On Π_1^0 Classes and their Ranked Points

ROD DOWNEY

Abstract We answer a question of Cenzer and Smith by constructing a nonzero degree each of whose members is a rank one point of a Π_1^0 class. The technique of proof is a rather unusual full approximation argument. This method would seem to have other applications.

1 Introduction In this paper, we solve a problem of Cenzer and Smith [3] concerning ranked points for Π_1^0 classes in 2^{ω} . Here the reader should recall that a member (point) of a Π_1^0 class *P* is called *ranked* if, for some ordinal $\alpha, x \notin D^{\alpha}(P)$ where D^{α} denotes the α -th Cantor-Bendixon derivative. This is defined via

$${}^{\circ}D(P) = \{x \in P : x \in Cl(P - \{x\})\}$$
$$D^{0}(P) = P, D^{\alpha+1}(P) = D(D^{\alpha}(P)), \text{ and}$$
$$D^{\alpha}(P) = \bigcap_{\beta < \alpha} D^{\beta}(P) \text{ for } \alpha \text{ a limit ordinal.}$$

The rank of a ranked point y in P is the least α with $y \notin D^{\alpha+1}(P)$, and the rank of y is the minimum rank in all P such that y is a ranked point in P. Ranked points in Π_1^0 classes have been extensively investigated in, for example, Jockusch and Soare [6,7], Clote [4], Cenzer et al. [1,2], and Cenzer and Smith [3]. It is known that all Δ_2 degrees contain ranked points [3], but not all points can be ranked. For example, all the nontrivial iterated jumps of \emptyset cannot be ranked and all hyperimmune degrees (see Section 2) contain unranked points.

These results left the following question open: do all degree $\neq 0$ contain unranked points? In Section 2 we answer this question by showing that:

Theorem There is a completely ranked degree below 0", that is, there exists a with 0 < a < 0" such that if $A \in a$ then A is ranked. Indeed for all $B \leq_T A$, B has rank ≤ 1 .*

^{*}The author thanks Richard Shore for pointing out that this stronger conclusion follows from the proof in §2.

The proof of the above theorem will consist of the construction of a set A of hyperimmune-free degree (see Section 2) with A of rank 1. As we will see, the result will then follow by some work of Miller and Martin [8] and an application of a lemma of Cenzer and Smith [3]. Notation is standard and follows, e.g. Odifreddi [9] or Soare [10].

2 The proof We achieve our goal by constructing a nonrecursive set A of hyperimmune-free degree such that A has rank 1. Here the reader should recall that A is hyperimmune-free iff each function $f \leq_T A$ is majorized by a recursive function. The crucial property of such degrees is:

Lemma 2.1 (Jockusch [5], Miller and Martin [8]) If A has hyperimmune-free degree and $B \leq_T A$, then $B \leq_{tt} A$.

Our result will then follow due to the following result of Cenzer and Smith.

Lemma 2.2 (Cenzer and Smith [3]) If $B \leq_{tt} A$ and A has rank n, then B has rank m for some $m \leq n$.

We now turn to the construction of A. To do this we will use a ' Π_2 -full approximation' construction of a hyperimmune-free degree. We must be very careful not to have too many splittings. For example, the standard construction of Miller and Martin [8] (cf. Odifreddi [9, Ch. V.5]) uses perfect trees. To "fully approximate" such a construction would apparently result in unranked points. (See also the comments at the end of Section 3.) We must keep A of rank 1, and therefore topologically we must essentially build "something like" the tree of Figure 1.

Figure 1.

This necessitates a great deal of delicacy in the construction. In particular, quite distinct from other full approximation constructions, we do not construct at each stage s a finite set of trees and intersect them. Rather we construct A as the unique rank 1 path through a Π_1^0 class C with all other points of C having rank 0 (as in Figure 1).

The reader should keep the following idea in mind: At any stage s, we will have a finite tree C_s that will consist of a number of strings we have (irrevocably) declared to be *terminal*, together with a number of strings we currently believe form initial segments of paths through $[C] = [\bigcup_s C_s]$.

At any stage s + 1 to create C_{s+1} we will either extend a string σ on C_s to a longer string (of length s + 1) or declare such a string to be terminal. Hence, the only possible transition of a string σ on C_s is to go from one we believe will have an infinite extension to one that is terminal. Note that if at all stages s we believe σ on C_s has an infinite extension, then σ has an infinite extension on [C].

Another picture the reader should have is the following: At any stage s we will have a unique string σ on C_s of length s that we believe will be an initial segment of the unique rank one point β of [C]. At stage s, this will be the only string from which we will allow (new) splittings to form. Thus, although other strings on C_s can be extended at stage s, they will not form split extensions. This is, by itself, not enough to cause [C] to be isomorphic to the tree of Figure 1, since we may still form many splittings at stages $t \neq s$ elsewhere; nevertheless, it is an underlying idea that the reader should keep in mind. The other main device we will use to keep [C] isomorphic to the tree of Figure 1 is that if we change our minds at some stage t > s and believe that σ is really not an initial segment of β then, roughly, we will cancel most of the false splittings we made which extended σ . (See Figure 4 wherein we once thought that $\gamma_1(=\sigma)$ was an initial segment of β . As we will see when we discuss the R_e , we no longer believe this and believe that, e.g. γ_2 is an initial segment of β . So here, all the "false splittings" based on the "wrong guess" have died.)

We now turn to the exact details of the mechanism by which we achieve our goals. We must meet the requirements

 $R_e: \Phi_e(A)$ total implies $\Phi_e(A)$ is majorized by some recursive function

$N_e: A \neq W_e.$

To meet R_e the basic idea is to construct a recursive tree (Π_1^0 class) T_e so that A is a path on T_e . This tree will have the property that either there is an n such that for all paths P on T_e , $\Phi_e(P; n)\uparrow$ or Φ_e is total on all paths.

Before we consider the R_e in detail, it is best to first review the Friedberg strategy we use for N_j . For the sake of N_j there will be a follower n (in fact many "guessed" versions as we will see) and ensure that in the Π_1^0 class C we construct, there are nodes σ , σ_1 , σ_2 , each (initially) having extensions in C_s (the part of C we've built by stage s) with the following property: We have $\sigma_1(n) =$ $0, \sigma_2(n) = 1$ and $\sigma_1 = \sigma^0, \sigma_2 = \sigma^1$. Initially, we route the approximation to A through σ_2 (this means no splittings for $\tau \supset \sigma_1$ in C). But we keep the option of routing through σ_1 by making sure that there is one extension of σ_1 in C_t for $t \ge s$. If we ever see a stage u with $n \in W_{e,u}$ we ask that (for the basic module) $A \supset \sigma_1$ by making all extensions of σ_2 die in C_{u+1} and, with the appropriate priority, ask that henceforth we route all possible A through σ_1 . This wins since $n \in W_e - A$. See Figure 2 for a typical situation.

The reader should note that in the full construction since A will be only Δ_3 it will not always be possible to keep $A_q \supset \sigma_1$ for $q \ge u + 1$, but if n was the follower with the π_2 -correct guess then, infinitely often, $A_q \supset \sigma_1$ and the only path

Figure 2.

of rank $\neq 0$ will extend σ_1 . (This path can be figured out via a π_2 complete oracle. More on this later.)

But it is important for the reader to note that once we are dealing with the version of N_j of the 'correct guess' and all the higher priority versions of N_k have finished acting then the construction will ensure that A either extends σ_2 or σ_1 ; and furthermore since N_j has the correct guess, there will either be exactly one path in [C] extending σ_1 (so $A \supset \sigma_2$) or there will be no path extending σ_2 (and so $A \supset \sigma_1$). This will make the verification that A has rank one easy, provided we can argue that "guesses" settle down as we now see.

We need R_e to operate in the arena given by the above. It will be the case that R_e will not *cause splittings*, but only "shift around" where we think the "construction" should happen. (That is, where we *allow* splittings to be caused by N_k for k > e.)

The basic module for R_e The real underlying idea behind satisfying R_e is to try to find some string γ so that if $A \supset \gamma$ and $A \in [C]$ then $\Phi_e(A)$ is not total. This will entail finding some number *m* and some string γ so that

(i) for all $P \in [C]$ if $P \supset \gamma$ then $\Phi_e(P; m)\uparrow$, and

(ii) γ has infinitely many extensions in [C].

If we *fail* to find some *m* and γ we will ensure that $\Phi_e(P)$ is total for (almost) all $P \in [C]$. (This is the π_2 outcome.)

As we will see, we will verify the π_2 outcome as follows. First at some stage s_0 we will ensure that for all nonterminal σ of length s_0 on C_{s_0} we have $\Phi_{e,s_0}(\sigma;0)\downarrow$. Having done this we will only then believe that $\Phi_e(A)$ is total (for one stage). We will then ensure that for all σ of length s_1 on C_{s_1} we have $\Phi_e(\sigma;1)\downarrow$, etc. We will do this by testing strings one at a time in this level-bylevel method. It is really best to think of our procedure as trying to find a cone where we can force divergence on some fixed argument. We will now look in more detail at the mechanism by which we achieve our goals. A typical situation we need to consider is given in Figure 3 below.

In Figure 3 we are waiting for N_j to act. Suppose we "knew" that for some n, i with $1 \le i \le 5$ and for all $\mu \in 2^{<\omega}$,

if
$$\mu \supset \gamma_i$$
 then $\Phi_e(\mu; n)$ \uparrow .

In that case, our strategy would be easy. Without loss of generality, let i = 3. We would first either terminate $\gamma_1, \gamma_2, \gamma_4, \gamma_5$ or at least make sure there were at most finitely many splittings in C extending $\gamma_1, \gamma_2, \gamma_4, \gamma_5$. Second we would then ensure that we would work in the "cone" above γ_3 . That is, ensure that if β is a path on [C] then, with the possible exceptions above, $\beta \supset \gamma_3$.

Unfortunately, we cannot know if an *n* and *i* exist (and furthermore we will not be working with all $\mu \supset \gamma_i$, rather only those μ on C_i some $t \ge s$). The nonexistence of (n, i) is a π_2 question. However, the idea is to approximate the π_2 question by an infinite collection of Σ_1 questions. We test the *n*'s one at a time, and the γ_i 's one at a time for each *n*, as described above. Now, inductively suppose we have considered m - 1. That is, we know for all *i* with $1 \le i \le 5$ that $\Phi_e(\gamma_i; k) \downarrow$ for all $k \le m - 1$. We wish to deal with *m*. Thus, we will test (γ_1, m) then $(\gamma_2, m), \ldots, (\gamma_5, m)$ and then return to γ_1 , if they all "test positive". So, to begin with, we try to *verify* (γ_1, m) . That is, we try to find a nonterminal extension $\tau \supset \gamma_1$ in C_s such that $\Phi_{e,s}(\tau; m) \downarrow$.

While we do this, we will *directly extend* $\gamma_2, \ldots, \gamma_5$ by a single extension at each stage $u \ge s$ (e.g., if $\mu \supset \gamma_j$ in C_u then $\mu \land 0 \supset \gamma_j$ in C_{u+1} for $j \in \{2,3,4,5\}$). Meanwhile, we continue our construction based on the belief that

(2.1) For all $\tau \supset \gamma_1$ on C if $\Phi_{e,t}(\tau; m) \downarrow$ then at some stage q < t all extensions of τ in C_q are terminal.

Note the *timing* element in (2.1). We do not claim that $\Phi_e(\tau; m)^{\uparrow}$ for all $\tau \supset \gamma_1$, we claim only that such τ 's are not initial segments of the A we construct.

How should we perform such a construction based on (2.1)? Clearly the desirable thing to do (for lower priority R_i) is to begin a new with a version that

Figure 3.

only seeks verification in the cone above γ_1 . That is, based on (2.1) we will only allow N_k for $k \ge e$ to form splittings in the cone above γ_1 and R_j for j > e will only need to do their verifications for strings in C_s in this cone. This is acceptable, since we get a global win on R_e , since the threat is that we are putting the rank one point above γ_1 where possibly (2.1) holds.

Note that another coherent strategy is to make all nodes extending γ_1 terminal (to verify (2.1)). We could do this if N_j acts via $(\sigma, \sigma_1, \sigma_2)$, but must ask (for priority reasons) that the follower *n* of σ has m > n so that this is an '*e*-correct' follower in the usual tree of strategies sense.

Assuming N_j does not so act, if we see in the course of the construction $\Phi_{e,r}(\tau;m)\downarrow$ on some $\tau \supset \gamma_1$, not satisfying (2.1), then from R_e 's point of view (γ_1, m) has been verified and we can (for instance, for a single R_e alone) cancel (by making terminal) all *save one* extensions of γ_1 and keep only one extension of τ . Figure 4 shows this for a *single* R_e *alone*.

The reader should note that, if we desired (from R_e 's point of view), we could also split the extension μ_1 of τ as (μ_1, m) is verified. We will need to do this sometimes, but need real care since we must keep the Π_1^0 class having a unique rank 1 point and all the others of rank 0. The time we will need to do this is when N_k for some k requests a follower. If it turns out that for almost all paths P on [C], " \neg (2.1)" holds (that is, for almost all P on [C] we force, for almost all m, $\Phi_e(P;m)\downarrow$) then we will need to ensure that N_k has an arena in which to act. In particular, it will need a follower equipped with the correct guess as to R_e 's behavior. The idea is to designate essentially the rightmost nonterminal path on C as the one we will use for splittings. Thus, for γ_1 we ask that we see two extensions (μ_1, μ_2) with $\Phi_e(\mu_1, m), \Phi_e(\mu_2, m)\downarrow$. As there are two extensions for some $g \ge m$ (inductively) we will have $\mu_1(g) \equiv \mu_2(g)$. We will give μ_1 and μ_2 the high *e*-state and appoint g as a follower of N_k with the correct (high) *e*-state. We can even wait until we see $\tau_1 \supset \mu_1, \tau_2 \supset \mu_2$ with $\Phi_e(\tau_1; j) \downarrow$, and $\Phi_e(\tau_2; j) \downarrow$ for all $j \leq g$; and then use τ_1 for μ_1 and τ_2 for μ_2 . Note that unless some higher priority N_q for q < k terminates the extensions of γ_1 , a consequence of this will be that we will terminate all save one extension of $\gamma_2, \gamma_3, \gamma_4, \gamma_5$ since they know that if we are in the height *e*-state, then the rank 1 point should extend γ_1 . We discuss this further when we describe the inductive strategies later. After we verify (γ_1, m) and get the situation in Figure 4, we will then verify (γ_2, m) similarly. That is, we directly extend $\gamma_5, \gamma_4, \gamma_3$, and μ (or its two extensions, as the case may be) and begin the construction in the cone above γ_2 based on (2.1) with γ_2 in place of γ_1 . We then move on from γ_2 to γ_3 to γ_4 to γ_5 similarly to get $\mu_5, \mu_4, \ldots, \mu_1$ all of whom are *m*-verified. We then begin again (at stage s, say) on, μ_1 , and for simplicity, demand that μ_1 be verified simultaneously for all j with $m < j \le s$. (This makes the combinatorics easier.)

The α -module and the inductive strategies The above describes a procedure which, if it acts confinally with the construction, forces $\Phi_e(P; m)\downarrow$ for all possible paths on [C]. To compute the relevant majorizing function, simply wait until all currently nonterminal paths P in C_s are m-verified. König's lemma say that such a stage must exist. Then all are majorized by f(m) = $1 + \max \{\Phi_e(P; m) : P \text{ as above}\}.$

In a standard Π_2 way, we will desire that we only meet N_j via *j*-correct ver-

Figure 4.

sions (i.e., *e*-correct for $e \le j$). Note that the stronger outcome (that R_e acts infinitely often) will "appear correct" whenever we shift from γ_1 to γ_2 , etc. At such stages we will terminate all work based on the false assumption that R_e acts only finitely often. In particular, a node σ devoted to N_j ($j \ge e$) will be given a guess for the outcomes of R_j for $j \le e$. For a *single* R_e , this guess is either ∞ or f (for infinitely or finitely active). The outcome $\infty(f)$ will be reflected in *e*-state 1(0). If the guess is f then when ∞ looks correct the node σ is terminated (That is, all extensions in C (except perhaps 1) are terminated and in particular σ will no longer give rise to splittings.)

In particular, for the situation in Figure 4, assuming none of the $\delta_1, \ldots, \delta_4$ act via their N_k -requirements, when γ_1 was *m*-verified we could define two extensions $\mu_1 ^0$, $\mu_1 ^1$ of μ_1 and declare $g = \ln(\mu_1) + 1$ as the follower of the highest priority N_k without a follower with guess ∞ (with $k \ge e$). We would declare μ_1 to have *e*-guess ∞ . When this guess is verified (i.e., for all $j \le g$ that are extendible $\lambda_i \supset \mu_1 ^i$ with $\Phi_{e,s}(\lambda_i, j) \downarrow$) we would declare *g* as *active* and then let it act as in the basic N_k module.

Assuming $\delta_1, \ldots, \delta_4$ have not yet acted, we would not, however, split the extensions of $\gamma_5, \ldots, \gamma_2$, for we know that either one day the δ_i might act or infinitely often we will return to μ_1 to build the class. Arguing by priorities, if ever $\delta_1, \ldots, \delta_4$ act, they must have been assigned to N_j of higher priority than that to which μ_1 is assigned. Thus, as usual, they can terminate γ_1 and so μ_1 if they want. But also in the usual way, the N_j assigned to μ_1 will be met via some version. However, it is also important that the reader realize that no node with guess f can cancel μ_1 .

The other interactions of R_e with N_j occur if N_j has higher priority than R_e (i.e., j < e). To make the combinatorics easier – particularly the verification that [C] has only one rank one path – we will deal with this as follows. If R_e has lower priority than N_j it should cooperate with it. In particular, if a version of N_j asks that the construction of A only should be through σ_1 or σ_2 (as in Figure 3), and indeed should route through σ_2 unless $W_{j,s}(\ln(\sigma_2)) = 1$ at some stage s (in which case we terminate all extensions of σ_2), then a version of R_e guessing that this version of N_j is correct should act only in the cone above σ_2 . It will do so until such an s occurs (in which case is will act only in the cone above σ_1) or this version of N_j proves false.

Thus this version of R_e will only verify strings in the cone above σ_2 (or σ_1) while N_j looks good. In particular, in the situation of Figure 3, assuming all the N_k of higher priority than N_j have ceased activity, it will be the case that the only requirements that can force A to extend γ_5 or γ_4 will be N_j or requirements R_q of higher priority then N_j .

To complete the proof, we need to describe the inductive strategies for R_j for j > e. As usual, it suffices to consider two R_j , say R_j and R_e as above (with j > e).

The whole point is that R_j must operate in the universe handed to it by R_e . Going back to the initial situation of Figure 3, we wish R_e to verify (γ_1, m) . We would also desire R_j to verify (γ_1, m) . If R_j verifies (γ_1, m) we would not abandon γ_1 for γ_2 , since it still appears that (2.1) holds for R_e (and hence we wish the construction to occur above γ_1). If this is the final outcome it could be reflected in a *j*-state with 0 for R_e and 1 for R_j . Note that if R_e later verifies (γ_1, m) too, then in this situation, both R_e and R_j would begin anew on γ_2 .

On the other hand, if R_j has not (yet) verified (γ_1, m) but R_e has then when R_e abandons γ_1 for γ_2 we leave (γ_1, m) "pending" for R_j . The crucial step is not not allow any node to get the high j-state (with 1 in the e-position and 1 in the j-position) until (γ_1, m) is verified or permanently abandoned via some N_k -action.

Thus, when we move to γ_2 , R_j seeks to verify (γ_2, m) on the assumption R_e has the Σ_2 outcome at γ_1 . If R_e does verify (γ_2, m) and (γ_1, m) is still active we now believe that (γ_2, m) is not verified regardless.

The guiding principle is that if we visit γ_1 infinitely often and R_j is not m_j -verified there, then it is here that we will have built A. On the other hand, if we visit γ_1 infinitely often then if (2.1) does not pertain to R_j in the set of stages we visit (extensions of) γ_1 , then we will get to \hat{m} -verify γ_1 for j at some stage we \hat{m} -verify γ_1 for some $\hat{m} > m$ (for e).

That is, for each *j*-state τ we will have a "preferred place" to build A, denoted by $p(\tau, s)$. The reader should remember that the most desirable state of all is an "*f*" outcome since then R_j 's action is finite. Roughly we will have $p(\tau, s)$ as the rightmost appropriate place for the state τ .

For a single R_e above, suppose we had the situation in Figure 4, having just *e*-verified γ_1 . Then unless some N_k kills γ , it is clear that we'd desire A to extend μ_1 , if the high *e*-state (∞) pertains, (i.e., $p(\infty, s) = \mu_1$) and until γ_2 is m_e -verified, $p(f, s) = \gamma_2$. Subsequently p(f, s) moves to $\gamma_2, \gamma_3, \gamma_4, \gamma_5$ as they become m_e -verified, and then back to γ_1 .

For the situation with R_e and R_j above things are a little more complex. Again looking at Figure 4, suppose we have m_j -verified and m_e -verified γ_1 and have moved to γ_2 . Let δ be the high *j*-state, and ρ the state with $\rho(e) = 1$ verified and $\rho(j) = 0$.

Suppose that at some stage $s_1 > s$ we get to m_e -verify γ_2 yet we do not m_j -verify. The observation is that should ρ be the correct outcome, then infinitely often we will visit γ_2 unless it is cancelled by N_k -action (as $\rho(e) = 1$). If, during the stages we visit γ_2 we never get to *m*-verify it for *j*, then we would like to build *A* in the zone above γ_2 . Thus it is γ_2 that we set $p(\rho, s_j)$ equal to. Note that it is consistent with guess ρ to not allow any new splittings of *e*-state ρ or δ anywhere else until such time as ρ proves wrong. Note the slight priority inversion : although μ_1 has guess δ we won't allow new splittings extending μ_1 to occur until such time as *all* of $\gamma_2, \ldots, \gamma_5$ have been *m*-verified. Hence we do not always build in the place where we can force the high *e*-state, as the lower one is *more desirable*.

The effect of the above is that if ρ is the correct outcome then as in the example of Figure 4 we might build A in the zone above γ_2 although γ_2 is not the rightmost path visited infinitely often (for instance γ_1 might be visited infinitely often, but no splittings might come from such visits).

On the other hand, if δ is the correct outcome, then all of $\gamma_1, \ldots, \gamma_5$ will be *m*-verified for both *e*- and *j*-. At such a stage *t* we would be allowed to generate a splitting with the high *j*-state δ above $\mu_1 = (\delta, s)$ and we would then generate a longer $p(\delta, s)$.

In this way it can be seen that the strategies all cohere.

The above describes the strategies for, and the interactions of, the requirements. The remaining details are to implement the full construction using a Π_2 tree of strategies to coordinate the depth-*n* strategies. We now give some formal details although we expect that the readers would prefer to supply them for themselves as the procedure is now well understood. We only sketch the verification as the key ideas are encapsulated in the preceding discussion.

As usual, we use the phrase "initialize". In our context, this means cancel all assignments of followers (by N_j 's), define them as unsatisfied, etc. (more on this later). We will build C, a Π_1^0 class in $2^{<\omega}$ with 0 < 1, ordered lexicographically. The priority tree for the strategies is $T = \{f, \infty\}^{<\omega}$ with $\infty <_L f$. We will use δ, τ, ρ for guesses (i.e., members of T) and reserve $\sigma, \mu, \gamma, \lambda, \pi$ for members of $2^{<\omega}$ (i.e., potential members of C). If $\ln(\tau) = 2j$ we will assign N_j to τ for each such τ . In this case we write N_{τ} for the version of N_j assigned to guess τ . Similarly, if $\ln(\tau) = 2j + 1$ we assign R_j to τ and write R_{τ} for such a version of R_j . We will need an m (-verification) parameter, as described above, that we denote by $m(\gamma, \tau, s)$. Other parameters are:

- $\gamma(\tau, s)$: The string awaiting τ -verification of s.
- x(t,s): A follower of N_{τ} : Note $x(\tau,s) \in \omega$.
- $\gamma\langle x(\tau,s)\rangle$: The string in C_s associated with $x(\tau,s)$. It will be the case that $\gamma(x(\tau,s)) = 1$, and for some μ , $\gamma\langle x(\tau,s)\rangle = \mu^{-1}$. Also, both μ^{-1} and μ^{-0} are initial segments of nonterminal members of C_s .
 - $\delta(s, t)$: A string in T that appears correct at substage t of stage s (we write this as stage (s, t)).
 - $\sigma(s, t)$: A string in C_s that appears to be an initial segment of the rank one point of [C] at stage (s, t).
 - P_t : The value of a parameter P at the end of substage t.

Important remark When we initialize an N_{τ} then we will always do the following: If N_{τ} has a follower $x = x(\tau, s)$ with associated string $\gamma = \gamma \langle x(\tau, s) \rangle = \mu^{1}$, we will declare as terminal all strings extending γ . When we initialize R_{τ} at stage s we merely reset m to be s and reset $\gamma(\tau, s)$ to be undefined.

The construction

Stage 0Let $C_0 = \lambda$.Stage 1Assign 0 to follow N_0 . Declare both 0 and 1 to be (currently)
nonterminal and set $C_1 = \{0,1\}$. Let $\sigma(1,1) = 1$, and $\delta(1,1) = f$.Stage s + 1 ($s \ge 1$).

Step 1. Perform the following substages $t \le 2s$.

Substage t = 0 (i.e., stage (s + 1, 0)). (Attend N_0). If $0 \in W_{0,s+1}$ and N_0 not yet satisfied set $\sigma(s + 1), 0$) = 0 and declare)terminal all $\mu \in 2^{<m}$ with $\mu \supset 1$ and $\mu \in C_s$. Initialize all N_{τ} and R_{τ} for $\tau \not\leq_L \infty$ and set $\delta(s + 1, s + 1) = \infty$. Then set $\sigma(s + 1, s)$ to be the rightmost nonterminal path in C_{s+1}^0 . (Remark: (T1) It will be the case that $\sigma(s + 1, s) \supset 0$ and it will be the case that after this all versions of R_j and N_k ($k \ge 1$) will now be in the initial states.) Declare N_0 as satisfied. Go to Step 2.

If either N_0 is satisfied or $0 \notin W_{0,s}$, set $\delta(s + 1, 0) = f$ and $\sigma(s + 1, 0) = 1$. (*Remark*: (T2) It will be the case that both 0 and 1 have nonterminal extensions in C_{s+1}^0 .)

Substage t = 2e (e > 0) (Attend N_e) We can assume we are given $\sigma(s + 1, t - 1)$ and $\delta = \delta(s + 1, t - 1)$. Adopt the first case to pertain.

Case 1. N_e is satisfied.

Action. Set $\delta(s+1, t) = \delta(s+1, t-1)^{\infty}$ and $\sigma(s+1, t) = \sigma(s+1, t-1)$. Go to stage (s+1, t+1).

Case 2. N_e has a follower $x(\tau, s)$ with guess $\tau \leq_L \delta$, and $x(\tau, s) \in W_{e,s}$, and N_e as yet unsatisfied.

Action. Declare as terminal all strings $\pi \supset \mu^{1}$ where $\mu^{1} = \gamma \langle x(\tau, s) \rangle$. (*Remark*: (T3) It will be the case that for all strings σ nonterminal in C_{s+1}^{t} , $\sigma(x(\tau, s)) = 0$, so since $x(\tau, s) \in W_e$, we have won N_e .) Declare all versions of N_e as satisfied. Initialize all R_j for $j \ge e$. Set $\delta(s+1,t) = \delta(s+1,s+1) = \tau$. Initialize all $N_{\hat{\tau}}$ and $R_{\hat{\tau}}$ for $\hat{\tau} \ne_L \tau$. For each $\rho \le_L \tau$, if $p(\rho, s)^t$ is now terminated, reset $p(\rho, s)^{t+1}$ to the rightmost extension of length s of μ^{0} . Go to Step 2.

Case 3. N_e has a follower with guess δ but neither Case 1 nor Case 2 pertains.

Action. Set $\delta(s+1, t) = \delta(s+1, t-1)^f$ and $\sigma(s+1, f) = \sigma(s+1, t-1)$. Go to stage (s+1, t+1). (*Remark*: (T4) As N_e has a follower it follows that $t \neq s$.)

Case 4. N_e has no follower with guess δ and N_e is not satisfied and either $\sigma(s+1, t-1) \subseteq p(\delta, s)$ or $p(\delta, s) \subseteq \sigma(s+1, t-1)$.

Action. Let ρ be the rightmost nonterminal string in C_{s+1}^{t-1} with $\rho \supset \sigma(s+1, t-1)$. Declare ρ^{0} and ρ^{1} to be in C_{s+1}^{t} and s+1 (= lh(δ^{0}) to be a fol-

Π_1^0 CLASSES

lower of N_{δ} . Thus $x(\delta, s + 1) = s + 1$. Declare ρ to have guess δ . Let $\delta(s + 1, s + 1) = \delta$ and initialize all N_{τ} and R_{τ} for $\tau \neq_L \delta$. Go to Step 2.

Case 5. Otherwise. Set $\delta(s + 1, t) = \delta(s + 1, t - 1)^{f}$. If t = s go to step 2. Otherwise go to stage (s + 1, t + 1).

Substage t = 2e + 1 (Attend R_e). We will be given $\sigma = \sigma(s + 1, t - 1)$ and $\delta = \delta(s + 1, t - 1)$. Adopt the first case to pertain.

Case 1. Either there have been no δ -stages $\leq s$ or δ has been initialized since the last δ -stage.

Action. Declare (s + 1, t) to be a δ^{f} -stage. Initialize all N_{ρ} for $\rho \not\leq_{L} \delta$ and R_{τ} with both $\delta^{f} \leq_{L} \tau$ and $\delta^{f} \not\subseteq \tau$. If $\gamma \langle \delta, s + 1 \rangle^{t-1}$ is defined, set $\gamma \langle \delta, s + 1 \rangle^{t} = \gamma \langle \delta, s + 1 \rangle^{t-1}$. Otherwise find the rightmost string σ of shortest length such that:

- (i) both σ^0 and σ^1 have nonterminal extensions,
- (ii) if there is a string $\hat{\sigma}$ with guess δ^- , where $\delta = \delta^- \wedge a$, then $\sigma \supset \hat{\sigma}$,
- (iii) same as (ii) but with δ in place of δ^{-} , and
- (iv) for all $\hat{\sigma} \supseteq \sigma$ if $\hat{\sigma}$ has guess τ then $\delta^{\Lambda} f \leq_L \tau$.

Declare σ to have guess δ^{f} and let $p(\delta^{f}, s) = \sigma^{0}$. Let $\gamma(\delta, s + 1) = \sigma = \sigma(s + 1, t)$.

In either case, if t = 2s go to Step 2. Otherwise, go to substage t + 1.

Case 2. Not Case 1 (*Claim:* (T5) This implies $\gamma = \gamma \langle s, s+1 \rangle^{t-1}$ is defined), and either all extensions of γ have been terminated or there is an extension $\hat{\gamma}$ of γ such that: (i) $\hat{\gamma}$ has a nonterminal extension, (ii) $\Phi_{e,s}(\hat{\gamma}, j) \downarrow$ for all $j \le m(\delta, s+1)^{t-1}$, (iii) either $\delta(s+1, t-1) \subseteq \hat{\gamma}$ or $\hat{\gamma} \subseteq \sigma(s+1, t-1)$, and (iv) $\hat{\gamma}$ has guess δ^- .

Action. Set $\sigma(s + 1, t) = \hat{\gamma}$ if $\sigma(s + 1, t - 1) \subseteq \hat{\gamma}$ and $\sigma(s + 1, t) = \sigma(s + 1, t - 1)$ otherwise. Declare γ as $m(\delta, s + 1)$ -verified and if $\hat{\gamma}$ exists, declare $\hat{\gamma}$ to have guess $\delta^{\wedge}\infty$. Find the rightmost extension $\gamma = \gamma^{-1}$ of $\sigma(s + 1, t)$ of length s and declare it to have guess $\delta^{\wedge}\infty$ too. If $\sigma(s + 1, t) \supseteq p(\sigma^{\wedge}\infty, s)^t$ or $p(\sigma^{\wedge}\infty, s)^t$ is not defined, let γ^{-} be $p(\sigma^{\wedge}\infty, s)^{t+1}$, and declare both γ^{-1} 0 and γ^{-1} to have guess $\delta^{\wedge}\infty$. Terminate all other extensions of $\sigma(s + 1, t)$ with guesses weaker than $\delta^{\wedge}\infty$. Now we choose $\gamma(\delta, s + 2)^0$ as follows: If, for any initial segment $\tau \subseteq \delta$, we have already reset $\gamma(\tau, s + 2)^0$ to be different from $\gamma(\tau, s + 1)$, then for the longest such τ set $\gamma(\delta, s + 2)^0 = \gamma(\tau, s + 2)^0$. Otherwise, if all strings with nonterminal extensions of guess $\subseteq \delta$ already have *m*-verified initial segments, choose $\gamma(\delta, s + 2)^0$ as σ chosen as in Case 1 with the additional proviso that σ is not yet *m*-verified.

In any case, let $\delta(s+1, t) = \delta^{\wedge} \infty$ and go to stage (s+1, t+1).

Case 3. Otherwise.

Action. Let $\delta(s + 1, t) = \delta^{f}$. If there is a $\tau^{\uparrow} \infty \subseteq \delta$ with $\ln(\tau) = 2t + 1$ for some *t*, then for the longest such τ , it will be the case that $\gamma \langle \tau, s + 2 \rangle^{0} = \gamma$ has been reset. Set $\gamma \langle \delta, s + 2 \rangle^{0} = \gamma$. Otherwise $\gamma \langle \delta, s + 1 \rangle = \gamma \langle \delta, s + 1 \rangle^{t-1}$. In any case $\sigma \langle s + 1, t \rangle = \sigma (s + 1, t - 1)$. If t = 2s go to Step 2, otherwise go to substage t + 1.

Step 2. For all nonterminal paths σ in C_{s+1}^i of length s with (currently) no extensions of length s + 1, put σ^0 in C_{s+1} .

Verification (Sketch). It is relatively easy to verify by induction on the construction that all the claims (T1)-(T5) made in the construction hold, and that N_e requires attention at most once as there is at most one string σ in C_s with $\sigma(x) =$ 1 if x follows N_e (and this is made terminal if $x \in W_{e,s}$). Let TP denote the true path of the strategy tree. One can see by induction that if $\delta^{\uparrow} \infty \subset TP$ and $\ln(\delta) = 2e$ then $W_{e,s}(x) = 1$ for some x with p(x) = 0 for all paths x on [C]. Now if $\delta^{\uparrow} \subset TP$ then we need to show that $x = \lim_s x(\delta, s)$ exists and $\gamma =$ $\lim_s \gamma(\delta, s)$ exists with $\gamma = \mu^{\uparrow}1$, and $\ln(\gamma) = x$. This is a standard induction.

Then one argues that γ is the preferred place to build. Of course the key observation needed is that the result of the above is [C] with only one rank one point. To see this, suppose we have that σ is on infinitely many paths in [C] but if $lh(\tau) \leq lh(\sigma)$ and $\tau \not\subseteq \sigma$ then τ has only finitely many extensions in [C]. We now show one of σ^0 or σ^1 has these same properties. Now if both σ^0 or σ^1 are on C_s at some s, then they are associated with some N_j . If ever one of σ^0 or σ^1 is terminated then we are done, so without loss of generality we can suppose both have extensions on [C].

By our construction which of $\sigma_1 = \sigma^0$ or $\sigma_2 = \sigma^1$ can have the rank one extension depends only on N_j and higher priority R_e . If at some stage some highest priority R_e gets stuck on some (γ, m_e) extending one of σ_1 or σ_2 (say σ_1) then we will stop forming permanent splittings of σ_2 . It may very well be that the construction is performed above σ_2 infinitely often, but this will only be to verify the appropriate R_e , for e' < e. The only *splittings* that survive will be those above σ_1 . Therefore if s is the stage where we got stuck on (γ, m_e) , there can be at most s paths in [C] extending σ_2 , since the only splittings can be those *already present* at stage s. Finally if no R_e of higher priority gets stuck on some (γ, m_e) extending one of σ_1 or σ_2 , then N_j will have the correct guess. As neither σ_1 or σ_2 gets terminated, it follows that N_j will ask A to extend σ_2 . Thus σ_1 will get only one extension in [C], as all the potential others get cancelled. Hence σ^0 or σ^1 cannot both be extended to rank one or more points.

By Jockusch [5], we know that the degrees consisting of a single *tt*-degree are exactly the hyperimmune-free degrees. As we noted earlier, Cenzer and Smith proved that all hyperimmune degrees contain unranked points. This suggests the conjecture that the degrees containing only ranked points are exactly the hyperimmune-free degrees. Unfortunately, this conjecture is easily destroyed. These are only countably many ranked points, and yet there are uncountably many hyperimmune-free degrees. In fact there are hyperimmune-free degrees containing no ranked points below 0'' as we now see. To see this, in view of Jockusch's Theorem [5], it suffices to construct a hyperimmune-free unranked point. To do this one meets the previous R_e requirements and also

 P_e : if A is a member of $[T_e]$ then $[T_e]$ is uncountable.

Here T_e denotes the *e*-th Π_1^0 class. Now we meet R_e by the standard forcing with perfect closed sets (à la Miller and Martin [8]) and the P_e by diagonalization. We know how to meet R_e in this setting: given a perfect tree Q_g find a perfect sub-

Π_1^0 CLASSES

tree Q_{g+1} where either $\Phi_e(P; m) \downarrow$ for all $P \in [Q_{g+1}]$ or $(\exists m)(\Phi_e(P; m)\uparrow)$ for all $P \in [Q_{g+1}]$. To meet P_e we are given Q_n a perfect tree and we ask if every node on Q_n has an extension on $[T_e]$ for if $[Q_n] \subseteq [T_e]$. If the answer is yes, we need do nothing as T_e is uncountable. If the answer is no, we take a string σ on Q such that no extension of σ lies in T_e . We then let Q_{n+1} be the perfect subtree of Q_n above σ . Thus we have

Theorem There is a hyperimmune free nonrecursive unranked point of degree $\leq 0''$.

It would be very interesting to find some sort of characterization of the degrees containing unranked points. But this seems hard. The basic machinery of the construction of our main result is quite versatile. The basic idea attempting to force divergence can be used for other Π_1^0 class constructions. For instance the method can be extended to show that for $n \in \omega - \{0\}$ there is a hyperimmune free set of rank n and hence a degree all of whose members have rank n. It seems conceivable that this will extend to all $\alpha < \omega_1^{ck}$. Variations on the method have been used by the author to construct a perfect Π_1^0 class, all of whose members are recursive or of minimal degree. An open question here is whether there is a perfect Π_1^0 class, all of whose members have either minimal degree or have r.e. nonrecursive degree. Finally, the construction used for the main result is a full approximation one. It would be nice to have one where the set was obtained by direct forcing with Π_1^0 classes.

Acknowledgments – The author was partially supported by a US/NZ binational grant and the Mathematical Sciences Research Institute. He wishes to thank Doug Cenzer and Carl Jockusch for useful conversions on Π_1^0 classes and ranked points, and he particularly thanks Carl for a suggestion that simplified the verification of the main theorem.

REFERENCES

- [1] Cenzer, D., P. Clote, R. Smith, R. Soare and S. Wainer, "Members of countable Π_1^0 classes," Annals of Pure and Applied Logic, vol. 31 (1986), pp. 145–163.
- [2] Cenzer, D., R. Downey, C. Jockusch, and R. Shore, "Countable thin Π_1^0 classes," in preparation.
- [3] Cenzer, D. and R. Smith, "The ranked points of a Π_1^0 set, *The Journal of Symbolic Logic*, vol. 54 (1989), pp. 975–991.
- [4] Clote, P., "On recursive trees with a unique infinite branch," *Proceedings of the American Mathematical Society*, vol. 93 (1985), pp. 335–342.
- [5] Jockusch, C., "Relationships between reducibilities," *Transactions of the Ameri*can Mathematical Society, vol. 142 (1969), pp. 229–237.
- [6] Jockusch, C. and R. Soare, "Π⁰₁ classes and degrees of theories," *Transactions of the American Mathematical Society*, vol. 173 (1972), pp. 33-56.
- [7] Jockusch, C. and R. Soare, "Degrees of members of Π_1^0 classes," *Pacific Journal of Mathematics*, vol. 40 (1972), pp. 605–616.

- [8] Miller, W. and D. Martin, "Degrees of hyperimmune sets," Zeitschrift für Mathmatische Logik und Grundlagen der Mathematik, vol. 14 (1968), pp. 159-166.
- [9] Odifreddi, P., Classical Recursion Theory, North Holland, Amsterdam, 1989.
- [10] Soare, R., Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, 1987.

Mathematics Department Victoria University of Wellington P.O. Box 600 Wellington, New Zealand

512