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ABSTRACT. We prove that if I is a countable ideal in the Turing degrees, then
the field R of real numbers in I is computable from exactly the degrees that
list the functions (i.e., elements of w*) in I. This implies, for example, that
the degree spectrum of the field of computable real numbers consists exactly
of the high degrees. We also prove that if I is a countable Scott ideal, then it
is strictly easier to list the sets (i.e., elements of 2¢) in I than it is to list the
functions in I. This allows us to answer a question of Knight, Montalban, and
Schweber. They introduced generic Muchnik reducibility to extend the idea
of Muchnik reducibility between countable structures to arbitrary structures.
They asked if R is generically Muchnik reducible to the structure that consists
of all sets of natural numbers. Our result for Scott ideals shows that this is
not the case.

We finish by considering generic Muchnik reducibility of a countable struc-
ture A to an arbitrary structure B. We relate this to a couple of conditions
asserting the ubiquity of countable elementary substructures of B that are
Muchnik above A; we prove that one of these conditions is strictly stronger
and the other is strictly weaker than generic Muchnik reducibility.

1. INTRODUCTION

If A and B are countable structures, then A is Muchnik reducible to B (written
A <, B) if every w-copy of B computes an w-copy of A.' This can be interpreted
as saying that B is intrinsically as complicated as A is. Knight, Montalban, and
Schweber [KMS] extended this reducibility to arbitrary structures: if A and B are
(possibly uncountable) structures, then A is generically Muchnik reducible to B
(written A <¥ B) if in some forcing extension of the universe in which A and B
are countable, A is Muchnik reducible to B. Using Shoenfield absoluteness, they
showed that generic Muchnik reducibility is robust in the sense that if A <* B,
then A <, B in every forcing extension that makes A and B countable.

Knight, Montalban and Schweber considered two structures that code all reals.
The structure R is the ordered field of real numbers. The structure S codes the
power set of w: its universe is P(w), with predicates P, (x) that hold if and only if
n € x.> They showed that S is generically Muchnik reducible to R, and asked if the
structures are generic Muchink equivalent. We show that they are not.® Perhaps
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LThis is a special case of Muchnik reducibility [Muc63]; it might be more precise to say that
the problem of presenting the structure .4 is Muchnik reducible to the problem of presenting B.
2Knight, Montalban and Schweber [KMS] called this structure W. We call it S for “sets”.

3 After obtaining our result we learned that Igusa and Knight [IK] have independently proved
the same result, using completely different means.
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surprisingly, what makes R more complicated that S has little to do with the field
structure. Indeed, let F be the structure with universe w“ and predicates P,, for
every finite string o € w=%, such that P,(f) holds if and only if ¢ < f. It is not
hard to see that F <* R, but in fact, we show that R =* F. In other words, it is
no harder to present the field of reals than it is to present the structure consisting
of all functions on w. On the other hand, it is strictly easier to present the structure
consisting of all subsets of w.

These results follow from analogous results where the real numbers, subsets of
w, and functions on w are restricted to those in a countable Turing ideal, as is the
case for the ground model reals, subsets, and functions in the forcing extension.
Let I be an ideal in the Turing degrees. We say that a subset of w is in [ if its
Turing degree is in I, and similarly for functions on w and real numbers. Let S
be the structure consisting of the sets in I along with the predicates P, defined as
above. In the same way, let F be the structure consisting of the functions in I and
the predicates P,. Let R; denote the field of reals in I.

Our main technical result characterises the degrees that compute a presentation
of Rr. A listing of the functions in I is a sequence {fy), _  consisting of exactly the
functions in I, possibly with repetition. By Lemma 2.1, such a degree computes an
injective listing of the functions in I, i.e., one with no repetitions. From an injective
listing of the sets in I, it is easy to compute a copy of F;. Conversely, from a copy
of F, we can obviously compute an (injective) listing of the functions in F;. This
proves the equivalence of (2) and (3) below:

Theorem 1.1. Let I be a countable Turing ideal. The following are equivalent for
a Turing degree d:

(1) d computes a copy of Ry,
(2) d computes a copy of Fr,
(3) d computes a listing of the functions in I.

We prove the equivalence of (1) with the other properties in Section 4. Note
that the equivalence of (1) and (2) can be restated as saying that if I is a countable
Turing ideal, then R; =,, ;. Now consider a forcing extension that makes (QNU)V
(and hence RY and F") countable. In this extension, the Turing degrees from
the ground model form a countable Turing ideal I, and RY = R; =, F; = F'.
Therefore:

Corollary 1.2. R =% F.

The proof of (1)==(3) in Theorem 1.1 is quite easy, and in fact, in Proposi-
tion 4.1, we will show that any w-copy of the ordered group (Ry, +, <) computes a
listing of the functions in I. Therefore, (Ry, +, <) =, (R, +, x) = Ry. This gives
us a result that Igusa and Knight [IK] obtained independently using model-theoretic
tools:

Corollary 1.3. R =% (R, +,<).*
Our third application of Theorem 1.1 takes place in the countable world. It is

straightforward to show that a Turing degree computes a listing of the computable

4Without the order, the group (R, +) is much simpler, and in fact, it is generic Muchnik equiv-
alent to the computable structures; in any forcing extension that makes the old reals countable,
the group is isomorphic to the infinite-dimensional vector space over the field of rational numbers.
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functions exactly if it is high. Applying Theorem 1.1 to the Turing ideal I = {0},
we get a natural characterisation of the degree spectrum of the field of computable
real numbers.

Corollary 1.4. A Turing degree computes a copy of Ryoy, the field of computable
real numbers, if and only if it is high.

Now let us consider the separation between & and R. Let I be a countable
Turing ideal. As you would expect from our discussion of Fj, the degrees that
compute a copy of S; are exactly the degrees that compute a listing of the sets
in I, i.e., a sequence {(z,), _ of subsets of w consisting of exactly those in I (see
Corollary 2.2). Jockusch [Joc72] showed that a degree computes a listing of the
computable sets if and only if it is high. In other words, it is exactly as hard to
list the computable sets as it is to list the computable functions. This implies that
Sio} =w Fo}(=w Ryoy). Jockush’s argument is tricky and strongly relies on the
computable listing of partial computable functions. That his complicated argument
is necessary is witnessed by the failure of the analogous results for other ideals.

Theorem 1.5. Let I be a countable Scott ideal. Then there is a degree that com-
putes a listing of the sets in I, but not of the functions in I.

This is proved in Section 3. It is now straightforward to separate S and R.
Corollary 1.6. S <¥ R.

Proof. Knight, Montalban and Schweber [KMS] showed that & <¥ R.° We must
prove that R £* S. We work in a forcing extension in which (2%0)V is countable.
Let I be the countable Turing ideal consisting of the Turing degrees from the ground
model. It is a jump ideal and so certainly a Scott ideal. By Theorem 1.5, let d be
a degree that computes a listing of the sets in I, but does not compute a listing of
the functions in I. By Corollary 2.2 below, d computes a copy of S; = SV. By
(3) = (1) of Theorem 1.1—which is straightforward; see Proposition 4.1—d does
not compute a copy of Ry = RY. [

The final section of the paper is not directly related to the work that we have dis-
cussed to far. In that section, we ask what the countable elementary substructures
of a (possibly uncountable) structure B tell us about its generic Muchnik degree,
and in particular, which countable structures it lies above. Knight, Montalban and
Schweber showed that a countable structure is generically Muchink reducible to
the linear ordering w; if and only if it is Muchnik reducible to a countable orderi-
nal. The following theorem can be seen as a generalization from w; to an arbitrary
structure.

Theorem 1.7. Let A be countable and assume that B has countable signature.
Consider the following properties:

(1) There is a countable set D < B such that for every countable C < B such
that D < C, we have A <,, C.
(2) A<E B,

5We have recently been advised that this result was independently proved by Korovina and
Kudinov [KK].

SFor completeness, note that this follows easily from the facts above and the observation that a
listing of the functions in I can effectively be transformed into a listing of the sets in I by changing
all nonzero function values to 1.
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(3) For every countable set D < B, there is a countable C < B such that D < C
and A <, C.

Then (1) = (2) = (3), and neither implication reverses.

2. LISTINGS

In this section, we collect some basic facts about listing sets and functions. Fix
a countable ideal I. Recall that a listing of the functions in [ is injective if it has
no repetitions. The following is well-known.

Lemma 2.1. Every listing of the functions in I computes an injective listing of the
functions in I.

Sketch of proof. This is a finite injury construction. Let {(f,) list the functions
in I, possibly with repetitions. We compute an injective listing {g,,) of the same
collection of functions. At any given stage in the construction of (g, >, only finitely
many values of finitely many members of the listing will have been determined.
Injectivity will be a global requirement. In addition, we have requirements of the
form
R,: (3m) gm = fn-

To meet Ry, we let gg copy fo and restrain lower priority strategies from affecting go.
For n > 0, the strategy for R, is initialized with a list go, ..., g, of members of the
listing {g,, ) that are restrained by higher priority requirements. The strategy waits
for a stage at which it sees that f,, is different from how each of gy, ..., g, have been
defined. Say that such a stage is found. The strategy for R,, acts as follows: Let m
be large enough that g, is currently undefined on all values. The strategy declares
that g,, will copy f,. It retrains go,..., g, and reinitializes all lower priority
requirements (ensuring that they will respect this restraint and injuring any that
have already acted). Finally, the strategy declares each of g,41,...,gm-1 to be
distinct functions with finite support (hence in I) different from each of go, ..., g,
and gy, . O

As we observed, this lemma implies that the Turing degrees that compute a
listing of the functions in I are the same as the degrees that compute a copy of
Fr. In other words, we have proved the equivalence of (2) and (3) in Theorem 1.1.
The analogous facts holds for sets. As in Lemma 2.1, a listing of the sets in [
computes an injective listing of the sets in /. From an injective listing of these sets,
we can compute a copy of Sy, and conversely, from a copy of S; we can compute
an injective listing of the sets in 1.

Corollary 2.2. A degree computes a copy of Sy if and only if it computes a listing
of the sets in I.

An I-dominating function is a function that dominates all the functions in I.
Unlike the situation for high degrees, computing an I-dominating function does
not imply being able to list the sets or functions in I. Indeed, it does not even
imply being able to compute all the elements of I. To see this, let I be an ideal of
hyperimmune-free degrees (containing some noncomputable element), and let f be
a AY function dominating all computable functions. However:

Lemma 2.3. A Turing degree computes a listing of the functions in I if and only
if it computes both a listing of the sets in I, and an I-dominating function.
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Proof. In the interesting direction, let {x, ) be a listing of the sets in I, and let f
be an I-dominating function. To each set x,, natural number m, and ¢ € W™,
we assign a function in our new list based on the guess that x, is the graph of a
function ¢ such that g |,,= o and g is majorised by f from input m onwards. As
long as our guess is correct, we can compute g from x,; if we observe that our guess
was wrong, we give up and start copying some fixed function in I. U

Lemma 2.4. The following are equivalent for a Turing degree d:

(1) d computes a listing of the functions in I.
(2) d computes a listing of the infinite sets in I.
(3) d computes a listing of the infinite, coinfinite sets in I.

Proof. (3)=>(2) is immediate. For (2) = (1) we use Lemma 2.3. Given a listing
of the infinite sets in I, we obviously obtain a listing of the sets in I. By combining
principal functions of the infinite sets in I we obtain an I-dominating function.
For (1) = (3), asumme that we have a listing of all sets in I and an I-dominating
function f. For each set x in I and a natural number m, we guess that x is infinite
and coinfinite, and that for all k > m, z [ ;) both contains and excludes at least k
numbers. We copy z as long as our guess is valid. If it is shown to be false, we stop
copying x and start copying the set of even numbers. [

Finally, we need to mention listing the reals in R;. Computably, a real number
is coded by a Cauchy name, or equivalently a shrinking sequence of closed binary
rational intervals containing the real. A list of reals is simply a list of Cauchy
names. From a binary expansion of a real we can easily obtain a Cauchy name (but
not vice-versa, unless we know that the real is not a binary rational). Hence any
listing of the sets in I computes a listing of R;. The problem with computing a copy
of the field R; is that we cannot, in finite time, determine whether one number is
the sum of two other given numbers; we cannot make that deceleration after seeing
only approximations of the given real numbers.

3. A SEPARATION

We are ready to prove that it is ofter strictly easier to list the sets in a countable
ideal I than it is to list the functions in I. In particular, this is true if I is a
countable Scott ideal. Recall that a Turing ideal I is a Scott ideal if for every
degree a € I, there is a b € I such that b has PA degree relative to a.

Proposition 3.1. Suppose that S is a countable Scott ideal. Then there is a listing
of the sets in S that does not compute an S-dominating function.

Proof. We construct the required listing using a notion of forcing Pg. The forcing
conditions are finite sequences of sets in S. Each condition is intended to be an
approximation of a listing of the sets in S; a condition ¢ extends a condition p if it
extends it as a sequence. If G < Pg is a filter, then | G is a sequence of sets in S
if G is sufficiently generic, then |G lists all of the sets in S. We abuse notation
and write G for the sequence | JG.

Let ¥: (2¥)¥ — w* be a Turing functional. Let p € Pg and suppose that p
forces that ¥(G) is total. For n > 0, let U, be the set of sequences ¢ € (2¥)" for
which there is some sequence r € (2)<“ that extends the sequence p°q and such
that U(r,n)|. The set U, is a 9(p) subset of (2*)" and we claim that in fact
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U, = (2¥)™; otherwise, since I is a Scott ideal, the complement of U,, contains a
sequence ¢ of sets in S. Then p°q € Pg is a condition forcing ¥(G,n)t.

Thus, by the compactness of (2¢)", for all n > 0 we can find f(n) such that
for all ¢ € (2¥)™ there is some sequence r extending p°q such that ¥(r,n)|< f(n).
Since we only need finitely many bits from such an extension 7, such a function f
can be computed from p, and so we can find such a function in S. We claim that p
forces that U(G) does not dominate f. For let q be any proper extension of p and
let n = |q| — |p|- There is some extension r of q such that ¥(r,n)|< f(n). Since
finitely many bits of r suffice, and the sets in S are closed under changing finitely
many bits, we may take r to be a condition in Pg. (I

Proposition 3.1 together with Lemma 2.3 yields a proof of Theorem 1.5.

4. PRESENTATIONS OF FIELDS

Let I be a countable ideal.

Proposition 4.1. Any copy of the ordered group (R, +,<) computes a listing of
the functions in I. Hence the same is true for any copy of Ry.

Proof. Let A = (w,+4,<4) be a copy of (Ry,+,<) and let f: Ry — A be an
isomorphism. Note that the restriction of f to the rationals is A-computable.
Hence if n € A is the image of a dyadic rational number, then we will eventually
know its exact value. On the other hand, if f~!(n) is not a dyadic rational, then
we can compute the binary expansion of n uniformly in A. With this in mind, we
can list the infinite sets in I using A. For each n € A, we make the n'" set in
the listing be the infinite binary expansion of f~!(n). We begin computing this
expansion under the assumption that f~!(n) is not dyadic rational. This process
will be partial if f=!(n) is a dyadic rational, but in that case we will eventually
know the exact value of f~1(n), so we can let the n'® set in our listing be the
cofinite binary expansion of f~!(n). This produces an A-computable (injective)
listing of all infinite sets in I.

To prove that any copy of copy A = (w, +4, x4) of Ry computes a listing of the
functions in I, note that the natural order is computable on A. This is because
n <4 m if and only if there is an x # 04 such that £ x4 x +4 n = m. This is
$9(A), so assuming that m # n, we can A-computably determine whether n <4 m
or m <4 n with a search. [l

We now work toward showing that a degree that computes a listing of the func-
tions in I can compute a copy of the field Ry = (Ry, 4+, x). We use Tarski’s theorem
on the decidability of the theory of real closed fields.

Ezample 4.2. We illustrate the technique by showing the well-known fact that there
is a computable copy of the field of algebraic real numbers. The elements of this
copy are equivalence classes of names for algebraic reals. A name for an algebraic
real r is a pair (f,I) where f € Q[z], I is a rational open interval (an open interval
with rational endpoints), and r is the unique root of f in the interval I. Two
names are equivalent if they are the names of the same algebraic real. Tarski’s
theorem shows that the set of names for algebraic numbers is computable, and that
equivalence of names is computable as well. Further, it shows that the graphs of
addition and multiplication on names are computable.
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In our proof, we will need to generalise this construction to work over alge-
braically independent tuples. For a sequence 7 of real numbers (finite or infinite),
let R be the field of reals algebraic over 7. We will build, uniformly in an al-
gebraically independent tuple 7, an 7-computable copy F(7) of Ryz. Generalising
Example 4.2, we will work with 7-names. Let 7 be a tuple of real numbers.

e An 7-name is a pair (f, I) such that I is a rational open interval, f € Q[g, x],
and f(7,x) has a unique root in the interval I. This unique root is denoted
by a7 (f,I).
However, it will actually be useful to know that all of the elements of 7 that appear
in the name are necessary. So we define:

e A frugal F-name is an F-name (f(y1,...,yx, ), ) for a real a such that for
every i < k, if y; appears in f, then the polynomial

f(rla ey Ti—1, Yy Tt 1,y - - - 7Tkaa’)

is nonzero. (This implies that r; is an isolated root of that polynomial).

Lemma 4.3. Let 7 be a tuple of reals.

(1) Ewvery element of Ry has a frugal F-name.

(2) Suppose that 7 is algebraically independent. If (f(y1,...,yx,x),I) and
(9(y1,- .-, yk,x),J) are two frugal F-names for the same real, then the same
variables appear in f and g.

Proof. For (1), let (f,I) be an #-name for a. If (f,I) is not frugal, then
(f(ylv' e Yim1,0, i1, - aykvx)"[)

is also an 7-name for @ and mentions fewer variables.

For (2), we use Tarski’s quantifier elimination for the theory of ordered real-
closed fields. Let (f,I) and (g,J) be two frugal 7-names for a. Suppose that y;
appears in f but not in g. Then r; is an isolated point satisfying the formula “there
isan a in I n J that is a root of both f(r1,...,yi ..., 7k, x) and g(r1,...,7rg,x).”
By quantifier elimination, this shows that r; is algebraic in the rest of 7. O

Below we construt the computable operator F' that takes a finite tuple of reals
7 to the atomic diagram of the structure F(7). The universe of F(7) will be an
r-computable set; we treat the language as relational. The functional is partial: if
T is not algebraically independent, then it is possible that the computation of F(7)
will output only a finite structure and then be forever stuck, waiting to extend the
structure.

We will ensure that F' has various properties, including:

(1) If 7 is algebraically independent, then F'(7) is total and is isomorphic to Ry.
Suppose that ¥ < ¢ and that ¢ is algebraically independent. There is a unique
embedding of F(7) into F (). The domains of the F(7) are not required to be all
of w for notational convenience. This will allows us to ensure:

(2) If 7 < ¢ and ¢ is algebraically independent, then F(7) is a substructure of
This allows us to define F(7) for infinite algebraically independent sequences; for
these sequences too we get F(7) = Ry.

If 7 is algebraically independent and ¢ is a tuple of rationals, then of course
R7; = Rs. However F(7,q) may be partial. Nonetheless,
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(3) If 7 is algebraically independent and @ is a tuple of rationals, then there is
an embedding of F(7,q) into F'(F).

For s € w and 7 € R<¥, let F,(7) be the finite substructure of F(7) decided up
to stage s. We will ensure the following:

(4) If 7 is algebraically independent, t € R<“ and s € w, then there is a tuple g
(of length |t]) of rationals such that Fy(7,t) = F(7,q).

Construction of F': Again we use Tarski’s effective quantifier elimination for the
theory of real closed fields. Every (R, +, x)-definable subset of R* (known as a semi-
algebraic set) is a positive Boolean combination of sets definable by formulas of the
form p(Z) = 0 and p(Z) > 0, where p € Q[Z] is a polynomial. The interior of the set
is a computably enumerable open set, uniformly given the defining formula. The
key point is that if an algebraically independent tuple belongs to a semi-algebraic
set, it must belong to its interior. This shows that the type of an algebraically
independent tuple 7 is #-computable.

In general, for a formula ¢(7), we say that a tuple 7 € R* strongly satisfies ¢
if 7 is in the interior of the semi-algebraic set defined by . So an algebraically
independent tuple satisfies a formula if and only if it strongly satisfies it. We say
that 7 strongly decides a formula ¢ if it strongly satisfies ¢ or it strongly satisfies
its negation.

Above we have defined the notions of 7-names and frugal 7-names. Two 7-names
(f,I) and (g,J) are 7-equivalent if they name the same real number: az(f,I) =
ar(g,J); we write (f,I) ~7 (g,J). If (f,I), (9,J) and (h, K) are 7-names then we
write (f,I) +7 (g,J) ~ (h, K) if az(f,I) + ar(g,J) = az(h, K). We similarly treat
multiplication.

Each of these notions (including being an 7-name and a frugal 7-name) can
be translated into a statement about 7 in the language of ordered fields. For
example, (f,I) ~7 (g,J) if and only if there is a number a € I n J such that
f(r,a) = g(F,a) = 0. Thus we can make sense of strong satisfaction of these
notions.

We fix an w-ordering < on the set of pairs (f,I) where I is a rational interval
and f € Q[y1,y2,...,2]. We say that F(F) is decided up to k if: (a) for every
pair (f,I) < k, 7 strongly decides if (f,I) is a frugal 7-name; (b) for every pair
(f,1),(g,J) < k of frugal 7-names, 7 strongly decides if (f,I) ~7 (g,J); and (c)
for every triple (f,I),(g,J), (h, K) < k of frugal 7-names, 7 strongly decides if
(f, 1) +7 (g9,J) ~ (h,K) and if (f,I) x5 (g9,J) ~ (h,K). We let F(7) be the
structure whose domain is the collection of ~z-minimal frugal names (f, ) such
that F'(7) is decided up to (f,I), and define + and x; on the domain as expected.
We use an enumeration of the interiors of semi-algebraic sets and so can evaluate
strong satisfaction at any stage s. This tells us how to compute Fi(7).

Property (1) follows from the fact that satisfaction and strong satisfaction are
identical for algebraically independent tuples. For (2), we first note that every 7-
name is a t-name. Let (f, ) be a minimal frugal 7-name and let (g, J) be a frugal
t-name. If (g,J) ~¢ (f,I) then by Lemma 4.3(2), (g,J) is actually a frugal 7-name;
by minimality, (f, 1) < (g,J), so (f,I) € F(t) as well.

For (3), we of course map a name (f(7, Z, ), I) to the minimal 7#-name equivalent
to (f(y,q,x),I). For (4), we simply choose a tuple ¢ sufficiently close to ¢ so that
for every c.e. open subset W of RIl, g€ W, if and only if £ € W,. O
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We fix a Turing degree d that computes a listing of the functions in I; and a
d-computable listing {b,,) of the reals in I.

Lemma 4.4. Let 7 be an algebraically independent tuple of elements of Ry. Then d
computes a listing of Ri\Ry. This can be done uniformly in .

Proof. Let ¢: Rz — F(7) be the unique isomorphism. The restriction of 1 to the
rational numbers is 7-computable.

Let S be the collection of nonempty, finite subsets of w. Identifying sets with
their characteristic functions, we order S lexicographically. Note that S is dense
under this ordering. We let g: S — F(7) be an order-isomorphism, which by the
back-and-forth construction we can pick to be F-computable.

The map ¥~'og can be extended continuously and uniquely to an 7#-computable
injective function h: X — R, where X is the collection of nonempty, coinfinite
subsets of w. Since h is injective, if z € X\S (that is, if « is infinite and coinfinite),
then h(z) € R\Ry, i.e., h(x) is transcendental over 7.

Further, A is onto R and restricted to R\Ry, h~! is also #-computable. This
means that if (x,,) is a listing of the infinite, coinfinite sets in I, then (h(z,)) is a
listing of R;\Rz. O

Lemma 4.5. There is a d’-computable function f such that the set {bf(n) : nEW}
is algebraically independent over Q, and such that Ry = R<bf(n>>'

Proof. The function f is defined by recursion; given 7 = (bf(o), by, bf(k_l)),
f(k) is the least m such that b, is transcendental over Rz. To find f(k), by
Lemma 4.4 we can find a d-computable listing (t,) of the elements of R;\Rs.
Using F(7) we also have a d-computable listing {u,) of the elements of R-. So
each b, is in one of the lists but not on both. Using d’ we can find f(k), which is
the least n such that b,, is one of the t,,’s. [l

Let {fs) be a d-computable approximation of the function f given by Lemma 4.5.
We let 1, s = by (n) and T s = (T0,s,71,5,--->Tk—1,s).- We speed up the approxi-
mation {fs) and the enumeration of interiors of semi-algebraic sets so that for all
s € w, the tuple 7 ; appears to be algebraically independent at stage s in that for
all k < s, F5(Tk,s) is a substructure of Fs(7ry1,5)-

Using d as an oracle, we define an increasing sequence (B;) of finite structures
(in the signature of fields) and isomorphisms hs: By — Fy(Ts ). Suppose that B
and hg have been defined. Temporarily, for ¢ > s let k; be the least such that
Tk # Tkt 1 ¢ is sufficiently late, then 7y, s is algebraically independent. And
so by (3) and (4) above we can find some ¢ > s for which there is an embedding
Js: Fs(Ts,s) = Fi(Tk, s). For simplicity of notation (i.e., by a speed-up) we assume
that t = s+ 1.

We let hgi1 IB,= js © hs. We then add elements to B to obtain B, and
extend hsp1 [, to an isomorphism hsy1: Bsy1 — Foy1(Ter1,641). We let B =
(U, Bs. This is a d-computable structure.

The key observation is that if 7y s = 7 541, then hs and hsy1 agree on hy ' [Fy(7k 5)].
This show that the maps h stabilise to a limit h: B — F(7) which is an isomor-
phism, where of course 7 = <bf(n)>. Since F'(7) =~ Ry, this proves Theorem 1.1.
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5. COUNTABLE FRAGMENTS

In this section, we prove Theorem 1.7. Let A be a countable structure, and let
B be a (possibly uncountable) structure with countable signature. First, we prove
that (2) implies (3) in Theorem 1.7.

Theorem 5.1. Suppose that A <! B. Then for every countable set D < B, there
15 a countable C < B such that D < C and A <, C.

Proof. By adding the elements of D to the language of B, we can ensure that every
elementary substructure of B is a superset of D. So we only have to prove that
there a countable C < B such that A <,, C. We mimic the proof of Shoenfield
absoluteness.

The set of countable structures C such that A <,, C is II1 (it is II} in a Scott
sentence for A.) Let S be a tree on w x wy such that the projection p[S] of the set of
paths of S onto first coordinates is this set. (A IT} predicate holds iff an associated
tree in w=" is well-founded, which is true iff that tree has a valid labeling with
countable ordinals that witnesses its well-foundedness; the wi-coordinates in any
path in [S] give a valid labeling of the tree associated to the structure coded by
the w-coordinates.)

Since the language of B is countable, there is a countable sequence of Skolem
functions <{h,), each h, from B"™ to B, such that for every countable set D =
{di,d2,...} < B, U, hn(di,...,dy) is the domain of an elementary substructure
of B.

This gives us a tree T on w x B such that the projection p[S] of the set of
paths of S onto first coordinates is the collection of structures with universe w that
are elementarily embeddable into B. For an injective function f: w — B let f be a
canonical extension of f to an injective function from w to | J,, hn(f(0),..., f(n—1));
and let C; be the structure on w that is the pullback by f of its range. The set of
paths [S] is the collection of pairs (Cy, f), where f: w — B is injective.

Merging the trees S and T together, we get a tree S * T which is ill-founded
if and only if A <, C for some countable C < B. The point is that this analysis
works in both V and in a forcing extension in which B is countable. However if
A <¥ B then in such a forcing extension, B is a witness to S = T being ill-founded.
Ill-foundedness of trees is absolute, so .S * T is ill-founded in V as well. O

If B is countable, then by taking D = B, the conclusion of Theorem 5.1 is
equivalent to A <,, B. However, it is not a characterisation of A <* B for for
arbitrary B.

Claim 5.2. (3) does not imply (2) in Theorem 1.7.

Proof. Let C and D be countable structures such that C < D, C has no computable
copy, but D has a computable copy. For example, we can take C to be the prime
model and D to be the saturated model of an uncountably categorical theory with
the appropriate “Baldwin—Lachlan spectrum”. Let B be the disjoint union of N
many copies of D; let A be Wehner’s graph, whose degree spectrum is the collection
of nonzero Turing degrees. Note that this property of A is absolute. Every count-
able subset of B can be extended to be isomorphic to a countable disjoint union
of copies of D, together with one copy of C. This gives us a countable elementary
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substructure of B that has no computable copy, and so is Muchnik above A. How-
ever, in an extension in which R; is made countable, B is just a countable disjoint
union of copies of D, and so has a computable copy, whence A £* B. O

Next we prove that (1) implies (2) in Theorem 1.7.

Theorem 5.3. Suppose that there is a countable D < B such that for every count-
able C < B such that D < C, we have A <,, C. Then A <¥

Proof. The proof is similar to that of Theorem 5.1. This time we start with a
tree S on w X w whose projection is the set of countable structures that are not
Muchnik above A. We absorb D into the language of B. Let T be the tree on w x |B|
that guesses countable elementary substructures of B. The assumption implies that
the tree S = T is well-founded, and so is well-founded in any generic extension in
which B is countable. If A <,, B in that extension, then B itself gives us a path
on T, contradicting the well-foundedness of S = T'. (]

Again the condition of Theorem 5.3 gives us a trivial characterisation of being
Muchnik above A in the case that B is countable. However, again we do not get
full equivalence with A «* B.

Claim 5.4. (2) does not imply (1) in Theorem 1.7.

Proof. In this case, B will consist of disjoint copies of linear orderings, where each
component is marked by a natural number (say using designated unary predicates).
Let x be a subset of w. Let L be an Y;-dense linear ordering (i.e., between any two
countable subsets we can find more points). Recall that ¢ is the order type of the
integers. The n'" component of B = B(z) is:

(L, if nex,
(C+¢) L, ifn¢a.

In a universe in which L, and hence B, is made countable, the third Turing jump
of any copy of B can compute x. So if x is sufficiently complicated, then B is
generically Muchnik above Wehner’s graph A. On the other hand, in V', every
countable subset of B can be extended to a countable C < B such that every
component in C isomorphic to (¢ + ¢)-Q and the {-chains in each component are (-
chains in B. First note that C is an elementary substructure of B; this follows from
the fact that any two infinite discrete linear orderings with endpoints are elementary
equivalent. But C has a computable copy, so condition (1) in Theorem 1.7 fails. O

REFERENCES

[IK] Gregory Igusa and Julia Knight. Comparing two versions of the reals. Submitted.

[Joc72] Carl G. Jockusch, Jr. Degrees in which the recursive sets are uniformly recursive. Canad.
J. Math., 24:1092-1099, 1972.

[KK] Margarita Korovina and Oleg Kudinov. Spectrum of the computable reals. Talk at “Con-
tinuity, computability, constructivity”, Ljubljana, September 2014.

[KMS] Julia Knight, Antonio Montalban, and Noah Schweber. Computable structures in generic
extensions. To appear.

[Mué63] A. A. Mucnik. On strong and weak reducibility of algorithmic problems. Sibirsk. Mat.
Z., 4:1328-1341, 1963.



12 R. DOWNEY, N. GREENBERG, AND J. S. MILLER

(R. Downey and N. Greenberg) SCHOOL OF MATHEMATICS, STATISTICS AND OPERATIONS RE-
SEARCH, VICTORIA UNIVERSITY OF WELLINGTON, WELLINGTON, NEW ZEALAND

E-mail address: downey@msor.vuw.ac.nz

URL: http://homepages.mcs.vuw.ac.nz/~downey/

E-mail address: greenberg@msor.vuw.ac.nz
URL: http://homepages.mcs.vuw.ac.nz/~greenberg/

(J. S. Miller) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WI
53706-1388, USA

E-mail address: jmiller@math.wisc.edu

URL: http://www.math.wisc.edu/~jmiller/


http://homepages.mcs.vuw.ac.nz/~downey/
http://homepages.mcs.vuw.ac.nz/~greenberg/
http://www.math.wisc.edu/~jmiller/

	1. Introduction
	2. Listings
	3. A separation
	4. Presentations of fields
	5. Countable fragments
	References

