B.

We solve these problems with a computable function f which for any e gives
an index for a Turing procedure ϕf(e) which does the following on input x. (The
existence of such a function f follows from the Recursion Theorem.) First, it
runs our construction until it finds out if x = zn for some n in a cycle of Re. If
it never finds such a zn, then ϕf(e)(x) ↑. Once it finds x = zn, it watches the
construction until it sees a realized follower ysn. Again, if it never sees one, then
ϕf(e)(x) ↑. Once it sees a realized follower, ϕf(e)(x) converges and outputs 0.
(The output is irrelevant; only the fact that it converges matters.) The point
of this procedure is that it halts on exactly the prefollowers of Re which have
realized followers. Notice also that if ytn enters We at stage t, then ϕf(e) takes
at least t steps to halt.

Returning to the scenario of our construction, recall that zn is our follower
and that ys2n has just enteredWe at stage s2. This scenario implies that ϕf(e)(zn)
halts after at least s2 many steps. Calculate the stage t ≥ s2 such that zn enters
Wf(e) at t. Look at each stage t̂ between s2 and p(t) to see if

Vs2 � zn 6= Vt̂ � zn.

If we find such a stage, then we know

As2 |γ(zn, s2) 6= At̂|γ(zn, s2).

Furthermore, since Vs2 � zn 6= V � zn (since V is c.e.), we know that As2 �
γ(zn, s2) 6= A � γ(zn, s2) (even though A is ∆0

2). Therefore, we have permission
to put ys2n into B and win Re. If we do not find such a stage t̂, then we start
the (n+ 1)st cycle of Re and initialize everything of lower priority.

The prompt simplicity of V guarantees that Wf(e) cannot be infinite, for if
so, there would have been a chance to put one of the followers into B. This
would imply there were no new prefollowers for Re, which in turn makes Wf(e)

finite.
We now present the formal construction and lemmas verifying that the con-

struction succeeds. The priority on our requirements is R0 < R1 < · · · and the
construction is finite injury. As above, we assume that ΓA = V and that for
every s, l(s + 1) > l(s). Let p denote the prompt permitting function for V
under this enumeration. At stage 0, set B0 = ∅.

At stage s+1, run the current cycle (as described below) for each Re with
e ≤ s (in order of their priority) which is not already satisfied. If some Re ends
a cycle and initializes all Ri with i > e, then end the stage early. (We initialize
Ri by canceling any current prefollowers and followers and setting it at the start
of its next cycle.)

Cycle n for Re: Assume that the cycle starts at stage s. Pick a large pre-
follower ze,n. The cycle takes no more action until the first stage s1 at which
l(s1) > ze,n. At stage s1 pick a large follower ys1e,n > γ(ze,n, s1) such that
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ys1e,n 6∈ We,s1 . As noted above, we use the notation yte,n for the current follower
of ze,n at stage t.

We say that yte,n is realized at t > s1 if yte,n ∈ We,t. The current follower
ys1e,n is canceled and a new large follower is chosen at t if γ(ze,n, s1) 6= γ(ze,n, t)
and ys1e,n has not yet been realized. The cycle takes no more action, except to
cancel and pick new followers as necessary, until a stage s2 when the current
follower ys2e,n is realized.

Suppose ys2e,n is realized at stage s2. Find the number t ≥ s2 such that

ze,n enters Wf(e) at t. Calculate Vt̂ for each t̂ such that s2 < t̂ < p(t) and for

each such value of t̂ check if Vs2 � ze,n = Vt̂ � ze,n. If there is a t̂ such that
Vs2 � ze,n 6= Vt̂ � ze,n, then put ys2e,n into B and declare Re satisfied. If there is

no such t̂, then end this stage and initialize all requirements of lower priority.
(At the next stage, Re will begin its (n+ 1)st cycle.) This ends the description
of cycle n for Re and the description of the formal construction.

Lemma 4.32. B ≤wtt A.

Proof. By construction, each element in B is a realized follower yse,n. Suppose
yse,n is realized at stage s and we enumerate it into B. There must be a number

t̂ with s < t̂ < p(t) (where t is the stage at which ze,n entered Wf(e)) such
that Vs � ze,n 6= Vt̂ � ze,n. Because V is c.e., this inequality implies that
Vs � ze,n 6= V � ze,n.

We claim that As � yse,n 6= A � yse,n and hence enumerating yse,n into B is
allowed by our permitting. For a contradiction, suppose that As � yse,n = A �
yse,n. Since γ(ze,n, s) < yse,n, we have As � γ(ze,n, s) = A � γ(ze,n, s). Because

l(s) > ze,n, ΓAss � ze,n = ΓA � ze,n and hence Vs � ze,n = V � ze,n giving the
desired contradiction.

Lemma 4.33. Each Re requirement is won.

Proof. This proof proceeds as a finite injury argument. Assume that Re is
never initialized by any Ri with i < e after stage s. We need to show that Re is
met (that is, B 6= We) and that Re only initializes lower priority requirements
finitely often.

The requirement Re only initializes lower priority requirements when it ends
a cycle because it found a realized follower with no corresponding change in
V . Therefore, if Re initializes the lower priority requirements infinitely often,
then it must have infinitely many realized followers. We make a similar claim if
B = We.

Claim 4.34. If B = We, then Re has infinitely many realized followers.

To prove the claim, assume B = We and suppose Re is in cycle n. We have
chosen ze,n and when l(s1) > ze,n we chose a follower ys1e,n. This follower may be
canceled, but eventually we get to a stage s2 with a true use γ(ze,n, s2). After
this stage, ys2e,n will never be canceled. We do not need to worry about ze,n being
initialized since nothing of higher priority initializes it and Re only initiates a
new cycle after a realized follower is found.
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If ys2e,n 6∈ We, then B 6= We because we never put ys2e,n into B. Hence,

ys
2

e,n ∈ We, but since we never get to put this element into B, we know that
we eventually move on to the next cycle. The same scenario happens in the
(n + 1)st cycle: ze,n+1 eventually gets a realized follower, but doesn’t put it
into B and so moves on to the next cycle. In this way it is clear that for every
m > n, there is a prefollower ze,m which eventually get a realized follower. This
completes the proof of the claim.

To finish the proof of the lemma, it suffices to show that Re cannot have
infinitely many realized followers. Assume that each ze,m for m ≥ n eventually
gets a realized follower. Since each ze,m ∈ Wf(e), Wf(e) is infinite. Also, we do
not put any of the realized followers into B since doing so would satisfy Re and
cause it to stop initiating new cycles, thereby not having infinitely many realized
followers. It follows that there is a sequence of stages sn, sn+1, . . . , sm, . . . such
that

ze,m ∈Wf(e) at sm but Vsm � ze,m = Vp(sm) � ze,m

for every m ≥ n. However, since Wf(e) ⊆ {ze,n|n ∈ ω}, this condition implies
there can be at most finitely many x for which the prompt permitting function
works, contradicting the fact that V is promptly simple.
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