
Basic Parametric Complexity I: Positive
Techniques

Rod Downey
Victoria University

Wellington
Isaac Newton Institute, Cambridge

BCTCS April 2012

THIS LECTURE:

I Basic Definitions
I Classical Motivations
I Basic Positive Techniques

WHAT’S IN THIS FOR ME?

I A mathematical idealization is to identify “Feasible” with P
(polynomial time). (I won’t even bother looking at the
problems with this.)

I With this assumption, the theory of NP-hardness is an
excellent vehicle for mapping an outer boundary of
intractability, for all practical purposes.

I Indeed, assuming the reasonable current working
assumption that NTM acceptance is Ω(2n), NP-hardness
allows for practical lower bound for exact solution for
problems.

I A very difficult practical and theoretical problem is “How
can we deal with P?”.

I More importantly how can we deal with P − FEASIBLE ,
and map a further boundary of intractability.

I Lower bounds in P are really hard to come by. But this
theory will alow you establish infeasibility for problems in P,
under a reasonable complexity hypothesis.

I Also it will indicate to you how to attack the problem if it
looks bad.

I As we soon see, sensitizing the run times to parameters
allows the development of a distinctive and often useful
toolkit.

I In particular, focusing on the paramaters as a standard
attack method for practice can be systematized, and
sometimes even automated. More later this lecture.

I The theory equips us with both a positive and negative tool
kit.

I’M DUBIOUS; EXAMPLE?

I Below is one (negative) application that points at why the
completeness theory might interest you.

I The great PCP Theorem of Arora et. al. allows us to show
that things don’t have PTAS’s on the assumption that
P6=NP.

I Some things actually do have PTAS’s. Lets look at a
couple taken from recent major conferences: STOC,
FOCS, SODA etc.

I Arora 1996 gave a O(n
3000
ε) PTAS for EUCLIDEAN TSP

I Chekuri and Khanna 2000 gave a O(n12(log(1/ε)/ε8)) PTAS
for MULTIPLE KNAPSACK

I Shamir and Tsur 1998 gave a O(n22
1
ε −1)) PTAS for

MAXIMUM SUBFOREST

I Chen and Miranda 1999 gave a O(n(3mm!)
m
ε +1

) PTAS for
GENERAL MULTIPROCESSOR JOB SCHEDULING

I Erlebach et al. 2001 gave a O(n
4
π
(1
ε2

+1)2(1
ε2

+2)2
) PTAS for

MAXIMUM INDEPENDENT SET for geometric graphs.

I Deng, Feng, Zhang and Zhu (2001) gave a
O(n5 log1+ε(1+(1/ε))) PTAS for UNBOUNDED BATCH

SCHEDULING.
I Shachnai and Tamir (2000) gave a O(n64/ε+(log(1/ε)/ε8))

PTAS for CLASS-CONSTRAINED PACKING PROBLEM (3
cols).

REFERENCE RUNNING TIME FOR A
20% ERROR

ARORA (AR96) O(n15000)

CHEKURI AND KHANNA (CK00) O(n9,375,000)

SHAMIR AND TSUR (ST98) O(n958,267,391)

CHEN AND MIRANDA (CM99) > O(n1060
)

(4 PROCESSORS)
ERLEBACH ET AL. (EJS01) O(n523,804)

DENG ET. AL (DFZZ01) O(n50)

SHACHNAI AND TAMIR (ST00) O(n1021570)

TABLE: The Running Times for Some Recent PTAS’s with 20% Error.

WHAT IS THE PROBLEM HERE?

I Arora (1997) gave a PTAS running in nearly linear time for
EUCLIDIAN TSP. What is the difference between this and
the PTAS’s in the table. Can’t we simply argue that with
more effort all of these will eventually have truly feasible
PTAS’s.

I The principal problem with the baddies is that these
algorithms have a factor of 1

ε (or worse) in their exponents.
I By analogy with the situation of NP completeness, we

have some problem that has an exponential algorithm.
Can’t we argue that with more effort, we’ll find a much
better algorithm? As in Garey and Johnson’s famous
cartoon, we cannot seem to prove a better algorithm. BUT
we prove that it is NP hard.

I Then assuming the working hypothesis that there is
basically no way to figure out if a NTM has an accepting
path of length n except trying all possibilities there is no
hope for an exact solution with running time significantly
better than 2n. (Or at least no polynomial time algorithm.)

I Moreover, if the PCP theorem applies,then using this basic
hypothesis, there is also no PTAS.

I In the situation of the bad PTAS’s the algorithms are
polynomial. Polynomial lower bound are hard to come by.

I It is difficult to apply classical complexity since the classes
are not very sensitive to things in P.

I Our idea in this case is to follow the NP analogy but work
within P.

I What parametric complexity has to offer:
I Then assume the working hypothesis that there is

basically no way to figure out if a NTM has an accepting
path of length k except trying all possibilities. Note that
there are Ω(nk) possibilities. (Or at least no way to get the
“k ” out of the exponent or an algorithm deciding k -STEP

NTM,)

I One then defines the appropriate reductions from k -STEP

TURING MACHINE HALTING to the PTAS using k = 1
ε as a

parameter to argue that if we can “get rid” of the k from
the exponent then it can only be if the working hypothesis
is wrong.

EFFICIENT PTAS’S

I Even if you are only interested in “classical” problems you
would welcome a methodology that allows for “practical”
lower bounds in P, modulo a reasonable complexity
assumption.

I An optimization problem Π has an efficient P-time
approximation scheme e (EPTAS) if it can be approximated
to a goodness of (1 + ε) of optimal in time f (k)nc where c
is a constant and k = 1/ε.

BAGZAN, CAI-CHEN

I (without even the formal definition) (Bazgan (Baz95), also
Cai and Chen (CC97)) Suppose that Πopt is an
optimization problem, and that Πparam is the corresponding
parameterized problem, where the parameter is the value
of an optimal solution. Then Πparam is fixed-parameter
tractable if Πopt has an EPTAS.

I It is unknown if the PTAS’s in the table have EPTAS’s or
not.

I In this talk, I will give a tourist guide through the area
concentrating on the distinctive positive techniques which
have been developed.

I In this and the next talk, I would also like to highlight the
way that parameterized complexity allows for an extended
“dialog” with the problem at hand. (More on this soon).

I Others to use the hardness theory include the following
I (Alekhnovich and Razborov (AR01)) Neither resolution not

tree-like resolution is automizable unless W [P] is
randomized FPT by a randomized algorithm with one-sided
error. (More on the hypothesis later)

I Frick and Grohe showed that towers of twos obtained from
general tractability results with respect to model checking
can’t be gotten rid of unless W [1] = FPT , again more later.

PARAMETERS

I Without even going into details, think of all the graphs you
have given names to and each has a relevant parameter:
planar, bounded genus, bounded cutwidth, pathwidth,
treewidth, degree, interval, etc, etc.

I Also nature is kind in that for many practical problems the
input (often designed by us) is nicely ordered.

TWO BASIC EXAMPLES

I VERTEX COVER
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k vertex cover? (Vertices
cover edges.)

I DOMINATING SET
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k dominating set? (Vertices
cover vertices.)

I VERTEX COVER is solvable by an algorithm O in time
f (k)|G|, a behaviour we call fixed parameter tractability,
(Specifically 1.28kk2 + c|G|, with c a small absolute
constant independent of k .)

I Whereas the only known algorithm for DOMINATING SET
is complete search of the possible k -subsets, which takes
time Ω(|G|k).

I In the blow I will mostly talk for convenience about graphs.
I I could just as easily be talking about many other areas.
I In the Computer Journal alone, there is biological, artificial

intelligence, constraint satisfaction, geometric problems,
scheduling, cognitive science, voting, combinatorial
optimzation, phylogeny. Model check is the basis of
Flum-Grohe.

BASIC DEFINITION(S)

I Setting : Languages L ⊆ Σ∗ × Σ∗.
I Example (Graph, Parameter).
I We say that a language L is fixed parameter tractable if

there is a algorithm M, a constant C and a function f such
that for all x , k ,

(x , k) ∈ L iff M(x) = 1 and

the running time of M(x) isf (k)|x |C .
I E.g. VERTEX COVER has C = 1. Vertex Cover has been

implemented and shown to be practical for a class of
problems arizing from computational biology for k up to
about 7000 and n large.

I One example: Langston et. al. 2008 Innovative
computational methods for transcriptomic data analysis: A
case study in the use of FPT for practical algorithm design
and implementation. in The Computer Journal,
51(1):26–38, 2008.

I Keep in mind:an FPT language is in P “by the slice”, and
more: each k -slice is in the same polynomial time class
via the same machine.

I Let Lk denote the k -th slice of L and L(>m)
k denote

{〈x , k〉 : |x | > m}, the part of Lk from m onwards.
I (Cai, Chen Downey, Fellows; Flum and Grohe) L ∈ FPT iff

there is an algorithm M, a constant c, and a computable
function g such that M witnesses that

L(>g(k))
k ∈ DTIME(nc).

I e.g. For VERTEX COVER, g is about 2k .
I Can do this with other classes, such as LOGSPACE, etc.

OTHER POSSIBLE VERSIONS

GRAPH LINKING NUMBER :
K 6 has linking number 1.

K 3,3 has genus 1 by
putting all lines except
< b,2 > on a sphere
and < b,2 > on a handle.

d

e

ga

b

c

f

VERTEX COVER : Vertices cover edges.
Example: {c, f, b, e, h}.

K 3,3
GRAPH GENUS

a

b

c

a

b

c

1

2

3

1

2

3

FIGURE: Examples of FPT problems

DOES THIS MATTER?

I The table below illustrates why this might be interesting.

n = 50 n = 100 n = 150
k = 2 625 2,500 5,625
k = 3 15,625 125,000 421,875
k = 5 390,625 6,250,000 31,640,625
k = 10 1.9× 1012 9.8× 1014 3.7× 1016

k = 20 1.8× 1026 9.5× 1031 2.1× 1035

TABLE: The Ratio nk+1

2k n for Various Values of n and k

I Note that we are using arbitarily f (k) = 2k , and sometimes
we can do better. (Such as the case of VERTEX COVER)

I So the FPT is interesting since it works better than
complete search for problems where we might be
interested in small parameters but large input size.

POSITIVE TECHNIQUES

I Elementary ones
I Logical metatheorems
I Limits

KERNELIZATION

I I believe that the most important practical technique is
called kernelization.

I pre-processing, or reducing

KARSTEN WEIHE’S TRAIN PROBLEM

I TRAIN COVERING BY STATIONS

Instance: A bipartite graph G = (VS ∪ VT ,E), where the
set of vertices VS represents railway stations and the set of
vertices VT represents trains. E contains an edge
(s, t), s ∈ Vs, t ∈ VT , iff the train t stops at the station s.
Problem: Find a minimum set V ′ ⊆ VS such that V ′ covers
VT , that is, for every vertex t ∈ VT , there is some s ∈ V ′

such that (s, t) ∈ E .

WEIHE’S SOLUTION

I REDUCTION RULE TCS1:
Let N(t) denote the neighbours of t in VS. If N(t) ⊆ N(t ′)
then remove t ′ and all adjacent edges of t ′ from G. If there
is a station that covers t , then this station also covers t ′.

I REDUCTION RULE TCS2:
Let N(s) denote the neighbours of s in VT . If N(s) ⊆ N(s′)
then remove s and all adjacent edges of s from G. If there
is a train covered by s, then this train is also covered by s′.

I European train schedule, gave a graph consisting of
around 1.6 · 105 vertices and 1.6 · 106 edges.

I Solved in minutes.
I This has also been applied in practice as a subroutine in

practical heuristical algorithms.

THE IDEA

I Reduce the parameterized problem to a kernel whose size
depends solely on the parameter

I As compared to the classical case where this process is a
central heuristic we get a provable performance
guarantee.

I We remark that often the performance is much better than
we should expect especially when elementary methods are
used.

VERTEX COVER

I REDUCTION RULE VC1:
Remove all isolated vertices.

I REDUCTION RULE VC2:
For any degree one vertex v , add its single neighbour u to
the solution set and remove u and all of its incident edges
from the graph.

I Note (G, k)→ (G′, k − 1).
I (S. Buss) REDUCTION RULE VC3:

If there is a vertex v of degree at least k + 1, add v to the
solution set and remove v and all of its incident edges from
the graph.

I The result is a graph with no vertices of degree > k and
this can have a VC of size k only if it has < k2 many edges.

KERNELIZATION

DEFINITION (KERNELIZATION)
Let L ⊆ Σ∗ × Σ∗ be a parameterized language. Let L be the
corresponding pa rameterized problem, that is, L consists of
input pairs (I, k), where I is the main part of the input and k is
the parameter. A reduction to a problem kernel, or
kernelization, comprises replacing an instance (I, k) by a
reduced instance (I′, k ′), called a problem kernel, such that

(i) k ′ ≤ k ,
(ii) |I′| ≤ g(k), for some function g depending only on k ,

and
(iii) (I, k) ∈ L if and only if (I′, k ′) ∈ L.

The reduction from (I, k) to (I′, k ′) must be computable in time
polynomial in |I|.

A USELESS THEOREM

THEOREM (CAI, CHEN, DOWNEY AND FELLOWS)
L ∈ FPT iff L is kernelizable.

I Proof Let L ∈ FPT via a algorithm running in time nc .f (k).
Then run the algorithm which in time O(nc+1), which
eventaully dominates f (k)nc , either computes the solution
or understands that it is in the first g(k) many exceptional
cases. (“Eventually polynomial time”)

STRATEGIES FOR IMPROVING I: BOUNDED SEARCH

TREES

I Buss’s algorithm gives crudely a 2n + kk2
algorithm for

k -VC.
I Here is another algorithm: (DF) Take any edge e = v1v2.

either v1 or v2 is in any VC. Begin a tree T with first
children v1 and v2. At each child delete all edges covered
by the vi .

I repeat to depth k .
I Gives a O(2k · n) algorithm.
I Now combine the two: Gives a 2n + 2kk2 algorithm.

I It is worth remarking that there are problems notably FPT
by bounded search tree (type checking in ML) that are not
known to have polynomial size kernels, and some
“provably” don’t.

I Another easy example for bounded search trees is
PLANAR INDEPENDENT SET. (Start with a degree 5
vertex, branching rule of size 6)

PRUNING TREES AND CLEVER REDUCTION RULES

I If G has paths of degree 2, then there are simple reduction
rules to deal with them first. Thus we consider that G is of
min degree 3.
BRANCHING RULE VC2:
If there is a degree two vertex v in G, with neighbours w1
and w2, then either both w1 and w2 are in a minimum size
cover, or v together with all other neighbours of w1 and w2
are in a minimum size cover.

I Now when considering the kernel, for each vertex
considered either v is included or all of its neighbours (at
least) {p,q} are included.

I Now the tree looks different. The first child nodes are
labelled v or {p,q}, and on the right branch the parameter
drops by 2 instead of 1. or similarly with the wi case.

I Now the size of the search tree and hence the time
complexity is determined by some recurrence relation.

I many, many versions of this idea with increasingly
sophisticated reduction rules.

I This method has a 2005 (Fomin, Grandoni, Kratsch)
incarnation called measure and conquer where the
branching rules are given rational valued weights, and
decisions as to what to do are figured out by optimization.

I For example the best exact algorithm for SET COVER and
DOMINATING SET use this. (van Rooij-Bodlaender point
out that this can be used for algoritm design as well.)

I Jianer Chen and others use this in many FPT algorithms
such as the state of the art for FEEDBACK VERTEX SET
and VERTEX COVER.

SHRINK THE KERNEL

THEOREM (NEMHAUSER AND TROTTER (1975))
For an n-vertex graph G = (V ,E) with m edges, we can
compute two disjoint sets C′ ⊆ V and V ′ ⊆ V, in O(

√
n ·m)

time, such that the following three properties hold:

(i) There is a minimum size vertex cover of G that contains
C′.

(ii) A minimum vertex cover for the induced subgraph
G[V ′] has size at least |V ′|/2.

(iii) If D ⊆ V ′ is a vertex cover of the induced subgraph
G[V ′], then C = D ∪ C′ is a vertex cover of G.

THEOREM (CHEN ET AL. (2001))
Let (G = (V ,E), k) be an instance of K-VERTEX COVER. In
O(k · |V |+ k3) time we can reduce this instance to a problem
kernel (G = (V ′,E ′), k ′) with |V ′| ≤ 2k.

I The current champion using this approach is a O∗(1.286k)
(Chen01) The best is O∗(1.2745k)(Chen10 using this,
iterative compression, struction, measure and conquer,
and other methods).

I Here the useful O∗ notation only looks at the exponential
part of the algorithm.

2k CAN BE GOTTEN FROM IP RELAXATION

I For each v ∈ V we have a variable xv with values {0,1}.
VERTEX COVER is then :

(i) Minimize
∑

v∈V xv subject to
ii) xu + vv ≥ 1 for each uv ∈ E .

I The classical relaxation of this is to make it a linear
programming problem by having xv rational valued with
xv ∈ [0,1]. Asking that the values be in {0, 1

2 ,1}.

S1 = {v ∈ V | xv >
1
2
}

S 1
2

= {v ∈ V | xv =
1
2
}

S0 = {v ∈ V | xv <
1
2
}.

I There is a minimal sized (integral) VERTEX COVER S with
S1 ⊆ S ⊆ S1 t S 1

2
, S ∩ S0 = ∅ and there (G[S 1

2
], k − |S1|)

is a kernel of size at most 2k .

INTERACTIONS

I Now we can ask lots of questions. How small can the
kernel be?

I Notice that applying the kernelization to the unbounded
problem yields a approximation algorithm.

I Using the PCP theorem we know that no kernel can be
smaller that 1.36 k unless P=NP (Dinur and Safra) as no
better approximation is possible. Is this tight?

I Assuming the “Unique Games Conjecture” the 2k kernel is
tight (Khot etc).

I Actually we know that no O∗(1 + ε)k) algorithm is possible
unless ETH fails.

I ETH n-valued 3SAT is not in DTIME(2o(n)).

CROWN REDUCTION RULES

DEFINITION
A crown in a graph G = (V ,E) consists of an independent set
I ⊆ V and a set H containing all vertices in V adjacent to I.

I For example a degree 1 vertex and its neighbour is a
crown.

I For a crown I ∪ H in G, then we need at least |H| vertices
to cover all edges in the crown.

I REDUCTION RULE CR:
For any crown I ∪ H in G, add the set of vertices H to the
solution set and remove I ∪H and all of the incide nt edges
of I ∪ H from G.

I Shrinkage (G, k)→ (G′, k − |H|).

HOW TO USE CROWNS?

THEOREM (CHOR, FELLOWS, JUEDES (2004))
If a graph G = (V ,E) has an independent set V ′ ⊂ V such that
|N(V ′)| < |V ′|, then a crown I ∪H with I ⊆ V ′ can be found in G
in time O(n + m).

I Can get the crown: Take a maximal matching M of G. If
|M| > k say no. Else I = G −M is an independent set
(≤ k) , and then use bipartite matching to match I and its
neighbours. Combinatorial arguments show that this has a
submatching which is a crown. Delete and repeat.

I Other examples found in SIGACT News
Gou-Niedermeier’s survey on kernelization.

INTERLEAVING

I (Niedermeier and Rossmanith, 2000) showed that
iteratively combining kernelization and bounded search
trees often performs much better than either one alone or
one followed by the other.

I Begin a search tree, and apply kernelization, then continue
etc. Analysing the combinatorics shows a significant
reduction in time complexity, which is very effective in
practice.

AN EXAMPLE

I (NR) As an example, 3-HITTING SET (Given a collection of
subsets of size 3 from a set S find k elements of S which
hit the sets.) An instance (I, k) of this problem can be
reduced to a kernel of size k3 in time O(|I|), and the
problem can be solved by employing a search tree of size
2.27k . Compare a running time of O(2.27k · k3 + |I|)
(without interleaving) with a running time of O(2.27k + |I|)
(with interleaving).

I Interesting and not yet developed generalization due to
Abu-Khzam 2007 uses pseudo-kernelization. (TOCS,
October 2007)

ITERATIVE COMPRESSION

I Reed, Smith and Vetta 2004. For the problem of “within k
of being bipartite” (by deletion of edges).

DEFINITION (COMPRESSION ROUTINE)
A compression routine is an algorithm that, given a problem
instance I and a solution of size k , either calculates a smaller
solution or proves that the given solution is of minimum size.

AN EXAMPLE, VC AGAIN!

I (G = (V ,E), k), start with V ′ = ∅, and (solution) C = ∅.
I Add a new vertex v to both V ′ and C,

V ′ ← V ′ ∪ {v}, C ← C ∪ {v}.
I Now call the compression routine on the pair (G[V ′],C),

where G[V ′] is the subgraph induced by V ′ in G, to obtain
a new solution C′. If |C′| > k then we output NO, otherwise
we set C ← C′.

I If we successfully complete the nth step where V ′ = V , we
output C with |C| ≤ k . Note that C will be an optimal
solution for G. (Algo runs in time O(2kmn).)

I This was forst successflly applied by Reed, Smith, Vetta to
GRAPH BIPARTITIZATION. The algorithm is similar,
building a minimal bipartitization at each step and using
what we can call acceptable partitions for the search step.

I The best now is O∗(3.83k), and it works better with
algorithm engineering (Gray Codes, tree pruning) with
(e.g.) biological data Hüffner 2004.

I it is a crucial step for the best two algorithms for VERTREX
COVER (Chen, Kanj, Xia 2010, O∗(1.2745k) and
FEEDBACK VERTEX SET (Can I remove k verteices and
get a acyclic graph?) (Cao, Chen, Liu, 2009).

PRACTICE

I I remark that in practice these methods work much better
than we might expect.

I Langston’s work with irradiated mice, ETH group in Zurich,
Karesten Weihe

I See The Computer Journal especially articles by Langston
et al.

LESS PRACTICAL ALGORITHMS

I In what follows we look at algorithms that in general seem
less practical but can sometimes work in practice.

COLOUR CODING

I K-SUBGRAPH ISOMORPHISM

Instance: G = (V ,E) and a graph H = (V H ,EH) with
|V H | = k .
Parameter: A positive integer k (or V H).
Question: Is H isomorphic to a subgraph in G?

I Idea: to find the desired set of vertices V ′ in G, isomorphic
to H, we randomly colour all the vertices of G with k
colours and expect that there is a colourful solution; all the
vertices of V ′ have different colours.

I G uniformly at random with k colors, a set of k distinct
vertices will obtain different colours with probability
(k !)/kk . This probability is lower-bounded by e−k , so we
need to repeat the process ek times to have high
probability of obtaining the required colouring.

DERANDOMIZATION

I We need a list of colorings of the vertices in G such that,
for each subset V ′ ⊆ V with |V ′| = k there is at least one
coloring in the list by which all vertices in V ′ obtain different
colors.

DEFINITION (k -PERFECT HASH FUNCTIONS)
A k -perfect family of hash functions is a family H of functions
from {1,2, ...,n} onto {1,2, ..., k} such that, for each
S ⊂ {1,2, ...,n} with |S| = k , there exists an h ∈ H such that h
is bijective when restricted to S.

THEOREM (ALON ET AL. (1995))
Families of k-perfect hash functions from {1,2, ...,n} onto
{1,2, ..., k} can be constructed which consist of 2O(k) · log n
hash functions. For such a hash function, h, the value h(i),
1 ≤ i ≤ n, can be computed in linear time.

AN EXAMPLE

I k -PATH

I For each colouring h, we check every ordering
c1, c2, . . . , ck of the k colours to decide whether or not it
realizes a k -path. We first construct a directed graph G′ as
follows:
For each edge (u, v) ∈ E , if h(u) = ci and
h(v) = ci+1(mod k) for some i , then replace (u, v) with arc
〈u, v〉, otherwise delete (u, v).
In G′, for each v with h(v) = c1, we use a breadth first
search to check for a path C from v to v of length k .

I 2O(k) · log |V | colourings, and k ! orderings. k -path in time
O(k · |V |2).

BOUNDED WIDTH METRICS

I Graphs constructed inductively. Treewidth, Pathwidth,
Branschwidth, Cliquewidth mixed width etc. k -Inductive
graphs, plus old favourites such as planarity etc, which can
be viewed as local width.

I Example:

DEFINITION
[Tree decomposition and Treewidth] Let G = (V ,E) be a graph.
A tree decomposition, TD, of G is a pair (T ,X) where
1. T = (I,F) is a tree, and
2. X = {Xi | i ∈ I} is a family of subsets of V , one for each node
of T , such that

(i)
⋃

i∈I Xi = V ,
(ii) for every edge {v ,w} ∈ E , there is an i ∈ I with

v ∈ Xi and w ∈ Xi , and
(iii) for all i , j , k ∈ I, if j is on the path from i to k in

T , then Xi ∩ Xk ⊆ Xj .

I This gives the following well-known definition.

DEFINITION
The width of a tree decomposition ((I,F), {Xi | i ∈ I}) is
maxi∈I |Xi | − 1. The treewidth of a graph G, denoted by tw(G), is
the minimum width over all possible tree decompositions of G.

THE CANONICAL METHOD

I The following refers to any of these inductively defined
graphs families. Notes that many commercial constructions
of, for example chips are inductively defined.

1. Find a bounded-width tree (path) decomposition of the input
graph that exhibits the underlying tree (path) structure.

2. Perform dynamic programming on this decomposition to
solve the problem.

AN EXAMPLE FOR INDEPENDENT SET

e

hgi

egh

egdegh

egfce

abc

a b

c
d

f

g

ih

∅ a b c ab ac bc abc
0 1 1 1 2 - - -

BODLAENDER’S THEOREM

I The following theorem is shows that treewidth is FPT.
Improves many earlier results showing this. The constant
is about 235k3

.

THEOREM (BODLAENDER)
k-TREEWIDTH is linear time FPT

I Not practical because of large hidden O term.
I Unknown if there is a practical FPT treewidth algorithm
I Nevertheless approximation and algorithms specific to

known decomps run well at least sometimes.

LINEAR INTEGER PROGRAMMING

I There have been some (at least theortical) applications on
IP with bounded variables.

THEOREM (LENSTRA)
Integer programming feasibility can be solved with O(p

9p
2 L)

arithmetical operations in integers of O(p
9p
2 L) bits where p is

the number of input variables and L is the number of input bits
for the LIP instance.

I I don’t know much about this but you can look at Rolf
Niedermeier’s book (Invitation to Fixed Parameter
Algorithms)

I Mostly impractical.

METATHEOREMS

I (First order Logic)

1. Atomic formulas: x = y and R(x1, ..., xk), where R is a
k -ary relation symbol and x , y , x1, ..., xk are individual
variables, are FO-formulas.

2. Conjunction, Disjunction: If φ and ψ are FO-formulas,
then φ ∧ ψ is an FO-formula and φ ∨ ψ is an FO-formula.

3. Negation: If φ is an FO-formula, then ¬φ is an FO-formula.
4. Quantification: If φ is an FO-formula and x is an individual

variable, then ∃x φ is an FO-formula and ∀x φ is an
FO-formula.

I Eg We can state that a graph has a clique of size k using
an FO-formula,

∃x1...xk
∧

1≤i≤j≤k

E(xi , xj)

MONADIC SECOND ORDER LOGIC

I Two sorted structure with variables for sets of objects.
I 1. Additional atomic formulas: For all set variables X and

individual variables y , Xy is an MSO-formula.
2. Set quantification: If φ is an MSO-formula and X is a set

variable, then ∃X φ is an MSO -formula, and ∀X φ is an
MSO-formula.

I Eg k -col

∃X1, , , ∃Xk

(
∀x

k∨
i=1

Xix∧∀x∀y
(

E(x , y)→
k∧

i=1

¬(Xix∧Xiy)
))

MODEL CHECKING

I Instance: A structure A ∈ D, and a sentence (no free
variables) φ ∈ Φ.
Question: Does A satisfy φ?

I PSPACE-complete for FO and MSO.

COURCELLE’S AND SEESE’S THEOREMS

THEOREM (COURCELLE 1990)
The model-checking problem for MSO restricted to graphs of
bounded treewidth is linear-time fixed-parameter tractable.
Detleef Seese has proved a converse to Courcelle’s theorem.

THEOREM (SEESE 1991)
Suppose that F is any family of graphs for which the
model-checking problem for MSO is decidable, then there is a
number n such that, for all G ∈ F , the treewidth of G is less
than n.

LOCAL TREEWIDTH

I ltw(G)(r) = max {tw(Nr (v)) | v ∈ V (G)} where Nr (v) is
the neighbourhood of radius r about v .

I A class of graphs C = {G : G ∈ D} has bounded local
treewidth if there is a function f : N→ N such that, for
r ≥ 1, ltw(G)(r) ≤ f (r)i, for all G ∈ C.

I Examples Bounded degree, bounded treewidth, bounded
genus, excluding a minor

THE FRICK GROHE THEOREM

THEOREM (FRICK AND GROHE 1999)
Parameterized problems that can be described as
model-checking problems for FO are fixed-parameter tractable
on classes of graphs of bounded local treewidth.
For example DOMINATING SET, INDEPENDENT SET, or
SUBGRAPH ISOMORPHISM are FPT on planar graphs, or on
graphs of bounded degree

MORE EXOTIC METHODS

I minor ordering

E

BA

E

DC

G

H

C D

B

A

I Robertson-Seymour Finite graphs are WQO’s under minor
ordering. H ≤minor G is O(|G|3) FPT for a fixed H.

I THEOREM (MINOR-CLOSED MEMBERSHIP)
If F is a minor-closed class of graphs then membership of a
graph G in F can be determined in time O(f (k) · |G|3), where k
is the collective size of the graphs in the obstruction set for F .

I Likely I won’t have time to discuss what this means but see
DF for more details.

OTHER WORK

I There has been a lot of recent work exploring the bad
behaviour of the algorithms generated by the
metatheorems

I Including work by Grohe and co-authors showing that the
iterated exponentials cannot be gottent rid of unless P=NP
or FPT=W[1] in the MSO case and the local treewidth case
respectively.

I Including work of Bodlaender, Downey, Fellows, and
Hermelin showing that unless the polynomial time
hierarchy collapses no small kernels for e.g. treewidth, and
a wide class of problems.

I Still much to do.

SOME QUESTIONS

I Commercially many things are solved using SAT solvers.
Why do they work. What is the reason that the instances
arizing from real life behave well?

I How to show no reasonable FPT algorithm uaing some
assumption?

I Develop a reasonable randomized version, PCP, etc. This
is the “hottest” area in TCS yet not really developed in
parameterized complexity. (Moritz Meuller has some nice
work here)

SOME REFERENCES

I Parameterized Complexity, springer 1999 DF
I Invitation to Parameterized Algorithms, 2006 Niedermeier,

OUP
I Parameterized Complexity Theory, 2006, Springer Flum

and Grohe
I Theory of Computing Systems, Vol. 41, October 2007
I Parameterized Complexity for the Skeptic, D, proceedings

CCC, Aarhus, (see my homepage)
I The Computer Journal, (ed Downey, Fellows, Langston)
I Confronting intractability via parameters, Downey Thilikos,

Computing Reviews
I Fundamentals of Parameterized Complexity,

Downey-Fellows, this year.

WHAT SHOULD YOU DO?

I You should buy that wonderful book...(and its friends)
I Thank You

