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THIS LECTURE:

I Basic Definitions
I Classical Motivations
I Basic Hardness results



WHAT’S IN THIS FOR ME?

I A mathematical idealization is to identify “Feasible” with P.
(I won’t even bother looking at the problems with this.)

I With this assumption, the theory of NP-hardness is an
excellent vehicle for mapping an outer boundary of
intractability, for all practical purposes.

I Indeed, assuming the reasonable current working
assumption that NTM acceptance is Ω(2n), NP-hardness
allows for practical lower bound for exact solution for
problems.

I A very difficult practical and theoretical problem is “How
can we deal with P?”.

I More importantly how can we deal with P − FEASIBLE ,
and map a further boundary of intractability.



I Lower bounds in P are really hard to come by. But this
theory will alow you establish infeasibility for problems in P,
under a reasonable complexity hypothesis.

I Also it will indicate to you how to attack the problem if it
looks bad.

I It is thus both a positive and negative tool kit.



I’M DUBIOUS; EXAMPLE?

I Below is one application that points at why the
completeness theory might interest you.

I The great PCP Theorem of Arora et. al. allows us to show
that things don’t have PTAS’s on the assumption that
P6=NP.

I Some things actually do have PTAS’s. Lets look at a
couple taken from recent major conferences: STOC,
FOCS, SODA etc.



I Arora 1996 gave a O(n
3000

ε ) PTAS for EUCLIDEAN TSP

I Chekuri and Khanna 2000 gave a O(n12(log(1/ε)/ε8)) PTAS
for MULTIPLE KNAPSACK

I Shamir and Tsur 1998 gave a O(n22
1
ε −1)) PTAS for

MAXIMUM SUBFOREST

I Chen and Miranda 1999 gave a O(n(3mm!)
m
ε +1

) PTAS for
GENERAL MULTIPROCESSOR JOB SCHEDULING

I Erlebach et al. 2001 gave a O(n
4
π

( 1
ε2 +1)2( 1

ε2 +2)2
) PTAS for

MAXIMUM INDEPENDENT SET for geometric graphs.



I Deng, Feng, Zhang and Zhu (2001) gave a
O(n5 log1+ε(1+(1/ε))) PTAS for UNBOUNDED BATCH

SCHEDULING.
I Shachnai and Tamir (2000) gave a O(n64/ε+(log(1/ε)/ε8))

PTAS for CLASS-CONSTRAINED PACKING PROBLEM (3
cols).



Reference Running Time for a
20% Error

Arora (Ar96) O(n15000)

Chekuri and Khanna (CK00) O(n9,375,000)

Shamir and Tsur (ST98) O(n958,267,391)

Chen and Miranda (CM99) > O(n1060
)

(4 Processors)
Erlebach et al. (EJS01) O(n523,804)

Deng et. al (DFZZ01) O(n50)

Shachnai and Tamir (ST00) O(n1021570)

TABLE: The Running Times for Some Recent PTAS’s with 20% Error.



WHAT IS THE PROBLEM HERE?

I Arora (1997) gave a PTAS running in nearly linear time for
EUCLIDIAN TSP. What is the difference between this and
the PTAS’s in the table. Can’t we simply argue that with
more effort all of these will eventually have truly feasible
PTAS’s.

I The principal problem with the baddies is that these
algorithms have a factor of 1

ε (or worse) in their exponents.
I By analogy with the situation of NP completeness, we

have some problem that has an exponential algorithm.
Can’t we argue that with more effort, we’ll find a much
better algorithm? As in Garey and Johnson’s famous
cartoon, we cannot seem to prove a better algorithm. BUT
we prove that it is NP hard.



I Then assuming the working hypothesis that there is
basically no way to figure out if a NTM has an accepting
path of length n except trying all possibilities there is no
hope for an exact solution with running time significantly
better than 2n. (Or at least no polynomial time algorithm.)

I Moreover, if the PCP theorem applies,then using this basic
hypothesis, there is also no PTAS.



I In the situation of the bad PTAS’s the algorithms are
polynomial. Polynomial lower bound are hard to come by.

I It is difficult to apply classical complexity since the classes
are not very sensitive to things in P.

I Our idea in this case is to follow the NP analogy but work
within P.



I What parametric complexity has to offer:
I Then assume the working hypothesis that there is

basically no way to figure out if a NTM has an accepting
path of length k except trying all possibilities. Note that
there are Ω(nk ) possibilities. (Or at least no way to get the
“k ” out of the exponent or an algorithm deciding k -STEP

NTM,)



I One then defines the appropriate reductions from k -STEP

TURING MACHINE HALTING to the PTAS using k = 1
ε as a

parameter to argue that if we can “get rid” of the k from
the exponent then it can only be if the working hypothesis
is wrong.



EFFICIENT PTAS’S

I Even if you are only interested in “classical” problems you
would welcome a methodology that allows for “practical”
lower bounds in P, modulo a reasonable complexity
assumption.

I An optimization problem Π has an efficient P-time
approximation scheme e (EPTAS) if it can be approximated
to a goodness of (1 + ε) of optimal in time f (k)nc where c
is a constant and k = 1/ε.



BAGZAN, CAI-CHEN

I (without even the formal definition) (Bazgan (Baz95), also
Cai and Chen (CC97)) Suppose that Πopt is an
optimization problem, and that Πparam is the corresponding
parameterized problem, where the parameter is the value
of an optimal solution. Then Πparam is fixed-parameter
tractable if Πopt has an EPTAS.



I It is unknown if the PTAS’s in the table have EPTAS’s or
not.

I In this talk, I will give a tourist guide through the area or
parameterized complexity, making sure to mention a
number of applications like the above to “classical”
complexity.

I In this an the next talk, I would also like to highlight the way
that parameterized complexity allows for an extended
“dialog” with the problem at hand. (More on this soon).



I Others to use this technique include the following
I (Alekhnovich and Razborov (AR01)) Neither resolution not

tree-like resolution is automizable unless W [P] is
randomized FPT by a randomized algorithm with one-sided
error. (More on the hypothesis later)

I Frick and Grohe showed that towers of twos obtained from
general tractability results with respect to model checking
can’t be gotten rid of unless W [1] = FPT , again more later.



PARAMETERS

I Without even going into details, think of all the graphs you
have given names to and each has a relevant parameter:
planar, bounded genus, bounded cutwidth, pathwidth,
treewidth, degree, interval, etc, etc.

I Also nature is kind in that for many practical problems the
input (often designed by us) is nicely ordered.



TWO BASIC EXAMPLES

I VERTEX COVER
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k vertex cover? (Vertices
cover edges.)

I DOMINATING SET
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k dominating set? (Vertices
cover vertices.)



I VERTEX COVER is solvable by an algorithm O in time
f (k)|G|, a behaviour we call fixed parameter tractability,
(Specifically 1.4kk2 + c|G|, with c a small absolute
constant independent of k .)

I Whereas the only known algorithm for DOMINATING SET
is complete search of the possible k -subsets, which takes
time Ω(|G|k ).



BASIC DEFINITION(S)

I Setting : Languages L ⊆ Σ∗ × Σ∗.

I Example (Graph, Parameter).
I We say that a language L is fixed parameter tractable if

there is a algorithm M, a constant C and a function f such
that for all x , k ,

(x , k) ∈ L iff M(x) = 1 and

the running time of M(x) isf (k)|x |C .

I E.g. VERTEX COVER has C = 1. Vertex Cover has been
implemented and shown to be practical for a class of
problems arizing from computational biology for k up to
about 400 (Stege 2000, Dehne, Rau-Chaplin, Stege,
Taillon 2001) and n large.



I Keep in mind:an FPT language is in P “by the slice”, and
more: each k -slice is in the same polynomial time class
via the same machine.

I Let Lk denote the k -th slice of L and L(>m)
k denote

{〈x , k〉 : |x | > m}, the part of Lk from m onwards.
I (Cai, Chen Downey, Fellows; Flum and Grohe) L ∈ FPT iff

there is an algorithm M, a constant c, and a computable
function g such that M witnesses that

L(>g(k))
k ∈ DTIME(nc).

I e.g. For VERTEX COVER, g is about 2k .
I Can do this with other classes, such as LOGSPACE, etc.



DOES THIS MATTER?

I The table below illustrates why this might be interesting.

n = 50 n = 100 n = 150
k = 2 625 2,500 5,625
k = 3 15,625 125,000 421,875
k = 5 390,625 6,250,000 31,640,625
k = 10 1.9 × 1012 9.8 × 1014 3.7 × 1016

k = 20 1.8 × 1026 9.5 × 1031 2.1 × 1035

TABLE: The Ratio nk+1

2k n for Various Values of n and k



I Note that we are using arbitarily f (k) = 2k , and sometimes
we can do better. (Such as the case of VERTEX COVER)

I So the FPT is interesting since it works better than
complete search for problems where we might be
interested in small parameters but large input size.



REDUCTIONS AND INTRACTABILITY

I Natural basic hardness class: W [1]. Does not matter what
it is, save to say that the analog of Cook’s Theorem is
SHORT NONDETERMINISTIC TURING MACHINE
ACCEPTANCE
Instance: A nondeterministic Turing Machine M and a
positive integer k .
Parameter: k .
Question: Does M have a computation path accepting the
empty string in at most k steps?



I If one believes the philosophical argument that Cook’s
Theorem provides compelling evidence that SAT is
intractible, then one surely must believe the same for the
parametric intractability of SHORT NONDETERMINISTIC
TURING MACHINE ACCEPTANCE.

I Moreover, recent work has shown that if SHORT NTM is
fpt then n-variable 3SAT is in DTIME(2o(n))



I Given two parameterized languages L, L̂ ⊆ Σ∗ × Σ∗, say
L ≤FPT L̂ iff there are (computable) f , x 7→ x ′, k 7→ k ′ and a
constant c, such that for all x ,

(x , k) ∈ L iff (x ′, k ′) ∈ L̂,

in time f (k)|x |c .
I Lots of technical question still open here.



ANALOG OF COOK’S THEOREM

I Analog of Cook’s Theorem: (Downey, Fellows, Cai, Chen)
WEIGHTED 3SAT≡FTP SHORT NTM ACCEPTANCE.
WEIGHTED 3SAT

Input: A 3 CNF formula φ
Parameter: k
Question: Does φ has a satisfying assignment of Hamming
weigth k , meaning exactly k literals made true.



W-HIERARCHY

I Think about the usual poly reduction from SAT to 3SAT. It
takes a clause of size p, and turns it into many clauses of
size 3. But the weight control goes awry. A weight 4
assignment could go to anything.

I We don’t think WEIGHTED CNF SAT≤ftpWEIGHTED 3 SAT.
I Gives rise to a heirarchy:

W [1] ⊆ W [2] ⊆ W [3] . . . W [SAT ] ⊆ W [P] ⊆ XP.



I Example: W [1, s] ≡fpt Antimonotone W [1, s].
I W [1, s] is the problem based around weight k for circuits of

depth 2, and maximum fanin for the top Or gates of size 2.
(board) Specifically, W [1, s] are the problems fpt reducible
to weighted s-SAT.

I Red/Blue nonblocker: Input A Red/Blue bipartite graph
G = (VR ∪ VB = V , E).
Question is there a set of red vertices V ′ of size k , such
that each blue vertex has a neighbour not in V ′?

I Πu∈VBΣxi∈N[u]∩VR
xi .



I X is a boolean expressiuon in CNF of max clause size s.
I m clauses C1, . . . , Cm.
I Construct G = (VR ∪ VB, E) with a nonblocker of size 2k iff

X has a satisfying assignment of weight k .





I Theorem W [1, s] = W [1, 2] = Antimonotone W [1, 2].
I Given an antimonotone W [1, s] circuit C, we construct an

antimonotone W [1, 2] circuit such that W [1, s] has a weight
k accepting input iff C′ has a weight k ′ one where

k ′ = k2k +
s∑

i=2

(
k
i

)
I Let the input variable x [j], j = 1, . . . , n to C, create new

variables for each possible set of at most s and at least 2
of the x [i]’s. Let A1, . . . , Ap be the enumeration of all such
sets. These are the circuit inputs. Think of them as
variables v [i] representing Ai .

I Rearrange the circuit using these variables and
enforcement variables.



I For each top or gate g choose the correct Ai ’s for the input
lines to g in C, all negated of course.

I Now add an enforcement mechanism for consistency of
the v [i]. This is done by 2k copies of each of the x [j],
x [j , d ] : d = 1, . . . , 2k . Now write out the exponentially
many implications saying that the simulation is faithful.

I Details DF or see FG, for their approach using logic.



I CLIQUE is W [1]-complete as is INDEPENDENT SET.
I (DF, Cai and Chen) SHORT TURING MACHINE

ACCEPTANCE is W [1] complete.
I Generic reduction for hardness from CLIQUE. (write the

vertices on the tape and check in
(k

2

)
moves if they are

adjacent.) Membership is another generic simuation by a
circuit.



I XP has k -CAT AND MOUSE GAME and some other games ((DF99a)),
I W [P] has LINEAR INEQUALITIES, SHORT SATISFIABILITY, WEIGHTED CIRCUIT

SATISFIABILITY ((ADF95)) and MINIMUM AXIOM SET((DFKHW94)).
I Then there are a number of quite im portant problems from combinatorial pattern

matching which are W [t] hard for all t : LONGEST COMMON SUBSEQUENCE (k =
number of seqs.,|Σ|-two parameters) ((BDFHW95)), FEASIBLE REGISTER
ASSIGNMENT, TRIANGULATING COLORED GRAPHS, BANDWIDTH, PROPER
INTERVAL GRAPH COMPLETION ((BFH94)), DOMINO TREEWIDTH ((BE97)) and
BOUNDED PERSISTE NCE PATHWIDTH ((McC03)).

I W [2] include WEIGHTED {0, 1} INTEGER PROGRAMMING, DOMINATING SET
((DF95a)), TOURNAMENT DOMINATING SET ((DF95c)) UNIT LENGTH
PRECEDENCE CONSTRAINED SCHEDULING (hard) ((BF95)), SHORTEST
COMMON SUPERSEQUENCE (k )(hard) ((FHK95)), MAXIMUM LIKELIHOOD
DECODING (hard), WEIGHT DISTRIBUTION IN LINEAR CODES (hard), NEAREST
VECTOR IN INTEGER LATTICES (hard) ((DFVW99)), SHORT PERMUTATION
GROUP FACTORIZATION (hard).

I W [1] we have a collection including k -STEP DERIVATION FOR CONTEXT
SENSITIVE GRAMMARS, SHORT NTM COMPUTATION, SHORT POST
CORRESPONDENCE, SQUARE TILING ((CCDF96)), WEIGHTED q–CNF
SATISFIABILITY ((DF95b)), VAPNIK–CHERVONENKIS DIMENSION ((DEF93))
LONGEST COMMON SUBSEQUENCE (k , m = LENGTH OF COMMON SUBSEQ.)
((BDFW95)), CLIQUE, INDEPENDENT SET ((DF95b)), and MONOTONE DATA
COMPLEXITY FOR RELATIONAL DATABASES



A CASE STUDY: DATABASES

I (Chandra and Merlin, 77) the complexity of query
languages in the study of database theory.

I Vardi 1982 notes that classical complexity seemed wrong:
suggested evaluation of a query when the size of the query
was fixed as a function of the size of the database



I (Standard sort of problem) Input: A boolean query ϕ and a
database instance I.
Parameter: Some parameter of ϕ, such as the size of ϕ.
(or its complexity etc)
Problem: Evaluate ϕ in I.

I Yananakakis 1995 suggested that parameterized
complexity good framework to address this.

I (Downey-Fellows-Taylor, 95 Papadimitriou-Yannakakis 97)
The morning edition of the news is bad.

I Papadimitriou and Yannakakis systematically also looked
at other parameters such as bounding the number of
variables following ideas of Vardi (Va95). They looked at
positive queries, conjunctive queries, first order theories
and datalog ones and found them to be all W [1] hard and
at various levels of the W -hierarch y.

I Other analyses look at other parametric aspects and give
even more bad news. (e.g. Demri, Laroussinie and
Schnoebelen (DLS02).)



I You might well ask now, with “good” news like this provided
by parameterized complexity, what use is it? You could
argue that once we knew these problems were NP-hard
and likely PSPACE complete. Now we know that even
when you bound the obvious parameters then they are still
hard!

I One interpretation is that we should learn to live with this
by searching for new coping strategies



I The parametric point of view is to continue the dialog with
the problem. To cope by finding new, and maybe more
appropriate parameters.

I (Frick and Grohe (FrG02), Flum and Grohe (FG02a)) Let C
be a class of relational database instances such that
underlying graph of instances in C are any of the following
forms: bounded degree, bounded treewidth, bounded local
treewidth, planar or have an excluded minor. Then the
query evaluation problem for the relational calculus on C is
FPT.

I Frick and Grohe also looked at things beyong query
languages, such as XML and temporal logics such as LTL
and CTL∗ are used for specification languages for
automated verification, proving sometimes practical FPT
results.



I Notice that there are at least two ways to parameterize:
Parameterize the part of the problem you want to look at
and to parameterize the problem itself.

I This point of view makes this sometime a promise
problem. Input something, promise it is parameterized, and
ask questions about it.

I Some recent work “lowers the hardness barrier”; perhaps
giving better inapproximability results.



ETH

I The exponential time hypthesis is (ETH) n-variable
3-SATISFIABILITY is not solvable in DTIME(2o(n)).
(Impagliazzo Paturi and Zane.)

I This is seen an important refinement of P 6= NP that is
widely held to be true.

I it is related to FPT as we now see.



THE MINIMOB

I INPUT A parametrically minature problem QUESTION Is it
in the class
e.g. INPUT a graph G of size k log n
Does it have a vertex cover of size d?

I Get minivertex cover, mini Dominating set, Minisat etc.
I Core problem: minicircuitsat.
I Theorem: ( Chor, Fellows and Juedes , Downey et. al. )

The M[1] complete problems such as MIN-3SAT are in
FPT iff the exponential time hypothesis fails.

I That is, more or less, EPT is the “same” as M[1] 6= FPT .

I And now we have a method of demonstrating no good
subexponential algorithm; Show M[1] hardness.

I Fellows conjectures that PCP like techniques will show
M[1]=W[1] using randomized reductions



WHERE ELSE?

I We can formulate a notion of counting complexity and get
#W [1] (Flum and Grohe, McCartin). A sample theorem:

THEOREM (FG)
Counting k-cycles in a graph is #W [1]-complete. (The
existence problem is FPT, as we see next time.)



WHERE ELSE?

I Another area is approximation. Here we ask for an
algorithm which either says “no solution of size k ” or here
is one of size 2k (say).

I For example BIN PACKING is has to (k , 2k)-approx, but
k -INDEPENDENT DOMINATING SET has not approx of the
form (k , F (k)) for any computable F unless FPT = W [1].
(DFMccartin)



WHERE ELSE?

I EPT and bounded alternation. (Flum, Grohe and Weyer ) A
parameterized problem is in EPT iff it is solvable in time
20(k)|x |c .

I Partial formulation of an operator calculus such as BP
analog. (Downey, Fellows, Regan) (Moritz Meuller)
Unknown if analogs of, say, Toda’s Theorem holds.

I A few results on parameterized logspace, and even less on
parameterized PSPACE, except through game analogs.


