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On Π]0 Classes and their Ranked Points

ROD DOWNEY

Abstract We answer a question of Cenzer and Smith by constructing a non-
zero degree each of whose members is a rank one point of a Π? class. The
technique of proof is a rather unusual full approximation argument. This
method would seem to have other applications.

1 Introduction In this paper, we solve a problem of Cenzer and Smith [3]
concerning ranked points for Π? classes in 2ω. Here the reader should recall that
a member (point) of a Π? class P is called ranked if, for some ordinal a, x φ
Da(P) where Da denotes the α-th Cantor-Bendixon derivative. This is defined
via

'D(P) = {xeP:xeCl(P- {x})}

D°(P) = P, Da+ι(P) = D(Da(P))i and

Da(P) = Π Dβ(P) for a a limit ordinal.

The rank of a ranked point y in P is the least a with y φ. Da+ι(P), and the rank
of y is the minimum rank in all P such that y is a ranked point in P. Ranked
points in Π? classes have been extensively investigated in, for example, Jockusch
and Soare [6,7], Clote [4], Cenzer et al. [1,2], and Cenzer and Smith [3]. It is
known that all Δ2 degrees contain ranked points [3], but not all points can be
ranked. For example, all the nontrivial iterated jumps of 0 cannot be ranked
and all hyperimmune degrees (see Section 2) contain unranked points.

These results left the following question open: do all degree Φ 0 contain un-
ranked points? In Section 2 we answer this question by showing that:

Theorem There is a completely ranked degree below 0", that is, there exists
a with 0 < a < 0" such that ifA E a then A is ranked. Indeed for all B <τ A,
B has rank < 1*

*The author thanks Richard Shore for pointing out that this stronger conclusion follows
from the proof in §2.
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The proof of the above theorem will consist of the construction of a set A
of hyperimmune-free degree (see Section 2) with A of rank 1. As we will see, the
result will then follow by some work of Miller and Martin [8] and an applica-
tion of a lemma of Cenzer and Smith [3]. Notation is standard and follows, e.g.
Odifreddi[9]orSoare[10].

2 The proof We achieve our goal by constructing a nonrecursive set A of
hyperimmune-free degree such that A has rank 1. Here the reader should recall
that A is hyperimmune-free iff each function f <TA is majorized by a recursive
function. The crucial property of such degrees is:

Lemma 2.1 (Jockusch [5], Miller and Martin [8]) If A has hyperimmune-free
degree and B <τ A, then B <tt A.

Our result will then follow due to the following result of Cenzer and Smith.

Lemma 2.2 (Cenzer and Smith [3]) IfB <tt A and A has rank n, then B has
rank m for some m < n.

We now turn to the construction of A, To do this we will use a Ή2-full ap-
proximation' construction of a hyperimmune-free degree. We must be very care-
ful not to have too many splittings. For example, the standard construction of
Miller and Martin [8] (cf. Odifreddi [9, Ch. V.5]) uses perfect trees. To "fully
approximate" such a construction would apparently result in unranked points.
(See also the comments at the end of Section 3.) We must keep A of rank 1, and
therefore topologically we must essentially build "something like" the tree of
Figure 1.

Each of these can
only split finitely > ^

Figure 1.

This necessitates a great deal of delicacy in the construction. In particular,
quite distinct from other full approximation constructions, we do not construct
at each stage s a finite set of trees and intersect them. Rather we construct A as
the unique rank 1 path through a Π? class C with all other points of C having
rank 0 (as in Figure 1).
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The reader should keep the following idea in mind: At any stage s, we will
have a finite tree Cs that will consist of a number of strings we have (irrevoca-
bly) declared to be terminal, together with a number of strings we currently be-
lieve form initial segments of paths through [C] = [Us Q ]

At any stage s + 1 to create Cs+\ we will either extend a string σ on Cs to a
longer string (of length s + 1) or declare such a string to be terminal. Hence, the
only possible transition of a string σ on Cs is to go from one we believe will have
an infinite extension to one that is terminal. Note that if at all stages s we be-
lieve σ on Cs has an infinite extension, then σ has an infinite extension on [C].

Another picture the reader should have is the following: At any stage s we
will have a unique string σ on Cs of length s that we believe will be an initial seg-
ment of the unique rank one point β of [C]. At stage s9 this will be the only
string from which we will allow (new) splittings to form. Thus, although other
strings on Cs can be extended at stage s, they will not form split extensions. This
is, by itself, not enough to cause [C] to be isomorphic to the tree of Figure 1,
since we may still form many splittings at stages t Φ s elsewhere; nevertheless,
it is an underlying idea that the reader should keep in mind. The other main de-
vice we will use to keep [C] isomorphic to the tree of Figure 1 is that if we change
our minds at some stage t > s and believe that σ is really not an initial segment
of |8 then, roughly, we will cancel most of the false splittings we made which ex-
tended σ. (See Figure 4 wherein we once thought that γi (= σ) was an initial seg-
ment of β. As we will see when we discuss the Re, we no longer believe this and
believe that, e.g. y2 is an initial segment of β. So here, all the "false splittings"
based on the "wrong guess" have died.)

We now turn to the exact details of the mechanism by which we achieve our
goals. We must meet the requirements

Re:Φe(A) total implies Φe(A) is majorized by some recursive function

Ne:A Φ We.

To meet Re the basic idea is to construct a recursive tree (Π? class) Te so that
A is a path on Te. This tree will have the property that either there is an n such
that for all paths P on Te, Φe(P; w)ΐ or Φe is total on all paths.

Before we consider the Re in detail, it is best to first review the Friedberg
strategy we use for Nj. For the sake of Nj there will be a follower n (in fact
many "guessed" versions as we will see) and ensure that in the Π? class C we
construct, there are nodes σ, σ l5 σ2, each (initially) having extensions in Cs (the
part of C we've built by stage s) with the following property: We have σx (n) =
0, σ2(n) = 1 and σ{ = αΛ0, σ2 = σ A l . Initially, we route the approximation to
A through σ2 (this means no splittings for r D σ\ in C). But we keep the option
of routing through σx by making sure that there is one extension of σ! in Ct for
t>s.\ϊ we ever see a stage u with nE W6jU we ask that (for the basic module)
AD σx by making all extensions of σ2 die in Cu+Ϊ and, with the appropriate pri-
ority, ask that henceforth we route all possible A through σγ. This wins since
n E We — A. See Figure 2 for a typical situation.

The reader should note that in the full construction since A will be only Δ3

it will not always be possible to keep Aq D σλ for q > u + 1, but if n was the fol-
lower with the τr2-correct guess then, infinitely often, Aq D σx and the only path
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Construction
begins here

\at u + 1 /

\ ^ \ ^ / 7i,72,73 are terminal at stage u + 1.

σi\Vtf2

Figure 2.

of rank Ψ 0 will extend σi. (This path can be figured out via a ττ2 complete ora-
cle. More on this later.)

But it is important for the reader to note that once we are dealing with the
version of Nj of the 'correct guess' and all the higher priority versions of Nk

have finished acting then the construction will ensure that A either extends σ2 or
σ\\ and furthermore since Nj has the correct guess, there will either be exactly
one path in [ C] extending σ\ (so A D σ2) or there will be no path extending σ2

(and so AD σι). This will make the verification that A has rank one easy, pro-
vided we can argue that "guesses" settle down as we now see.

We need Re to operate in the arena given by the above. It will be the case
that Re will not cause splittings, but only "shift around" where we think the
"construction" should happen. (That is, where we allow splittings to be caused
by Nkΐor k>e.)

The basic module for Re The real underlying idea behind satisfying Re is
to try to find some string y so that if A D y and A G [C] then Φe(A) is not to-
tal. This will entail finding some number m and some string y so that

(i) for all P E [C] if P D y then Φe(P; m)ί, and
(ii) 7 has infinitely many extensions in [C].

If we fail to find some m and y we will ensure that Φe(P) is total for
(almost) all P G [C]. (This is the π2 outcome.)

As we will see, we will verify the ττ2 outcome as follows. First at some
stage s0 we will ensure that for all nonterminal σ of length s0 on CSo we have
Φ^soί*7'^)^ Having done this we will only then believe that Φe(A) is total
(for one stage). We will then ensure that for all σ of length sx on CSι we have
Φe(σ; 1)4, etc. We will do this by testing strings one at a time in this level-by-
level method. It is really best to think of our procedure as trying to find a cone
where we can force divergence on some fixed argument. We will now look in
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more detail at the mechanism by which we achieve our goals. A typical situation
we need to consider is given in Figure 3 below.

In Figure 3 we are waiting for Nj to act. Suppose we "knew" that for some
n, i with 1 < / < 5 and for all μ G 2 < ω ,

if μD7/thenΦ β (μ;«)ΐ.

In that case, our strategy would be easy. Without loss of generality, let / = 3. We
would first either terminate 7i,72>74>75 o r a t l e a s t make sure there were at
most finitely many splittings in C extending y\, y2,74,75. Second we would then
ensure that we would work in the "cone" above 73. That is, ensure that if β is
a path on [C] then, with the possible exceptions above, β D 73.

Unfortunately, we cannot know if an n and i exist (and furthermore we
will not be working with all μ D 7,-, rather only those μ on Ct some t > s). The
nonexistence of (n, i) is a τr2 question. However, the idea is to approximate the
τr2 question by an infinite collection of Σj questions. We test the n's one at a
time, and the 7,'s one at a time for each n, as described above. Now, inductively
suppose we have considered m - 1. That is, we know for all / with 1 < / < 5 that
&e(7h k)l for all k < m - 1. We wish to deal with m. Thus, we will test (yΪ9 m)
then (72, m ) , . . . , (75, m) and then return to 71, if they all "test positive". So,
to begin with, we try to verify (yi9m). That is, we try to find a nonterminal ex-
tension r D 7i in C5 such that ΦeiS(τ; m)l.

While we do this, we will directly extend 72,. . . , 75 by a single extension at
each stage u > s (e.g., if μ D 7/ in Cu then μ A 0 D yj in Cw + 1 forj E {2,3,4,5}).
Meanwhile, we continue our construction based on the belief that

(2.1) For all r D 7i on Cif Φet(τ;m)i then at some stage q < t all extensions
of T in Cg are terminal.

Note the timing element in (2.1). We do not claim that Φe(r;m)J\ for all
r D 7i, we claim only that such r's are not initial segments of the A we con-
struct.

How should we perform such a construction based on (2.1)? Clearly the de-
sirable thing to do (for lower priority Rj) is to begin anew with a version that

75 74 73 72 7i

\ ^ \ \ / 7i > > 75 list all currently
ŵ \ \ / nonterminal nodes of Cs.

^V <ns/σ2 } Nj

Figure 3.
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only seeks verification in the cone above 71. That is, based on (2.1) we will only
allow A^ for k > e to form splittings in the cone above y^ and Rj fory > e will
only need to do their verifications for strings in Cs in this cone. This is accept-
able, since we get a global win on Re9 since the threat is that we are putting the
rank one point above yx where possibly (2.1) holds.

Note that another coherent strategy is to make all nodes extending yx termi-
nal (to verify (2.1)). We could do this if Nj acts via (σ, σ\9 σ2), but must ask (for
priority reasons) that the follower n of σ has m > n so that this is an ̂ -correct'
follower in the usual tree of strategies sense.

Assuming TV, does not so act, if we see in the course of the construction
Φe,r(τ"> w)i on some TD yi, not satisfying (2.1), then from Re's point of view
(YJ, m) has been verified and we can (for instance, for a single Re alone) can-
cel (by making terminal) all save one extensions of γ! and keep only one exten-
sion of r. Figure 4 shows this for a single Re alone.

The reader should note that, if we desired (from Re's point of view), we
could also split the extension μ{ of r as (μi, m) is verified. We will need to do
this sometimes, but need real care since we must keep the Π? class having a
unique rank 1 point and all the others of rank 0. The time we will need to do this
is when Nk for some k requests a follower. If it turns out that for almost all
paths P on [C], "-ι(2.1)" holds (that is, for almost all P on [C] we force, for
almost all m, Φe(P; m)l) then we will need to ensure that Nk has an arena in
which to act. In particular, it will need a follower equipped with the correct guess
as to Re's behavior. The idea is to designate essentially the rightmost nontermi-
nal path on C as the one we will use for splittings. Thus, for yx we ask that we
see two extensions (μi, μ2) with Φe(μi, m), Φe(μ2, m)l. As there are two exten-
sions for some g > m (inductively) we will have μx (g) = μ2(g). We will give μx

and μ2 the high β-state and appoint g as a follower of Nk with the correct (high)
e-state. We can even wait until we see τx D μx, τ2D μ2 with Φ e(τi;y)j, and
Φ<?(τ2;y)l for ally < g; and then use τ\ for μx and τ 2 for μ2. Note that unless
some higher priority Nq for q < k terminates the extensions of yλ, a consequence
of this will be that we will terminate all save one extension of γ2,73,74,75 since
they know that if we are in the height e-state, then the rank 1 point should ex-
tend 7i. We discuss this further when we describe the inductive strategies later.
After we verify (yϊ9m) and get the situation in Figure 4, we will then verify
(72, m) similarly. That is, we directly extend 75,74,73, and μ (or its two exten-
sions, as the case may be) and begin the construction in the cone above 72 based
on (2.1) with 7 2 in place of 7!. We then move on from 72 to 73 to 74 to 75 sim-
ilarly to get μ5, μ 4 , . . . , μx all of whom are m-verified. We then begin again (at
stage 5, say) on, μϊ9 and for simplicity, demand that μx be verified simulta-
neously for ally with m <j < s. (This makes the combinatorics easier.)

The a-module and the inductive strategies The above describes a proce-
dure which, if it acts confinally with the construction, forces Φe(P; m)ϊ for
all possible paths on [C]. To compute the relevant majorizing function, sim-
ply wait until all currently nonterminal paths P in Cs are m-verified. Kόnig's
lemma say that such a stage must exist. Then all are majorized by f(m) =
1 + max {Φe(P;m) : P a s above).

In a standard Π2 way, we will desire that we only meet Nj viay-correct ver-
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75 74 73 72 \*i\

^ ^ \^ \^^ All extensions or yx

>̂  \ . fh h a v e died except one (μλ)
\. \^S which extends r.

δi

Figure 4.

sions (i.e., e-correct for e <y). Note that the stronger outcome (that Re acts in-
finitely often) will "appear correct" whenever we shift from yx to γ 2, etc. At
such stages we will terminate all work based on the false assumption that Re acts
only finitely often. In particular, a node σ devoted to Nj(j>:e) will be given a
guess for the outcomes of Rj for j < e. For a single Re9 this guess is either oo or
/ (for infinitely or finitely active). The outcome <*>(/) will be reflected in e-state
1 (0). If the guess is/ then when oo looks correct the node σ is terminated (That
is, all extensions in C (except perhaps 1) are terminated and in particular σ will
no longer give rise to splittings.)

In particular, for the situation in Figure 4, assuming none of the δ i , . . . ,δ4

act via their A/^-requirements, when yλ was m-verified we could define two ex-
tensions μiΛ0, μ i A l of μx and declare g = \\\(μι) + 1 as the follower of the
highest priority Nk without a follower with guess oo (with k > e). We would de-
clare μι to have e-guess oo. When this guess is verified (i.e., for ally < g that are
extendible λ z θ μiA/ with Φe,5(λ/,y)l) we would declare g as active and then let
it act as in the basic Nk module.

Assuming δ i , . . . ,δ4 have not yet acted, we would not, however, split the ex-
tensions of 75, . . . , 72, for we know that either one day the δ, might act or in-
finitely often we will return to μi to build the class. Arguing by priorities, if ever
δ i , . . . ,δ4 act, they must have been assigned to Nj of higher priority than that
to which μι is assigned. Thus, as usual, they can terminate yx and so μx if they
want. But also in the usual way, the Nj assigned to μ\ will be met via some ver-
sion. However, it is also important that the reader realize that no node with guess
/ c a n cancel μx.
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The other interactions of Re with TV, occur if Nj has higher priority than Re

(i.e., j < e). To make the combinatorics easier—particularly the verification that
[C] has only one rank one path—we will deal with this as follows. If Re has
lower priority than Nj it should cooperate with it. In particular, if a version of
Nj asks that the construction of A only should be through σγ or σ2 (as in Fig-
ure 3), and indeed should route through σ2 unless WjfS(lh(σ2)) = 1 at some stage s
(in which case we terminate all extensions of σ2), then a version of Re guessing
that this version of Nj is correct should act only in the cone above σ2. It will do
so until such an s occurs (in which case is will act only in the cone above σ{) or
this version of TV, proves false.

Thus this version of Re will only verify strings in the cone above σ2 (or σx)
while Nj looks good. In particular, in the situation of Figure 3, assuming all the
Λffc of higher priority than Nj have ceased activity, it will be the case that the
only requirements that can force A to extend γ5 or y4 will be Nj or requirements
Rq of higher priority then Nj.

To complete the proof, we need to describe the inductive strategies for Rj
for j > e. As usual, it suffices to consider two Rj, say Rj and Re as above (with
j>e).

The whole point is that Rj must operate in the universe handed to it by Re.
Going back to the initial situation of Figure 3, we wish Re to verify (γ!, m). We
would also desire Rj to verify (yx, m). If Rj verifies (71, m) we would not aban-
don Yi for 72, since it still appears that (2.1) holds for Re (and hence we wish the
construction to occur above yx). If this is the final outcome it could be reflected
in ay-state with 0 for Re and 1 for Rj. Note that if Re later verifies (71, AW) too,
then in this situation, both Re and Rj would begin anew on 7 2.

On the other hand, if Rj has not (yet) verified (y\9m) but Re has then when
Re abandons 7! for 72 we leave (71, m) "pending" for Rj. The crucial step is
not not allow any node to get the highj-state (with 1 in the e-position and 1 in
the j-position) until (γ l f m) is verified or permanently abandoned via some
N/c-action.

Thus, when we move to 72, Rj seeks to verify (y2im) on the assumption Re

has the Σ2 outcome at y1. If Re does verify (72, m) and (yt, m) is still active we
now believe that (72, m) is not verified regardless.

The guiding principle is that if we visit 7! infinitely often and Rj is not
m,-verified there, then it is here that we will have built A. On the other hand,
if we visit 71 infinitely often then if (2.1) does not pertain to Rj in the set of
stages we visit (extensions of) yx, then we will get to m-verify yx for j at some
stage we m-veήΐy yx for some m> m (for e).

That is, for eachy-state τ we will have a "preferred place" to build A, denoted
by p(τ, s). The reader should remember that the most desirable state of all is an
"/" outcome since then Rj's action is finite. Roughly we will havep(r,s) as the
rightmost appropriate place for the state r.

For a single Re above, suppose we had the situation in Figure 4, having just
e-verified yx. Then unless some Nk kills 7, it is clear that we'd desire A to extend
μu if the high e-state (00) pertains, (i.e., p(oo9s) = μ{) and until 72 is me-
verified, p(f,s) = 72. Subsequently /?(/,s) moves to y2,73,74,75 as they be-
come m^-verified, and then back to 71.

For the situation with Re and Rj above things are a little more complex.
Again looking at Figure 4, suppose we have m7-verified and me-verified yx and
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have moved to γ 2 . Let δ be the highy-state, and p the state with p{e) = 1 veri-
fied and ρ(j) = 0.

Suppose that at some stage sλ > s we get to AT -̂verify y2 yet we do not rrij-
verify. The observation is that should p be the correct outcome, then infinitely
often we will visit γ 2 unless it is cancelled by Λ^-action (as p(e) = 1). If, dur-
ing the stages we visit y2 we never get to m-verify it fory, then we would like to
build A in the zone above γ2- Thus it is γ 2 that we set p(ρ,Sj) equal to. Note
that it is consistent with guess p to not allow any new splittings of e-state p or
δ anywhere else until such time as p proves wrong. Note the slight priority in-
version : although μλ has guess δ we won't allow new splittings extending μλ to
occur until such time as all of γ 2 , . . . , γ 5 have been m-verified. Hence we do not
always build in the place where we can force the high e-state, as the lower one
is more desirable.

The effect of the above is that if p is the correct outcome then as in the ex-
ample of Figure 4 we might build A in the zone above y2 although y2 is not the
rightmost path visited infinitely often (for instance 71 might be visited infinitely
often, but no splittings might come from such visits).

On the other hand, if δ is the correct outcome, then all of yx,..., γ 5 will be
m-verified for both e- andy-. At such a stage t we would be allowed to gener-
ate a splitting with the highy-state δ above μ\ = (δ,s) and we would then gen-
erate a longer p(δ,s).

In this way it can be seen that the strategies all cohere.
The above describes the strategies for, and the interactions of, the require-

ments. The remaining details are to implement the full construction using a Π2

tree of strategies to coordinate the depth-w strategies. We now give some formal
details although we expect that the readers would prefer to supply them for them-
selves as the procedure is now well understood. We only sketch the verification
as the key ideas are encapsulated in the preceding discussion.

As usual, we use the phrase "initialize". In our context, this means cancel all
assignments of followers (by Λ '̂s), define them as unsatisfied, etc. (more on this
later). We will build C, a Π? class in 2 < ω with 0 < 1, ordered lexicographically.
The priority tree for the strategies is T = {/,°°}<co with 00 <Lf. We will use
δ, r, p for guesses (i.e., members of Γ) and reserve σ, μ, γ,λ, TΓ for members of
2 < ω (i.e., potential members of C). If lh(τ) = 2y we will assign Nj to r for each
such T. In this case we write Nτ for the version of Nj assigned to guess r. Simi-
larly, if lh(r) = 2/ + 1 we assign Rj to τ and write RT for such a version of Rj.
We will need an m (-verification) parameter, as described above, that we denote
by ra (7,7,5). Other parameters are:

y(τ9s): The string awaiting r-verification of s.
x(t,s): A follower of Nτ: Note x(τ,s) E ω.

y(x(τ,s)): The string in Cs associated with x(τ,s). It will be the case that
y(x(τ,s)) - 1, and for someμ, y(x(τ,s)) = μ^l. Also, both μ^l
and μ A 0 are initial segments of nonterminal members of Cs.

δ(s,t): A string in Γthat appears correct at substage t of stage s (we write
this as stage (s,t)).

σ(syt): A string in Cs that appears to be an initial segment of the rank one
point of [C] at stage (s9t).

Pt: The value of a parameter P at the end of substage t.
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Important remark When we initialize an Nτ then we will always do the fol-
lowing: If Nτ has a follower x = x(τ,s) with associated string 7 = y(x(τ,s)) =
μ A l , we will declare as terminal all strings extending 7. When we initialize Rτ

at stage s we merely reset m to be s and reset 7(7,5) to be undefined.

The construction

Stage 0 Let Co = λ.
Stage 1 Assign 0 to follow No. Declare both 0 and 1 to be (currently)

nonterminal and set Cx = (0,1). Let σ(l,l) = 1, and δ(l,l) =/.
Stage sΛ-1 (s> 1).

Step 1. Perform the following substages t < 2s.

Substage t = 0 (i.e., stage (s + 1,0)). (AttendNo). If 0 E WOyS+ι and 7V0 not yet
satisfied set σ(s + l),0) = 0 and declare)terminal all μ E 2<m with μ D 1 and
μ E Cs. Initialize all Nτ and Rτ for r ^ 0 0 and set δ(s + 1, s + 1) = 00. Then
set σ(s + l,j) to be the rightmost nonterminal path in Q°+1. (Remark: (Tl) It
will be the case that σ(s + 1, s) D 0 and it will be the case that after this all ver-
sions of Rj and Nk (k > 1) will now be in the initial states.) Declare Λ̂ o as sat-
isfied. Go to Step 2.

If either No is satisfied or 0 £ WOfS9 set δ(s + 1,0) = / and σ(s + 1,0) = 1.
(Remark: (T2) It will be the case that both 0 and 1 have nonterminal extensions
inC5°+).)

Substage t = 2e (e > 0) (Attend Ne) We can assume we are given σ(s + 1,
t - 1) and δ = δ(s + 1, t - 1). Adopt the first case to pertain.

Case L Neis satisfied.

Action. Set δ(s + 1,0 = δ(s + 1, t- l)Λoo and σ(s+ 1,0 = σ(s + 1, t - 1).
Goto stage (s + 1, t + 1).

Case 2. Ne has a follower x(r, s) with guess r </, δ, and x(τ, s) E WeyS, and 7Ve

as yet unsatisfied.

Action. Declare as terminal all strings TΓ D μ A l where μ A l = 7<Λr(τ,s )>.
(Remark: (T3) It will be the case that for all strings σ nonterminal in Cj+i,
σίxίr,^)) = 0, so since ArίT,̂ ) E W ,̂ we have won Ne.) Declare all versions of
Ne as satisfied. Initialize all Rj fory > e. Set δ(s + 1,0 = δ(s + 1, s + 1) = 7.
Initialize all N? and i?f for f 3^ r. For each p <L T, if p(p9s)* is now terminated,
reset p(ρ,s)t+ι to the rightmost extension of length s of μ A 0. Go to Step 2.

Case 3. Ne has a follower with guess δ but neither Case 1 nor Case 2 pertains.

Action. Set δ(s + 1,0 = δ(s + 1, t - 1)^/ and σ(s + 1,/) = σ(s + 1, t - 1).
Go to stage (5 + 1, t + 1). (Remark: (T4) As Λre has a follower it follows that
tφs.)

Case 4. Ne has no follower with guess δ and Ne is not satisfied and either
σ(s+ l,t- 1) Qp(δ,s) orp(δ,s) Qσ(s+l9t- 1 ) .

Action. Let p be the rightmost nonterminal string in Cj+} with p D σ(s + 1,
t - 1). Declare p^0 and p Λ l to be in C5'+1 and 5 + 1 (= lh(δΛ0) to be a fol-
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lower of Nδ. Thus x(δ9s + 1) = s + 1. Declare p to have guess δ. Let δ(s + 1,
5 + l) = δ and initialize all Nτ and Rτ for T ̂  δ. Go to Step 2.

Ctoe 5. Otherwise. Set δ(s + 1, t) = δ(s + 1, ί - 1)A/. If f = .s go to step 2.
Otherwise go to stage (s + 1, ί + 1).

Substage t = 2e+ 1 (Attend Re). We will be given σ = σ(s + 1, ί - 1) and δ =
δ(s + 1, t — 1). Adopt the first case to pertain.

Case 1. Either there have been no δ-stages < s or δ has been initialized since the
last δ-stage.

Action. Declare (s + 1, t) to be a δ A/-stage. Initialize all Np for p ^ δ and i?τ

with both δ^f<Lr and δ Λ / ί T. If γ<δ,s+ I ) ' " 1 is defined, setγ<δ,5+ 1>' =
7<δ,5 + I ) ' " 1 . Otherwise find the rightmost string σ of shortest length such that:

(i) both σA0 and σ A l have nonterminal extensions,
(ii) if there is a string σ with guess δ~, where δ = δ~ A # , then σ D σ,

(iii) same as (ii) but with δ in place of δ~, and
(iv) for all σ Ξ> σ if σ has guess r then δ A / <χ r.

Declare σ to have guess δ A /and let /?(δA/,5) = σA0. Let y<δ,s + 1> = σ =
σ(s+ 1,0.

In either case, if t = 2s go to Step 2. Otherwise, go to substage t + 1.

Case 2. Not Case 1 (Claim: (T5) This implies 7 = γ<s,s + I ) ' " 1 is defined), and
either all extensions of γ have been terminated or there is an extension 7 of 7 such
that: (i) 7 has a nonterminal extension, (ii) Φe,s(yJ)^ for ally < m(δ9s + I ) ' " 1 ,
(iii) either δ(s + 1, t - 1) c γ or 7 ^ σ ( s + l, / _ l), and (iv) 7 has guess δ~.

Action. Set σ(s + l,t) = y if σ(s + 1, t - I) £ y and σ(s + 1, 0 = σ(,s + 1,
/ — 1) otherwise. Declare 7 as m(δ,s + l)-verified and if 7 exists, declare 7
to have guess δ^oo. Find the rightmost extension 7 = 7~ A 1 ofσ(5+ 1,0 of
length s and declare it to have guess δAoo too. If σ(s + 1, t) Ώp(σ*oo9sγ or
p(σ*oo9sy is not defined, let 7 " bep(σ/κoo,s)t+ι, and declare both y~ A 0 and
7~ A l to have guess δAoo. Terminate all other extensions of σ(s + 1, 0 with
guesses weaker than δAoo. Now we choose 7<δ,s + 2>° as follows: If, for any
initial segment r <Ξ δ, we have already reset y(τ,s + 2>° to be different from
y(τ,s + 1>, then for the longest such r set 7<δ,si + 2>° = 7<τ,5 + 2>°. Other-
wise, if all strings with nonterminal extensions of guess Q δ already have m-
verified initial segments, choose 7<δ,si + 2>° as σ chosen as in Case 1 with the
additional proviso that σ is not yet m-verified.

In any case, let δ(s + 1,0 = δAoo and go to stage (s + 1, t + 1).

Case 3. Otherwise.

Action. Let δ(s + 1, t) = δ A /. If there is a rAoo g δ with lh(r) = 2ί + 1 for
some t, then for the longest such r, it will be the case that y(τ, s + 2>° = 7 has
been reset. Set 7<δ,s + 2>° = 7. Otherwise 7<δ,s + l> = τ < δ , s + I / " 1 . In any
case σ<5 + 1,0 = tf(s + 1, t — 1). If t = 25 go to Step 2, otherwise go to sub-
stage t + I.
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Step 2. For all nonterminal paths σ in Cj+ 1 of length s with (currently) no ex-
tensions of length 5 + 1 , put σA0 in Cs+\.

Verification (Sketch). It is relatively easy to verify by induction on the construc-
tion that all the claims (T1)-(T5) made in the construction hold, and that Ne re-
quires attention at most once as there is at most one string σ in Cs with σ(x) =
1 if x follows Ne (and this is made terminal if x E W6iS). Let TP denote the true
path of the strategy tree. One can see by induction that if δAoo c TP and
lh(δ) = 2e then WβiS(x) = 1 for some x with p(x) = 0 for all paths x on [C].
Now if δ A / C TP then we need to show that x = lim5jf(δ,.?) exists and y =
limsy(δ,s) exists with y = μ A l , and lh(γ) = x. This is a standard induction.

Then one argues that y is the preferred place to build. Of course the key ob-
servation needed is that the result of the above is [C] with only one rank one
point. To see this, suppose we have that σ is on infinitely many paths in [C] but
if lh(τ) < lh(σ) and τ £ σ then r has only finitely many extensions in [C]. We
now show one of σA0 or σA 1 has these same properties. Now if both σA0 or σA1
are on Cs at some s, then they are associated with some Nj. If ever one of σA0
or σA1 is terminated then we are done, so without loss of generality we can sup-
pose both have extensions on [C].

By our construction which of σ^ = σA0 or σ2 = σA1 can have the rank one
extension depends only on Nj and higher priority Re. If at some stage some
highest priority Re gets stuck on some (γ, me) extending one of σγ or σ2 (say σx)
then we will stop forming permanent splittings of σ2. It may very well be that
the construction is performed above σ2 infinitely often, but this will only be to
verify the appropriate Re, for e' < e. The only splittings that survive will be
those above σ!. Therefore if s is the stage where we got stuck on (γ, me), there
can be at most 5 paths in [C] extending σ2, since the only splittings can be those
already present at stage s. Finally if no Re of higher priority gets stuck on some
(Ί>me) extending one of σi or σ2, then Nj will have the correct guess. As nei-
ther σx or σ2 gets terminated, it follows that Nj will ask A to extend σ2. Thus σx

will get only one extension in [C], as all the potential others get cancelled. Hence
σA0 or σ A l cannot both be extended to rank one or more points.

By Jockusch [5], we know that the degrees consisting of a single //-degree are
exactly the hyperimmune-free degrees. As we noted earlier, Cenzer and Smith
proved that all hyperimmune degrees contain unranked points. This suggests
the conjecture that the degrees containing only ranked points are exactly the
hyperimmune-free degrees. Unfortunately, this conjecture is easily destroyed.
These are only countably many ranked points, and yet there are uncountably
many hyperimmune-free degrees. In fact there are hyperimmune-free degrees
containing no ranked points below 0" as we now see. To see this, in view of Jock-
usch's Theorem [5], it suffices to construct a hyperimmune-free unranked point.
To do this one meets the previous Re requirements and also

Pe:if A is a member of [Te] then
[Te] is uncountable.

Here Te denotes the e-th Π? class. Now we meet Re by the standard forcing with
perfect closed sets (a la Miller and Martin [8]) and the Pe by diagonalization. We
know how to meet Re in this setting: given a perfect tree Qg find a perfect sub-
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tree Qg+ι where either Φe(P;m)i for all Pe [Qg+i] or (3m)(Φe(P;m)1) for
all P E [Qg+ι], To meet Pe we are given Qn a perfect tree and we ask if every
node on Qn has an extension on [Te] for if [Qn] c [Te]. If the answer is yes, we
need do nothing as Te is uncountable. If the answer is no, we take a string σ on
Q such that no extension of σ lies in Te. We then let Qn+Ϊ be the perfect subtree
of Qn above σ. Thus we have

Theorem There is a hyperimmune free nonrecursiυe unranked point of de-
gree < 0".

It would be very interesting to find some sort of characterization of the de-
grees containing unranked points. But this seems hard. The basic machinery of
the construction of our main result is quite versatile. The basic idea attempting
to force divergence can be used for other Π? class constructions. For instance
the method can be extended to show that for n G ω — (0) there is a hyperimmune
free set of rank n and hence a degree all of whose members have rank n. It seems
conceivable that this will extend to all a < ωί*. Variations on the method have
been used by the author to construct a perfect Π? class, all of whose members
are recursive or of minimal degree. An open question here is whether there is a
perfect Π? class, all of whose members have either minimal degree or have r.e.
nonrecursive degree. Finally, the construction used for the main result is a full
approximation one. It would be nice to have one where the set was obtained by
direct forcing with Π? classes.
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