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PSEUDO-JUMP INVERSION AND SJT-HARD SETS

ROD DOWNEY AND NOAM GREENBERG

Abstract. There are noncomputable c.e. sets, computable from every SJT-
hard c.e. set. This yields a natural pseudo-jump operator, increasing on all

sets, which cannot be inverted back to a minimal pair or even avoiding an

upper cone.

1. Introduction

While interactions between measure theory and computability theory can be
traced back to the 1950’s through the work of de Leeuw, Moore, Shannon and
Shapiro [4] and Spector [28], most of the spectacular development of these inter-
actions has really occurred in the last decade. Foremost in this development has
been the use of methods from computability theory to understand and calibrate
algorithmic randomness (see, for example, Downey and Hirschfeldt [7], Nies [24]
and Downey, Hirschfeldt, Nies and Terwijn [9]). What has been less apparent is
the extremely fruitful interaction the other way. That is, the use of algorithmic ran-
domness to help us to understand computation. This paper is an example of this
kind of interaction. We will use methods emanating from issues around K-triviality
to answer a rather longstanding question in classical computability, explicitly artic-
ulated in Coles, Downey, Jockusch and LaForte [3], but going back to the papers of
Jockusch and Shore [14, 15]: we show that there is a natural pseudo-jump operator,
increasing on all sets, which cannot be inverted while avoiding an upper cone. The
techniques that we introduce in order to prove this result are far from what might
have been tried before the development of the randomness-related concepts of the
last decade. We believe that they will have many other applications.

The origins of the methods of this paper are attempts of combinatorial charac-
terisations of the notion of K-triviality. K-triviality has turned out to be a very
important concept in algorithmic randomness. This concept originated in the work
of Solovay [27], and was more recently developed starting with Downey, Hirschfeldt,
Nies and Stephan [8]. Although this notion is defined in terms of initial-segment
complexity (a set is K-trivial if every initial segment of it is incompressible using
a prefix-free machine), the celebrated work of Nies, Hirschfeldt and others shows
that K triviality coincides with notions such as lowness for K, lowness for Martin-
Löf randomness, lowness for weak 2-randomness, and being a base for randomness.
All of these equivalent concepts express a lack of derandomisation power of an or-
acle with respect to some notion of algorithmic randomness: for example, a set
A P 2ω is low for Martin-Löf randomness if every set which is Martin-Löf random
remains Martin-Löf random relative to A; in other words, A cannot detect patterns
in Martin-Löf random sets. We refer the reader to [7, 9, 24, 22, 23] for details of
such results.
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One key question we might ask is whether there is some way to characterise
classes like the K-trivials in terms of computability-theoretic considerations not
involving randomness but “purely discrete” concepts like the Turing jump. In this
context, Terwijn [29], and then Terwijn and Zambella [30] found a new direction in
this programme. They discovered that we could use what is called tracing to give
insight into such lowness concepts. Tracing had its origins in set theory (see [26]),
but in computability the concept is defined as follows.

Definition 1.1. A trace for a partial function ψ : ω Ñ ω is a sequence T �
xT pzqyz ω of finite sets such that for all z P domψ, ψpzq P T pzq.

Thus, a trace for a partial function ψ indirectly specifies the values of ψ by
providing finitely many possibilities for each value; it provides a way of “guessing”
the values of the function ψ. Such a trace is useful if it is easier to compute than the
function ψ itself. In some sense the notion of a trace is quite old in computability
theory. W. Miller and Martin [19] characterized the hyperimmune-free degrees as
those Turing degrees a such that every (total) function h P a has a computable
trace (the more familiar, but equivalent, formulation, is in terms of domination).
In the same spirit, Terwijn and Zambella used a uniform version of hyperimmunity
to characterise lowness for Schnorr randomness, thereby giving a “combinatorial”
characterisation of this lowness notion.

In this paper we are concerned not with how hard it is to compute a trace, but
rather, how hard it is to enumerate it.

Definition 1.2. A trace T � xT pzqy is computably enumerable in a Turing degree
a if the set of pairs tpx, zq : x P T pzqu is c.e. in a.

In other words, if uniformly in z, an oracle in a can enumerate the elements of
T pzq. It is guaranteed that each set T pzq is finite, and yet if T is merely c.e. in a,
we do not expect a to know when the enumeration of T pzq ends. Thus, rather than
using the exact size of each element of the trace, we use effective bounds on this
size to indicate how strong a trace is: the fewer options for the value of a function,
the closer we are to knowing what that value is. The bounds are known as order
functions; they calibrate rates of growth of computable functions.

Definition 1.3. An order function is a nondecreasing, computable and unbounded
function h such that hp0q ¡ 0. If h is an order function and T � xT pzqy is a trace,
then we say that T is an h-trace (or that T is bounded by h) if for all z, |T pzq| ¤ hpzq.

In addition to measuring the sizes of c.e. traces, order functions are used to define
uniform versions of traceability notions. For example, computable traceability, the
uniform version of hyperimmunity used by Terwijn and Zambella, is defined by
requiring that traces for functions in a hyperimmune degree a are all bounded by
a single order function.

Zambella (see Terwijn [29]) observed that if A is low for Martin-Löf randomness
then there is an order function h such that every function computable from A has a
c.e. h-trace. This was improved by Nies [22], who showed that one can replace total
by partial functions. In some sense it is natural to expect a connection between
uniform traceability and lowness notions such as K-triviality; if every function
computable (or partial computable) from A has a c.e. h-trace, for some slow-growing
order function h, then the value ψpnq of any such function can be described by
log n� log hpnq many bits.
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Following this, it was a natural goal to characterise K-triviality by tracing, prob-
ably with respect to a family of order functions. This problem still remains open.
However, an attempt toward a solution lead to the introduction of what seems now
a fairly fundamental concept, which is not only interesting in its own right, but
now has been shown to have deep connections with randomness.

Definition 1.4 (Figuiera, Nies and Stephan [10]). Let h be an order function.
An oracle A P 2ω is h-jump-traceable if every A-partial computable function has a
c.e. h-trace. An oracle is strongly jump-traceable if it is h-jump-traceable for every
order function h.

Figueira, Nies and Stephan gave a construction of a non-computable strongly
jump-traceable c.e. set. Their construction bore a strong resemblance to the con-
struction of a K-trivial c.e. set. J. Miller and Nies [18] asked if strong jump-
traceability and K-triviality coincided. Cholak and the authors [2] showed that
the strongly jump-traceable c.e. sets form a proper subclass of the c.e. K-trivial
sets. They also showed that the class formed an ideal in the c.e. degrees. This
ideal was later shown to be Π0

4 complete by Ng [20], giving an alternative proof of
the proper containment, as the K-trivial c.e. sets form a Σ0

3 ideal. One of main
contributions of the paper [2] was the introduction of new combinatorial tools for
dealing with the class of c.e., strongly jump-traceable sets, collectively known as
the “box-promotion” technique. We remark that recently, in [6] the authors showed
how to adapt this technique to the non-c.e. case by showing that all strongly jump-
traceable sets are K-trivial, when there was no a priori reason that they should
even be ∆0

2.
In view of these results it might seem that strong jump-traceability might be an

interesting artifact of the studies of randomness, but as it turned out, the class of
c.e., strongly jump-traceable sets has been shown to have remarkable connections
with randomness. Greenberg, Hirschfeldt, and Nies [11] proved that a c.e. set is
strongly jump-traceable if and only if it is computable from every superlow random
sets, if and only if it is computable from every superhigh random set; they related
such random sets with the benign cost functions which by work of Greenberg and
Nies [12] characterise c.e., strong jump-traceability. Greenberg and Turetsky [13]
complemented work of Kučera and Nies [17] and showed that a c.e. set is strongly
jump-traceable if and only if it is computable from a Demuth random set, thus
solving the Demuth analogue of the random covering problem, which remains open
for Martin-Löf randomness and K-triviality. Other attractive spin-offs in the arena
of randomness include Nies’s new work on the calculus of cost functions [25]. This
material is only just beginning to work itself out and we expect a lot more to grow
from these ideas.

The goal of the present paper is to use strong jump-traceability to solve a long-
standing question in classical computability. This question concerns what are called
pseudo-jump operators.

Definition 1.5 (Jockusch and Shore [14, 15]). A pseudo-jump operator is a map
J : 2ω Ñ 2ω of the form JpAq � A`WA

e .1 A pseudo-jump operator J is everywhere
increasing if for all A P 2ω, JpAq ¡T A.

1Here WA
e is the eth c.e. set relativised to A, in some fixed list of all c.e. operators.
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The most natural pseudo-jump operator is the Turing jump operator, which
maps each set A P 2ω to A1, the halting set relative to A. Jockusch and Shore’s key
insight was that this generalisation of the Turing jump allowed one to give simple
constructions of Turing degrees of various prescribed properties. The key concept
was pseudo-jump inversion.

Theorem 1.6 (Jockusch and Shore [14]). Let J be a pseudo-jump operator. Then
there is some non-computable c.e. set A such that JpAq �T 01.

The degree a of the c.e. set A given by Theorem 1.6 is an instance of inverting
the operator J . Roughly, the idea is that J explains how to relativise to any oracle
the construction of a c.e. set JpHq. Inverting the operator J allows us, up to Turing
equivalence, to view the halting problem H1 as the result of the construction J ,
relativised to some c.e. oracle. For example, applying pseudo-jump inversion to the
Turing jump operator gives a non-computable low set, a set whose Turing jump
is as simple as possible. In turn, inverting the construction of a low set yields a
high set, an incomplete c.e. set whose Turing jump is 02 (as high as possible for a
c.e. set). Jockusch and Shore went on to give simple constructions of c.e. degrees
in every level of the lown and highn hierarchy using pseudo-jump inversion. These
methods have seen many generalisations, and have extensions to randomness, as
witnessed by Nies [24, Theorem 6.3.9], and to Π0

1 classes by Cenzer, LaForte and
Wu [1], in some sense extending the Jockusch-Soare low basis theorem.

In spite of the usefulness of pseudo-jump operators, there is distinct lack of gen-
eral theory concerning them, aside from the original Jockusch-Shore papers. Coles,
Downey, Jockusch and LaForte [3] studied the general theory of these operators,
trying to understand what techniques pseudo-jump inversion would be compatible
with. Such questions were implicit in the Jockusch-Shore papers. For example, in
[3] it is shown that pseudo-jump inversion is compatible with a Friedberg strategy:
for any everywhere increasing pseudo-jump operator J , it is possible to construct
two Turing incomparable c.e. inversions of J . However, the question of whether
pseudo-jump inversion is compatible with avoiding upper cones, and even with the
construction of a minimal pair, remained open. In [3], the authors construct a
pseudo-jump operator J which is increasing on c.e. sets, for which inversion cannot
be combined with upper cone avoidance. That is, there is a non-computable c.e.
set E which is computable from all c.e. inversions of J . However, there is no reason
to believe that this operator J is increasing on all sets, rather than only on the c.e.
ones. The difficulty of making J increasing globally is similar to the problem of
producing a degree-invariant solution for Post’s problem. Moreover, this operator J
is unnatural, in that it is given by a direct priority construction. Their construction
was a 03-priority argument.

In this paper we solve this question, by showing that there is an everywhere-
increasing pseudo-jump operator for which inversion cannot be combined with
upper-cone avoidance. This operator is the relativisation of the construction of
a non-computable strongly jump-traceable set from [10]. Thus our example is
natural. While our construction is combinatorially complex, it does not use the
03-priority machinery utilised in [3], and so is logically simpler.

Relativising this construction, let JSJT be a pseudo-jump operator, everywhere
increasing, such that for all A P 2ω, JSJTpAq is strongly jump-traceable relative to
A. Because every strongly jump-traceable set is “very low” (it is K-trivial and so
superlow), every inversion A of JSJT must be “very high”: H1 is K-trivial relative
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to A, and so A is superhigh. Inversions of JSJT, namely c.e. sets relative to which
H1 is strongly jump-traceable, were first studied by Ng in [21], where they are called
ultrahigh.

Nies related notions of lowness, such as superlowness, K-triviality and jump-
traceability, to so-called weak reducibilities. These are partial relativisations of
these lowness notions which are made so as to obtain transitive relations on 2ω.
The best-known weak reducibility ¤LR is obtained by partially relativising lowness
for randomness, equivalently lowness for K. The weak reducibility corresponding
to strong jump-traceability, ¤SJT, is obtained by relativising the complexity of the
traces, but by preserving the complexity of the bounds on the traces:

Definition 1.7. For A,B P 2ω, we let A ¤SJT B if for every (computable) order
function h, every B-partial computable function ψ has an A-c.e. trace bounded by
h.

Akin to other reducibilities, we say that a set B P 2ω is SJT-hard if H1 ¤SJT B.
That is, if for every order function h, every partial Σ0

2 function has an A-c.e. trace
bounded by h. Certainly every ultrahigh set is SJT-hard.

The main theorem of this paper is:

Theorem 1.8. There is a noncomputable c.e. set which is computable from every
SJT-hard c.e. set.

Applying the result to ultrahigh sets and so to inversions of JSJT, we get:

Corollary 1.9. There is a pseudojump operator J , increasing on all sets, which
cannot be inverted while avoiding any prescribed upper cone.

A question pursued by several researchers is whether there is a minimal pair of
LR-hard c.e. degrees. By a relativisation of Nies’s results, a c.e. degree a is LR-hard
if and only if H1 is K-trivial relative to a. The interest in LR-hard degrees was
sparked by work of Kjos-Hanssen, J. Miller and Solomon [16], who showed that a
Turing degree is LR-hard if and only if it is almost everywhere dominating, a notion
suggested by Dobrinen and Simpson [5]. Relativising a result of Nies’s mentioned
above, we see that there is an order function h such that for any LR-hard c.e. degree
a, 01 is h-jump-traceable relative to a. An examination of the proof of Theorem 1.8
reveals that in fact, there is an order function g and a non-computable c.e. set E
which is computable from every c.e. set relative to which 01 is g-jump-traceable. If
we could make g grow at least as quickly as h, we would settle the question in the
negative. Currently we know that for h, we can take any order function such that°

2�hpnq is computable and finite; the proof of Theorem 1.8 gives an order function
g whose growth rate is roughly log log n. The gap does not seem too large, and at
least one of the authors believes that it can be bridged.

As mentioned above, mixing randomness with Turing reducibility has resulted
in interesting classes of c.e. degrees. The collection of c.e. degrees which lie below
all SJT-hard c.e. degrees seems to be a new ideal of c.e. degrees, about which, at
this point, we know next to nothing. Further research is definitely needed. This
would no doubt require a further refinement of the box-promotion technique, which
is first used to deal with highness notions in this paper.
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2. Minimal pairs

The proof of Theorem 1.8 is technical. As a warm-up, we prove a weaker result
first: that there is no minimal pair of c.e. SJT-hard degrees.

2.1. Discussion. Let A0 and A1 be SJT-hard c.e. sets. We enumerate a set E,
which we make noncomputable and reducible to both A0 and A1. The noncom-
putability requirements are the familiar

P e: E � ϕe,

where xϕey is an effective enumeration of all partial computable functions. These
requirements are met by the Friedberg-Muchnik strategy: a requirement P e ap-
points a follower x, waits for the follower to be realised, which means ϕepxqÓ� 0,
and then wants to enumerate x into E.

Of course, to ensure that E is computable from A0 and from A1, when the
requirement P e appoints x, it needs to determine uses u0 and u1 for reducing the
question “x P E?” to A0 and to A1. We are not allowed to enumerate x into
E unless both A0 and A1 change below u0 and u1 respectively. Moreover, if, for
example A0æu0 changes at some stage s, we would either need to get a change in
A1æu1 more or less at this stage, and then we would have permission to put x into
E; or we would need to reset u0 and wait for another A0 change on the new use.
That is, permissions need to be more or less simultaneous. Furthermore, whilst u0

and u1 are chosen to be large when x is appointed, a long time passes between that
stage and the stage at which x is realised; of course, before x is realised, we do not
want to enumerate it into E. Hence, when we want to enumerate x into E, the uses
u0 and u1 would be relatively small, and so voluntary A0 and A1 changes below
their uses are unlikely.

Fortunately, the fact that A0 and A1 are SJT-hard means that they do have
to change often; for example, they are both high. The SJT-hardness gives us a
mechanism for forcing desirable changes in these sets. SJT-hardness means that
for both i � 0, 1, the set Ai can trace any Σ0

2 partial function ψ by a trace T i �@
T ipzq

D
z ω

which is bounded by any prescribed computable order function h. That

is, if z P domψ, then ψpzq P T ipzq, and for all z, |T ipzq| ¤ hpzq. Now a Σ0
2 function

ψ is the partial limit of a sequence xψsys ω of uniformly computable functions;
ψpzq � d if and only if for almost all s, ψspzq � d. The trace T i is uniformly c.e. in
Ai, that is, every d P T ipzq is enumerated into T ipzq with some Ai-use, which we
denote by uipz, dq. At stage s, we let T ispzq be the collection of numbers enumerated
into T ipzq by stage s with the oracle Ais, the collection of numbers already in Ai

at stage s. An important point is that if ψspzq � d at some stage s, then either
d P T ipzq, or there is some stage t ¡ s such that ψtpzq � d. Thus, if we are defining
ψ, then when we let ψspzq � d, we can commit to never changing the value ψtpzq
away from d unless we see that d P T it pzq. This implies that for all s and z, there
is some t ¡ s such that ψspzq P T

i
t pzq. If d � ψspzq is an element of T it pzq, with

Ai-use u � uitpz, dq, then at a stage r ¡ t, either d is still an element of T irpzq, or
Aitæu � Airæu. In other words, extracting d from T ipzq requires an Ai-change below
u. In particular, this means that if at stage t (or at a later stage) we change ψtpzq
to have value different from d, then either this new value needs to be enumerated
into T ipzq in addition to the old value d, or the old value needs to be extracted from
T ipzq by an Ai-change below u. If we repeat this process more than hpzq many
times, then as T ipzq cannot contain hpzq�1 many distinct possible values for ψpzq,
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at some cycle we will have forced a change in Ai. The smaller the value hpzq is, the
fewer cycles we need to go through before we obtain the desired Ai-change.

The construction below is a balancing act. We will show that if h grows suffi-
ciently slowly, then we will be able to force sufficiently many simultaneous A0- and
A1-changes, to get enough simultaneous permissions so that for every requirement
P e there is some follower x for P e which is permitted to enter E (or is never re-
alised). So as described above, we define a Σ0

2 partial function ψ, by letting ψ be
the partial limit of a uniformly computable sequence xψsy of functions. We also
define an order function h. As we argue below, the recursion theorem will give us,
for both i � 0, 1, Ai-c.e. traces T i �

@
T ipzq

D
z ω

for ψ which are both bounded by

h. As described above, we let T ispzq be the stage s-approximation for T ipzq, and
we assume that for all s and z there is some t ¡ s such that ψspzq P T

i
t pzq.

The general process for obtaining an Ai-permission for some follower x for P e

follows the procedure, described above, of manufacturing an Ai-change. We asso-
ciate some input z with the requirement P e. At some stage s0, we appoint a first
follower x0 for P e, and define ψs0pzq � s0. We then wait for a stage t0 ¡ s0 at
which we see that s0 is enumerated into T ipzq. This enumeration yields an Ai-
use uit0pz, s0q; we determine that the Ai-use vipx0q which is used for the reduction

of the question “x0 P E?” to Ai equals the use uit0pz, s0q. Now suppose that at

some stage s1 ¡ t0, the follower x0 is realised; so for Ai-permission for x0, we need
to see a future change in Ai æ vipx0q. The definition of vipx0q means that if Ai

does not give permission to x0 by a stage r, then s0 P T
i
rpzq. We then appoint a

new follower x1, and redefine ψs1pzq to equal s1. We wait for a stage t1 ¡ s1 at
which we see that s1 is enumerated into T ipzq. Now there are two possibilities: if
Ait1æ v

ipx0q � Ait0æ v
ipx0q, then x0 receives Ai-permission as required. Otherwise,

we define the use vipx1q � uit1pz, s1q for reducing the question “x1 P E?” to Ai; we
wait for another stage s2 at which x1 is realised, and repeat the process: appoint
a new follower x2, change ψs2pzq to equal s2, find a stage t2 ¡ s2 at which s2
is enumerated into T ipzq. At stage t2, if neither x0 nor x1 are permitted by Ai,
then we appoint a new follower and repeat the cycle. As we mentioned above, this
process cannot repeat more than hpzq� 1 many times, and so eventually, either we
appoint a follower which never gets realised, or some realised follower is permitted
by Ai.

The reader may ask: after all, we define h. Why do we not just define hpzq � 1?
In this case, we do not need to appoint more than one follower, as the first follower
appointed is guaranteed to receive permission. There are two reasons. First, while
we define h, the recursion theorem levies an “overhead”, which means that it gives
us a constant c ¥ 1 such that T i is only bounded by maxtc, hu and not by h. The
second reason is more important. While we define h, we need to ensure that h is
unbounded. That means that for any value k, we may only define hpzq � k for
finitely many inputs z. Fixing z, if x is a follower for P e which is never realised, we
will not need permission from Ai for x, but we also need to ensure that the use of
reducing x P E to Ai is bounded. If we let other followers, for other requirements,
access z by changing ψpzq and thus the Ai-use of enumerating ψpzq into T ipzq,
then the use of reducing x P E to Ai, which has to be tied to this use (to enable
permission if x does get realised), will increase each time ψpzq is changed. This
should not happen infinitely often. And so, for yet unrealised followers, different
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requirements P e need to access different inputs z, and so the values hpzq for the
inputs z cannot be bounded.

The discussion so far shows how to obtain permission from a single set A0 or
A1, and so would suffice if we wanted to show that both sets are not computable.
However, to enumerate a follower x into E, we need permission from both sets A0

and A1. If we did have “1-boxes”, namely access to inputs z such that |T ipzq| is
known to be bounded by 1, then we could run the process above on both sides:
appoint a follower x at a stage s; define ψspzq � s; for both i   2, tie the Ai-use of
x to the Ai-use vipxq � uitpz, sq of enumerating s into T ipzq at some stage t ¡ s; if
x is realised at some s1 ¡ t, redefine ψpzq � s1, get permission for x from both A0

and A1, and enumerate x into E. The point here is that if we have 1-boxes then
the only way a new value can enter the box is that the relevant Ai changes on the
use. However, we may not have 1-boxes. If hpzq ¡ 1, and we attempt to run the
process on both sides, we may be faced with the following situation which is caused
by certain timing considerations. At stage s0, we appoint the follower x0 and define
ψs0pzq � s0; at stage t0 ¡ s0, we associate with x0 the Ai-uses vipx0q � uit0pz, s0q.
At stage s1 ¡ t0, x0 is realised; we appoint a new follower x1, set ψs1pzq � s1, and
wait for s1 to be enumerated into both T 0pzq and T 1pzq at a stage t1 ¡ s1. At stage
t1, we see that A0 permits x0, but A1 does not. We are not allowed to enumerate
x into E at stage t1. But we are also not allowed to keep the A0-permission for x
open: at stage t1, we must associate x0 with a new A0-use, or we will not be able
to compute the answer to the question “x P E?” from A0 alone. We can do this;
we redefine u0px0q � u0px1q � u0t1pz, s1q. Say that at a later stage s2, x1 is realised
as well. Suppose, for simplicity, that hpzq � 2. Thus if we change ψpzq at stage
s2, then we are guaranteed that A1 permits either x0 or x1 at some t2 ¡ s2. But
the A0-permission for x0 at stage t1 means that s0 is extracted from T 0pzq, and so
T 0
t1pzq might contain but one element, s1. In this case, A0 may refuse to permit

either x0 or x1 at stage t2. The permission that A1 gives at stage t2, though, gives
A1 the opportunity to empty T 1pzq and leave it with one element, s2. This strategy
allows A0 and A1 together to keep see-sawing, always giving permission on one side,
and denying it on the other. Hence whilst the opponent gives permissions on both
sides, because they are out of phase, we cannot use them for enumeration of x0, or
indeed any other follower, into E.

In fact, if the growth rate of the order h is 2n, then we know that it is possible to
construct a minimal pair of c.e. sets B1, B2, which are superhigh with truth table
bound 2n. (See for example Ng’s [21]). Thus somehow we will need to have a more
slowly growing h, and this is “dually” similar to the problems in showing that the
strongly jump-traceable c.e. sets form an ideal, as shown in Cholak, Downey and
Greenberg [2].

We need to break the symmetry between A0 and A1. Using a slowly growing
order function h, this is done by an inductive process known as “box promotion”.
This promotion has already been exploited. If some realised follower x is tied to an
Ai-box tzu via some value s P T ipzq (and use vipxq � uitpz, sq), we change ψpzq away
from s, and Aiæ u does not change, then the hpzq-box tzu has been promoted to
being an hpzq � 1-box. Other followers, weaker than x, can use the box, imagining
that it only has hpzq � 1 many slots left to fill. This promotion can be reversed
only if Ai relents and permits x.
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We sketch how this works. Suppose, as first approximation, that the constant
c supplied by the recursion theorem equals 1, that is, we have access to 1-boxes.
Since we only have finitely many 1-boxes, we consider a requirement P e which
initially only has access to 2-boxes. Suppose that x is a realised follower for P e;
at some stage s, the Ai-uses are vipxq � uitpzi, tq, where tz0u and tz1u are 2-boxes.
We ask for A1-permission for x by changing ψpz1q away from t. While permission
is denied, tz1u is effectively a 1-box, and other followers may use it to define uses
and obtain permission from A1. Since we do not want to drive the use v0pxq to
infinity, other followers, for the time being, are not allowed to change ψpz0q. Once
A1-permission is received, we move the A1, x-pointer from z1 to a 1-box twu, and
obtain a new version of v1pxq, based on the use of enumerating a new value ψpwq
into T 1pwq. We then ask for A0-permission for x, making the 2-box tz0u “active”:
while A0-permission for x is denied, tz0u is effectively a 2-box for other followers,
who may now change ψpz0q with impunity, defining uses based on z0 and obtaining
permissions from A0. Once A0-permission for x is obtained, we can change ψpwq
and get a guaranteed A1-permission for x as well, and enumerate x into E. See
Figures 1 and 2.

r
s

z0

r

s

z1
w

A1

A0

x y

Figure 1. The follower x is waiting for an A1-permission. Mean-
while, follower y can treat tz1u as a 1-box.

Now, an examination of what happens further to the right explains why we need
to use metaboxes. A metabox is an aggregate of boxes of some fixed size. It is used
to amplify the promotion given by a refusal of some set to give permission. Suppose
again, for example, that both A0- and A1-uses of a follower x are associated with
2-boxes tz0u and tz1u as above. While waiting for A1-permission, other followers
treat tz1u as a 1-box. Such followers point to tz1u and to an A0 � 3-box tz2u. We
need at least two such followers, y0 and y1, to turn tz2u into a 1-box. However,
while waiting for permission from A0, the A1-use of y0 and y1, which is tied to tz1u,
should not change. This means that y0 and y1 should not be sharing z1; they should
have different versions of z1, each for its own use. [The reader may ask: if there are
only two followers, y0 and y1, then not much harm will come from changing, say,
y0’s use when y1 acts, as y1 will act only once? But it is possible that y0 is fixed,
but infinitely many followers playing the role of y1 come and go, each acting once.
This is why y0 needs a box of its own on the A1 side.] The solution is to tie x’s use
to to a single input z1, but to a metabox M of inputs. When the use is set up, at
stage s say, we define ψpzq � s for all z P M . We wait for s to show up in T 1pzq
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s1

w

r1

s

z0

r2

r1

z1

r2

A1

A0

x y1 y2

Figure 2. Follower x received permission from A1. Its A1-pointer
moved to w. It is now waiting for A0-permission. Meanwhile,
follower y1 is treating tz0u as a 1-box, and follower y2 is treating
tz1u as a 1-box.

for all z P M . We then let the use v1pxq be the maximum of the uses u1pz, sq of
enumerating s into T 1pzq for z PM . While A1 does not permit x, every z PM can
be treated as a 1-box. This means that we can then split M into two, one part tied
to y0 and another to y1. See Figure 3.

s

M0
2

r1 r0

s

M1
2

r1

r0

M0
3

A1

A0

x

y1

y0

Figure 3. The metabox M1
2 is promoted while x is waiting for

A1-permission. It is split between y0 and y1; while both y0 and
y1 wait for A0-permission, other followers can treat M0

3 as a 1-box
and get immediate permission when required.

Of course, we need to apply this reasoning to every level: thinking toward the
4-boxes, we may need to split the collection of 3-boxes into at least three disjoint
parts. But it is not sufficient to have only k many k-boxes.2 Consider again the
case of 2-boxes. Even before any promotions are made to 2-boxes, we may need
disjoint 2-boxes (on the A1 side) for two followers y0 and y1 which are waiting for
permission from A0 on 3-boxes. Either one of these may need to be split up in the
future: at most one, but we cannot tell in advance which one. Suppose that y0 is

2We remark at this point that it would be extremely nice to have a version of this construction
requiring only k many k-boxes. As indicated in the introduction, we believe that this would lead

to a proof that there is no minimal pair of LR-hard c.e. sets.
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stronger than y1. If y0 gets permission from A0, and its A0 pointer moves from
M0

3 to M0
2 , then y1 gets cancelled, the part of M1

2 which was pointed to by y0 gets
promoted, and it will be split up between future followers pointing at M1

2 and M0
3 .

The part of M1
2 which was pointed to by y1 is not promoted, and will not be used

until y0 is cancelled or moved. If y1, but not y0, gets permission, then y0 is not
cancelled, but the part of M1

2 to which it is pointed is not promoted, and will not
be used by other followers; a future follower will point to sub-boxes of the metabox
pointed to by y1. See Figures 4, 5, and 6. So we need at least three 2-boxes, and
in general about kk-many k-boxes.

M0
2

s1 s0

M1
2

s1

s0

M0
3

A1

A0

y1

y0

Figure 4. Both y0 and y1 seek permission from A0. We do not
know which, if either, will be permitted.

s2

M0
2

r1 r0

s0

M1
2

r1

r0

M0
3

A1

A0

y0

x1

x0

Figure 5. The follower y0 was permitted. Followers x0 and x1
use y0’s boxes. y1 is cancelled.

We see the general structure of the metaboxes M i
k for i   2 and k   ω. Consider

for example i � 1. A follower x, pointing at M1
k , also points at either M0

k or M0
k�1.

In the first case, it is asking for permission from A1; in the second, from A0. For
such a follower x, let M1pxq be the sub-box of M1

k which is used by x. If x and
y point to M1

k and M0
k�1 (we write 0 � toppxq � toppyq to indicate that x and y

are waiting for permission from A0), then we require that M1pxq and M1pyq are
disjoint, so that the A1-use of x, in case it never moves again, does not go to infinity.
If x and y point to M1

k and M0
k (i.e. 1 � toppxq � toppyq) and x is stronger than
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s2

M0
2

r

s1 s0

M1
2

r

s0

M0
3

A1

A0

y1

x

y0

Figure 6. In an alternate reality, y1 was permitted. A new fol-
lower x uses y1’s boxes.

y then we require that M1pyq � M1pxq, and that t1pxq   t1pyq. Here t1pxq is the
stage at which x was last moved, which is the same as the value of ψpzq which is
enumerated into T 1pzq for z P M1

k pxq, the uses u1pz, t1pxqq of said enumerations
determining the use connecting x P E to A1. The conditions M1pyq � M1pxq and
t1pxq   t1pyq, together with the bound k on the size of T 1pzq for z P M1

k , ensure
that there are at most k followers x with toppxq � 1 pointing at M1

k . This allows
us to calculate how large M0

k needs to be (as we mentioned, about kk), and so
define the order function h ahead of time. The metabox M1

k is structured as a tree
of sub-boxes, ordered by reverse inclusion. A stem consists of the boxes M1pxq for
followers x with toppxq � 1; each element M1pxq of the stem is divided into disjoint
sub-boxes M1pyq, where for all but at most one y, we have toppyq � 0.

For i � 0 instead of 1, the situation is similar; if x points at M0
k (we write

k � k0pxq), then toppxq � 1 if it also points at M1
k , and toppxq � 0 if it also

points at M1
k�1. A typical walk by a follower x starts with M1

k and M0
k for some

k (so toppxq begins with 1); an A1-permission moves x to point at M0
k and M1

k�1

(moving toppxq to 0); then an A0-permission moves x to point at M1
k�1 and M0

k�1

(moving toppxq back to 1), and so on, until at some point, one of the boxes it points
to is a (possibly promoted) 1-box, which allows dual permission and enumeration
into E.

This structure explains why we need to order the followers by priority, and
cancel weak followers whenever a stronger follower moves. If x is stronger than y,
then for both i   2, the use vipxq for reducing x P E to Ai is smaller than the
corresponding use vipyq. If x receives permission from say A0 at some stage, then
the A0-change below v0pyq invalidates any promotion of an A0-box credited to y.
On the other hand, on the A1-side, the boxes M1pxq and M1pyq are disjoint; if
y were not cancelled, we would have to move y to also require permission from
A1, violating the requirement that M1pxq and M1pyq are comparable in this case.
And again we emphasise, that without this comparability, the whole mechanism,
of using the bound on the size of the traces to bound the number of boxes that we
need, is thrown out of whack.

To complete the discussion, there are three further issues we need to address. The
first is simple: we notice that followers for different requirements need to all work in
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concert in the grand scheme of movement and promotion. That is, we cannot, for
different requirements P e, set up separate boxes, only devoted to followers of P e.
Again, this is because for each k, we can overall have only finitely many k-boxes,
as h has to be unbounded. The cursus honorum of followers for P e may start with
e-boxes, say, but may require advancement all the way down to 1-boxes. The effort
is combined; followers for a requirement P e will make use of promotions credited to
followers of stronger requirements. The important thing is that even though some
followers get stuck, overall there are no losses but only collective gains.

The discussion above only referred to realised followers. Before a follower x is
realised, it needs to point at boxes M i

k for both i   2, but permissions from A1

where say 1 � toppxq are not useful, as we do not want to enumerate x into E
before it is realised. So x cannot play a full part in the global promotion process.
This is why we need to allocate to it a private A1-box, disjoint from the general
structure of sub-boxes of M1

k . On the other hand, when x is realised and receives
its first A1-permission, it needs to join the global effort, while of course not moving
its A0-pointer. This is why the A0-boxes associated with an unrealised follower are
not private, but part of the general structure of boxes.

Finally, the impatient reader has likely already been wondering for a while, what
if we do not have any 1-boxes? That is, what happens if the constant c supplied
by the recursion theorem is greater than 1? This situation seems to invalidate the
entire plan, since it loses its basis of 1-boxes: if we have none, then there is no
mechanism for eventually enumerating any followers into E.

The solution is to introduce nonuniformity to the process of reducing E to A1.
Suppose that a follower x has been promoted as much as it could: it points to the
smallest A1-box M1

c , and to the smallest A0-box M0
c , and toppxq � 1. It then

receives A1-permission, but we cannot guarantee A0-permission, since c ¡ 1. We
then, contrary to everything we said so far, leave the A1-permission open: we do
not appoint a new A1-use, and leave x to point only at M0

c , and not at any A1-box.
The situation of x in the scheme of sub-boxes of M0

c is as if it were pointing at
M1
c�1, if that metabox existed. So the boxes M0pxq of such followers are nested,

and so there are at most c of them. If x is then permitted by A0, we enumerate
it into E; otherwise we do not. We then see that the promotion structure implies
that there can be at most c followers for which the A1-permission is left open but
are not later cancelled or enumerated into E. Thus A1, upon leaving a permission
open for x, searches for a later stage at which x is cancelled or enumerated into E,
and thus can find out if x is in E or not. This search will halt for all but finitely
many, indeed at most c many, followers.

We note that the nonuniformity we introduced is limited to the reduction of E to
A1. Namely, an index for E is obtained effectively from indices for A0 and A1 (and
for Ai-traces for a universal Σ0

2 partial function), and also, an index for a reduction
of E to A0 is effectively obtained. This “near uniformity” of the construction turns
out to be important when we prove Theorem 1.8, when we try to generalise the
construction we discussed to deal with infinitely many oracles. Looking ahead, as
an exercise, the reader is invited to try to show that if A0, A1 and A2 are SJT-
hard c.e. sets, then there is a noncomputable c.e. set E reducible to each of A0, A1

and A2.
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2.2. Construction. We can now give the details of the construction. For tidiness,
we define two partial Σ0

2 functions, ψ0 and ψ1, by defining uniformly computable
sequences

@
ψis

D
of total functions, and let ψi be the partial limit of the sequence@

ψis
D
. For both i   2, we let ψ0pnq � 0 for all n. At stage s we may define ψispzq � s

for some z’s; for all other z’s, we let ψispzq � ψis�1pzq. We let ψipzq � lims ψ
i
spzq if

the limit exists; otherwise ψipzqÒ.
As argued, for example, in [2], the recursion theorem provides us with a constant

c ¥ 1, and for both i   2, an Ai-c.e. traces T i which traces ψi. These traces are
both bounded by an order function h, which we define; we may use the constant c
in the definition, but we need to ensure that the definition of h is uniform in c, and
that hp0q ¥ c.

For k ¥ c, we define Ipkq, which are finite intervals of natural numbers. These
are successive intervals, so to define these intervals, it suffices to determine their
size, which we set to |Ipkq| � 1� p2k� 2qk�1. This, in turn, determines h, because
we define hpzq � k for all z P Ipkq.

Let i   2. We let
@
Ais

D
be an effective enumeration of Ai. For z   s, we let T ispzq

be the collection of numbers enumerated into T ipzq with oracle Ais. By delaying
enumeration of elements into T ispzq, we may assume that for all s, |T ispzq| ¤ hpzq.

For t P T ispzq, we let uispz, tq be the Ais-use of enumerating t into T ispzq. Similarly,
for t P T ipzq we let uipz, tq be the Ai-use of enumerating t into T ipzq.

Now by the fact that T i traces ψ, we may assume that for all s, there is some
t ¡ s such that for all z   s, for both i   2, ψispzq P T

i
t pzq. To ensure this, when we

redefine ψispzq, we search for a stage t ¡ s as is sought after. While we search for t,
we hold the definition of ψi, so that if such a stage is not found, we have ψi � ψis.
But then we have a contradiction to the fact that T i traces ψi.

There are two options for handling this fact. We could speed up the enumeration
of the sets A0 and A1 and assume that the stage t provided by the claim equals s.
This necessitates a cascading effect: a typical response for finding s P T ispzq, which
likely involves an Ai-change, is to redefine ψispz

1q � s for more values z1, and so a
further speed-up of A0 and A1 so that s P T ispz

1q for these inputs z1, and so on. We
can argue that at each stage, this process repeats only finitely many times.

We do not take this approach. Mostly, this is because we want to present a
construction which is close to the full construction proving Theorem 1.8. In that
construction, we work with all c.e. oracles, not only with two c.e. oracles A0 and
A1 which are guaranteed to be SJT-hard. So in the full construction, we need to
guess which traces, if any, trace the functions ψi we build; for some oracles no
guess will be correct. In other words, in the full construction, the fact above is only
guaranteed to hold for oracles which are SJT-hard, and only for correct guesses of
their trace. Hence in the full construction, we cannot speed up all sets and get
instant gratification. We have to restrict ourselves to stages at which our guesses
seem correct.

We apply a similar, more patient approach in the current construction. Following
Nies’s terminology, the construction will take place at a computable set of stages.
Given a stage s, we let the following stage be the next stage t ¡ s such that for
all z which were encountered by stage s, ψispzq P T

i
t pzq. Between stages s and t, no

change is made to ψi, or to any other object of the construction. The fact above
now says that there are infinitely many stages.



PSEUDO-JUMP INVERSION AND SJT-HARD SETS 15

Followers. We try to meet the requirements P e for e ¥ c. As mentioned above,
a requirement P e appoints followers. A follower x for P e is realised at stage s if
ϕespxq � 0. The requirement P e is satisfied at stage s if there is some x P Es which
is realised for P e. If P e is satisfied at stage s, then P e takes no action at stage s.

With any follower x, “alive” at the end of a stage s (that means that x was
appointed at some stage s1 ¤ s and was not cancelled at any stage s2 P ps1, ss),
we associate some auxiliary objects which aid with the reduction of the question
“x P E?” to A0 and A1.


 We attach a number k0spxq P rc, es, and possibly also a number k1spxq P rc, es.
These are the levels at which the x-pointer points.


 We define a number topspxq P t0, 1u. This is the side from which x next
requires permission. If topspxq � 1 then k1spxq is defined.


 For i   2 such that kispxq is defined, we define a metaboxM i
spxq � I

�
kispxq

�
.


 For such i, we also define a value tispxq. This is the value appearing in the
boxes which we tie to the use of reducing x P E to Ai.

Let s be a stage at the end of which a follower x is alive. Let i   2 such that
kispxq is defined. We say that an i-computation is defined for x at stage s if for all
z PM i

spxq we have tispxq P T
i
spzq. In this case, we let

vispxq � max
 
uis

�
z, tispxq

�
: z PM i

spxq
(
.

We denote the fact that an i-computation for x is defined at stage s by writing
vispxqÓ. Otherwise, we write vispxqÒ.

Let s ¡ 0 be a stage at the beginning of which a follower x is alive. Let r be the
last stage before s (so x was alive by the end of stage r). Let i � toprpxq. We say
that x is permitted at stage s if virpxqÒ, or if Aisæv

i
rpxq � Airæv

i
rpxq.

All followers alive at stage s are linearly ordered by priority, which is determined
by the stage of their appointment (at most one follower is appointed at each stage).
As usual, when a new follower is appointed, it is chosen to be large relative to any
number previously encountered in the construction, and so if x and y are followers
at a stage s, then x is stronger than y if and only if x   y.

We say that a follower x requires attention at stage s if it is appointed at stage
s, or it is permitted at stage s. If some follower x requires attention at stage s,
then the strongest such follower will receive attention. If a follower x, alive both
at the beginning and at the end of a stage s, does not receive attention at stage s,
then there is no change to x’s parameters.

If a follower x receives attention at stage s, then all followers weaker than x
are cancelled. In addition, when a requirement P e appoints a new follower, all
followers for all weaker requirements are cancelled. As a result, if x is a follower for
a requirement P e, and y is a follower for a weaker requirement P e

1

, both alive at
some stage, then x is stronger than y.

Carving the boxes. Let apkq � 2k�2. We define a tree of sub-boxes of Ipkq, indexed
by strings in ¤k�1apkq. Let Jpkq � tmin Ipkqu; let Bpk, xyq � IpkqzJpkq, where xy
is the empty string. Note that |Bpk, xyq| � apkqk�1. Given Bpk, αq � Ipkq for
α P ¤kapkq, which by induction has size apkqk�1�|α|, we let

tBpk, αˆmq : m   apkqu

be a partition of Bpk, αq into apkq many subsets of equal size apkqk�|α|. Thus we
get a tree of boxes: for α, β P ¤k�1apkq, if α � β then Bpk, αq � Bpk, βq, and if
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α K β then Bpk, αq X Bpk, βq � H. Also, for all α P ¤k�1apkq, Bpk, αq is disjoint
from Jpkq.

Let x be any follower at the end of some stage s. Let i   2 such that kispxq is
defined. Then there are two possibilities:

(1) M i
spxq � J

�
kispxq

�
; we sometimes say that x resides at its private box at

stage s; or
(2) M i

spxq � B
�
kispxq, α

�
for some α P ¤k�1apkq; we let αispxq be this string α.

If M i
spxq � J

�
kispxq

�
(x resides at its private box at stage s) then i � topspxq � 1

and x did not move since it was appointed.

Let s be a stage ; let i   2 and k ¥ c. After it has been decided if any follower
receives attention at stage s, and thus cancels weaker followers, the collection of
followers which are alive at the end of the stage is determined. Based on this
information, we define a string βispkq:


 Suppose that there is some follower y, alive at both the beginning and the
end of stage s, which does not receive attention at stage s, and such that
tops�1pyq � i, kis�1pyq � k, and M i

s�1pyq � Jpkq. We then let y be the

weakest such follower, and let βispkq � αis�1pyq.


 If there is no such follower y, then we let βispkq � xy.

The main part of the proof will be the establishment of the following “book-
keeping” lemma:

Lemma 2.1. For all s, i   2 and k ¥ c, |βispkq| ¤ k. Furthermore, there is some
m   apkq such that for all followers y which are alive at both the beginning and
the end of stage s, if kis�1pyq is defined and equals k, and M i

s�1pyq � Jpkq, then

αis�1pxq � βispkq̂ m. We let mi
spkq be the least such m.

Armed with Lemma 2.1, we can now give the full instructions for the construc-
tion.

Construction. s � 0 is a stage; at stage 0, we do nothing except for defining
ψi0pzq � 0 for all z   ω and both i   2. Let s ¡ 0; let r be the last stage prior
to s. As described above, s is a stage if for all z mentioned by stage r, for both
i   2, ψirpzq P T

i
spzq. If s is not a stage, then we do nothing at stage s, and we let

all objects of the construction maintain their previous values; in particular, for all
z and i   2, ψispzq � ψis�1pzq � ψirpzq.

Suppose that s is a stage. A requirement P e requires attention at stage s if it is
not yet satisfied, and either:

(1) every follower of P e which is currently alive is realised (this includes the
case that it has no followers); or

(2) some realised follower of P e is permitted.

If no requirement requires attention, we do nothing, and let all objects of the
construction maintain their previous values. Otherwise, we let P e be the strongest
requirement which requires attention at stage s.

In the first case, we appoint a new, large follower x for P e. We cancel all followers
for requirements weaker that P e. We set up x’s parameters as follows:


 We define k0spxq � k1spxq � e.

 We let topspxq � 1.

 We let M1

s pxq � Jpeq (so x begins its life by residing in its private box).
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 By Lemma 2.1, we let M0
s pxq � B

�
e, β0

s peq̂ m
0
speq

�
.


 We let t0spxq � t1spxq � s.

To facilitate this, we define, for both i   2 and all z P M i
spxq, ψ

i
spzq � s. For all

other z, we let ψispzq � ψis�1pzq � ψirpzq, and end the stage.

In the second case, let x be the strongest follower for P e which is permitted at
stage s. We cancel all followers weaker than x. Now we need to promote x; there
are three cases.

1. If k1s�1pxq � k1rpxq is undefined, this means that x has open permission from A1,
and has just received permission from A0 (so tops�1pxq � 0 and k0s�1pxq � c). So
we now have double permission and so we enumerate x into E. As P e now becomes
satisfied, we cancel all the followers for P e.

2. If tops�1pxq � 1 and k1s�1pxq � c, then A1 now permits x, but there is no

stronger A1-box for x to be promoted to. In this case, we leave the A1-permission
open from now on. This means that k1spxq, and so M1

s pxq and t1spxq, are all un-
defined. We define topspxq � 0, which means that from now we are seeking
the A0-permission which will land us in case (1). We leave k0spxq � k0s�1pxq,
M0
s pxq �M0

s�1pxq and t0spxq � t0s�1pxq.

3. If neither case (1) nor case (2) hold then we can have a “regular” promotion for
x. Let i � tops�1pxq.


 We let topspxq � 1� i. We leave k1�is pxq � k1�is pxq, M1�i
s pxq �M1�i

s�1pxq,

and t1�is pxq � t1�is�1pxq.


 We let kispxq � kis�1pxq�1. We note that kispxq ¥ c, for otherwise we would
be in case (1) (if i � 0) or case (2) (if i � 1).


 By Lemma 2.1, we let M i
spxq � B

�
kispxq, β

i
s

�
kispxq

�̂
mi
s

�
kispxq

��
.


 For all z PM i
spxq, we let tispxq � s.

To facilitate this, we set ψispzq � s for all z P M i
spxq. For all other z, we set

ψispzq � ψis�1pzq. For all z, we set ψ1�i
s pzq � ψ1�i

s�1pzq.

In any of the cases above, we then end the stage. This completes the construction.

2.3. Justification. Before we verify that all requirements are met, we need to
show that the construction can actually be carried out as described: we need to
prove Lemma 2.1. The proof of this lemma will follow a careful analysis of how
metaboxes are used, allowing us to establish bounds on the number of followers
processed by these boxes at any given stage.

We first establish some basic facts and notation. To begin, for e ¥ c and s   ω,
let F es be the collection of followers for P e which are alive at the end of stage s.
We let Fs �

�
e¥c F

e
s be the collection of all followers alive at the end of stage s.

For x P Fs, let Rspxq � t0, 1u if both k0spxq and k1spxq are defined, and let
Rspxq � t0u if k1spxq is undefined.

The following is immediate from the construction.

Lemma 2.2. Let x P Fs.

(1) For i P Rspxq, we have kispxq P rc, es.
(2) topspxq P Rspxq.
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(3) Exactly one of the following holds:

 k0spxq � k1spxq and topspxq � 1;

 k0spxq � k1spxq � 1 and topspxq � 0;

 Rspxq � t0u and k0spxq � c.

(4) If t   s, x P Ft and i P Rspxq, then i P Rtpxq and kispxq ¤ kitpxq.
(5) Suppose that x P Fs�1 X Fs and i P Rspxq. If kis�1pxq � kispxq then i �

tops�1pxq, 1� i � topspxq, and kispxq � kis�1pxq � 1. If r   s, x P Fr and

kirpxq � kispxq then M i
rpxq �M i

spxq and tirpxq � tispxq.

In light of part (5) of Lemma 2.2, for any follower x, k ¥ c and i   2, the
value of Parispxq for stages s such that x P Fs, i P Rspxq and kispxq � k does
not depend on the choice of such a stage s. If there is any such stage, we let
Paripk, xq �

@
k,M ipk, xq, tipk, xq

D
be this value. If M ipk, xq � Jpkq, then we let

αipk, xq � αispxq for such a stage s be the string α such that M i
kpxq � Bpk, αq.

We give names to sets of followers, in light of part (3) of Lemma 2.2. Let i   2,
and let k ¥ c. Let s   ω.


 We let Ki
spkq be the collection of followers x P Fs such that i � topspxq,

k � kispxq, and M i
spxq �M ipk, xq is not Jpkq; that is, x does not reside at

its private box at the end of stage s.

 We let Lispkq be the collection of followers x P Fs such that i � topspxq,
k � kispxq, and M i

spxq � M ipk, xq � Jpkq. Indeed Lispkq is nonempty only
if i � 1, and every x P L1

spkq is a follower for P k.

 We let Gispkq be the collection of followers x P Fs such that i � topspxq

but i P Rspxq and kispxq � k.

For any i, k and s, the sets Ki
spkq, L

i
spkq and Gispkq are pairwise disjoint.

For brevity, we let KGispkq � Ki
spkq Y Gispkq, LG

i
spkq � Lispkq Y Gispkq, and so

on. So:


 KLGispkq is the collection of followers x P Fs such that i P Rspxq and
kispxq � k;


 KLispkq is the collection of followers x P KLGispkq such that i � topspxq;
and


 KGispkq is the collection of followers x P KLGispkq such that αispxq is de-
fined, i.e. such that M i

spxq � Jpkq.

For X P tK,L,G,KL,KG,LG,KLGu, we let Xi
spkq � Xi

spkq XXi
s�1pkq.

The following lemma translates the construction into our new notation. In all of
the following lemmas, let i   2, k ¥ c and s   ω be a stage.

Lemma 2.3. Let x P KLGispkq. Let t � tispxq � tipk, xq. The stage t is is the least
stage r such that x P KLGirpkq. At stage t, x is placed into LGipkq.


 If x was appointed at stage t, then x is placed into L1
t pkq and G0

t pkq.

 Otherwise, x is realised at stage t, i � topt�1pxq (and 1 � i � toptpxq),

x is extracted from KLit�1pk � 1q and placed into Gitpkq; and moved from

G1�i
t�1pk

1q to K1�i
t pk1q, where k1 � k1�it pxq.

As a corollary, if x P KGispkq, then x enters Gipkq at stage t, and so M ipk, xq �
B
�
k, βitpkq̂ m

i
tpkq

�
. The string βitpkq is defined as follows:


 If Ki
tpkq � H then βitpkq � xy.
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 If Ki
tpkq � H then βitpkq � αipk,wq, where w � maxKi

tpkq.

The number mi
tpkq is chosen so that for all y P KGitpkq, α

ipk, yq � βitpkq̂ m
i
tpkq.

Markers obey the priority ordering:

Lemma 2.4. Let x, y P Fs with x   y. Let i P Rspxq and j P Rspyq. Then
tispxq   tjspyq.

Proof. Let r be the stage at which y is appointed; so tjspyq ¥ r. At stage tispxq,
x receives attention; if tispxq ¥ r then y would be cancelled at stage tispxq. Hence
tispxq   r. �

The tree of occupied boxes. Let

Oispkq �
 
αipk, xq : x P KGispkq

(
.

This is the collection of indices of metaboxes which are occupied at stage s.

Lemma 2.5. The function x ÞÑ αipk, xq as x ranges over the followers in KGispkq
is injective.

Proof. Let y   x be elements of KGispkq. Let t � tipk, xq. As in the proof of
Lemma 2.4, y does not receive attention between stages t and s, as this would

cancel x. Hence y P KGitpkq. Now by Lemma 2.3 we see that the choice of αipk, xq
at stage t ensures that αipk, yq � αipk, xq. �

We note that Oispkq does not contain the empty string. This is because every
αipk, xq is chosen to be βitpkq̂ m

i
tpkq for t � tipk, xq.

Lemma 2.6. Let x P KGispkq. If γ � αipk, xq is nonempty, then there is some
y P Ki

spkq, stronger than x, such that γ � αipk, yq.

Proof. Let x P KGispkq, and suppose that |αipk, xq| ¡ 1; let γ � αikpxq
� be the

immediate predecessor of αipk, xq. We show that there is some y   x in Ki
spkq such

that γ � αipk, yq. Then part (2) follows by induction on |αipk, xq|.
Let t � tipk, xq. At stage t we choose αipk, xq � βitpkq̂ m

i
tpkq, so γ � βitpkq.

Since βitpkq � γ � xy, we have Ki
tpkq � H. Hence (Lemma 2.3) γ � αipk,wq for

w � maxKi
tpkq. Since w was not cancelled at stage t, w is stronger than x. Since x

is not cancelled between stages t and s, w does not receive attention between these
stages, and so w P Ki

spkq. �

Lemma 2.6 implies that ordered by inclusion, Oispkq is a forest, and that for all
x P Gispkq, α

ipk, xq is a leaf of Oispkq. It follows that for all x P KGispkq, at stage
t � tipk, xq, αipk, xq is a leaf of Oitpkq, as x P Gitpkq.

The leaves of Oispkq all issue from a single stem
 
αipk, xq : x P Ki

spkq
(
:

Lemma 2.7. Let x, y P Ki
spkq with y   x. Then αipk, yq � αipk, xq.

And so M ipk, xq �M ipk, yq.

Proof. The lemma is proved by induction on s. Let t � tipk, xq. Since y is stronger

than x and y P Ki
spkq, we have y P Ki

tpkq. Hence Ki
tpkq � H, and so βitpkq �

αipk,wq for w � maxKi
tpkq. By its definition, y ¤ w. By induction, as t�1   t ¤ s,

we have αipk, yq � αipk,wq. By its choice, we have αipk, xq � βitpkq � αipk,wq.
Hence αipk, yq � αipk, xq. �
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Let

Oispkq �
!
αipk, xq : x P KGispkq

)
.

We can rephrase our main goal, Lemma 2.1, using this notation. The lemma says
that |βispkq| ¤ k and that there is some m   apkq such that βispkq̂ m R Oispkq.

Impermissiveness. We work toward finding bounds on the sizes of the sets of fol-
lowers we have defined. To do so, we tie followers to values in traces. The first
lemma shows that if the value tipk, xq of a follower is not traced, then the follower
x is permitted.

Lemma 2.8. Let s be a stage. Let x P Fs�1, let i � tops�1pxq, and suppose

that there is some z P M i
s�1pxq such that tis�1pxq R T

i
spzq. Then x is permitted at

stage s.

Proof. Suppose that x is not permitted at stage s. Let r be the previous stage
before stage s; so x P Fr, i � toprpxq and t � tirpxq. Since x is not permitted at
stage s, an i-computation is defined for x at stage r, and Aisæ v

i
rpxq � Aisæ v

i
rpxq.

Let z P M i
s�1pxq � M i

rpxq. Then t � tirpxq P T
i
rpxq, and by its definition, virpxq ¥

uirpz, tq. The fact that Ai did not change below virpxq between stages r and s shows
that t P T ispxq as well. �

The second lemma says that we do not change ψi too often. This will also be
useful in the verification, to show that the use of reducing E to Ai does not go to
infinity.

Lemma 2.9. Suppose that either


 x P Gispkq, or

 x P Lispkq, and x is unrealised at stage s.

Then for all z PM ipk, xq, ψispzq � tipk, xq.

Proof. Let z P M ipk, xq (in the second case, z is the unique element of M ipk, xq).
At stage t � tipk, xq, we set ψitpzq � t. We need to show that at no stage r P pt, ss
do we redefine the value of ψipzq to be r.

In the second case, this follows from the fact that as z � min Ipkq is the unique
element of Jpkq, we only define ψirpzq � r at a stage r if at that stage, the require-
ment P k appoints new follower. However, the assumption that x is unrealised at
stage s implies that x is unrealised at all stages r P rt, ss, and the instructions tell
P k to appoint a new follower only when all of its followers are realised. So at no
stage t P pt, ss does P k appoint a new follower, and so ψipzq is unchanged between
stages t and s.

In the first case, suppose, for contradiction, that at stage r P pt, ss we redefine
ψirpzq � r. Since z P IpkqzJpkq, by the instructions, there is some follower y which
enters Gipkq at stage r, and z PM ipk, yq. By Lemma 2.6, αipk, yq is a leaf of Oirpkq.
Since x P Gispkq, we must have x P Girpkq, and so by the same lemma, αipk, xq is
also a leaf of Oirpkq. Since x does not enter Gipkq at stage r (as r ¡ t), we have
x � y. Hence αipk, xq and αipk, yq are incomparable, which means that M ipk, xq
and M ipk, yq are disjoint, contradicting z PM ipk, xq XM ipk, yq. �

Lemma 2.10. Let s be a stage. For all x P KLGispkq, for all z P M ipk, xq,
tipk, xq P T ispzq.

So vispxqÓ.
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Proof. There are three possibilities: either x P Ki
s�1pkq, or x P Gis�1pkq, or x P

Lis�1pkq.

If x P Ki
s�1pkq (so i � tops�1pxq), then the fact that x P Ki

spkq means that x
is not permitted at stage s. For otherwise, either x is cancelled at stage s by some
stronger follower, of x receives attention at stage s, in which case x is extracted at
stage s from Kipkq and possibly moved to Ki

spk � 1q. In this case, the conclusion
follows from Lemma 2.8.

Now suppose that x P Gis�1pkq. Let z P M ipk, xq. By Lemma 2.9, ψis�1pzq �

tipk, xq. The conclusion then follows from the fact that s is a stage: let r be the
previous stage prior to s. As z PM i

s�1pxq �M i
rpxq, z is mentioned by stage r, and

so ψis�1pzq � ψirpzq P T
i
spzq.

Finally, suppose that x P Lispkq (so i � 1). There are two sub-cases. If x
is realised at stage s, then by the fact that x P Lispkq it follows that x is not
permitted at stage s. Then the conclusion follows from Lemma 2.8.

We assume, then, that x is unrealised at stage s. Let z be the unique element of
M ipk, xq � Jpkq. By Lemma 2.9, ψis�1pzq � tipk, xq. As in the second case above,
the conclusion follows from the fact that s is a stage. �

Sizes of sets of followers. We can now bound the sets of followers.

Lemma 2.11. For all s,
��Ki

spkq
�� ¤ k.

Proof. Since Kipkq does not change between stages, we may assume that s is a
stage. Assuming that Ki

spkq is nonempty, let w � maxKi
spkq. By Lemma 2.7, for

all x P Ki
spkq, M

ipk,wq � M ipk, xq. Let z be any element of M ipk,wq, and let

x P Ki
spkq. Then x P GKi

spkq (Lemma 2.3). By Lemma 2.10, tipk, xq P T ispzq. By
Lemma 2.4, the map x ÞÑ tipk, xq is injective on Ki

spkq. The conclusion follows
from the fact that |T ispzq| ¤ k as z P Ipkq (so hpzq � k). �

Lemma 2.11 implies the first part of Lemma 2.1: for all s, |βispkq| ¤ k. For if
βispkq � xy, then every nonempty initial segment of βispkq equals αipk, xq for some
x P Ki

spkq; this follows from the fact that βispkq � αi
�
k,maxKi

spkq
�

and from
Lemma 2.6.

Lemma 2.12. For all s,
��Lispkq

�� ¤ k � 1.

Of course L0
spkq is always empty, so this is of interest for i � 1.

Proof. Again we may assume that s is a stage. Let z � min Ipkq be the unique
element of Jpkq; so hpzq � k, which means that |T ispzq| ¤ k. By Lemma 2.10, for

all x P Lispkq, t
ipk, xq P T ispzq; with Lemma 2.4 we see that

���Lispkq
��� ¤ k. At stage s,

at most one follower is added to Lipkq. �

So we see that |KLispkq| ¤ 2k � 1. Recall that apkq � 2k � 2.

Lemma 2.13. For all s,
��Gispkq

��   apkq.

Proof. Let x P Gispkq. By Lemma 2.3, if i � 0 then x P LK1
s pkq, and if i � 1, then

x P K0
s pk � 1q. Hence |G0

spkq| ¤ 2k � 1   apkq and |G1
spkq| ¤ k � 1   apkq. �

We can finally prove Lemma 2.1.
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Proof of Lemma 2.1. We have already seen that Lemma 2.11 implies the first part
of the lemma: that |βispkq| ¤ k. It remains to show that there is some m   apkq

such that βispkq̂ m R Oispkq. We observe that for all m   apkq, if βispkq̂ m P Oispkq,
then βispkq̂ m � αipk, xq for some x P Gis�1pkq. This would imply the lemma, using

the bound on the size of Gis�1pkq given by Lemma 2.13. To see that βispkq̂ m cannot

be αipk, xq for x P Ki
s�1pkq, suppose for contradiction that it is; then x P Ki

spkq

(as it is in KGispkq), and so Ki
spkq is nonempty, whence βikpsq � αipk,wq for w �

maxKi
spkq. But then x ¤ w and so (Lemma 2.7) we would have αipk, xq � αipk,wq

for a contradiction. �

2.4. Verification. Having shown that the construction can proceed as described,
we now show that it succeeds in enumerating a set with the desired properties.

Lemma 2.14. There are infinitely many stages.

Proof. Indicated above. Let s be a stage, and suppose for a contradiction that
there is no greater stage. Then for both i   2, ψi � ψis. For every input z
mentioned by stage s, ψipzq P T

ipzq. There is a sufficiently large stage t ¡ s such
that for all such z (as there are only finitely many of them), ψipzq P T ispzq by
an Ai-correct computation. Hence there must be a stage greater than s after all,
contradiction. �

Fairness and diagonalisation.

Lemma 2.15. Every follower receives attention only finitely many times.

Proof. For x P Fs, let kspxq �
°
iPRspxq

kispxq. If x P Fs�1XFs then kspxq ¤ ks�1pxq

(Lemma 2.3).
Suppose that x P Fs�1 X Fs is a follower which receives attention at stage s.

Then either k0spxq   k0s�1pxq or k1spxq   k1s�1pxq. Hence kspxq   ks�1pxq. This can
happen at most finitely many times. Indeed, after being appointed, each follower
for requirement P e can receive attention at most 2e many times. �

For i   2, k ¥ c and X P tK,L,Gu, let Xi
ωpkq � limsX

i
spkq be the collection

of followers x which are in Xi
spkq for all but finitely many s. Lemma 2.11 shows

that |Ki
ωpkq| ¤ k and Lemma 2.12 shows that |Liωpkq| ¤ k� 1 (in fact, the proof of

Lemma 2.12 shows that |Liωpkq| ¤ k; but from now, we only care that it is finite).

Lemma 2.16. For every e ¥ c, the requirement P e is met, and there is some stage
after which no follower for P e ever requires attention. In particular, eventually P e

stops enumerating new followers.

Proof. By induction on e ¥ c. Suppose this has been verified for all e1   e.
Of course, if P e is ever satisfied, then it is met, and ceases all action. We assume,

then, that no follower for P e is ever enumerated into E.
Let He be the collection of followers x for P e which are never cancelled. Then

by Lemma 2.15,

He � L1
ωpeq Y

¤
kPrc,es,i 2

Ki
ωpkq.

This shows that He is finite.
Let s0 be the last stage at which any follower for a requirement stronger than P e

receives attention (s0 � 0 if there are no such followers). At stage s0, all followers
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for P e are cancelled. At the next stage after stage s0, P e will appoint a new
follower. This follower can never be cancelled. This shows that He is nonempty.

Let s1 be the last stage at which any follower in He receives attention. We claim
that P e does not appoint followers after stage s1. For if it does, let s be the least
stage greater than s1 at which P e appoints a follower x. At stage s1, all followers
weaker than the followers in He are cancelled, and so x is stronger than any other
follower for P e (at any stage t ¥ s) other than the followers in He. As the followers
in He do not require attention after stage s1, x can never be cancelled. But this
means that x P He, for a contradiction with the maximality of s1.

The fact that P e does not appoint any followers after stage s1 implies that no
followers for P e require attention after stage s1; so P e’s overall action is finitary.
It also implies that the weakest follower x P He is never realised. For if it is, then
all followers in He are sometime realised, and P e would be instructed to appoint a
new follower. As x R E, this shows of course that E � ϕe, and so P e is met. �

It follows that E is not computable.

Reductions.

Lemma 2.17. Let s be a stage, and let x P Fs. Let i P Rspxq, and suppose that
vispxqÓ. Suppose that Aiævispxq � Aisæv

i
spxq. Then x R E.

Proof. By induction on r ¡ s we can see that if x P Fs then i P Rrpxq and kirpxq �
kispxq, and so that tirpxq � tispxq; that virpxqÓ� vispxq, and that if i � topr�1pxq
then x is not permitted at stage r.

The point is that if x P E then there must be some stage r ¥ s such that
i � toprpxq; if i � topspxq, then i � toprpxq where r is the next stage at which x
receives attention. But then, the fact that x will not be permitted once i becomes
toppxq, means that x cannot be enumerated into E.

This, of course, is where we use the fact that Ai is c.e., rather than merely
∆0

2. �

The next lemma states that unless cancelled, enumerated into E, or given open
permission from A1, the use vipxq of reducing the statement x R E to Ai stabilizes.
Using the notation above, let H be the collection of followers which are never
cancelled nor enumerated into E. For x P H, let Rωpxq � limsRspxq be the
collection of i   2 such that i P Rspxq for all but finitely many s. For i P Rωpxq,
let kiωpxq � lims k

i
spxq, and so on.

Lemma 2.18. Let x P H and let i P Rωpxq. There is some stage s such that
x P Fs, v

i
spxqÓ and Aiævispxq � Aisæv

i
spxq.

Proof. Let k � kiωpxq and let t � tiωpxq � tipk, xq. There are two cases.

If either x P Giωpkq, or x P Liωpkq and is never realised, then Lemma 2.9 implies
that for all z P M ipk, xq, ψipzq � t. As T i traces ψi, we have t P T ipzq for all
z P M ipk, xq. There is a stage s ¡ t at which for all z P M ipk, xq, t P T ispzq by an
Ai-correct computation. Then s is as required.

In the second case, x P KLiwpkq and x is eventually realised. Let s ¡ t be a

stage such that x P KLispkq. By Lemma 2.10, vispxqÓ. We claim that s is a stage as
required by the lemma. For if not, there is a least stage r ¡ s by which we see an
Ai-change below vispxq. Since by induction i � topr�1pxq, at stage r, x would be
permitted, contradicting the definition of k. �
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Lemma 2.19. E ¤T A
0.

The point is that for x P H we always have 0 P Rωpxq.

Proof. Let x   ω. To decide, with oracle A0, whether x P E or not, first see if
x P Fx. If not, then x P E if and only if x P Ex.

Suppose that x P Fx. By Lemmas 2.15 and 2.18, with oracle A0, we can find a
stage s ¡ x at which one of the following hold:


 x R Fs (that is, x has been cancelled by stage s).

 x P Es (that is, x has been enumerated into E by stage s).

 v0spxqÓ, and A0æv0spxq � A0

sæv
0
spxq.

By Lemma 2.17, this allows A0 to decide whether x P E or not. �

The difference between A0 and A1 is that there may be x P H such that 1 R
Rωpxq: these are the followers that receive open permission from A1 but do not get
later permission from A0.

Lemma 2.20. There are only finitely many followers x P H such that 1 R Rωpxq.

Proof. Suppose that x P H and 1 R Rωpxq. Then x P K0
ωpcq. By Lemma 2.11,

|K0
ωpcq| ¤ c. �

Lemma 2.21. E ¤T A
1.

Proof. Similar to the proof of Lemma 2.19. For a follower x P Fx, we search for
a stage s ¡ x by which it is either cancelled, enumerated, or v1spxqÓ and A1

s is
correct up to this value. Lemma 2.20 says that this search will terminate for all but
finitely many followers x, and so non-uniformly will give a method for reducing E
to A1. �

3. Proof of Theorem 1.8

In this section we adapt the construction of the previous section and provide a
construction of a noncomputable c.e. set E, computable from every SJT-hard c.e.
set, thus proving Theorem 1.8.

3.1. Discussion. There is only one really new ingredient, and our treatment is not
too surprising to those familiar with Π0

2 constructions on trees. Instead of being
given two (or finitely many) SJT-hard c.e. sets, together with traces for Σ0

2 functions
we approximate, we need to guess, among all pairs of c.e. sets and possible traces,
which indeed trace the functions that we enumerate. The construction is performed
on a tree of strategies. Nodes τ on the tree will test if there are infinitely many
τ -stages, at which we can calculate uses of reducing x P E to the corresponding c.e.
set W e.

The small degree of non-uniformity which was necessary in the construction of
the previous section plays an important role. A follower x for some node σ on the
tree can only be cleared by only finitely many nodes τ for which σ guesses that
there are infinitely many τ -stages. In other words, it requires eventual permission
from only finitely many c.e. sets W e. Other SJT-hard sets do not comprehend x’s
existence. This is akin to those sets giving x immediate open permission. The tree
machinery ensures that each such set is troubled by at most finitely many such
followers.
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3.2. Construction. As before, we enumerate a set E. To ensure that E is non-
computable, we meet the same positive requirements P e as in the previous section,
which state that E � ϕe, where xϕeye ω is a list of all partial computable functions.

Let xW eye ω be an effective list of all c.e. sets. Shortly we will define, for all
e   ω, an order function he. Let, uniformly in e, xT e,cyc ω list all W e-c.e. traces
which are bounded by he. During the construction we define, uniformly in e, a
partial Σ0

2 function ψe. The negative requirements are named Ne,c, and state that
if T e,c � xT e,cpzqyz ω traces ψe, then E is computable from W e.

The construction takes place on a tree of strategies. The definition of the tree
is recursive: given a node (a strategy) on the tree, the immediate successors of the
node on the tree are determined by the possible outcomes of the node. If a node
σ works for P e, then it has a single outcome. If a node τ works for Ne,c, then τ
has two outcomes, 8 and fin. The outcome 8 is stronger than the outcome fin,
and this ordering induces a total priority ordering on the tree. The outcome 8
indicates that there are infinitely many τ -stages.

Let Pe be the collection of nodes on the tree that work for P e, and Ne,c be the
collection of nodes that work for Ne,c. We let and Ne �

�
cN

e,c, N �
�
eN

e, and
P �

�
e P

e.
To complete the definition of the tree of strategies, we need to show how to

assign requirements to nodes. We could simply assign each level of the tree a single
requirement. However, for simplicity of presentation, we would like to assume that
for all σ P P there is some τ P N such that τˆ8 � σ. The easiest way to achieve this
is by recursively assign requirements to nodes during the definition of the tree; to
each node ρ we assign the strongest requirement (from an ω-list of all requirements)
which has not yet been assigned to any proper initial segment of ρ, subject to the
restriction that if there is no τ , which has been already placed in N, such that
τˆ8 � ρ, then we must assign a negative requirement to ρ. After verifying that
there is a true path, we will easily see that the true path contains a node of the
form τˆ8 for some τ P N (as there are SJT-hard c.e. sets), and this would allow us
to show that every requirement is assigned to some node on the true path.

The order functions. The next order of business is defining the order functions he.
These derive from the structure of the tree and the intended structure of the boxes.
The idea is that a follower x for a node σ P P needs to be cleared by all τ P N

such that τˆ8 � σ: if τ P Ne then W e-permission is required. The guess by σ that
there are infinitely many τ -stages allows for the machinery of the previous section
to operate smoothly.

The search over all traces T e,c (for c   ω) means that the various nodes τ P Ne

have to cooperate in defining a single function ψe: each τ gets its own column
to play with. A node τ will require a number of k-boxes for various k; as there
are infinitely many τ ’s in Ne, to keep he well-defined, the smallest k such that τ
requests k-boxes needs to increase with τ . For convenience of notation, we let each
τ request k-boxes for k ¥ |τ |.

For a fixed τ and k ¥ |τ |, how many k-boxes? We need to count the number of
possible followers that progress down the chain of boxes, similarly to what has been
done in the justification of the previous section. In other words, we need to calculate
bounds on the sizes of sets Gτs pkq, K

τ
s pkq and Lτs pkq which are the analogues of the
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sets Gispkq, K
i
spkq and Lispkq of the previous section. We will still have |Kτ

s pkq| ¤ k
as this is bounded by the potential size of the trace. However, it is no longer true
that every x P Gτs pkq is an element of the same Kρ

s pk
1q (for k1 P tk, k � 1u): more

than two sets mean that topspxq may have value among a number of nodes ρ of
length at most k1 ¤ k � 1. The number of these strings is bounded by the number
of nodes of length k � 1; as the tree is at most binary branching, the number of
such nodes is bounded by 2k�1.

We also need to bound Lρspkq for such strings ρ; to avoid too meticulous an
examination of the way requirements are assigned to nodes, we allow more than
one node σ require a private k-box from ρ. In general, σ P P will require a private
|σ|-box from the longest τ P N such that τˆ8 � σ. So for ρ P N and k ¡ |ρ|,
let Θρpkq be the collection of nodes σ P P of length k for which ρ is the longest
string in N such that σ extends ρ̂ 8; of course |Θρpkq| ¤ 2k. Counting all these
contributions, we let, for all k   ω,

apkq � 1� 2k�2pk � 2qp1� 2k�1q,

which will be a bound on Gτs pkq. Then any τ P N will require |Θτ pkq|�papkqqk�1 ¤
2k � papkqqk�1 many k-boxes for k ¥ |τ |.

We can now define the order functions he. Partition ω into ω many columns
ωrτs, indexed by τ P Ne. For each τ P Ne, partition ωrτs into intervals Iτ pkq for
k ¥ |τ |, such that for all k ¥ |τ |,

|Iτ pkq| � 2k � apkqk�1.

Let he be an order function such that for all τ P Ne, for all k ¥ |τ |, for all x P Iτ pkq,
hepxq ¤ k. The fact that for all k, there are only finitely many nodes τ P Ne of
length at most k, implies that such an order function can be found, and in fact
defined effectively given e.

Local traces and stages. The nodes τ P Ne collaborate in defining the function ψe.
We let ψτ � ψeæωrτs; the node τ is responsible for defining ψτ . The function ψτ is
defined to be the partial limit of a uniformly computable sequence xψτs ys ω.

For τ P N, we will shortly define the collection of τ -stages. To define ψτs , we start
with ψτ0 pzq � 0 for all z P ωrτs. If s ¡ 0 is not a τ -stage, then we let ψτs � ψτs�1.
Thus if there is a last τ -stage s, then ψτ � ψτs . If s is a τ -stage, then we may
redefine ψτs pzq � s for some z P ωrτs; for all other z, we let ψτs pzq � ψτs�1pzq.

Let τ P Ne,c. For brevity, we let T τ � T e,cæωrτs. Thus if T e,c is a trace for ψe,
then T τ is a trace for ψτ . For z P ωrτs and s   ω, we let T τs pzq be the collection of
numbers enumerated into T τ pzq by stage s with oracle W e

s . We may assume that
for all z and s, |T τs pzq| ¤ hepzq, so for all k ¥ |τ |, for all z P Iτ pkq, |T τs pzq| ¤ k. For
t P T τs pzq, we let uτs pz, tq be the W e

s -use of enumerating t into T τs pzq.
The collection of τ -stages depends on whether τ is accessible at stage s, a notion

which we define later. Given this, we define the collection of τ -stages. For all τ , 0
is a τ -stage. Let s ¡ 0, and let τ P N. If τ is not accessible at stage s, then s is
not a τ -stage. Suppose that τ is accessible at stage s; let r be the previous τ -stage.
Then s is a τ -stage if for every z P ωrτs mentioned by stage r, ψτr pzq � ψτs�1pzq is
an element of T τs pzq.

Followers. Nodes σ P P appoint followers. For any follower x, we let σpxq be
the node which appointed x. A follower x for σ P Pe is realised at stage s if
ϕespxq � 0. The requirement P e is satisfied at stage s if there is some x P Es such
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that ϕespxq � 0. If the requirement P e is satisfied at stage s, then no node σ P Pe

takes any action at stage s.
With any follower x, alive at the end of a stage s, we associate auxiliary objects.


 We attach a nonempty set of nodes Rspxq � N. For all τ P Rspxq, σpxq
extends τˆ8. The set Rspxq is the set of nodes which need to clear x before
it is enumerated into E.


 We define a node topspxq P Rspxq. This is the node from which x next
requires permission.


 For all τ P Rspxq, we define a number kτs pxq ¥ |τ |. This is the level at
which x points.


 For all τ P Rspxq, we define a box Mτ
s pxq � Iτ pkτs pxqq.


 For all τ P Rspxq, we define a value tτs pxq   ω.

Suppose that a follower x is alive at the end of stage s, and let τ P Rspxq.
Suppose that s is a τ -stage. We say that a τ -computation is defined for x at stage
s if for all z PMτ

s pxq we have tτs pxq P T
τ
s pzq. In this case, we let

vτs pxq � max tuτs pz, t
τ
s pxqq : z PMτ

s pxqu .

We denote the fact that a τ -computation is defined for x at stage s by writing
vτs pxqÓ; otherwise, we write vτs pxqÒ.

Let s be a stage at the beginning of which a follower x is alive, and suppose that
s is a tops�1pxq-stage; let τ � tops�1pxq. Let r be the previous τ -stage before s.

We say that x is permitted at stage s if virpxqÒ or if W e
sæv

τ
r pxq �W e

ræv
τ
r pxq, where

τ P Ne. Note again that a follower x is permitted at stage s only if s is a tops�1pxq-
stage; but x may be permitted at a stage s at which σpxq is not accessible: recall
that σpxq properly extends the node tops�1pxq.

All followers alive at stage s are linearly ordered by priority, which is given to
followers appointed earlier; again, at most one new follower is appointed at each
stage. New followers are chosen large, and so the priority ordering coincides with
the natural ordering on natural numbers.

The general structure of the stage is as follows. During stage s we inductively
define the collection of nodes which are accessible at that stage. Once a node σ P P

has been declared accessible, we see if it wants to appoint a new follower or not; if
it does, it ends the stage, and cancels followers for all weaker nodes. Otherwise, it
lets its only child be accessible. Once a node τ P N has been declared accessible,
we decide if s is a τ -stage or not. If not, and |τ |   s, then we let τ f̂in be next
accessible. If |τ | � s then we end the stage. If s is a τ -stage, then we see if τ
permits any realised follower x. If so, then the strongest such follower x receives
attention and is moved; all followers weaker than x are cancelled, and the stage is
ended. If no follower is permitted, then τˆ8 is next accessible.

We explain why it is important that if s is a τ -stage, and τ permits a realised
follower x at stage s, then we let x move, even if σpxq is not accessible at stage s.
For τ permitting x means that tτ pxq is extracted from T τ pzq for some z P Mτ

s pxq.
The set W e (where τ P Ne) needs to decide now whether to assign a new use for
reducing x P E to W e using the same boxes, or promote x. If x is not allowed
to move, then this incident may repeat indefinitely, meaning that the use goes to
infinity. After all, W e does not know if σpxq will ever be accessible again.

Of course, if x is permitted but is unrealised, then as it lies in its private box
tzτ pσpxqqu, no weaker follower changes the value of ψτ pzq, and so in this case τ can
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appoint a new use based on the same value of ψτ pzq, which will stabilise the use.
Once a follower is in Kτ pkq and not in Lτ pkq (it is moved from private to public
boxes), a weaker follower y such that Mτ pk, yq � Mτ pk, xq may force a change in
the values of ψτ pzq for some z PMτ pk, xq, which lands τ in the position of having
to promote x if it is permitted.

Carving the boxes. For all τ P N and k ¥ |τ |, let Jτ pkq be a subset of Iτ pkq
of size 2k, and let Bτ pk, xyq � Iτ pkqzJτ pkq; so |Bτ pk, xyq| � apkqk�1. As in the
previous section, we recursively define Bτ pk, αq for α P ¤k�1apkq by starting with
Bτ pk, xyq and splitting Bτ pk, αq, which inductively has size apkqk�1�|α|, into apkq-
many subsets Bτ pk, αˆmq (for m   apkq) of equal size apkqk�|α|. Again, for α, β P
¤k�1apkq, if α � β then Bτ pk, αq � Bτ pk, βq, and if α K β then Bτ pk, αq X
Bτ pk, βq � H. For all α P ¤k�1apkq, Bτ pk, αq X Jτ pkq � H.

Recall that Θτ pkq is a set (possibly empty) of nodes σ P P of length k; so
|Θτ pkq| ¤ 2k � |Jτ pkq|. We fix an injection σ ÞÑ zτ pσq of Θτ pkq into Jτ pkq.

Let τ P N. For any follower x, alive at the end of stage s, such that τ P Rspxq,
either


 Mτ
s pxq � tzτ pσpxqqu (x resides in σ’s private box at stage s); in this case

τ � topspxq and s has not moved since it was appointed; or

 Mτ

s pxq � Bτ pk, αq for some string α P ¤k�1apkq; we denote this string by
ατs pxq.

Suppose that s is a τ -stage. Once we know which followers are alive at the end
of the stage, for k ¥ |τ | we then define a string βτs pkq:


 If there is a follower y, alive at the beginning and the end of stage s, such
that tops�1pyq � τ , kτs�1pyq � k, and Mτ

s�1pyq � Jτ pkq (in the notation of

the justifications, y P Kτ
s pkq), then we let βτs pkq � ατs�1pyq for the weakest

such follower y.

 If there is no such follower y, then we let βτs pkq � xy.

The main bookkeeping lemma is:

Lemma 3.1. If τ P N and s is a τ -stage, then for all k ¥ |τ |, |βτs pkq| ¤ k, and
there is some m   apkq such that for all followers y which are alive ay both the
beginning and the end of stage s, if τ P Rspyq, k

τ
s�1pyq � k, and Mτ

s�1pyq � Jτ pkq,
then ατs�1pyq � βτs pkq̂ m. We let mτ

s pkq be the least such m.

Construction. At stage s ¡ 0 we recursively define the finite path of nodes which
are accessible at stage s. The root xy is always accessible.

First, suppose that a node τ P N is accessible at stage s. We check to see if s
is a τ -stage or not, as described above. If not, and |τ |   s, then we let τ f̂in be
accessible next; if |τ | � s then we end the stage, and cancel all followers for nodes
that lie to the right of τ . If s is a τ -stage, but there is no realised follower which
τ permits at stage s, then we let τˆ8 be accessible next (unless |τ | � s, when we
end the stage and cancel followers for nodes that lie to the right of τ). Suppose,
then, that τ permits realised followers at stage s. Let x be the strongest realised
follower which is permitted by τ at stage s. We cancel all followers weaker than x.
We then promote x as follows:

1. If Rs�1pxq � tτu, this means that only τ cares about x; since τ has just
permitted x, we enumerate x into E. If σpxq P Pe then the requirement P e is now
satisfied, so we cancel all followers for σpxq.
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2. If τ is not the only element of Rs�1pxq, but kτs�1pxq � |τ |, then τ can promote
x no more, and so gives it open permission: we let Rspxq � Rs�1pxqztτu. The
parameters kρs pxq, M

ρ
s pxq and tρspxq remain unchanged for all ρ P Rspxq. We choose

a new value for toppxq: we let topspxq be the longest ρ P Rspxq for which kρs pxq is
maximal among the elements of Rspxq.

3. Otherwise, we let τ promote x. We let Rspxq � Rs�1pxq, and kτs pxq � kτs�1pxq�
1. We let Mτ

s pxq � Bτ pk, βτs pkq̂ m
τ
s pkqq for k � kτs pxq. We let tτs pxq � s. We

define ψτs pzq � s for all z PMτ
s pxq. The parameters kρs pxq, M

ρ
s pxq and tρspxq remain

unchanged for other nodes ρ P Rspxq. We do, however, pick a new value for toppxq
as we did in the second case: we let topspxq be the longest ρ P Rspxq for which
kρs pxq is maximal among the elements of Rspxq.

We then end the stage.

Suppose now that σ P P is accessible at stage s. If there is some follower for σ
which is still unrealised at stage s, then σ takes no action, and lets its only child be
accessible (unless |σ| � s, in which case we end the stage). Otherwise, σ appoints
a new follower x, of large value. We cancel all followers for all nodes weaker than
σ. We then set up x’s parameters as follows:


 We let Rspxq be the collection of all nodes τ P N such that τˆ8 � σ. By
the way we distributed the requirements on the tree, we see that Rspxq is
nonempty.


 We let topspxq be the longest node in Rspxq.

 For all τ P Rspxq, we let kτs pxq � |σ|. Note, of course, that as τ � σ we get
kτs pxq ¥ |τ |.


 We let tτs pxq � s for all τ P Rspxq.

 For τ � topspxq, we let Mτ

s pxq � tzτ pσqu, the singleton subset of Jτ p|σ|q
which is reserved for σ.


 For τ P Rspxqzttopspxqu we let Mτ
s pxq � Bτ p|σ|, βτs p|σ|q̂ m

τ
s p|σ|qq.

We then end the stage.

3.3. Justification. We need to prove Lemma 3.1 to show that the construction
can be performed as prescribed. Much of the argument mimics the argument given
in the previous section, and so we give the definitions and notation, and then only
highlight the new ingredients. We start though by tracking the possible combina-
tions for the function τ ÞÑ kτs pxq on Rspxq.

For σ P P, we let Fσs be the collection of followers for σ which are alive at the
end of stage s. We let Fs �

�
σPP F

σ
s .

We note that if r   s and x P Fr X Fs, then Rspxq � Rrpxq. If τ P Rspxq and
kτs pxq � kτr pxq, then Mτ

s pxq � Mτ
r pxq and tτs pxq � tτr pxq. Hence for k � kτs pxq we

let Mτ pk, xq � Mτ
s pxq and tτ pk, xq � tτs pxq. If Mτ pk, xq � tzτ pσpxqqu, then we let

ατ pk, xq � ατs pxq.

Lemma 3.2. Let x P Fs, and let k � k
topspxq
s pxq. Let τ P Rspxq.

(1) If τ � topspxq, then kτs pxq � k.
(2) If topspxq � τ , then kτs pxq � k � 1.

Also, if τ P Rs�1pxqzRspxq, then τ is the longest string in Rs�1pxq.

Proof. The second part of the lemma follows from the first. Suppose that τ P
Rs�1pxqzRspxq; so τ � tops�1pxq and x is promoted at stage s. We have k �
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kτs�1pxq � |τ |. Suppose that ρ P Rs�1pxq. If τ � ρ, then by the first part of the
lemma, applied at stage s� 1, we have kρs�1pxq � k � 1, which is smaller than |ρ|,
which is impossible.

Now we prove the first part of the lemma, by induction on s.
If x is appointed at stage s, then for all τ P Rspxq, k

τ
s pxq � k � |σpxq|, and

topspxq is the longest element of Rspxq.

Suppose that x is promoted at stage s. Let τ � tops�1pxq and let k � kτs�1pxq.
For all τ P Rspxq different from τ we have kτs pxq � kτs�1pxq.

If τ R Rspxq, then by the second part of the lemma, τ is the longest node in
Rs�1pxq. Hence for all τ P Rspxq we have kτs pxq � k, and topspxq is chosen to be
the longest string in Rspxq.

Suppose then that τ P Rspxq, so Rspxq � Rs�1pxq. We set kτs pxq � k� 1. There
are two cases.


 If τ is the shortest string in Rspxq, then for all τ P Rspxq we have kτs pxq �
k � 1; we then choose topspxq to be the longest node in Rspxq.


 Otherwise, for τ P Rspxq, if τ � τ then kτs pxq � k � 1, and if τ � τ then
kτs pxq � k. We choose topspxq to be the immeidate predecessor of τ in
Rspxq.

�

In particular, Lemma 3.2 shows that if x is promoted at stage s, then topspxq �
tops�1pxq.

Let τ P N, k ¥ |τ | and s   ω.


 We let Kτ
s pkq be the collection of followers x P Fs such that τ � topspxq,

k � kτs pxq, and Mτ pk, xq � tzτ pσpxqqu.

 We let Lτs pkq be the collection of followers x P Fs such that τ � topspxq,
k � kτs pxq, and Mτ pk, xq � tzτ pσpxqqu.


 We let Gτs pkq be the collection of followers x P Fs such that τ P Rspxq,
k � kτs pxq, but τ � topspxq.

Again we use the notation KGτs pkq to denote the union Kτ
s pkq Y Gτs pkq, and

the notation Kτ
s pkq � Kτ

s�1pkq XKτ
s pkq etc. Again, KLGτs pkq is the collection of

followers x P Fs such that τ P Rspxq and k � kτs pxq, KL
τ
s pkq is the collection of

followers x P KLGτs pkq such that τ � topspxq, and KGτs pkq is the collection of
followers x P KLGτs pkq such that ατ pk, xq is defined.

The following lemma translates the construction into this terminology:

Lemma 3.3. Let x P KLGτs pkq. Let t � tτ pk, xq. The stage t is the least stage at
which x P KLGτ pkq. At stage t, x is placed into LGτ pkq.


 If x was appointed at stage t, then x is placed into Lτt pkq if τ � toptpxq,
and into Gτt pkq if not.


 Otherwise, x is realised at stage t, and x is added to Gτt pkq.

Unless x P Lτt pkq, at stage t we let Mτ pk, xq � Bτ pk, βτt pkq̂ m
τ
t pkqq. The string

βτt pkq is defined as follows:


 If Kτ
t pkq � H, then βτt pkq � xy.


 If Kτ
t pkq � H, then βτt pkq � ατ pk,maxKτ

t pkqq.

The number mτ
t pkq is the least m   apkq such that for all y P KGτt pkq, α

τ pk, yq �
βτt pkq̂ m

τ
t pkq.
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The arguments of the justification for the minimal pair construction of the pre-
vious section now carry through, where i   2 is replaced by τ P N and stage is
replaced by τ -stage. This gives us analogues of all lemmas from Lemma 2.4 to
Lemma 2.11, including the first part of Lemma 3.1, that |βτs pkq| ¤ k.

Lemma 3.4. For all σ P Θτ pkq, |Fσs X Lτs pkq| ¤ k � 1.

Proof. Identical to the proof of Lemma 2.12. �

Let bpkq � pk � 1qp1 � 2kq. So apkq � 1 � 2k�2 � bpk � 1q. Since |Θτ pkq| ¤ 2k,
Lemma 3.4 and the analogue of Lemma 2.11 tell us that |KLτs pkq| ¤ bpkq.

Lemma 3.5. |Gτs pkq|   apkq.

Proof. Let x P Gτs pkq; let ρ � topspxq. By Lemma 3.2, x P KLρspkq or x P
KLρspk � 1q. This implies that |ρ| ¤ k � 1, so there are at most 2k�2 many
possibilities for such strings ρ. We have seen that |KLρspkq| and |KLρspk � 1q| are
bounded by bpkq and bpk�1q respectively, and so both bounded by bpk�1q. Hence
|Gτs pkq| ¤ 2k�2bpk � 1q � apkq � 1. �

The argument of the previous section now gives a proof of Lemma 3.1.

3.4. Verification.

Lemma 3.6. Every follower receives attention only finitely many times.

Proof. Identical to the proof of Lemma 2.15, using kspxq �
°
τPRspxq

kτs pxq. �

The analogue of Lemma 2.14 is the fact that the true path is infinite. Recall that
a node ρ lies on the true path if ρ is accessible at infinitely many stages, but there
are only finitely many stages at which some node that lies to the lexicographic left
of ρ is accessible. The true path is a linearly ordered initial segment of the tree of
strategies.

Lemma 3.7. If τ P N lies on the true path, then one of τ ’s children lies on the
true path as well.

Proof. Suppose, for contradiction, that the lemma fails. This means that there is
some stage s0 such that for every s ¥ s0, if τ is accessible at stage s then s is a
τ -stage and τ permits some follower at stage s.

Let KLGτs �
�
k¥|τ |KLG

τ
s pkq. If x P KLGτszKLG

τ
s�1 then some σ � τˆ8 is

accessible at stage s. This means that s   s0. That is, no new followers are added
to KLGτs after stage s0. By Lemma 3.6, each follower in KLGτs0 receives attention
finitely many times. We reach a contradiction. �

Again, for X P tK,L,Gu, let Xτ
ωpkq � limsX

τ
s pkq. For each τ P N, k ¥ |τ | and

X P tK,L,Gu, we see that Xτ
ωpkq is finite.

Lemma 3.8. Suppose that σ P Pe lies on the true path. Then the requirement P e

is met, and there is a stage after which no follower for Pe ever requires attention.
The unique child of σ also lies on the true path.

Proof. This is proved by induction on |σ|, using the argument of Lemma 2.16. �

As a corollary, we see that the true path is infinite.
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Lemma 3.9. Let τ P Ne,c be on the true path. Suppose that T e,c is a trace for ψe.
Then τˆ8 lies on the true path.

Proof. By Lemma 3.7, it suffices to show that there are infinitely many τ -stages.
This follows from the fact that T τ traces ψτ . �

Lemma 3.10. E is not computable.

Proof. We need to show that every requirement P e is met. By Lemma 3.8, it
suffices to show that for all e there is some node σ P Pe on the true path. This
follows from the fact that the true path is infinite, and from the way we distributed
requirements to nodes, once we see that there is some node τ P N such that τˆ8
lies on the true path. This follows from Lemma 3.9, and the fact that SJT-hard
c.e. sets exist. �

Reductions. We turn to show that E is computable from every SJT-hard c.e. set.
Suppose that W e is SJT-hard; so there is some c   ω such that T e,c traces ψe. As
the true path is infinite, find some τ P Ne,c on the true path. By Lemma 3.9, τˆ8
lies on the true path; there are infinitely many τ -stages.

Lemma 3.11. Let x P Fs and suppose that τ P Rspxq. If x P E, then there is some
stage r ¥ s such that τ � toprpxq.

Proof. Let v ¡ s be the stage at which x is enumerated into E. We have Rv�1pxq �
ttopv�1pxqu. If τ � topv�1pxq we are done. Otherwise, since τ R Rv�1pxq, let r ¥ s
be the last stage at which τ P Rrpxq. Then τ � toprpxq. �

Lemma 3.12. Let s be a τ -stage. Let x P Fs such that τ P Rspxq and suppose that
vτs pxqÓ. Suppose that W eævτs pxq �W e

sæv
τ
s pxq. Then x R E.

Proof. Identical to the proof of Lemma 2.17, using Lemma 3.11. �

Let H be the collection of followers which are never cancelled nor enumerated
into E. We use notation, such as Rωpxq, similar to the notation we used before.

Lemma 3.13. Let x P H and let τ P Rωpxq. There is some τ -stage s such that
x P Fs, v

τ
s pxqÓ and W eævτs pxq �W e

sæv
τ
s pxq.

Proof. Identical to the proof of Lemma 2.18, using the assumption that T τ traces
ψτ . �

Lemma 3.14. E ¤T W
e.

Proof. Similar to the proofs of Lemmas 2.19 and 2.21.
Let x P Fx. To find, with oracle W e, whether x P E or not, wait for a τ -stage

s ¡ x at which one of the following holds:


 x has been cancelled by stage s;

 x P Es; or

 τ P Rspxq, v

τ
s pxqÓ and W eævτs pxq �W e

sæv
τ
s pxq.

If such a stage s is found, then by Lemma 2.17, W e can decide at stage s if x P E
or not.

We claim that such a stage s can be found for all but finitely many followers x.
First, note that there are only finitely many followers x P

�
s Fs such that σpxq is

stronger than τˆ8: those σ that lie to the left of τ are visited only finitely many
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times, and those that are extended by τ lie on the true path, and so appoint only
finitely many followers by Lemma 3.8.

Hence, we let x P
�
s Fs and assume that σpxq is not stronger than τˆ8. If σpxq

lies to the right of τˆ8, then any τˆ8 stage s ¡ x satisfies the condition above:
either x is cancelled by stage s, or x P Es. Suppose, then, that σpxq � τˆ8. Thus,
τ P Rtpxq where t is the stage at which x is appointed.

If x R H then a stage as above is definitely found. Suppose that x P H. If τ
is never removed from Rpxq, then Lemma 3.13 ensures that a stage s as above is
found. Otherwise, let ρ � topωpxq. Let r � 1 be the stage at which τ is removed
from Rpxq; so kτr pxq � |τ |. Lemma 3.2 shows that ρ � τ , and that kρr pxq � |τ |. So
kρωpxq ¤ |τ |. Thus

x P
¤

ρ�τ,ρPN

¤
k¤|τ |

KLρωpkq.

However, this set is the finite union of finite sets, and so is finite. �
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[12] Noam Greenberg and André Nies. Benign cost functions and lowness properties. J. Symbolic

Logic, 76(1):289–312, 2011.
[13] Noam Greenberg and Daniel Turetsky. Strong jump-traceability and Demuth randomness.

Submitted.
[14] Carl G. Jockusch, Jr. and Richard A. Shore. Pseudojump operators. I. The r.e. case. Trans.

Amer. Math. Soc., 275(2):599–609, 1983.
[15] Carl G. Jockusch, Jr. and Richard A. Shore. Pseudojump operators. II. Transfinite iterations,

hierarchies and minimal covers. J. Symbolic Logic, 49(4):1205–1236, 1984.
[16] Bjørn Kjos-Hanssen, Joseph S. Miller and D. Reed Solomon. Lowness notions, measure and

domination. To be published by the London Mathematical Society.
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