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MOTIVATION

I What is “random”?
I How can we calibrate levels randomness? Among

randoms?, Among non-randoms?
I How does this relate to classical computability notions,

which calibrate levels of computational complexity?



LAST TIME

I We defined various notions of compressibility for strings: C
(plain complexity), K (prefix free complexity) Km
(monotone complexity), KM, universal semimeasures etc.

I Examined how they related, and basic facts about them.
I Example the complexity of the overgraphs.
I Main fact about K was KC: how to build prefix-free

machines.

I Had 3 views of effective randomness (i) incompressible
initial segments (ii) avoid all c.e. open sets, and (iii)
unpredicatbility (not yet examined).

I Schnorr’s Theorem (i)=(ii).
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MARTIN-LÖF RANDOMNESS:

I Recall that a Martin-Löf test is a uniformly c.e. sequence
U1, U2, . . . of c.e. open sets s.t.

∀i(µ(Ui) ≤ 2−i).

(Computably shrinking to measure 0)

DEFINITION
α is Martin-Löf random if for every Martin-Löf test,

α /∈
⋂
i>0

Ui .

THEOREM (SCHNORR)
A is ML random iff for all n, K (A � n) ≥+ n. (Iff Km(A � n) =+ n.)



CHAITIN’S Ω

I We’ve sen a random real is random, but are there explict
examples?

I The most famous random real is

Ω = µ dom(M) =
∑

M(σ)↓

2−|σ|,

a “halting probability.”

THEOREM (CHAITIN)
Ω is random.

I Proof. We use Kraft-Chaitin: We build a Kraft-Chaitin set
with coding constant c given by the recursion theorem. If,
at stage s, we see Ks(Ωs � n) < n − c − 1, enumerate
〈n − c,Ωs � n〉 into KC, and hence Ω � n 6= Ωs � n.

I Method is “quanta recycling”=charging our costs to the
opponent (U).
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Ω AND HALTING

I Solovay looked at basic properties of Ω, in terms of
computability. e.g.

I Let Dn = {x : |x | ≤ n ∧ U(x) ↓}.

THEOREM (SOLOVAY)
K (Dn) =+ n.

THEOREM (SOLOVAY)

(I) K (Dn|Ω � n) = O(1). (Indeed Dn ≤wtt Ω � n via a weak truth
table reduction with identity use.)

(II) K (Ω � n|Dn+K (n)) = O(1).

I (i) is easy. Wait till Ωs =def
∑

U(σ)↓[s] 2−|σ| is correct on its
first n bits. Then we can compute Dn.

I (ii) is rather difficult, and is in 5 lectures, or DH book.
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EXTENDING SCHNORR’S THEOREM

THEOREM (MILLER AND YU, THE AMPLE EXCESS LEMMA)
α is Martin-Löf random iff

∑
n∈N 2n−K (α�n) < ∞.

I This says that whilst the K-complexity is above n, mostly it
is “pretty far” from n. (Proof in 5 Lectures, or DH)

THEOREM (MILLER AND YU)
Suppose that f is an arbitrary function with

∑
m∈N 2−f (m) = ∞.

Suppose that α is random. Then there are infinitely many m
with K (α � m) > m + f (m)−O(1).
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PLAIN COMPLEXITY AGAIN

I In spite of the fact that we have this natural
characterization in terms of K or Km, it was a longstanding
question whether there was a plain complexity
characterization of randomness.

I It was known that there were sufficient conditions on on
C(α � n) to guarantee randomness. To wit:

DEFINITION
Say that it is Kolmogorov random if there are infinitely many n
with C(n) ≥ n −O(1).

THEOREM (MARTIN-LÖF, SOLOVAY)
Almost every real is Kolmogorov random.



n-RANDOMNESS

I In the same way as the arithmetical hierarchy,

DEFINITION (KURTZ, SOLOVAY)

(I) A Σ0
n test is a computable collection {Vn : n ∈ N} of Σ0

n
classes such that µ(Vk ) ≤ 2−k .

(II) A real α is Σ0
n-random or n-random iff it passes all Σ0

n tests.
(III) One can similarly define Π0

n, ∆0
n etc tests and randomness.

(IV) A real α is called arithmetically random iff for any n, α is
n-random.



KURTZ OR WEAK RANDOMNESS

I Thinking about Π0
n randomness, we get a randomness

notion called Kurtz n-randomness or weak n-randoness
meaning that it passes all Π0

n tests, or, equivalently the real
is in all Σ0

n sets of measure 1.

I Weak 1-randomness is often regarded as a genericity
notion.

I Weak 2-randomnness has especial signifince in that it
corresponds to generalized ML tests, meaning that
µ(Un) → 0 but we have no effective convergence rate.
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KURTZ’S THEOREM

I We use open sets to define Martin-Löf randomness.
I Consider: the Σ0

2 class consisting of reals that are always
zero from some point onwards. It is not equivalent to
∪{[σ] : σ ∈ W} for any W .

I Kurtz showed that n-randomness is the same as n
randomness relative to open classes.

THEOREM (KURTZ)
n + 1-randomness = 1-randomness relative to ∅(n).



I This is also implicit in Solovay’s notes in the dual way he
treats 2-randomness.

I Thus, for instance, if A is 2-random then A 6≤T ∅′. Actually...

THEOREM (DOWNEY, NIES, WEBER, YU+HIRSCHFELDT)
A is weakly 2-random iff A is ML random and deg(A) and 0′

form a minimal pair.
I Also there is a n + 1-random set Ω(n+1) namely Ω∅(n)

which
is computably enumerable relative to ∅(n).

I NOTE it is NOT CEA(∅(n)). But Ω(n) ⊕ ∅(n) ≡T ∅(n+1).
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WARNING

I Similar relativization work for Schnorr, computable, etc (we
later meet) randomness. BUT not for weak randomness.

I It is NOT true that weak-2-randomness (meaning being in
every Σ0

2 class of measure 1) is the same as being Kurtz
random over ∅′. This is a genericity notion. 2-generics
have this property.

I The best we can do is: n ≥ 2, α is Kurtz n-random iff α is
in every Σ∅(n−2)

2 -class of measure 1.
I weak 2-randomness is the same as “Martin-Löf

randomness with no effective convergence” In fact, weak
2-randomness might best be described as strong
1-randomness.



A HIERARCHY

THEOREM

(I) (Kurtz) Every n-random real is Kurtz n-random.
(II) (Kurtz) Every Kurtz n + 1-random real is n-random.

(III) (Kurtz, Kautz) All containments proper.



I In thse lectures I won’t be able to discuss the long history
of results relating n-randomness to the arithmetical
hierarchy.

I The first result in this area was
I Define P(A) = µ{X : W X

e = A}, where e is a universal
index for the halting problem. This is the probability that A
is enumerated.



THEOREM (DE LEEUW, MOORE, SHANNON, SHAPIRO,
1956)
P(A) ≥ 0 iff A is computably enumerable.

COROLLARY (SACKS)
µ{X : A ≤T X} > 0, iff A is computable.



I The proof uses the “majority vote” technique: Assume
P(A) > 0.

I For some e, De = {X : A = W X
e } has positive measure.

I There is a string σ such that the relative measure of De
above σ is greater than 1

2 . (Lebesgue Density Theorem)
I Let the oracles extending σ vote on membership in De

I Pu n into A if more than half (by measure) say so. This
enumerates A.



I The almost all theory of degrees is well-behaved, and in
fact is decidable (Stillwell).

I Similarly ≤T and randomness. Examples:



THEOREM (KURTZ)
If A is n + 1-random then A is GLn.

THEOREM (KUČERA, GÁCS)
If A is noncomputable, then there is a random B with A ≤wtt B.

THEOREM (MILLER AND YU)
If A ≤T B are random and B is n random, then A is n random.

THEOREM (VAN LAMBALGEN’S THEOREM)
A⊕ B is random iff A is B-random and B is A-random.

THEOREM (KURTZ)
If A is 2-random then A is hyperimmune.

THEOREM (STEPHAN)
If A is random and has PA degree then ∅′ ≤T A.

I That is random randoms are computationally weak.



2-RANDOMNESS

I There are some relative natural examples of n-randoms
using methods akin to Post’s Theorem and index sets
(Becher-Figueira). However, there are some really
unexpected characterizations also of 2-randoms.

I Recall that the maximum a string of length n can be is
(I) C(σ) = n −O(1).

(II) K (σ) = n + K (n)−O(1).

THEOREM (SOLOVAY)
(ii) implies (i), but not conversely.
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I Say that a real α is strongly Chaitin random iff there are
infinitely many n with K (α � n) ≥ n + K (n)−O(1).

I Recall α is Kolmogorov random if there are infinitely many
n with C(α � n) ≥ n −O(1).

I Fundamental question: are they the same?



KOLMOGOROV RANDOMNESS

THEOREM (NIES-TERWIJN-STEPHAN, MILLER)
2-randomness=Kolmogorov randomness (!).



I Proof We fix a universal machine U which is universal and
prefix-free for all oracles. Suppose that A is not 2-random.
Thus, for each c there is an n with

K ∅′A � n) < n − c.

I We build a plain machine M. On an input σ, M tries to
parse σ as τβ, with τ in the domain of U∅′ . Note that as K X

is prefix-free for all oracles X, there is at most one τ ≺ σ.
I Let s = |σ|.
I First it assumes that s is sufficiently large that Hs is correct

on the use of A � n. It assumes that It then uses ∅′s as an
oracle, to compute (if anything) τ ≺ σ with U∅′s(τ) ↓ .

I If there is one, M outputs U∅′s(τ)β. From some time
onwards, upon input νA[n + 1, m] with U∅′(ν) = A � n, this
will be A � m.

I Thus C(A � m) is bounded away from m.



I The other direction. (Miller, NST)
I Recall from Lecture 1 that a compression function acts like

U−1.
I Recall that we defined F : Σ∗ 7→ Σ∗ to be a compression

function if for all x |F (x)| ≤ C(x) and F is 1-1.
I Recall also that since they forma Π0

1 class, there is a
compression function F with F ′ ≤T ∅′. (NST’s idea)

I Namely, consider the Π0
1 class of functions |F̂ (σ)| ≤ C(σ).

I The main idea is that most of the basic facts of plain
complexity can be re-worked with any compression
function. For a compression function F we can define
F -Kolmogorov complexity: α is F -Kolmogorov random iff
∃∞n(F (α � n) > n −O(1)).



I (NST) If Z is 2-random relative a compression function F ,
then Z is Kolmogorov F -random.

I Now we can save a quantifier using a low compression
function.

I This still leaves strongly Chaitin random reals. Question
are they 3-random, 2-random or something else. Note that
the same approach won’t work because both sides
change. (To wit: F (α � n) = n + F (|n|)− d . Could to this if
there was a low compression function with K (σ) > K (τ)
implies F (σ) > F (τ) but this is surely false.)



RANDOMNESS AND PLAIN COMPLEXITY

I Finally Miller and Yu provided a plain complexity
characterization of Martin-Löf randomness.

THEOREM (MILLER AND YU)
x is Martin-Löf random iff (∀n) C(x � n) ≥ n − g(n)±O(1), for
every computable g : ω → ω such that

∑
n∈ω 2−g(n) is finite.



MARTINGALES

I von Mises again. This time think about predicting the next
bit of a sequence. Then you bet on the outcome. You
should not win!

DEFINITION (LEVY)

(I) A martingale is a function f : 2<ω 7→ R+ ∪ {0} such that for
all σ,

f (σ) =
f (σ0) + f (σ1)

2
.

(II) The martingale succeeds on a real α, if
lim supn F (α � n) →∞.



I Think of betting on sequence where you know that every
2nd bit was 1. Then every second bit you could double you
stake. This martingale exhibits exponential growth and that
can be used to characterize computable reals.

I Ville proved that null sets correspond to success sets for
martingales. They were used extensively by Doob in the
study of stochastic processes.
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I A supermartingale is a function f : 2<ω 7→ R+ ∪ {0} such
that for all σ,

f (σ) ≥ f (σ0) + f (σ1)

2
.

I Schnorr showed that Martin-Löf randomness corresponded
to effective (super-)martingales failing to succeed.

I f as being effective or computably enumerable if f (σ) is a
c.e. real, and at every stage we have effective
approximations to f in the sense that f (σ) = lims fs(σ), with
fs(σ) a computable increasing sequence of rationals.
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SCHNORR, AGAIN

THEOREM (SCHNORR)
A real α is Martin-Löf random iff no effective (super-)martingale.
succeeds on α.

I The proof uses a basic fact about (super-)martingales.
I (Kolmogorov’s inequality)

(I) Let f be a (super-) martingale. For any string σ and
prefix-free set X ⊆ {x : ν � x},

2−|ν|f (ν) ≥
∑
x∈X

2−|x|f (x).

(II) Let Sk (f ) = {σ : f (σ) ≥ k}, then

µ(Sk (f )) ≤ f (λ)
1
k

.

I That is the stake must be shared fairly at level n.



I Proof of Schnorr’s Theorem: We show that test sets and
martingales are essentially the same. (Ville effectivized).
Firstly suppose that f is an effective (super-)martingale.

I Let Vn = ∪{β : f (β) ≥ 2n}.
I Vn is a c.e. open set and µ(Vn) ≤ 2−n by Kolmogorov’s

Inequality.
I Thus {Vn : n ∈ N} is a Martin-Löf test.
I And α ∈ ∩nVn iff lim supn f (α � n) = ∞.
I Hence a martingales succeeds on α iff it fails the derived

test.



I The other direction.
I Build a martingale from a Martin-Löf test. Let {Un : n ∈ N}

be a Martin-Löf test.
I We represent Un by extensions of a prefix-free set of

strings σ, and whenever such a σ is enumerated into
∪n,sUs

n , increase F (σ)[s] by one.
I To maintain the martingale nature of F , we also increase F

by 1 on all extensions of σ, and by 2−t on the substring of
σ of length (|σ| − t).)



SCHNORR RANDOMNESS

I One could argue that to be algorithmically random,
Martin-Löf’s definition is too strong.

I For instance, α is ML-random iff no c.e. Martingale
succeeds on α. (That is the betting startegy
F : 2<ω 7→ R+ ∪ {0} is a c.e. function.)

I Schnorr argued that ML randomness is intrinsically c.e. not
defeating “effectively”= computably given objects.

I Schnorr proposed two notions of more computable
randomness.



MORE EFFECTIVE RANDOMNESS

DEFINITION (SCHNORR)

(I) A martingale f is called computable iff f : 2<ω 7→ R+ ∪ {0}
is a computable function with f (σ) (the index of functions
representing the effective convergence of) a computable
real. (That is, we will be given indices for a computable
sequence of rationals {qi : i ∈ N} so that f (σ) = lims qs
and |f (σ)− qs| < 2−s.)

(II) A real α is called computably random iff for no computable
martingale succeeeds on it.

DEFINITION (SCHNORR)

(I) A Schnorr test is a Martin-Löf test Ui : i ∈ ω such that
µ(Ui) = 2−i .

(II) α is Schnorr random iff α 6∈ ∩iUi for all Schnorr tests {Ui}.



I There is a machine characterization of Schnorr
randomness, solving an old question of Ambos-Spies and
others.

I Recall that a real is called computable if it has a
computable dyadic expansion.

I A computable prefix free machine is a prefix free machine
M such that,

µ(dom(M)) =
∑

M(σ)↓

2−|σ|

is a computable real.
I The domains of prefix-free machines are, in general, only

computably enumerable or left computable in the sense
that they are limits of computable nondecreasing
sequences of rations.

I For example Ω = lims Ωs =
∑

U(σ)↓[s] 2−|σ|.
I Computably enumerable reals play the same role in this

theory as computably enumerable set do in classical
computalility theory, and will be deal with in more detail
later.
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sequences of rations.

I For example Ω = lims Ωs =
∑

U(σ)↓[s] 2−|σ|.
I Computably enumerable reals play the same role in this

theory as computably enumerable set do in classical
computalility theory, and will be deal with in more detail
later.



THEOREM (DOWNEY AND GRIFFITHS)
α is Schnorr random iff for all computable prefix free machines
M, there is a c such that for all n,

KM(α � n) ≥ n − c.

I There are also machine characterizations of computable
and Kurtz randomness in terms of variant machines.
(Downey, Griffiths, Reid, LaForte, Merkle, Mihailovic,
Slaman)



I Schnorr used martingales and a kind of forcing argument
to prove that there are Schnorr random reals that are not
Martin-Löf random.

I Soon we will show that all c.e. random reals are Turing
complete.

I (Downey-Griffiths) All Schnorr random c.e. reals are of
“high” c.e. degree.

I (Downey-Griffiths) There are c.e. reals that are Schnorr
random that have incomplete T -degree.

I (Downey, Griffiths and Reid) Each c.e. degree contains a
left c.e. Kurtz random real.

I (Kurtz) Every hyperimmune degree contains a Kurtz
random real.



I (Downey-Griffiths-LaForte, Nies-Stephan-Terwijn) All high
c.e. degrees contain Schnorr random c.e. reals.

I NST have a stronger result for computably random left c.e.
reals and high degrees. (soon)



MARTINGALE CHARACTERIZATIONS

I (Wang) A real α is Kurtz random iff there is no computable
martingale F and nondecreasing function h, such that for
almost all n,

F (α � n) > h(n).

I (Schnorr) We say that a computable martingale strongly
succeeds on a real x iff there is a computable unbounded
nondecreasing function h : N 7→ N such that
F (x � n) ≥ h(n) infinitely often.

I (Schnorr) A real x is Schnorr random iff no computable
martingale strongly succeeds on x .



THE FULL CHARACTERIZATION

I Martin-Löf implies computable implies Schnorr implies
Kurtz. (randomness)

I The following very attractive result gives the full picture.

THEOREM (NIES, STEPHAN AND TERWIJN)
For every set A, the following are equivalent.

(I) A is high.
(II) ∃B ≡T A, B is computably random but not Martin-Löf

random.
(III) ∃C ≡T A, C is Schnorr random but not computably random.

Moreover, for c.e. degrees, the examples can be chosen to be
c.e.



OUTSIDE THE HIGH DEGREES

THEOREM (NIES, STEPHAN AND TERWIJN)
Suppose that a set A is Schnorr random and does not have
high degree. (That is, A′ 6≥T ∅′i)′. Then A is Martin-Löf random.

THEOREM (NIES, STEPHAN, TERWIJN)
Suppose that A is of hyperimmune-free degree. Then A is Kurtz
random iff A is Martin-Löf random.



VON MISES STRIKES BACK

I There has been a lot of work recently on nonmonotonic
selection, and nonmonotomic martingales, which might
address Schnorr’s critique.

I Briefly, we get to select position f (0), f (1), . . . and bet on
thse bits, but now the selction on the places can be
nonmonotonic.

I Important open question (Muchnik, Uspensky, Semenov)
I Is randomness relative to computable nonmonotonic

supermartingales the same as Martin-Löf randomness.
(also see MMNRS)



CALIBRATING RANDOMNESS

I We have seen how to calibrate randoms using
n-randomness. Are there other ways?

I One way is to use initial segment measures of realtive
randomness.

I Satisfies: If β ≤ α then ∃c (∀n (K (β � n) ≤ K (α � n) + c)).

I Notice that if α is random and α ≤ β then by Schnorr’s
Theorem, β is random too.

I Can also use C, and others.
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I The idea is that if we can characterize randomness by
initial segment complexity, then we oght to be able to
calibrate randomness by comparing initial segment
complexities.

I Of course this is open to question, and we could also
suggest other programs such as using tests and maybe
effective Hölder transformations (for instance) to attempt
such a calibration. These are unexplored.
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ONE EXAMPLE: SOLOVAY REDUCIBILITY

I We talk about the halting problem, whereas of course we
really mean HALTU for a universal U. But... they are all the
same (Myhill)

DEFINITION (SOLOVAY)
(α ≤S β) α is Solovay or domination reducible to β iff there is a
constant d , and a partial computable ϕ, such that for all
rationals q < β

ϕ(q) ↓ ∧ d(β − q) > |α− ϕ(q)|.

I Intuitively, however well I can approximate β, I can
approximate α just as well. Clearly ≤S implies ≤T .
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THE KUČERA-SLAMAN THEOREM

I Ω is a halting probability. Define A to be a left c.e. real iff A
is a halting probability, equivalently A = lims as for some
computable increasing sequence of rationals {as}.

I A left c.e. real is Ω-like if it dominates all left c.e. reals.
(Solovay) Any Ω-like real is random

I Solovay proved that Ω-like reals posessed many of the
properties that Ω posessed. He remarks:
“It seems strange that we will be able to prove so much
about the behavior of K (Ω � n) when, a priori, the definition
of Ω is thoroughly model dependent. What our discussion
has shown is that our results hold for a class of reals (that
include the value of the universal measures of ...) and that
the function K (Ω � n) is model independent to within O(1).”



THEOREM (CALUDE, HERTLING, KHOUSSAINOV, WANG)
If a left c.e. real is Ω-like then it is an Ω-number. That is, a
halting probability.

THEOREM (KUČERA-SLAMAN)
If a left c.e. real is random then it is Ω-like.



I Proof: Suppose that α is randomi, left c.e. and β is a left
c.e. real. We need to show that β ≤S α. We enumerate a
Martin-Löf test Fn : n ∈ ω in stages.
Let αs → α and βs → β computably and monotonically. We
assume that βs < βs+1.

I At stage s if αs ∈ F s
n , do nothing, else put

(αs, αs + 2−n(βs+1 − βts)) into F s+1
n , where ts denotes the

last stage we put something into Fn.
I One verifies that µ(Fn) < 2−n. Thus the Fn define a

Martin-Löf test. As α is random, there is a n such that for all
m ≥ n, α 6∈ Fm. This shows that β ≤S α with constant 2n.



I The structure of left c.e. reals under ≤S is a dense USL,
where join is induced by + and [Ω] is the only join
inaccessible. (Downey, Hirschfeldt, Nies)

I Undecidable (Downey, Hirschfeldt, LaForte)
I ≤K studied Mainly by Miller and Yu
I Lots of work remaining here.



HAUSDORFF DIMENSION

I Yet another way to calibrate randomness is to use effective
Hausdorff dimension.

I Recall A is Schnorr random iff no computable martingale
strongly succeeds, meaning that for some nondecreasing
computable h, with h(n) →∞, the martingales succeeds
h-quickly.

I Schnorr called the function h and order.



I If F is a martingale and h is an order the h-success set of
F is the set:

Sh(F ) = {α : lim sup
n→∞

F (α � n)

h(n)
→∞}.

I Thus, A real α is Schnorr random iff for all computable
orders h and all computable martingales F , α 6∈ Sh(F ).

I Exponential orders offer a special place in this subject.

DEFINITION (LUTZ)
An s-gale is a function F : 2<ω 7→ R such that

F (σ) = 2s(F (σ0) + F (σ1)).

I The basic idea here is that not betting on one outcome or
the other is bad.

I Usually, decide that we are not prepared to favour one side
or the other in our bet. Thus we make F (σi) = F (σ) at
some node σ.In the case of an s-gale, then we will be
unable to do this, without automatically losing money due
to inflation.



I Lutz has shown that effective Hausdorff dimension can be
characterized using these notions.

I It is not important exactly what the definition is but we get
the following.

THEOREM (LUTZ, MAYORDOMO)
For a class X the following are equivalent:

(I) dim(X ) = s.
(II) s = inf{s ∈ Q : X ⊆ S[d ] for some s-gale F}.

(III) s = inf{s ∈ Q : X ⊆ S2(1−s)n [d ] for some martingale d}.



I Lutz comment:
I “Informally speaking, the above theorem says the the

dimension of a set is the most hostile environment (i.e.
most unfavorable payoff schedule, i.e. the infimum s) in
which a single betting strategy can achieve infinite
winnings on every element of the set.”

I While Schnorr did not do any of this, he did look at
exponential orders. He comments:

I “To our opinion the important statistical laws correspond to
null sets with fast growing orders. Here the exponentially
growing orders are of special significance.”



I For instance if Ω = a1a2 . . . then a10a20 . . . has dimension
1
2 .

I No time to talk about results here.
I Also packing and box counting and other dimensions.
I Currently there is a lovely open question, which more or

less asks if the only way to constuct fractional dimension is
to effectively decompose a random: Suppose that A has
dimension 1

2 . Is there a B ≤T A with B random?
I best partial result here is by Nies and Terwijn for ≤wtt .

I Jan Reimann’s and Sebastiaan Terwijn’s Theses.
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