
Randomness and Computability 1: Basic Facts

Rod Downey
Victoria University

Wellington
New Zealand

REFERENCES

I van Lambalgen’s Thesis, Solovay’s unpublished notes, and
Li-Vitanyi Also new book “to appear” by Downey and
Hirschfeldt prelim version on my home page, and one by
Nies available (maybe) if you ask him.

I Calibrating Randomness (with Hirschfeldt, Nies and
Terwijn) for BSL.

I Five Lectures on Algorithm Randomness, to appear
Proceedings Computational prospects of Infinity

I Some Computability-Theoretical Aspects of Reals and
Randomness, in The Notre Dame Lectures

MOTIVATION

I What is “random”?
I How can we calibrate levels randomness? Among

randoms?, Among non-randoms?
I How does this relate to classical computability notions,

which calibrate levels of computational complexity?

I Von Mises, Church, Solomonoff, Levin, Chaitin,
Kolmogorov, Shannon, etc.

MOTIVATION

I What is “random”?
I How can we calibrate levels randomness? Among

randoms?, Among non-randoms?
I How does this relate to classical computability notions,

which calibrate levels of computational complexity?
I Von Mises, Church, Solomonoff, Levin, Chaitin,

Kolmogorov, Shannon, etc.

NOTATION

I Real is a member of Cantor space 2ω with topology with
basic clopen sets [σ] = {σα : α ∈ 2ω} whose measure is
µ([σ]) = 2−|σ|.

I for uniformity, a real is always nonrational.
I Strings = members of 2<ω = {0, 1}∗.

I There are theories for more general spaces, notably by
Gács, (see his web site), but this is still under development.

NOTATION

I Real is a member of Cantor space 2ω with topology with
basic clopen sets [σ] = {σα : α ∈ 2ω} whose measure is
µ([σ]) = 2−|σ|.

I for uniformity, a real is always nonrational.
I Strings = members of 2<ω = {0, 1}∗.
I There are theories for more general spaces, notably by

Gács, (see his web site), but this is still under development.

PLAIN KOLMOGOROV COMPLEXITY

I Capture the incompressibility paradigm. Random means
hard to describe, incompressible: e.g. 1010101010....
(10000 times) would have a short program.

I A string σ is random iff the only way to describe it is by
hardwiring it. (Formalizing the Berry paradox)

I For a fixed machine N, we can define
I The Kolmogorov complexity C(σ) of σ ∈ {0, 1}∗ with

respect to N, is |τ | for the shortest τ s.t. N(τ)↓= σ.
(Kolmogorov)

PLAIN KOLMOGOROV COMPLEXITY

I Capture the incompressibility paradigm. Random means
hard to describe, incompressible: e.g. 1010101010....
(10000 times) would have a short program.

I A string σ is random iff the only way to describe it is by
hardwiring it. (Formalizing the Berry paradox)

I For a fixed machine N, we can define
I The Kolmogorov complexity C(σ) of σ ∈ {0, 1}∗ with

respect to N, is |τ | for the shortest τ s.t. N(τ)↓= σ.
(Kolmogorov)

I A string σ is N-random iff CN(σ) ≥ |σ|.
I A machine U is called weakly universal iff for all N, there is

a d such that for all σ, CU(σ) ≤ CN(σ) + d .

I Actually we will always use universal machines where the
e-th machine is coded in a computable way.

I They exist (Kolmogorov). Hence there is a notion of
Kolmogorov randomness for strings up to a constant.

I Proof: We can enumerate the Turing machines
{Me : e ∈ N}. Define

U(1e0σ) = Me(σ).

This particular coding gives C(τ) ≤ Me(τ) + e + 1.

I We will often write =+, or ≤∗ where we mean ±O(1).

I A string σ is N-random iff CN(σ) ≥ |σ|.
I A machine U is called weakly universal iff for all N, there is

a d such that for all σ, CU(σ) ≤ CN(σ) + d .
I Actually we will always use universal machines where the

e-th machine is coded in a computable way.

I They exist (Kolmogorov). Hence there is a notion of
Kolmogorov randomness for strings up to a constant.

I Proof: We can enumerate the Turing machines
{Me : e ∈ N}. Define

U(1e0σ) = Me(σ).

This particular coding gives C(τ) ≤ Me(τ) + e + 1.

I We will often write =+, or ≤∗ where we mean ±O(1).

I A string σ is N-random iff CN(σ) ≥ |σ|.
I A machine U is called weakly universal iff for all N, there is

a d such that for all σ, CU(σ) ≤ CN(σ) + d .
I Actually we will always use universal machines where the

e-th machine is coded in a computable way.
I They exist (Kolmogorov). Hence there is a notion of

Kolmogorov randomness for strings up to a constant.

I Proof: We can enumerate the Turing machines
{Me : e ∈ N}. Define

U(1e0σ) = Me(σ).

This particular coding gives C(τ) ≤ Me(τ) + e + 1.

I We will often write =+, or ≤∗ where we mean ±O(1).

I A string σ is N-random iff CN(σ) ≥ |σ|.
I A machine U is called weakly universal iff for all N, there is

a d such that for all σ, CU(σ) ≤ CN(σ) + d .
I Actually we will always use universal machines where the

e-th machine is coded in a computable way.
I They exist (Kolmogorov). Hence there is a notion of

Kolmogorov randomness for strings up to a constant.
I Proof: We can enumerate the Turing machines
{Me : e ∈ N}. Define

U(1e0σ) = Me(σ).

This particular coding gives C(τ) ≤ Me(τ) + e + 1.

I We will often write =+, or ≤∗ where we mean ±O(1).

I A string σ is N-random iff CN(σ) ≥ |σ|.
I A machine U is called weakly universal iff for all N, there is

a d such that for all σ, CU(σ) ≤ CN(σ) + d .
I Actually we will always use universal machines where the

e-th machine is coded in a computable way.
I They exist (Kolmogorov). Hence there is a notion of

Kolmogorov randomness for strings up to a constant.
I Proof: We can enumerate the Turing machines
{Me : e ∈ N}. Define

U(1e0σ) = Me(σ).

This particular coding gives C(τ) ≤ Me(τ) + e + 1.

I We will often write =+, or ≤∗ where we mean ±O(1).

DEFINITION
Thus we can define the plain Kolmogorov complexity of a
string σ as C(σ) for a fixed universal machine U.

I We can similarly do an oracle version of this and can
define C(x |y) as the Kolmogorov complexity of x given y .

I The unique string τ which first occurs of length C(σ) is
denoted by x∗ (really x∗C).

I Here are some basic facts about C-complexity:
(I) C(x , C(x)) =∗ C(x∗).
(I) C(x |x∗) = O(1)

(III) C(x , C(x)|x∗) =∗ C(x∗|C(x), x) = O(1).
(IV) C(xy) ≤ C(x , y) + O(1) where xy denotes the

concatenation of x and y and C(x , y) denotes C(〈x , y〉).

PLAIN COUNTING THEOREM

I The following is the basic fact that makes the theory work.

THEOREM (PLAIN COUNTING THEOREM-KOLMOGOROV)
|{τ : C(τ) ≤ |τ | − d}| ≤ O(1)2|τ |−d .

I Proof: pigeonhole principle.

DEFINITION (KOLMOGOROV)
We say that σ is C-random iff C(σ) ≥ |σ|.

COMPRESSION FUNCTIONS

I Thus plain complexity is a combinatorial fact

DEFINITION (NIES, STEPHAN TERWIJN)
We say that F : Σ∗ 7→ Σ∗ is a compression function if for all x
|F (x)| ≤ C(x) and F is 1-1.

I Note that the counting theorem works for compression
functions.

I Now we can form a Π0
1 class of compression functions. We

can apply then various basis Theorems, for instance, the
Low Basis Theorem.

I There is a infinite low set of C-random strings.
I In some sense this is the best you could hope for. The

collection of C-random strings is easily seen to be immune.

I Proof: We can use the recursion theorem to play part of
the universal machine, and lower the complexity of some
string the opponent enumerates as part of a c.e. subset of
the randoms.

COMPRESSION FUNCTIONS

I Thus plain complexity is a combinatorial fact

DEFINITION (NIES, STEPHAN TERWIJN)
We say that F : Σ∗ 7→ Σ∗ is a compression function if for all x
|F (x)| ≤ C(x) and F is 1-1.

I Note that the counting theorem works for compression
functions.

I Now we can form a Π0
1 class of compression functions. We

can apply then various basis Theorems, for instance, the
Low Basis Theorem.

I There is a infinite low set of C-random strings.
I In some sense this is the best you could hope for. The

collection of C-random strings is easily seen to be immune.
I Proof: We can use the recursion theorem to play part of

the universal machine, and lower the complexity of some
string the opponent enumerates as part of a c.e. subset of
the randoms.

C-OVERGRAPHS

I We can easily see that RC , the collection of C-randoms is
wtt complete.

I For each n, choose a length f (n) and, at each stage s point
at a string σ(n, s) which is Cs-random.

I Should σ(n, s) become nonrandom due to a play by our
opponent choose the next string of this length. Should we
see n enter ∅′ at s, we drops the complexity of σ(n, s).
(Here we use the recursion theorem)

KUMMER’S THEOREM

I It was a question whether RC could be tt-complete, so that
the reduction above was non-adaptive.

THEOREM (KUMMER)
RC and hence the overgraph MC = {(x , y) : C(x) < y} is
tt-complete.

I The proof is tricky and nonuniform. It used blocks instead
of the σ(n, s) above and is a conjunctive tt-reduction. The
nonuniformity comes from the combinatorics. A finite
number of tries occur for these blocks, but this will be
bounded and the number that occurs infinitely often is the
one.

MUCHNIK’S THEOREM

I The following is easier and along the same lines.
I Theorem (An. A. Muchnik) The conditional overgraph

M = {(x , y , n) : C(x |y) < n} is creative

I The proof. We need ∅′ ≤m M.
I Parameter d known in advance.
I Construct possible gx for x ∈ [1, 2d].
I Either we know z ∈ ∅′, or there is a unique y such that

gx(z) = (x , y , d) and x ∈ ∅′ iff gx(z) ∈ M.
I For some maximal x which enumerates elements infinitely

often, gx works.

I Construction, stage s + 1 For each active y ≤ s, find the
least q ∈ [1, 2p] with

(q, y , d) 6∈ Ms.

(Notice that such an x needs to exist since
{q : (q, y , d) ∈ M} < 2d .)
If q is new, ie (q′, y , d) ∈ Ms for all q′ < q, find the least z
with z 6∈ ∅′[s + 1] and define

gq(z) = (q, y , d).

I Now for any v , if v enters ∅′[s + 1], find the largest r , if any,
with gr (v) defined. If one exists Find ŷ with
gr (v) = (r , ŷ , d). Declare that ŷ is no longer active.

I Note that there must a largest x ≤ 2d such that
∃∞v(gx(v) ∈ M). Call this x . We claim that gx is the
required m-reduction. Work in stages after which gx+1
enumerates nothing into M.

I Given z, since gx is defined on infinitely many arguments
and they are assigned in order,we can go to a stage s
where either z has entered ∅′[s], or gx(z) becomes
defined, and gx(z) = (x , y , d) for some active y . gx(z) will
be put into M should z enter ∅′ after s.

I Note that there must a largest x ≤ 2d such that
∃∞v(gx(v) ∈ M). Call this x . We claim that gx is the
required m-reduction. Work in stages after which gx+1
enumerates nothing into M.

I Given z, since gx is defined on infinitely many arguments
and they are assigned in order,we can go to a stage s
where either z has entered ∅′[s], or gx(z) becomes
defined, and gx(z) = (x , y , d) for some active y . gx(z) will
be put into M should z enter ∅′ after s.

I There is a lot of very interesting work by Allender and
others about what is efficiently reducible to RC , and this
(apparently) relates to standard classes like PSPACE, NP,
etc. The point is that here the reductions are big.

I For instance, Allender, Buhrmann, Koucký look at the
hypothesis

PSPACE = ∩V PRV
C

(RV
C is RC for universal V .)

COMPLEXITY OSCILLATIONS

I Tempting but false C(xy) ≤ C(x) + C(y) + O(1). The false
argument says : concatenate the machines

I The problem is where does x∗ stop and y∗ begin.
I Martin-Löf showed that the formula always fails for long

enough srings and hence reals.

COMPLEXITY OSCILLATIONS

I Tempting but false C(xy) ≤ C(x) + C(y) + O(1). The false
argument says : concatenate the machines

I The problem is where does x∗ stop and y∗ begin.

I Martin-Löf showed that the formula always fails for long
enough srings and hence reals.

COMPLEXITY OSCILLATIONS

I Tempting but false C(xy) ≤ C(x) + C(y) + O(1). The false
argument says : concatenate the machines

I The problem is where does x∗ stop and y∗ begin.
I Martin-Löf showed that the formula always fails for long

enough srings and hence reals.

I Why? Take any α. Then, as a string α � n corresponds to
some number which we can interpret as a string using llex
ordering: α � n is the m-th string.

I Now consider the program that does the following. It takes
a strings ν, interprets its length mν = |ν| as a string,
σ = σm and outputs σν.

I Apply this to the string τ whose length is m th code of
α � n.

I The output would be much longer, and would be α � m + n,
with input having length m. Thus
C(α � m + n) < m + n −O(1).

I Why? Take any α. Then, as a string α � n corresponds to
some number which we can interpret as a string using llex
ordering: α � n is the m-th string.

I Now consider the program that does the following. It takes
a strings ν, interprets its length mν = |ν| as a string,
σ = σm and outputs σν.

I Apply this to the string τ whose length is m th code of
α � n.

I The output would be much longer, and would be α � m + n,
with input having length m. Thus
C(α � m + n) < m + n −O(1).

I Why? Take any α. Then, as a string α � n corresponds to
some number which we can interpret as a string using llex
ordering: α � n is the m-th string.

I Now consider the program that does the following. It takes
a strings ν, interprets its length mν = |ν| as a string,
σ = σm and outputs σν.

I Apply this to the string τ whose length is m th code of
α � n.

I The output would be much longer, and would be α � m + n,
with input having length m. Thus
C(α � m + n) < m + n −O(1).

I This phenomenom is fundamental in our understanding of
Kolmogorov complexity and is called complexity
oscillations.

I There are several known ways to get round this problem to
cause only to get the information provided by the bits of
the strings.

SYMMETRY OF INFORMATION

I The information content of a string y in a string x is
defined as

I(x : y) = C(y)− C(y |x).

I (Levin-Kolmogorov)

I(x : y) = I(y : x)±O(log n)

= I(y : x)±O(log C(x , y))

where n = max{|y |, |x |}.
I (restated) C(x , y) = C(x) + C(y |x) + O(log C(x , y))

UNIVERSAL COMPUTERS

I Levin, Gaćs, Chaitin, Schnorr.
I Computers have alphabet {0, 1}.
I A computer M is prefix-free if

(M(σ)↓ ∧ σ′) σ) ⇒ M(σ′)↑ .

I A prefix-free machine is universal if every other one is
coded in it.

I They exist, same proof.
I Building them uses what is now called Kraft-Chaitin.

KRAFT-CHAITIN

THEOREM (KRAFT, LEVIN, SCHNORR)

(I) If A is prefix-free then
∑

n∈A 2−|n| ≤ 1.
(II) (This part is now called Kraft-Chaitin, or Chaitin simulation) Let

d1, d2, · · · be a collection of lengths, possibly with
repetitions, Then Σ2−di ≤ 1 iff there is a prefix-free set A
with members σi and σi has length di . Furthermore from
the sequence di we can effectively compute the set A.

I (Restatement) Suppose that we are effectively given a set
of “requirements” 〈nk , σk 〉 for k ∈ ω with

∑
k 2−nk ≤ 1. Then

we can (primitive recursively) build a prefix-free machine M
and a collection of strings τk with |τk | = nk and M(τk) = σk .

PREFIX-FREE RANDOMESS

I Prefix freeness gets rid of the use of length as extra
information: Machines concatenate!

I The prefix-free complexity K (σ) of σ ∈ {0, 1}∗ is |τ | for the
shortest τ s.t. M(τ)↓= σ.

I Note now K (σ) ≤ |σ|+ K (|σ|) + d , about n + 2 log n, for
σ| = n.

I Build M, M(zσ) = σ if U(z) = |σ|.

K -COUNTING THEOREM

THEOREM (COUNTING THEOREM-CHAITIN)
|{σ : |σ| = n ∧ K (σ) ≤ n + K (n)− c}| ≤ O(1)2n+K (n)−c .

I The easiest proof uses semimeasures. A partial function
K̂ : 2<ω 7→ N such that

(I)
∑

σ∈2<ω 2−bK (σ) ≤ 1, and,

(II) {〈σ, k〉 : K̂ (σ) ≤ k} is c.e..
I There is a universal minimal one:

K̂ (x) = min
k≥0

{K̂k (x) + k + 1}.

K -COUNTING THEOREM

THEOREM (COUNTING THEOREM-CHAITIN)
|{σ : |σ| = n ∧ K (σ) ≤ n + K (n)− c}| ≤ O(1)2n+K (n)−c .

I The easiest proof uses semimeasures. A partial function
K̂ : 2<ω 7→ N such that

(I)
∑

σ∈2<ω 2−bK (σ) ≤ 1, and,

(II) {〈σ, k〉 : K̂ (σ) ≤ k} is c.e..

I There is a universal minimal one:

K̂ (x) = min
k≥0

{K̂k (x) + k + 1}.

K -COUNTING THEOREM

THEOREM (COUNTING THEOREM-CHAITIN)
|{σ : |σ| = n ∧ K (σ) ≤ n + K (n)− c}| ≤ O(1)2n+K (n)−c .

I The easiest proof uses semimeasures. A partial function
K̂ : 2<ω 7→ N such that

(I)
∑

σ∈2<ω 2−bK (σ) ≤ 1, and,

(II) {〈σ, k〉 : K̂ (σ) ≤ k} is c.e..
I There is a universal minimal one:

K̂ (x) = min
k≥0

{K̂k (x) + k + 1}.

I Using KC K is the same thing!
I Namely, at stage s, if we see Ks(σ) = k and

Ks+1(σ) = k ′ < k enumerate a Kraft-Chaitin axiom
〈2−(k ′+1), σ〉 to describe M, and hence generate K̂ = KM .

I Many proofs exploit the minimality of K .
I Strictly speaking, A discrete semimeasure is function

m : 2<ω 7→ R+ ∪ {0} such that∑
σ∈2<ω

m(σ) ≤ 1.

I NB Discrete Lebesgue measure is λ(σ) = 2−2|σ|−1.

I Let m denote the minimal universal discrete semimeasure.
Then

I K (σ) = − log m(σ) + O(1).

THE CODING THEOREM

I Let QD(σ) = µ(D−1(σ)), the probability tht σ is output.

THEOREM (LEVIN)
− log m(σ) = − log Q(σ) + O(1) = K (σ) + O(1).

I (Proof) Q(σ) ≥ 2−K (σ) = 2−|σ
∗|, since D(σ∗) = σ.

I So − log Q(σ) ≤ K (σ).
I But:

∑
2−logQ(σ) ≤

∑
σ Q(σ) ≤ 1.

I Now use minimality of K .
I (Remark) It is not hard to show that for any σ Q(σ) is

random.

I (Proof) Q(σ) ≥ 2−K (σ) = 2−|σ
∗|, since D(σ∗) = σ.

I So − log Q(σ) ≤ K (σ).

I But:
∑

2−logQ(σ) ≤
∑

σ Q(σ) ≤ 1.

I Now use minimality of K .
I (Remark) It is not hard to show that for any σ Q(σ) is

random.

I (Proof) Q(σ) ≥ 2−K (σ) = 2−|σ
∗|, since D(σ∗) = σ.

I So − log Q(σ) ≤ K (σ).
I But:

∑
2−logQ(σ) ≤

∑
σ Q(σ) ≤ 1.

I Now use minimality of K .

I (Remark) It is not hard to show that for any σ Q(σ) is
random.

I (Proof) Q(σ) ≥ 2−K (σ) = 2−|σ
∗|, since D(σ∗) = σ.

I So − log Q(σ) ≤ K (σ).
I But:

∑
2−logQ(σ) ≤

∑
σ Q(σ) ≤ 1.

I Now use minimality of K .
I (Remark) It is not hard to show that for any σ Q(σ) is

random.

AN APPLICATION

I One nice applications shows that within a fixed diameter
there are relatively few descriptions.

THEOREM (LEVIN, CHAITIN)
There is a constant d such that for all c and all σ,

|{ν : U(ν) = σ ∧ |ν| ≤ K (σ) + c}| ≤ d2c .

I The point here is that d is independent of |ν| and depends
only on the Recursion Theorem, and c

AN APPLICATION

I One nice applications shows that within a fixed diameter
there are relatively few descriptions.

THEOREM (LEVIN, CHAITIN)
There is a constant d such that for all c and all σ,

|{ν : U(ν) = σ ∧ |ν| ≤ K (σ) + c}| ≤ d2c .

I The point here is that d is independent of |ν| and depends
only on the Recursion Theorem, and c

SYMMETRY OF INFORMATION

I K (xy) ≤ K (x) + K (y) + O(1).

I Define I(x : y) = K (y)− K (y |x).

I Levin and Gács, Chaitin
I(〈x , K (x)〉 : y) = I(〈y , K (y)〉 : x) + O(1).

I (restated)
K (x , y) = K (x) + K (y |x∗) = K (x) + K (x |x , K (x)).

I The proof uses KC again. And the Coding Theorem.

PREFIX FREE RANDOMNESS

I Levin-Chaitin random K (x) ≥ |x |+ O(1).

I Strongly K (x) ≥ |x |+ K (|x |) + O(1).

I Strongly K-random implies C-random implies K-random.
I NO reversals (the first is nontrivial and due to Solovay)

I As with life, relationships here are complex (Solovay)

K (x) = C(x) + C(2)(x) +O(C(3)(x)).

and
C(x) = K (x)− K (2)(x) +O(K (3)(x)).

I These 3’s are sharp (Solovay) That is, for example,
K = C + C2 + C3 + O(C4) is NOT true.

I As with life, relationships here are complex (Solovay)

K (x) = C(x) + C(2)(x) +O(C(3)(x)).

and
C(x) = K (x)− K (2)(x) +O(K (3)(x)).

I These 3’s are sharp (Solovay) That is, for example,
K = C + C2 + C3 + O(C4) is NOT true.

I Is there a infinite low collection of strongly K-random
strings? Joe Miller showed that the set is not co-c.e..

THEOREM (AN A MUCHNIK)
There exist universal prefix-free machines V and U such that

(I) MV
K is tt-complete.

(II) MU
K (and hence R

U
K) is not tt-complete.

I The proof of (ii) is very interesting, using strategies for
finite games do diagonalize against tt-reductions.

I Thus, the overgraph may or may not be tt-complete
depending on the universal machine. Open for monotone
complexity, open for the nonrandoms.

MONOTONE COMPLEXITY

I Levin’s original idea here was to try to assign a complexity
to the real itself. That is, think of the complexity of the real
as the shortest machine that outputs the real. Hence now
we are thinking of machines that take a program σ and
might perhaps output a real α. (Nonsense unless α is
computable)

I The following definition can be applied to Turing machines
with potentially infinite output, and to discrete ones
mapping strings to strings. In this definition, we regard
M(σ) ↓ to mean that at some stage s, M(σ) ↓ [s].

MONOTONE COMPLEXITY

I Levin’s original idea here was to try to assign a complexity
to the real itself. That is, think of the complexity of the real
as the shortest machine that outputs the real. Hence now
we are thinking of machines that take a program σ and
might perhaps output a real α. (Nonsense unless α is
computable)

I The following definition can be applied to Turing machines
with potentially infinite output, and to discrete ones
mapping strings to strings. In this definition, we regard
M(σ) ↓ to mean that at some stage s, M(σ) ↓ [s].

I We say that a machine M is monotone if its action is
continuous. That is, for all σ � τ , if M(σ) ↓ and M(τ) ↓ then

M(σ) � M(τ).

I Levin’s (standard) monotone complexity Km is defined as
follows. Fix a universal monotone machine U.

Km(σ) = min{|τ | : σ � U(τ)}.

I If we only look at 2<ω then we get to Schnorr’s process
complexity.

I We say that a machine M is monotone if its action is
continuous. That is, for all σ � τ , if M(σ) ↓ and M(τ) ↓ then

M(σ) � M(τ).

I Levin’s (standard) monotone complexity Km is defined as
follows. Fix a universal monotone machine U.

Km(σ) = min{|τ | : σ � U(τ)}.

I If we only look at 2<ω then we get to Schnorr’s process
complexity.

CONTINUOUS SEMIMEASURES

I The coding theorem relates K to discrete semimeasures.
Here we would like an analog.

I Continuous semimeasures.
I A continuous semimeasure is a function

δ : [2<ω] 7→ R+ ∪ {0} satisfying
(I) δ([λ]) ≤ 1, and

(II) δ([σ]) ≥ δ([σ0]) + δ([σ1]).

I There is a minimal optimal continuous semimeasure δ.
(Actually δ([σ]) = 2−|σ|F (σ) where F is the optimal
supermartingale, for those who know.)

I KM(σ) = − log δ([σ]).

I The analog of the Coding Theorem would state KM = Km.
That is the probability that a string is output (KM) is the
same as its Kolmogorov complexity (Km). Note 2−Km(σ) is
a semimeasure.

I There is a minimal optimal continuous semimeasure δ.
(Actually δ([σ]) = 2−|σ|F (σ) where F is the optimal
supermartingale, for those who know.)

I KM(σ) = − log δ([σ]).

I The analog of the Coding Theorem would state KM = Km.
That is the probability that a string is output (KM) is the
same as its Kolmogorov complexity (Km). Note 2−Km(σ) is
a semimeasure.

GÁCS THEOREM

THEOREM (GÁCS)

(I) There exists a function f with lims f (s) = ∞, such that for
infinitely many σ,

Km(σ)− KM(σ) ≥ f (|σ|).

(II) Indeed, we may choose f to be the inverse of
Ackkermann’s function.

I This shows ≤Km is not the same as ≤KM . (Miller
observation). Is this true for c.e. reals?

I Find a reasonable proof of Gács Theorem. (Here
reasonable=one I can understand)

We turn from strings to looking at randomness for reals.

THREE VIEWS OF EFFECTIVE RANDOMNESS

1 Measure-Theoretical:
I Random means no distinguishing features. (Think of a

statistical test as generating a set of tests: considered as
open sets.)

I In effective terms:
- Avoids all effective sets of measure 0.

2 Algorithmic:
I Random means hard to describe, incompressible: e.g.

1010101010.... (10000 times) would have a short program.
I In effective terms:
I Initial segments have high Kolmogorov complexity.

3 Other views: e.g. random means unpredictable.
I No effective betting strategy succeeds on α.

RICHARD VON MISES:

I Actually, the first attempt to “define” randomness was by
von Mises 1919.

I Stochastic approach: α = a1a2 . . . , “select” some
subsequence assuming “acceptable” selection rules,

I say positions f (1) < f (2) . . . , then n →∞, the number of
af (i) = 1 divided by those with af (i) = 0 for i ≤ n should be
1.

I generalization of the law of large numbers.
I What are acceptable selection rules?

I Some problems (later). Solved by Martin-Löf who said we
should view effective statistical tests as effective null sets.

RICHARD VON MISES:

I Actually, the first attempt to “define” randomness was by
von Mises 1919.

I Stochastic approach: α = a1a2 . . . , “select” some
subsequence assuming “acceptable” selection rules,

I say positions f (1) < f (2) . . . , then n →∞, the number of
af (i) = 1 divided by those with af (i) = 0 for i ≤ n should be
1.

I generalization of the law of large numbers.
I What are acceptable selection rules?
I Some problems (later). Solved by Martin-Löf who said we

should view effective statistical tests as effective null sets.

MARTIN-LÖF RANDOMNESS:
I A c.e. open set is one of the form

⋃
i(qi , ri) where

{qi : i ∈ ω} and {ri : i ∈ ω} are c.e.. U = {[σ] : σ ∈ W}.
I A Martin-Löf test is a uniformly c.e. sequence U1, U2, . . . of

c.e. open sets s.t.

∀i(µ(Ui) ≤ 2−i).

(Computably shrinking to measure 0)

DEFINITION
α is Martin-Löf random if for every Martin-Löf test,

α /∈
⋂
i>0

Ui .

I (Solovay) same as for all c.e. sets of open intervals
{In : n ∈ ω}, with

∑
n |In| < ∞, α ∈ In for at most finitely

many n.

MARTIN-LÖF RANDOMNESS:
I A c.e. open set is one of the form

⋃
i(qi , ri) where

{qi : i ∈ ω} and {ri : i ∈ ω} are c.e.. U = {[σ] : σ ∈ W}.
I A Martin-Löf test is a uniformly c.e. sequence U1, U2, . . . of

c.e. open sets s.t.

∀i(µ(Ui) ≤ 2−i).

(Computably shrinking to measure 0)

DEFINITION
α is Martin-Löf random if for every Martin-Löf test,

α /∈
⋂
i>0

Ui .

I (Solovay) same as for all c.e. sets of open intervals
{In : n ∈ ω}, with

∑
n |In| < ∞, α ∈ In for at most finitely

many n.

UNIVERSAL TESTS

I Enumerate all c.e. tests, {We,j,s : e, j , s ∈ N}, stopping
should one threated to exceed its bound.

I Un = ∪e∈NWe,n+e+1.

I A passes this test iff it passes all tests. It is a universal
martin-Löf test. (Martin-Löf)

I There are other clever constructions we may need later.
(Kučera)

UNIVERSAL TESTS

I Enumerate all c.e. tests, {We,j,s : e, j , s ∈ N}, stopping
should one threated to exceed its bound.

I Un = ∪e∈NWe,n+e+1.

I A passes this test iff it passes all tests. It is a universal
martin-Löf test. (Martin-Löf)

I There are other clever constructions we may need later.
(Kučera)

UNIVERSAL TESTS

I Enumerate all c.e. tests, {We,j,s : e, j , s ∈ N}, stopping
should one threated to exceed its bound.

I Un = ∪e∈NWe,n+e+1.

I A passes this test iff it passes all tests. It is a universal
martin-Löf test. (Martin-Löf)

I There are other clever constructions we may need later.
(Kučera)

KOLMOGOROV COMPLEXITY, AGAIN

I From this point of view we should have all the initial
segments of a real to be random.

I (Can also use selected places and factor in the complexity
of the selection.)

I First try α, a real, is random iff for all n, C(α � n) ≥ n − d .

I By complexity oscillations (Martin-Löf) no such real can
exist. The reason as we have seen is that C lacks the
intentional meaning of Komogorov complexity.

K -RANDOMNESS

I Recall from earlier prefix freeness gets rid of the use of
length as extra information:

I α is K - random if there is a c s.t.

∀n(K (α � n) > n − c).

This happens if there is a c such that for infinitely many n,
C(α � n) > n − c.

SCHNORR’S THEOREM

THEOREM (SCHNORR)
K -random ⇐⇒ Martin-Löf random.

KRAFT-CHAITIN

I Recall from KC:
Suppose that we are effectively given a set of
“requirements” 〈nk , σk 〉 for k ∈ ω with

∑
k 2−nk ≤ 1. Then

we can (primitive recursively) build a prefix-free machine M
and a collection of strings τk with |τk | = nk and M(τk) = σk .

PROOF OF SCHNORR’S THEOREM

I =⇒ Suppose that α is not Martin-Löf random and α ∈ ∩iUi ,
with µ(Ui) ≤ 2−i .

I We use Kraft-Chaitin.
I Let n ≥ 3. For all strings σ in Un2 , enumerate the pair
|σ| − n, σ into B.

I By prefix-freeness, note that∑
B 2−n ≤

∑
n≥32−n(µ(Un2) ≤

∑
n≥3 2n−n2 ≤ 1.

I Thus by Kraft-Chaitin there is a machine M and strings
τn ∈ domM with M(τn) = σn and |τn| = |σ| − n. Since
α ∈ ∩nUn2 , this means that α is not Chaitin random.

I ⇐= Suppose that α is Martin-Löf random. Consider

Uk = {β : ∃n(K (β � n) ≤ n − k}.

Then µ(Uk) ≤ 2−k (as the domain of M is prefix-free) and
hence, as α 6∈ ∩K Uk , we are done.

K AND C

I Recall weakly Chaitin random string : K (x) > |x |.

COROLLARY (TO SCHNORR’S THEOREM)
For all c, there are infinitely many weakly K random strings σ
with C(σ) < |σ| − c.

I (Proof) Consider the initial segments of a random real and
C-oscillations.

I Actually with a more refied analysis of the complexity
oscillations, you can have C(x) ≤ n − log n.

LOTS OF RANDOM REALS

I µ{A : A random } = 1.
I Consider the Σ0

2 class {A : ∃k∀nK (A � n > n − k} contains
all random reals.

I Hence there are ones of low Turing degree (low basis
theorem) and hyperimmune free degree. (Kučera)

I There are ones of all jumps and even ∆0
2 ones of all jumps

(Kučera, Downey-Miller)

LEVIN AND MONOTONE COMPLEXITY

I Recall from that for a a universal monotone machine U.

Km(σ) = min{|τ | : σ � U(τ)}.

THEOREM (LEVIN’S THEOREM)
A is Martin-Löf random iff Km(A � n) > n −O(1).

I (One direction holds since every prefix-free machine is
monotone, the other we again put [σ] into Uk iff
KmM(σ) ≤ |σ| − k . where M is a universal monotone
machine, and

µ(Uk) =
∑

{2−|σ| : KM(σ) ≤ |σ| − k∧

∀τ ≺ σ(KM(τ) > |τ | − k)} ≤ 2−k .

I In fact A is Martin-Löf random iff Km(A � n) = n −O(1).

	Introduction
	Kolmogorov complexity for strings
	Plain complexity

	Prefix-free complexity
	Basics
	The coding theorem
	Symmetry of information
	Monotone and process complexity

