Degree Classes via Approximations; and Applications

Rod Downey Victoria University Wellington New Zealand

Madison, June 2010

THANKS

- Support from the University of Chicago.
- Supported by the Marsden Fund of New Zealand.
- Support from the FRG Grant.
- My mother without whom this would have been possible

REFERENCES

- Main project joint work with Noam Greenberg
- Totally ω-computably enumerable degrees and bounding critical triples (with Noam Greenberg and Rebecca Weber) *Journal of Mathematical Logic*, Vol. 7 (2007), 145 - 171.
- Totally < ω^ω-computably enumerable degrees and *m*-topped degrees, Proceedings *TAMC 2006*.
- Finite Randomness, with Paul Brodhead and Keng meng Ng, in prep
- Working with strong reducibilities above totally ω-c.e. degrees, (with George Barmpalias and Noam Greenberg) *Transactions of the American Mathematical Society*, Vol. 362 (2010), 777-813.
- Some new natural definable degree classes.
- Hierarchies of definable degrees. (tentative title)

MOTIVATION

- Understanding the dynamic nature of constructions, and definability in the natural structures of computability theory such as the computably enumerable sets and degree classes.
- Beautiful examples: (i) definable solution to Post's problem of Harrington and Soare
 (ii) definability of the double jump classes for c.e. sets of Cholak and Harrington

- (iii) (Nies, Shore, Slaman) Any relation on the c.e. degrees invariant under the double jump is definable in the c.e. degrees iff it is definable in first order arithmetic.
- The proof of (i) and (ii) come from analysing the way the automorphism machinery fails. (ii) only gives L_{ω1,ω} definitions.

NATURAL DEFINABILITY

- This work is devoted to trying to find "natural" definitions.
- For instance, the NSS Theorem involves coding a standard model of arithmetic into the c.e. degrees, using parameters, and then dividing out by a suitable equivalence relation to get the (absolute) definability result.
- As atriculated by Shore, we seek natural definable classes as per the following.

• A c.e. degree **a** is promptly simple iff it is not cappable. (Ambos-Spies, Jockusch, Shore, and Soare) (Downey and Lempp) A c.e. degree a is contiguous iff it is locally distributive, meaning that

$$\begin{aligned} \forall \mathbf{a}_1, \mathbf{a}_2, \mathbf{b}(\mathbf{a}_1 \cup \mathbf{a}_2 = \mathbf{a} \land \mathbf{b} \leq \mathbf{a} \rightarrow \\ \exists \mathbf{b}_1, \mathbf{b}_2(\mathbf{b}_1 \cup \mathbf{b}_2 = \mathbf{b} \\ \land \mathbf{b}_1 \leq \mathbf{a}_1 \land \mathbf{b}_2 \leq \mathbf{a}_2)), \end{aligned}$$

holds in the c.e. degrees.

• (Ambos-Spies and Fejer) A c.e. degree **a** is contiguous iff it is not the top of the non-modular 5 element lattice in the c.e. degrees.

- (Downey and Shore) A c.e. truth table degree is low₂ iff it has no minimal cover in the c.e. truth table degrees.
- (Ismukhametov) A c.e. degree is array computable iff it has a strong minimal cover in the degrees.

SECOND MOTIVATION: UNIFICATION

- It is quite rare in computability theory to find a single class of degrees which capture precisely the underlying dynamics of a wide class of apparently similar constructions.
- Example: promptly simple degrees again.
- Martin identified the high c.e. degrees as the ones arizing from dense simple, maximal, hh-simple and other similar kinds of c.e. sets constructions.
- K-trivials and lots of people, especially Nies and Hirschfeldt.

- Our inspiration was the the array computable degrees.
- These degrees were introduced by Downey, Jockusch and Stob
- This class was introduced by those authors to explain a number of natural "multiple permitting" arguments in computability theory.

 Definition: A degree **a** is called array noncomputable iff for all functions *f* ≤_{wtt} Ø' there is a a function *g* computable from **a** such that

$$\exists^{\infty} x(g(x) > f(x)).$$

- Looks like "non-low₂."
- Indeed many nonlow₂ constructions can be run with only the above. For example, every anc degree bounds a generic.

- c.e. anc degree are those that:
- (Kummer) Contain c.e. sets of infinitely often maximal Kolmogorov complexity
- (Downey, Jockusch, and Stob) bound disjoint c.e. sets *A* and *B* such that every separating set for *A* and *B* computes the halting problem
- (Cholak, Coles, Downey, Herrmann) The array noncomputable c.e. degrees form an invariant class for the lattice of Π⁰₁ classes via the thin perfect classes

THE FIRST CLASS

(Downey, Greenberg, Weber) We say that a c.e. degree a is totally ω-c.e. iff for all functions g ≤_T a, g is ω-c.e.. That is, there is a computable approximation g(x) = lim_s g(x, s), and a computable function h, such that for all x,

$$|\{s: g(x,s) \neq g(x,s+1)\}| < h(x).$$

- array computability is a uniform version of this notion where *h* can be chosen independent of *g*.
- Every array computable degree (and hence every contiguous degree) is totally ω-c.e..

AND LATTICE EMBEDDINGS

- Lattice embedding into the c.e. degrees. (Lerman, Lachlan, Lempp, Solomon etc.)
- One central notion:
- (Downey, Weinstein) Three incomparable c.e. degrees a₀, b, a₁ form a weak critical triple iff a₀ ∪ b = a₁ ∪ b and there is a c.e. degree c ≤ a₀, a₁ with a₀ ≤ b ∪ c.
- **a**, **b**₀ and **b**₁ form a *critical triple* in a lattice *L*, if $\mathbf{a} \cup \mathbf{b}_0 = \mathbf{a} \cup \mathbf{b}_1$, $\mathbf{b}_0 \leq \mathbf{a}$ and for **d**, if $\mathbf{d} \leq \mathbf{b}_0$, \mathbf{b}_1 then $\mathbf{d} \leq \mathbf{a}$.
- A lattice *L* has a weak critical triple iff it has a critical triple.

• Critical triples attempt to capture the "continuous tracing" needed in an embedding of the lattice M_5 below, first embedded by Lachlan.

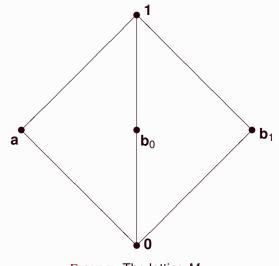


FIGURE: The lattice M₅

THEOREM (DOWNEY, WEINSTEIN)

There are initial segments of the c.e. degrees where no lattice with a (weak) critical triple can be embedded.

THEOREM (DOWNEY AND SHORE)

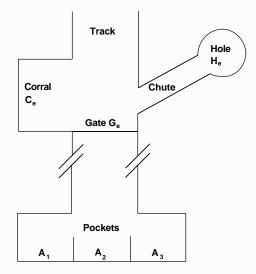
If **a** is non-low₂ then **a** bounds a copy of M_5 .

THEOREM (WALK)

Constructed a array noncomputable c.e. degree bounding no weak critical triple,

 and hence it was already known that array non-computability was not enough for such embeddings.

ANALYSING THE CONSTRUCTION



- $P_{e,i}: \Phi_e^A \neq B_i (i \in \{0, 1, 2\}, e \in \omega).$
- $N_{e,i,j}: \Phi_e(B_i) = \Phi_e(B_j) = f$ total implies f computable in A, $(i, j \in \{0, 1, 2\}, i \neq j, e \in \omega.)$
- Associate $H_{\langle e,i \rangle}$ with $P_{e,i}$ and gate $G_{\langle e,i,j \rangle}$ with $N_{e,i,j}$.

- Balls may be follower balls (which are emitted from holes), or trace balls.
- $x = x_{e,n}^{i}$. that x is a follower is targeted for A_{i} for the sake of requirement $P_{e,i}$ and is our n^{th} attempt at satisfying $P_{e,i}$.
- otherwise it is a trace ball: $t_{e,i,m}^{j}(x)$ which indicates it is targeted for B_{j} and is the m^{th} trace:
- at any stage *s* things look like: $x_{e,n}^{i}, t_{e,i,1}^{j_1}, t_{e,i,2}^{j_2}, \dots, t_{e,i,m}^{j_m}$
- The key observation of Lachlan was that a requirement $N_{e,i,j}$ is only concerned with entry of elements into both B_i and B_j between expansionary stages

- When a ball is sitting at a hole it either gets released or it gets a new trace.
- When released a 1-2 sequence, say, moves down together and then stops at the first unoccupied 1-2 gate. All but the last one are put in the corral. The last one is the lead trace.
- Here things need to go thru one ball at a time and we retarget the lead trace as a 1-3 sequence or a 2-3 sequence. The current last trace is targeted for 1 it is a 1-3 sequence, else a 2-3 sequence.

ONE GATE

- The notion of a critical triple is reflected in the behaviour of one gate. This can be made precise with a tree argument.
- We have a 1-2 sequence with all but the last in the corral.
- the last needs to get thru. It's traces while waiting will be a 2-3 sequence, say. (or in the case of a critical triple, a sequence with a trace and a trace for the middle set *A*).
- once it enters its target set, the the next comes out of corral and so forth.
- Now suppose that we want to do this below a degree **a**. We would have a lower gate where thru drop waiting for some permission by the relevant set *D*.
- We know that if **d** is not totally ω -c.e. then we have a function $g \leq_T D$, $\Gamma^D = g$ which is not ω -c.e. for any witness f.
- We force this enumeration to be given in a stage by stage manner $\Gamma^{D} = g[s]$.
- We ignore gratuituos changes by the opponent.

- Now we try to build a ω approximation to g to force D to give many permissions.
- thus, when the ball and its A-trace drop to the lower gate, then we enumerate an attempt at a ω-c.e. approximation to Γ^D(n)[s].
- This is repeated each time the ball needs some permission.

A CHARACTERIZATION

THEOREM (DOWNEY, GREENBERG, WEBER)

- (1) Suppose that **a** is totally ω -c.e.. Then **a** bounds no weak critical triple.
- (II) Suppose that a is not totally ω-c.e.. Then a bounds a weak critical triple.
- (III) Hence, being totally ω -c.e. is naturally definable in the c.e. degrees.

- The proof of (i) involves simulating the Downey-Weinstein construction enough and guessing nonuniformly at the ω -c.e. witness.
- The other direction is a tree argument simutaling the "one gate" scenario, as outlined.

A COROLLARY

• Recall, a set *B* is called superlow if $B' \equiv_{tt} \emptyset'$.

THEOREM (DOWNEY, GREENBERG, WEBER)

The low degrees and the superlow degrees are not elementarily equivalent. (Nies question)

- Proof: There are low copies of *M*₅.
- Also: Cor. (DGW) There are c.e. degrees that are totally ω-c.e. and not array computable.

OTHER SIMILAR RESULTS

THEOREM (DOWNEY, GREENBERG, WEBER)

A c.e. degree **a** is totally ω -c.e. iff there are c.e. sets A, B and C of degree \leq_T **a**, such that

- (I) $A \equiv_T B$
- (II) $A \not\leq_T C$
- (III) For all $D \leq_{wtt} A, B, D \leq_{wtt} C$.

• (Downey and Greenberg) Actually *D* can be made as the infimum.

PRESENTING REALS

- A real A is called left-c.e. if it is a limit of a computable non-decreasing sequence of rationals.
- (eg) $\Omega = \sum_{U(\sigma)\downarrow} 2^{-|\sigma|}$, the halting probability.
- A c.e. prefix-free set of strings $A \in 2^{<\omega}$ presents left c.e. real α if $\alpha = \sum_{\sigma \in A} 2^{-|\sigma|} = \mu(A)$.

THEOREM (DOWNEY AND LAFORTE)

There exist noncomputable left c.e. reals α whose only presentations are computable.

THEOREM (DOWNEY AND TERWIJN)

The wtt degrees of presentations forms a Σ_3^0 ideal. Any Σ_3^0 ideal can be realized.

THEOREM (DOWNEY AND GREENBERG)

The following are equivalent.

(I) **a** is anc

(II) **a** bounds a left c.e. real α and a c.e. set $B <_T \alpha$ such that if A presents α , then $A \leq_T B$.

A HIERARCHY

- Lets re-analyse the 1-3-1 example.
- With more than one gate then when it drops down, it needs to have the same consitions met.
- That is, for each of the *f*(*i*) many values *j* at the first gate there is some value *f*(*j*, *s*) at the second.
- This suggest ordinal notations.
- (Strong Notation) Notations in Kleene's sense, except that we ask that the notation for an ordinal is given by an effective Cantor Normal Form.
- There is no problem for the for ordinals below ϵ_0 , and such notations are computably unique.

- Now we can define for a notation for an ordinal O, a function to be O-c.e. in an analogous was as we did for ω -c.e..
- e.g. *g* is $2\omega + 3$ c.e., if it had a computable approximation g(x, s), which initially would allow at most 3 mind changes.
- Perhaps at some stage s_0 , this might change to $\omega + j$ for some j, and hence then we would be allowed j mind changes, and finally there could be a final change to some j' many mind changes.

All low₂.

• Analysing the 1-3-1 case, you realize that that construction needs at least ω^{ω} .

THEOREM (DOWNEY AND GREENBERG)

a is not totally $< \omega^{\omega}$ -c.e. iff **a** bounds a copy of M_5 .

- The proof in one way uses direct simulation of the pinball machine plus "not $< \omega^{\omega}$ " permissions, building functions at the gates. At gate *n* build at level ω^n for each P_e of higher peiority.
- In the reverse direction, we use level ω-nonuniform arguments where the inductive strategies are based on the failure of the previous level. Kind of like a level ω version of Lachlan non-diamond, using the Downey-Weinstein construction as a base.
- Corollary There are c.e. degrees that bound lattices with critical triples, yet do not bound copies of *M*₅.

ADMISSIBLE RECURSION

THEOREM (GREENBERG, THESIS)

Let $\alpha > \omega$ be admissible. Let **a** be an incomplete α -ce degree. TFAE.

- (1) **a** computes a counting of α
- (2) a bounds a 1-3-1
- (3) **a** bounds a critical triple.
 - Uses a theorem of Shore that if **a** computes a cofinal sequence iff it computes a counting. Then the weak critical triple machinery can actually have a limit. (Plus Maass-Freidman)

THEOREM (DOWNEY AND GREENBERG)

Let ψ be the sentence "**a** bounds a critical triple but not a 1-3-1" and let α be admissable. Then α satisfies ψ iff $\alpha = \omega$.

- This is the first natural difference between R_{ω} and $R_{\omega^{CK}}$.
- Differences in Greenberg's thesis are all about coding.

m-TOPPED DEGREES

Recall that a c.e. degrees a is called *m*-topped if it contains a c.e. set A such that for all c.e. W ≤_T A, W ≤_m A.

THEOREM (DOWNEY AND JOCKUSCH)

Incomplete ones exist, and are all low₂. None are low.

THEOREM (DOWNEY AND SHORE)

If **a** is a c.e. low_2 degree then there is an m-topped incomplete degree **b** > **a**.

THEOREM (DOWNEY AND GREENBERG)

Suppose that **b** is totally $< \omega^{\omega}$ -c.e. Then **a** bounds no m-topped degree.

- The point is that making an *m*-top is kind of like making Ø' on a tree: Phi_e^A = W_e implies W_e ≤_m A, with Φ_e^A ≠ B.
- (Downey and Greenberg) There is, however, a totally ω^{ω} degree that is an *m*-top, and arbitarily complex degrees that are not.

EXPLORING THE HIERARCHY

- Theorem (Downey and Greenberg) If n ≠ m then the classes of totally ωⁿ-c.e. and totally ω^m-degrees are distinct. Also there is a c.e. degree a which is not totally < ω^ω-c.e. yet is totally ω^ω-c.e..
- Also totally $< \omega^{\omega}$ not ω^{n} for any *n*.
- This is also true at limit levels higher up.

THEOREM (DOWNEY AND GREENBERG)

There are **maximal** (e.g.) totally ω -c.e. degrees. These are totally ω -c.e. and each degree above is **not** totally ω -c.e. degree.

- Thus they are another definable class.
- As are maximal totally $<\omega^{\omega}\text{-c.e.}$ degrees.

THEOREM (DOWNEY AND GREENBERG)

a is totally ω^2 -c.e. implies there is some totally ω -c.e. degree **b** below **a** with no critical triple embeddable in [**b**, **a**].

- Question: Are totally ω^n -c.e. degrees are all definable.
- Other assorted results about contiguity higher up.

THE PROMPT CASE

- What about zero bottom? It is posssible to get the infimum to be zero.
- (DG) For the classes C acove, we can define a notion of being promptly C then show that if a is such for the ω case, then it bound a critical triple with infumum 0.

etc.

NORMAL NOTATIONS?

THEOREM (DOWNEY AND GREENBERG)

Suppose that **a** is low₂. Then there is a notation \mathcal{O} relative to which **a** is totally ω^2 -c.e.

• Δ_3^0 nonuniform version of Epstein-Haass-Kramer/Ershov.

FINITE RANDOMNESS

- Replace tests by finite tests. Several variations.
- If no conditions then on Δ_2^0 reals MLR and finite random coincide.
- If the test {V_n : n ∈ ω} has |V_n| < g(n) for computable g, we say it is computably finitele random. (le if it passes all such tests.)

THEOREM (BRODHEAD, DOWNEY, NG)

The c.e. degrees **a** containing no such real are the totally ω -c.e. degrees.

• Compare with

THEOREM (DOWNEY AND GREENBERG)

The c.e. segrees containing sets of packing dimension 1 are exactly the anc degrees.

WORKING ABOVE SUCH DEGREES

 With George Barmpalias, Noam and I began to look at the effect of being able to compute such a degree, but with strong reducibilities.

THEOREM (BARMPALIAS, DOWNEY, GREENBERG)

Every set in (c.e.) **a** is wtt reducible to a ranked one iff every set in **a** is wtt reducible to a hypersimple set iff **a** is totally ω -c.e.

THEOREM (BARMPALIAS, DOWNEY, GREENBERG)

A computably enumerable **a** computes a pair of left c.e. reals with no upper bound in the cL degrees iff **a** computes a left c.e. real not cL reducible to a random left c.e. real iff **a** is anc.

CONCLUSIONS

- We have defined a new hierarchy of degree classes within low₂.
- This hierarchy unifies many constructions, and
- Provides new natural degree definable degree classes.
- Many questions remain. eg, is array computable definable in the degrees. Are these classes definable in the degrees?
- Can they be used higher up in relativized form, say?