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Martin-Löf randomness-reminder

I A c.e. open set is one of the form
⋃

i (qi , ri ) where {qi : i ∈ ω} and
{ri : i ∈ ω} are c.e.. U = {[σ] : σ ∈W }. Here [σ] = {σα | α ∈ 2ω},
and has measure µ([σ]) = 2|σ|.

I A Martin-Löf test is a uniformly c.e. sequence U1,U2, . . . of c.e. open
sets s.t.

∀i(µ(Ui ) ≤ 2−i ).

(Computably shrinking to measure 0)

Definition

α is Martin-Löf random if for every Martin-Löf test,

α /∈
⋂
i>0

Ui .



The martingale view

I Back to von Mises 1919. Think about predicting the next bit of a
sequence. Then you bet on the outcome. You should not win!

I (Levy) A martingale is a function f : 2<ω 7→ R+ ∪ {0} such that for
all σ,

f (σ) =
f (σ0) + f (σ1)

2
.

I the martingale succeeds on a real α, if lim supn F (α � n)→∞.



I Think of betting on sequence where you know that every 2nd bit was
1. Then every second bit you could double you stake. This martingale
exhibits exponential growth and that can be used to characterize
computable reals.

I Ville proved that null sets correspond to success sets for martingales.
They were used extensively by Doob in the study of stochastic
processes.



I A supermartingale is a function f : 2<ω 7→ R+ ∪ {0} such that for all
σ,

f (σ) ≥ f (σ0) + f (σ1)

2
.

I Schnorr showed that Martin-Löf randomness corresponded to effective
(super-)martingales failing to succeed.

I f as being effective or computably enumerable if f (σ) is a left-c.e.
real, and at every stage we have effective approximations to f in the
sense that f (σ) = lims fs(σ), with fs(σ) a computable increasing
sequence of rationals.



Schnorr

Theorem (Schnorr)

A is Martin-Löf random iff no effective martingale succeeds on it.

I Also lead to variations on randomness:

1. Schnorr randomness (µ(Un) = 2−n),
2. computable randomness (only computable martingales),
3. Kurtz randomness Un is a canonical clopen set-or A ∈ Vn for all open

Vn of measure 1.



Integer Valued Randoms

I Many notions of randomness.... I know a good book or two.

I If you actually go to a casino, and try to bet Y 1
10000000 , they will not

accept the bet.

I What about if you ask that bets should be in multiplies of certain
discrete amounts. The canonical example being $0, 1, 2, 3, . . . .

I By multiplying, we can regard the the values as integers in the
martingale.

Definition (Beinvenu, Stephan, Teutsch)

X is IVR iff no computable integer valued martingale succeeds on X .

I For a set F , can define F -valued, if it only takes values from F .

I We can similarly define single valued if the set of possible bets is a
singleton, (either no bet or) a.

I Similarly finitely valued.



Theorem (Bienvenu, Stephan, Teutsch)

1. Computably random implies IVR implies FVR implies SVR

2. Kurtz random implies SVR

3. FVR implies bi-immune.

I As we already know, computable implies Schnorr implies Kurtz (with
no reversals)

I Schnorr implies law of large numbers.

Theorem ([Bienvenu, Stephan, Teutsch)

No other implications hold.



The essential difference

I There are finitary strategies to defeat IV martingales.

I If m bets on an outcome, say σ1 in favour of σ0, then if we choose
σ0 he must lose at least $1.

Definition (Actually a Theorem-Jockusch and Posner)

A is called n-generic if A meets or avoids each Σ0
n set S of strings. That is

either

I ∃σ ∈ S(σ ≺ A), or

I ∃σ ≺ A∀τ ∈ S(σ 6≺ τ).

(Kurtz) B is weakly n-generic if A meets all dense S ’s.



Theorem (BST)

If A is weakly 2-generic then A is IVR. Hence IVR’s are co-meager.

However:

Theorem (BST)

There is a 1-generic which is not IRV.

Corollary

IVR does not imply Schnorr randomness.



Recent events

I Many of these arguments worked also on martingales with a
“minimum nonzero bet”.

I It was a question of Bienvenu, Stephan and Teutsch whether this was
the same as IRV, ie computable martingales which only bet on
{0} ∪ [1,∞].

I Ron Peretz (LSE), and Hoi and Stephan showed that tha answer is
“no” for many variations of this question.

I Also showed Q ∩ [0,∞) is stronger than Z≥0.



Other strangenesses of IVR’s

I One of the classic methods for martingales is called the savings trick.

I This says, given a martingale m convert it into a new one n by; after
you win a dollar, put it in the bank, and bet the same proportion as
m, till you make another dollar.

I The result has the property that it is (up to ±1) nondecreasing.

Theorem (Teutsch)

There is an X which is not IRV but is IVR for martingales with the savings
property.

I Of course, the reason is that proportions are not available. His
method exploits this.

Theorem (Chalcraft, Dougherty, Freiling, Teutsch)

If B and A are finite integer value sets, then every B-IVR is A-IVR iff there
is a c with B ⊇ c · A some c ∈ Q.



I The proof of the easy direction is that if B ⊇ c · A then any bet A
makes B can simply make a multiple of, so “essentially” the same bet
up to scaling.

I The hard direction observes that if B 6⊇ c · A, then we construct a
real that SA succeeds on and B does not.

I SA’s strategy is to always bet on 0, and cycle through its values,
{a1, . . . , an}

I We can always assume that B bets on 0 else we make easy progress.

I We compare SA’s capital
MB ’s capital with SA’s bet

MB ’s bet .

I If the first ≥ second bet 0 S wins more proportionally to it capital, if
the second exceeds first bet 1 M loses more proportionally to its
capital.

I It can be proven that SA’s capital
MB ’s capital →∞ unless it has a limit C , and

then c = 1
C is the multiple



I Not known if this is true for A, B computable and infinite.

I (Downey and Melnikov) Can have same randoms for some A and B.



Our questions

I What kinds degrees have/bound IVR’s?

I Are these degree notions?

I What kinds of genericity might align itself to IVR’s. We know weak
2- is enough, and 1- is not enough.

I Does it matter for left c.e. reals?

I What about partial IVR’s? That is in a casino I won’t tell you what I
would bet in advance. So consider the definition with m’s partial
computable.

I What about c.e. degrees? Do they relate to any known degree class?



Multiply generic reals

I A new genericity notion. Recall that a Σ0
1 set is the range of a

computable f . What about if this is ω-c.a., and with the property
that it has an approximation g such that for all n,
g(n, s) � g(n, s + 1). We call this proper.

I Recall that an order is a computable function h with h(n + 1) ≥ h(n)
and h(n)→∞.

I For an order h, say that f is h-c.a. if the approximation has
g(n, s + 1) 6= g(n, s) at most h(n) many times.

Definition

Let h be an order. We say that A is h-multiply generic if A meets of
avoids all sets S which are the ranges of proper h-c.a. functions. Similarly
for weakly and dense sets.

I Evidently for any computable h, ∅′ can compute an h-multiply generic.



Theorem

If h and h′ are orders and G is h-(weakly) multiply generic, then it is also
h′− (weakly) multiply generic. Thus A is multiply generic iff A is
h-multiply generic for some h.

Lemma

If G is weakly multiply generic then it is also IVR. The converse is not true
since MLR’s are not weakly 1-generic.

The proof is modelled on that by Bienvenu et. al. noting that all that is
needed is the weak multiple genericity.



Array noncomputable degrees

Definition (Downey, Joskusch, Stob)

A degree a is called array noncomputable iff for all functions f ≤wtt ∅′
there is a a function g computable from a such that

∃∞x(g(x) > f (x).

I Looks like “non-low2.”

I Indeed many nonlow2 constructions can be run with only the above.
For example, every anc degree bounds a generic.

I The c.e. ones are of special interest.



A ubiquitous class

I c.e. anc degree are those that:

I (Kummer) Contain c.e. sets of infinitely often maximal Kolmogorov
complexity C (A � n) = 2 log n.

I Have effective packing dimension 1 (Downey and Greenberg)

I Compute left c.e. reals α (halting probabilities) and B <T α such
that if V is a presentation of α (that is V is prefix free, c.e. and
α = µ(V )), then V ≤T B. (Downey and Greenberg)

I (Downey, Jockusch, and Stob) bound disjoint c.e. sets A and B such
that every separating set for A and B computes the halting problem

I have strong minimal covers (Ishmukhametov).

I (Cholak, Coles, Downey, Herrmann) The array noncomputable c.e.
degrees form an invariant class for the lattice of Π0

1 classes via the
thin perfect classes

I (Downey and Greenberg) Compute c.e. sets A ≡T B and C <T A
such that the inf of the wtt degrees of A and B is C .



Theorem

Every array noncomputable degree a bounds bounds a weakly multiply
generic and hence a IVR.

The proof models itself on the classical one that each c.e. degree bounds a
1-generic.



What about multiply generics?

I These need another concept.

Definition (Downey, Greenberg, Weber)

We say that a c.e. degree a is totally ω-c.e. iff for all functions g ≤T a, g
is ω-c.e.. That is, there is a computable approximation
g(x) = lims g(x , s), and a computable function h, such that for all x ,

|{s : g(x , s) 6= g(x , s + 1)}| < h(x).

I array computability is a uniform version of this notion where h can be
chosen independent of g .

I Every array computable degree (and hence every contiguous degree)
is totally ω-c.e..

I Can extend to computable ordinals (Downey and Greenberg).

I These degrees are definable in the c.e. degrees (DGW), and (Downey
and Ng) correspond to the degree containing computably finitely
random reals.



Theorem
I Every not totally ω-c.a. c.e. set computes a multiply generic set.

I Every not totally ω2-c.a. set computes a multiply generic set.



I The left c.e. case.

I Notably, there are left c.e. computably random reals (and hence IVR)
in each high c.e. degree.

Theorem

If X is left c.e. and IVR then X is of high degree.

I We want to construct a procedure ΓX (e, s) such that lims ΓX (e, s) =
Tot(e).

I The cycle for (x , s) is to use the smallest new place in the
approximation of Xs with Xs(n) = 1. For s ′ ≥ s we set
ΓX (e, s ′)[t ′] = 0 until Tot(e) looks more total as more arguments
converge. We have inductively defined a partial computable m = me

up to strings of length s.

I If Tot(e) looks more total at stage t > s we play m conservatively
except on n(t) playing to win $1 there on the 1 outcome.

I The key is that almost always he must move away, and he cannot
play where we have lost.



Theorem
I There are IVR’s that are not partial IVR.

I There are partial IVR’s that are not partial computably random.

Theorem

If S is CEA(∅′), then there is an IVR A of c.e. degree such that A′ ≡T S.

The proof uses “big uses” to create space.



But on the other hand

Theorem

There are array noncomputable c.e. degrees containing no IVR’s.

In fact:

Theorem

There is a high2 c.e. degree containing no IVR’s.



Thank You


