The Finite Intersection Property and Computability Theory

Rod Downey Victoria University Wellington New Zealand

Joint with Diamondstone, Greenberg, Turetsky.

Harvard, November 2012

FIP

- One equivalent of the axiom of choice
- ▶ A family of sets $\mathcal{F} = \{A_i \mid \in Q\}$ has finite intersection property iff for all finite $F \subset Q$, $\cap_{i \in F} A_i \neq \emptyset$.
- ► The principal says: Any collection of sets has a maximal subfamily with FIP.
- ▶ We investigate the computability of this.
- ► First began by Dzharfarov and Mummert.

the family as set or a sequence ▶ If as a set then \emptyset' is easily codable into a sequence and the theorem is

▶ The first thing to notice is that it depends on whether you consider

- equivalent to ACA₀. (Namely, have a set $B = B_e$ such that it is initially empty, and if $e \in \emptyset'[s]$ henceforth intersect it with everything, so it must be included. \emptyset' can clearly figure things out.) ▶ Interesting if a sequence, so that A_1, A_2, A_3 is different from
- A_2, A_3, A_1 . ▶ Similarly \bar{D}_2 IP for for all pairs $A_i \cap A_i \neq \emptyset$. (DM notation)

Definition

Say that a is FIP iff for all computable collections of sets, a can compute a solut to the FIP problem.

A Basic Result

Theorem (Dzharfarov and Mummert)

There is a computable collection of sets with no c.e. subfamily with FIP. So $\mathbf{0}$ is not FIP, or even \bar{D}_2 IP.

- 1. Meet R_e : W_e is not an index for a maximal FIP family.
- 2. In the below I will use A_i, \ldots and X_e, B_i etc. Of course these are all the same and really are $W_{f(j)}$ for a computable f given by the s-m-n theorem, and I am really concerned with the index f(i). Also we will ensure that each nonzero set has a unique idetifier in it, so these are really streams of numbers under consiferderation.
- 3. Use a trap set X_e .
- **4**. Begin with A_0, A_1, \ldots Wait for W_e to respond.
- 5. Start intersecting X_e "in the back" . If W_e enumerates it win with finite injury.

If ${\bf a}$ is $\bar{D}_2 IP$ then it is hyperimmune. (i.e. not computably dominated for those under 35)

Theorem (Dzharfarov and Mummert)

If $\mathbf{a} \neq \mathbf{0}$ is c.e. then \mathbf{a} is FIP.

If a is \emptyset' -hyperimmune then it is FIP.

Theorem (Dzharfarov and Mummert)

Theorem (Dzharfarov and Mummert)

- ▶ The c.e. noncomputable case below $C \neq_{\mathcal{T}} \emptyset$.
- ▶ We are building $A_0, A_1, ... A_n$.
- ▶ We want to put some element B into this family (with truncation), as we have seen B intersect A_0, \ldots, A_j , the first position determined by B's index.
- ▶ We then place a permitting challenge to C. If later we see C permit j, we change the family to $A_0, \ldots A_j, B$.
- ▶ When B meets $A_{j+1}[s]$ place another challange on B.
- ▶ The \emptyset' -hyperimmune is because \emptyset' knows if we ever want to put things in, and infinitely often the C can decode this.
- It might seem that the c.e. case would also work for Δ_2^0 C, but it fails for a nonuniform reason.
- ▶ An earlier promise for a C-configuration might force some D_1 into the sequence which might be disjoint from the B we are attempting to put in. (board)

Theorem (DM)

There is a computable nontrivial family such that every maximal subfamily with \bar{D}_2 IP has hyperimmune degree.

(proof)[DDGT] We will define a computable family of the form

$$\{A_e^i : e \leq i\} \cup \{B_e : e \in \omega\}.$$

We will call sets A_e^i and B_e with subscript e "e-sets". We will ensure the following hold.

- \triangleright Every A_{\bullet}^{i} is nonempty.
- ▶ B_e is nonempty iff $\phi_e(e) \downarrow$, and contains only numbers larger than the stage when $\phi_e(e)$ converges.
- ▶ If $i \neq e$, then every nonempty e-set intersects every nonempty i-set.
- ▶ For all $i, j \ge e$, A_e^i intersects A_e^j .
- ▶ A_e^i intersects B_e iff $\phi_e(x) \downarrow$ for all $x \leq i + 1$. Moreover, the intersection only contains elements larger than the least stage s such that $\phi_e(x) \downarrow [s]$ for all $x \leq i + 1$.

We can assume the nonempty sets also code their indices, so that for every subfamily $\mathcal{C} = \{C_n \mid n \in \omega\}$ which does not contain the empty set, we can compute from C_n which set A_e^i or B_e is equal to C_n . Let \mathcal{C} be a maximal subfamily with \bar{D}_2 IP, and let \mathcal{C}_s denote $\{C_n \mid n \leq s\}$.

compute from C_n which set A_e^i or B_e is equal to C_n . Let $\mathcal C$ be a maximal subfamily with $\bar D_2$ IP, and let $\mathcal C_s$ denote $\{C_n \mid n \leq s\}$. Since $\mathcal C$ does not contain the empty set, for each e, if $B_e \notin \mathcal C$, then $A_e^i \in \mathcal C$ for every $i \geq e$, since A_e^i intersects every nonempty set in our family,

except perhaps B_e . Now if $\phi_e(x)$ is total, then B_e must be in the family. From the family, we can compute the least number q with $q \in B_e \cap A_i^x$ for $x \ge e$, and this will exceed $\phi_e(x)$. We need to make the function essentially coding this total whether or not ϕ_e is total.

Let g be defined by

$$g(x) = (\mu s) \forall e \leq i \leq x A_e^i \in C_s \lor B_e \in C_s.$$

Let f be defined by

$$f(x) = (\mu n) \forall i, j \leq g(x) \ C_i \cap C_j \cap [0, n] \neq \emptyset.$$

Observe that $f \leq_{\mathcal{T}} \mathcal{C}$.

We will show f is not majorized by any computable function. Suppose ϕ_e is total. Then every e-set intersects every nonempty set in the family we built, so the maximal subfamily $\mathcal C$ must contain B_e and every A_e^i . Let $x \geq e$ be minimal such that A_e^x appears after B_e in $\mathcal C$. We claim $f(x) > \phi_e(x)$. Notice g(x) bounds the position that B_e appears. If x = e, then $B_e \cap [0, f(x)]$ is nonempty and therefore $f(x) > \phi_e(e)$. If x > e, then g(x) also bounds the position A_e^{x-1} appears, and therefore $B_e \cap A_e^{x-1} \cap [0, f(x)]$ is nonempty. Thus $f(x) > \phi_e(x)$.

1-Generices, again

Theorem (DDGT)

If a bounds a 1-generic then a is FIP.

The main idea: Think about the proof that if \mathbf{a} is c.e. then it is FIP. If we want to add some B to A_0, A_1, \ldots , then we put up a permitting challenge to $\mathbf{a}a$ and if permission occurs slot B in, and truncate the family. If we need to add some B in then it will be dense in the construction so a permission occurs. For a 1-generic construction, for finite partial families, we will see such B occur and challenge generics to include B by the enumeration of a c.e. set of strings (thinking of sequences as strings, and the family as coding the generic). If this is dense then the generic will meet the condition.

In more detail:

Suppose that X is 1-generic. Let $\{A_n : n \in \omega\}$ be a nontrivial family of sets. Without loss of generality, we may assume $A_0 \neq \emptyset$. Given $f : \omega \to \omega$, we define a function g recursively as follows:

- pg(0) = 0
- Suppose we have defined g
 n. To define g(n+1), look for the least $m \le n+1$ different from $g(0) \dots g(n)$ such that $A_m \cap \bigcap_{x \le n} A_{g(x)}$ contains a number smaller than f(n+1). If there is such an m, define g(n+1)=m. Otherwise, define g(n+1)=0.

This defines a functional $\Psi: \omega^{\omega} \to \omega^{\omega}$. We define Ψ^{σ} for $\sigma \in \omega^{<\omega}$ in the usual way, noting that $|\Psi^{\sigma}| = |\sigma|$

In DDGT, we prove that if X is 1-generic, and if $g=\Psi^{p_X}$, where p_X is the principal function of X, then $\{A_{g(n)}:n\in\omega\}$ is a maximal subfamily of $\{A_n:n\in\omega\}$ with FIP.

By construction, for all N, $\bigcap_{n < N} A_{g(n)}$ is nonempty, as we only allow g to take a new value not already in its range when we see a witness to nonempty intersection. Thus the subfamily $\{A_{g(n)}: n \in \omega\}$ has FIP. Suppose it is not a maximal subfamily with FIP, and let m be minimal such that m is not in the range of g, but $\{A_m, A_{g(n)}: n \in \omega\}$ has FIP. Let

$$W = \{ \sigma : \exists n \, \Psi^{p_{\sigma}}(n) = m \}$$

where p_{σ} is the element of ω^k , where k is the number of 1s in σ , such that $p_{\sigma}(i)$ gives the position of the ith 1 in σ . Then no initial segment of X can be in W, since m is not in the range of g. However, every initial segment of X can be extended to an element of W. Let σ be an initial segment of X such that the range of $Y^{p_{\sigma}}$ contains every number less than m in the range of $Y^{p_{\sigma}}$ contains some $Y^{p_{\sigma}}$ contains every number $Y^{p_{\sigma}}$ contains some $Y^{p_{\sigma}}$ contains some

$$A_i \cap A_{j_1} \cap \ldots \cap A_{j_k} = \emptyset.$$

Such a σ exists by the minimality of m.

Now, for any initial segment τ of X extending σ ,

$$A_m \cap \bigcap_{n < |p_{\tau}|} A_{\Psi^{p_{\tau}}(n)} \neq \emptyset.$$

Therefore, extending τ by sufficiently many 0s followed by a 1 (such that the number of 0s bounds some element of this intersection) gives a string in W. This contradicts the 1-genericity of X.

The Δ_2^0 Case

Theorem (DDGT)

If X is Δ_2^0 and of FIP degree, then X computes a 1-generic.

The theorem is aided by the fact that there is a universal family.

Theorem (DDGT)

There is a computable instance of FIP named $\mathcal U$ which is universal in the sense that any maximal solution for $\mathcal U$ computes a maximal solution for every other computable instance of FIP. Further, this reduction is uniform—if $\mathcal A$ is a computable instance of FIP, then from an index for $\mathcal A$, one can effectively obtain an index for a reduction that computes a maximal solution for $\mathcal A$ from a maximal solution for $\mathcal U$. Thus FIP for $\mathcal U$ is Medvedev-above all other computable FIPs.

The idea for the proof is "intersect a lot, in a recoverable way."

The Δ_2^0 case

- ▶ Given Q of FIP degree, we build 1-generic $G \leq_{\mathcal{T}} Q$, and a family. (NB nonuniformity or use the recursion theorem)
- ▶ At some stage have X_0, X_1, \ldots and $G \leq_{\mathcal{T}} Q[s]$.
- ▶ Want to make G meet V_e , say. Use a auxiliary set $B = B_e$.
- ▶ Make it meet, say, $X_0, ..., X_e$ (but not the rest) (A permitting challenge). Repeat with X_{e+1} etc.
- If at some stage we get permission, then want to have, say, X_0, \ldots, X_j, B_e want to block this from going back (For the principle all families representing the same collections of sets should give the same 1-generic) using bocker $Z_{e,j}$

The general case

Theorem (DDGT)

There is a minimal FIP \mathbf{a} in Δ_3^0 .

The proof is a tricky full approximation argument.

- ▶ Image we have so far A_0, A_1, \ldots, A_n and wish to slot in B_2 , postion determined by index and "state". ▶ Presumably we have enumerated some description of $\Phi^{\langle A_0, A_1, ..., A_n \rangle}(i)$
- for i < p. ▶ We can move A_0A_1B ... for one step seeking agreeing computations.
- ▶ Then we can go back. If B stops intersecting, then who cares? If B intersects more, repeat.
- If we get a split we can change state.
- ▶ A split must generate equivalent families. $A_0A_1B...A_i$ and $A_0A_1 \dots A_iB$ and this forces lots of pain when interactions are considered.

- Notably, priorities ensure that you need to force many splits before you believe "split", as places for entry of high priority sets.
- These are "left hanging" which is why the trees are partial.
 That is, we might have A₀A₁B...A_i and A₀A₁...A_iB, being the
- place where we promise we would introduce *C*, but this intersection might never occur, so we force another split (at least).

 Matters can be arranged to make sure that the first splits split with
- the second, arguing about uses.

 Then we would work on the second split unless we need to introduce
- I nen we would work on the second split unless we need to introduce
 C.
 Interactions are intricate.

Finite variations

- ▶ Do the same but use only families of finite sets.
- Computably true if given as either canonical finite sets, or with a bound on the number.
- ► FIP is computably true (look at the big intersection)
- If only finite and weak indices:

Theorem (DDGT)

$\overline{D}_2IP_{finite}$ and Δ_2^0 iff it bounds a 1-generic.

► The proof is similar but uses more initialization and priority.

Thank You