Euclidean Domains and Euclidean Functions

Rod Downey

(Joint Work with Asher Kach)

Chicago May 2010

- Th. Motzkin, The Euclidean algorithm. *Bull. Amer. Math. Soc.*, 55:1142–1146, 1949.
- Leonard Schrieber. Recursive properties of Euclidean domains. *Ann. Pure Appl. Logic*, 29(1):59–77, 1985.
- Pierre Samuel. About Euclidean rings. *J. Algebra*, 19:282–301, 1971.
- V. Stoltenberg-Hansen and J. V. Tucker. Computable rings and fields. In *Handbook of computability theory*, volume 140 of *Stud. Logic Found. Math.*, pages 363–447. North-Holland, Amsterdam, 1999.
- Rod Downey and Asher Kach, Euclidean Functions of Computable Euclidean Domains, submitted.

- 2 Transfinite Euclidean Domains and Rings
- 3) Computing Any Euclidean Function ϕ for ${\cal R}$ and $\phi_{{\cal R}}$

Open Questions

Problem

Divide 18 into 218 (over \mathbb{Z}).

Answer.

Perform long division

$$\frac{12}{18)218} \\
\frac{180}{38} \\
\frac{36}{2} \\
and so 218 = 12 \cdot 18 + 2.$$

Problem

Divide x + 2 into $x^3 + 18x^2 + 2x + 18$ (over \mathbb{Q}).

Answer.

Perform long division

and so
$$x^3 + 18x^2 + 2x + 18 = (x^2 + 16x - 30)(x + 2) + 78$$
.

Euclid's Algorithm...

Proposition

The algorithm

function gcd(a,b)if (a < b)swap(a,b)if (b == 0)return areturn gcd(a - b,b)

computes the greatest common divisor of non-negative integers a and b.

Problem

Find the greatest common divisor of 18 and 10.

Answer.

Note gcd(18, 10) = gcd(8, 10) = gcd(10, 8) = gcd(2, 8) = gcd(8, 2) = gcd(6, 2) = gcd(4, 2) = gcd(2, 2) = gcd(0, 2) = gcd(2, 0) = 2.

Euclid's Algorithm...

Proposition

The algorithm

function gcd(a,b)if (a < b)swap(a,b)if (b == 0)return areturn gcd(a - b,b)

computes the greatest common divisor of non-negative integers a and b.

Problem

Find the greatest common divisor of 18 and 10.

Answer.

Note gcd(18, 10) = gcd(8, 10) = gcd(10, 8) = gcd(2, 8) = gcd(8, 2) = gcd(6, 2) = gcd(4, 2) = gcd(2, 2) = gcd(0, 2) = gcd(2, 0) = 2.

Remark

In both \mathbb{Z} and $\mathbb{Q}[X]$, the division algorithm (Euclid's algorithm) terminates because the dividend (either *a* or *b*) decreases in *size* at every step.

- Within \mathbb{Z} , the *size* of an integer is its magnitude.
- Within $\mathbb{Q}[X]$, the *size* of a polynomial is its degree.

Generalizing this requirement of remainders decreasing in *size* yields the (traditional) definition of a Euclidean domain.

Definition

A commutative ring \mathcal{R} is a *Euclidean ring* if there is a function $\phi : \mathbb{R}^0 \to \mathbb{N}$ (where $\mathbb{R}^0 := \mathbb{R} \setminus \{0\}$) satisfying

$$(orall a, d \in {\it R}^0)(\exists q \in {\it R})ig[a+qd=0 ext{ or } \phi(a+qd) < \phi(d)ig].$$

The function ϕ is termed a *Euclidean function* for \mathcal{R} .

If the ring is also an integral domain (i.e., there are no zero divisors) then it becomes a Euclidean Domain.

Euclidean Functions for \mathbb{Z} ...

Example

The integers $\ensuremath{\mathbb{Z}}$ are a Euclidean domain.

Proof

The functions

$$\begin{array}{rcl} \phi_1(z) &=& |z| \\ \phi_2(z) &=& \lceil \log_2 |z| \rceil \\ \phi_3(z) &=& \begin{cases} |z| & \text{if } z \neq 5 \\ 13 & \text{otherwise} \end{cases} \end{array}$$

are Euclidean functions for \mathbb{Z} .

Note that ϕ_3 serves as an example where the implication

x divides *y* implies $\phi(x) \le \phi(y)$

Euclidean Functions for \mathbb{Z} ...

Example

The integers $\ensuremath{\mathbb{Z}}$ are a Euclidean domain.

Proof.

The functions

$$egin{array}{rcl} \phi_1(z)&=&|z|\ \phi_2(z)&=&\lceil \log_2 |z|
ceil\ \phi_3(z)&=&\begin{cases} |z|& ext{if } z
eq 5\ 13& ext{otherwise} \end{cases}$$

are Euclidean functions for \mathbb{Z} .

Note that ϕ_3 serves as an example where the implication x divides y implies $\phi(x) \le \phi(y)$

Euclidean Functions for \mathbb{Z} ...

Example

The integers $\ensuremath{\mathbb{Z}}$ are a Euclidean domain.

Proof.

The functions

$$egin{array}{rcl} \phi_1(z)&=&|z|\ \phi_2(z)&=&\lceil \log_2 |z|
ceil\ \phi_3(z)&=&\begin{cases} |z|& ext{if } z
eq 5\ 13& ext{otherwise} \end{cases}$$

are Euclidean functions for \mathbb{Z} .

Note that ϕ_3 serves as an example where the implication

x divides *y* implies $\phi(x) \le \phi(y)$

fails.

Euclidean without Euclidean functions

Definition

If \mathcal{R} is a commutative ring (with 1), define a sequence of sets $\{R_n\}_{n\in\mathbb{N}}$ via recursion by

 $R_n := \{ d \in R^0 : (\forall a \in R^0) (\exists q \in R) [a + dq = 0 \text{ or } a + dq \in R_{< n}] \}$

where
$$R_{< n} = \bigcup_{m < n} R_m$$
 and $R^0 = R - \{0\}$.

Remark

Thus R_0 consists of the units, R_1 consists of those elements which exactly divide every other $a \in R^0$ or leave remainder a unit, etc. (NB if you read Samuel, $R_1 = R_2$ there)

Theorem (Motzkin 1949, Samuel 1971)

An integral domain \mathcal{R} (resp. ring) is a Euclidean domain (resp. ring)if and only if $R^0 = \bigcup_{n \in \mathbb{N}} R_n$.

Rod Downey (VUW)

Euclidean without Euclidean functions

Definition

If \mathcal{R} is a commutative ring (with 1), define a sequence of sets $\{R_n\}_{n\in\mathbb{N}}$ via recursion by

 $R_n := \{ d \in R^0 : (\forall a \in R^0) (\exists q \in R) [a + dq = 0 \text{ or } a + dq \in R_{< n}] \}$

where
$$R_{ and $R^0 = R - \{0\}$.$$

Remark

Thus R_0 consists of the units, R_1 consists of those elements which exactly divide every other $a \in R^0$ or leave remainder a unit, etc. (NB if you read Samuel, $R_1 = R_2$ there)

Theorem (Motzkin 1949, Samuel 1971)

An integral domain \mathcal{R} (resp. ring) is a Euclidean domain (resp. ring)if and only if $\mathbb{R}^0 = \bigcup_{n \in \mathbb{N}} \mathbb{R}_n$.

Euclidean without Euclidean functions

Definition

If \mathcal{R} is a commutative ring (with 1), define a sequence of sets $\{R_n\}_{n\in\mathbb{N}}$ via recursion by

$$R_n := \{ d \in R^0 : (\forall a \in R^0) (\exists q \in R) [a + dq = 0 \text{ or } a + dq \in R_{< n}] \}$$

where
$$R_{ and $R^0 = R - \{0\}$.$$

Remark

Thus R_0 consists of the units, R_1 consists of those elements which exactly divide every other $a \in R^0$ or leave remainder a unit, etc. (NB if you read Samuel, $R_1 = R_2$ there)

Theorem (Motzkin 1949, Samuel 1971)

An integral domain \mathcal{R} (resp. ring) is a Euclidean domain (resp. ring)if and only if $\mathbb{R}^0 = \bigcup_{n \in \mathbb{N}} \mathbb{R}_n$.

The Least Euclidean Function $\phi_{\mathcal{R}}$

Definition (Motzkin 1949, Samuel 1971)

If \mathcal{R} is a Euclidean domain (ring), define $\phi_{\mathcal{R}}: \mathcal{R}^0 \to \mathbb{N}$ by

 $\phi_{\mathcal{R}}(d) = n$

where *n* is least so that $d \in R_n$.

Theorem (Motzkin 1949, Samuel 1971)

If \mathcal{R} is a Euclidean domain (resp. ring), the function $\phi_{\mathcal{R}}$ is a Euclidean function for \mathcal{R} . Moreover, it is the least Euclidean function for \mathcal{R} ; i.e., if ϕ is a Euclidean function for \mathcal{R} , then $\phi_{\mathcal{R}}(d) \leq \phi(d)$ for all $d \in \mathbb{R}^{0}$.

Consequently, the function $\phi_{\mathcal{R}}$ satisfies

 $\phi_{\mathcal{R}}(\boldsymbol{d}) = \inf_{\boldsymbol{\phi}} \phi(\boldsymbol{d})$

where ϕ ranges over all Euclidean functions for \mathcal{R} .

The Least Euclidean Function $\phi_{\mathcal{R}}$

Definition (Motzkin 1949, Samuel 1971)

If \mathcal{R} is a Euclidean domain (ring), define $\phi_{\mathcal{R}}: \mathcal{R}^0 \to \mathbb{N}$ by

 $\phi_{\mathcal{R}}(d) = n$

where *n* is least so that $d \in R_n$.

Theorem (Motzkin 1949, Samuel 1971)

If \mathcal{R} is a Euclidean domain (resp. ring), the function $\phi_{\mathcal{R}}$ is a Euclidean function for \mathcal{R} . Moreover, it is the least Euclidean function for \mathcal{R} ; i.e., if ϕ is a Euclidean function for \mathcal{R} , then $\phi_{\mathcal{R}}(d) \leq \phi(d)$ for all $d \in \mathbb{R}^{0}$.

Consequently, the function $\phi_{\mathcal{R}}$ satisfies

 $\phi_{\mathcal{R}}(\boldsymbol{d}) = \inf_{\boldsymbol{\phi}} \phi(\boldsymbol{d})$

where ϕ ranges over all Euclidean functions for \mathcal{R} .

The Least Euclidean Function $\phi_{\mathcal{R}}$

Definition (Motzkin 1949, Samuel 1971)

If \mathcal{R} is a Euclidean domain (ring), define $\phi_{\mathcal{R}}: \mathcal{R}^0 \to \mathbb{N}$ by

 $\phi_{\mathcal{R}}(d) = n$

where *n* is least so that $d \in R_n$.

Theorem (Motzkin 1949, Samuel 1971)

If \mathcal{R} is a Euclidean domain (resp. ring), the function $\phi_{\mathcal{R}}$ is a Euclidean function for \mathcal{R} . Moreover, it is the least Euclidean function for \mathcal{R} ; i.e., if ϕ is a Euclidean function for \mathcal{R} , then $\phi_{\mathcal{R}}(d) \leq \phi(d)$ for all $d \in \mathbb{R}^{0}$.

Consequently, the function $\phi_{\mathcal{R}}$ satisfies

$$\phi_{\mathcal{R}}(d) = \inf_{\phi} \phi(d)$$

where ϕ ranges over all Euclidean functions for \mathcal{R} .

- I am sure that, as logicians, you immediately notice that it is unnecessary in the definition of a Euclidean ring that the range of the ranking function is N.
- Any ordinal will do, and maybe even well founded partial orders.

1) The Division Algorithm, Euclid's Algorithm, and Euclidean Domains

Paranetic Euclidean Domains and Rings

${f 3}$ Computing Any Euclidean Function ϕ for ${\cal R}$ and $\phi_{{\cal R}}$

Open Questions

Definition

A commutative ring \mathcal{R} is a transfinite Euclidean ring if there is a function $\phi : \mathbb{R}^0 \to ON$ (where $\mathbb{R}^0 := \mathbb{R} \setminus \{0\}$ and ON is the class of ordinals) satisfying

$$(orall a, d \in R^0)(\exists q \in R)ig[a+qd=0 ext{ or } \phi(a+qd) < \phi(d)ig].$$

The function ϕ is termed a *transfinitely-valued Euclidean function* for \mathcal{R} .

Theorem (Motzkin 1949)

An integral domain \mathcal{R} is a transfinite Euclidean domain if and only if $R^0 = \bigcup_{\alpha \in ON} R_{\alpha}$. (Here we take unions at limit stages.)

Definition

A commutative ring \mathcal{R} is a transfinite Euclidean ring if there is a function $\phi : \mathbb{R}^0 \to ON$ (where $\mathbb{R}^0 := \mathbb{R} \setminus \{0\}$ and ON is the class of ordinals) satisfying

$$(orall a, d \in {\it R}^0)(\exists q \in {\it R})ig[a+qd=0 ext{ or } \phi(a+qd) < \phi(d)ig].$$

The function ϕ is termed a *transfinitely-valued Euclidean function* for \mathcal{R} .

Theorem (Motzkin 1949)

An integral domain \mathcal{R} is a transfinite Euclidean domain if and only if $R^0 = \bigcup_{\alpha \in ON} R_{\alpha}$. (Here we take unions at limit stages.)

Question (Motzkin 1949; Samuel 1971; Schrieber 1985)

Is there an integral domain that is a properly transfinite Euclidean domain? I.e., is there an integral domain having transfinitely-valued Euclidean functions but not finitely-valued Euclidean functions?

Theorem (Samuel 1971)

The function $\phi(z) = \omega \cdot i + j + 1$ is a Euclidean function for \mathbb{Z} , where $z = \pm 2^i (2j + 1)$.

Question (Motzkin 1949; Samuel 1971; Schrieber 1985)

Is there an integral domain that is a properly transfinite Euclidean domain? I.e., is there an integral domain having transfinitely-valued Euclidean functions but not finitely-valued Euclidean functions?

Theorem (Samuel 1971)

The function $\phi(z) = \omega \cdot i + j + 1$ is a Euclidean function for \mathbb{Z} , where $z = \pm 2^{i}(2j + 1)$.

Lemma (Samuel, 1971)

If R is a Euclidean ring and A is a multiplicatively closed subset, then $A^{-1}R$ is Euclidean.

- A product of a finite number of transfinite Euclidean rings is i transfinite Euclidean.
- This gives an example of a properly transfinite Euclidean ring

Theorem (Samuel 1971)

The commutative ring $\mathbb{Z} \oplus \mathbb{Z}$ has a transfinitely-valued Euclidean function (indeed, one with range $\omega^2 + \omega^2$) but no finitely-valued Euclidean function.

- To prove this, we prove *If R* has a finite Euclidean function with the R_0 finite, then for all n, $\phi^{-1}(n)$ is finite.
- Induction. If $R'_n = \bigcup_{j=0}^{n-1} \phi^{-1}(j)$ is finite, and $\phi(b) = n$, then then $R'_n \to R/Rb$ is surjective. The use algebra prove that in Noetherian ring the number of ideals with a given norm is finite, and hence the ideal Rb can only have a finite number of values. So only finitely many b.
- So if φ : Z ⊕ Z → N is an Euclidean algorithm, and suppose φ((1,0)) = n then R'_n → (Z ⊕ Z)(0,1) is supposedly surjective, but the last ring is isomorphic to Z which is infinite.

- The ring R := Q[X] is a Euclidean domain with φ_R(X) = 1. Unfortunately, this is not very useful as Q[X, Y] is not a Euclidean domain.
- The question is how to control rank (e.g. 2) in an extension ring. For instance you *could* try adding roots but even here the situation is kind of murky.

What about adding, say, square roots?

Theorem (Samuel, 1971)

The only imaginary quadratic fields of the form $\mathbb{Q}(\sqrt{-d})$ for which the ring of integers is a Euclidean domain are for d = 1, 2, 3, 7, 11.

- It is known for positive *d* which $\mathbb{Q}(\sqrt{d})$ are Euclidean for the norm, which is a measure associated with number fields, (See Samuel) it is 16 cases.
- Even $\mathbb{Z}[\sqrt{d}]$ is hard, with d = 14 recently done!

1 The Division Algorithm, Euclid's Algorithm, and Euclidean Domains

2 Transfinite Euclidean Domains and Rings

${f 3}$ Computing Any Euclidean Function ϕ for ${\cal R}$ and $\phi_{{\cal R}}$

Open Questions

- Anyway, we were motivated by trying to understand the computability theory of the situation and the reverse mathematics.
- To wit, to what extent is having a Euclidean algorithm the same as having a Euclidean function.

Definition

A ring \mathcal{R} is computable if it has a computable presentation.

Definition

A *computable presentation* of an infinite ring $\mathcal{R} = (R : +, \cdot, 0, 1)$ is a bijection between R and \mathbb{N} so that the operations of addition and multiplication are *computable* functions on \mathbb{N} .

Definition

A computable presentation of a ring is a computably presented Euclidean ring iff there is a computable ranking function from the elements onto \mathbb{N} . In the transfinite case we would need a notation for the ordinal.

Definition

A ring \mathcal{R} is computable if it has a computable presentation.

Definition

A *computable presentation* of an infinite ring $\mathcal{R} = (R : +, \cdot, 0, 1)$ is a bijection between R and \mathbb{N} so that the operations of addition and multiplication are *computable* functions on \mathbb{N} .

Definition

A computable presentation of a ring is a computably presented Euclidean ring iff there is a computable ranking function from the elements onto \mathbb{N} . In the transfinite case we would need a notation for the ordinal.

Example

The ring $\ensuremath{\mathbb{Z}}$ is a computable Euclidean ring.

Example

Let $S \subseteq \mathbb{N}$ be a (multiplicatively closed) *computably enumerable* set with $0 \notin S$ and $1 \in S$. Then the subset $\mathcal{R} \subseteq \mathbb{Q}$ consisting of those $a/b \in \mathbb{Q}$ with $b \in S$ is a computable ring. This uses the $A^{-1}R$ construction for $R = \mathbb{Z}$.

Proof.

Identify fractions $a/b \in \mathbb{Q}$ with natural numbers $n \in \mathbb{N}$ as they appear.

Example

The ring $\ensuremath{\mathbb{Z}}$ is a computable Euclidean ring.

Example

Let $S \subseteq \mathbb{N}$ be a (multiplicatively closed) *computably enumerable* set with $0 \notin S$ and $1 \in S$. Then the subset $\mathcal{R} \subseteq \mathbb{Q}$ consisting of those $a/b \in \mathbb{Q}$ with $b \in S$ is a computable ring. This uses the $A^{-1}R$ construction for $R = \mathbb{Z}$.

Proof.

Identify fractions $a/b \in \mathbb{Q}$ with natural numbers $n \in \mathbb{N}$ as they appear.

- The first person to prove anything about computable Euclidean domains was Schrieber in his PhD from Cornell.
- In summary he constructed a Euclidean domain which was a computable domain, and yet had no computable Euclidean function with range N (In fact coded ∅') and showed the units need not be computable in a computable Euclidean domain.
- We extend these results by showing R₁ can be as complex as possible, removing the restriction N, and examing the reverse mathematics of the situation. We also examine the possibility of Δ⁰₂ Euclidean functions.
- The arguments are not difficult, but this is a situation where the question remaining are quite arresting.

Computing $\{z : \phi_{\mathcal{R}}(z) = 0\}$...

Theorem (Schrieber 1985)

There is a computable Euclidean domain $\mathcal{R} \subseteq \mathbb{Q}$ for which there is no "algorithm" to determine whether an element is a unit. In fact $R_0 \equiv_m \emptyset'$.

Proof.

Identify the Halting Problem *K* with a subset of the prime numbers. Have \mathcal{R} consist of those fractions $a/b \in \mathbb{Q}$ with *b* a multiple of elements of *K*. Then *p* prime is a unit iff $p \in \emptyset'$.

Proposition (Schrieber 1985)

Despite this, the Euclidean domain \mathcal{R} has a computable Euclidean function ϕ .

Proof.

Write $z=rac{a}{b}\in\mathbb{Q}$ in lowest terms, and then define $\phi(z)=a$

Rod Downey (VUW)

Computable Euclidean Domains and Euclidea

Computing $\{z : \phi_{\mathcal{R}}(z) = 0\}$...

Theorem (Schrieber 1985)

There is a computable Euclidean domain $\mathcal{R} \subseteq \mathbb{Q}$ for which there is no "algorithm" to determine whether an element is a unit. In fact $R_0 \equiv_m \emptyset'$.

Proof.

Identify the Halting Problem *K* with a subset of the prime numbers. Have \mathcal{R} consist of those fractions $a/b \in \mathbb{Q}$ with *b* a multiple of elements of *K*. Then *p* prime is a unit iff $p \in \emptyset'$.

Proposition (Schrieber 1985)

Despite this, the Euclidean domain \mathcal{R} has a computable Euclidean function ϕ .

Proof.

Write $z=rac{a}{b}\in\mathbb{Q}$ in lowest terms, and then define $\phi(z)=a$

Computing $\{z : \phi_{\mathcal{R}}(z) = 0\}$...

Theorem (Schrieber 1985)

There is a computable Euclidean domain $\mathcal{R} \subseteq \mathbb{Q}$ for which there is no "algorithm" to determine whether an element is a unit. In fact $R_0 \equiv_m \emptyset'$.

Proof.

Identify the Halting Problem *K* with a subset of the prime numbers. Have \mathcal{R} consist of those fractions $a/b \in \mathbb{Q}$ with *b* a multiple of elements of *K*. Then *p* prime is a unit iff $p \in \emptyset'$.

Proposition (Schrieber 1985)

Despite this, the Euclidean domain \mathcal{R} has a computable Euclidean function ϕ .

Proof.

Write $z = \frac{a}{b} \in \mathbb{Q}$ in lowest terms, and then define $\phi(z) = a$.

- Reverse mathematics seeks to calibrate the proof theoretical strength of theorems of mathematics in terms of comprehension axioms (saying that something of a certain definable complexity exists) in second order arithmetic.
- I'll assume you are familiar with this.
- This usually goes hand in hand with computability theory. For example, usually showing that Ø' is coded in a computable setting aligns to ACA₀. (Of course there are counterexamples, one of my favourites is Kruskal's Theorem on wqo of finite trees. It is "computably true" but is certainly not provable in RCA₀.
- The result above suggest that the existence of a minimal functions implies ACA₀.

 A priori, there is no reason for the minimal Euclidean function φ (in M) to satisfy φ = φ_R.

Lemma (RCA₀)

Fix a Euclidean domain \mathcal{R} and a non-minimal finitely-valued Euclidean function ϕ for \mathcal{R} . Let α be the least ordinal for which there is a $T \in R$ with $\alpha = \phi_{\mathcal{R}}(T) < \phi(T)$. Then (fixing such a T)

$$\hat{\phi}(z) = egin{cases} \phi(z) & ext{if } z
eq T \ \phi_{\mathcal{R}}(T) & ext{if } z = T \end{cases}$$

is a finitely-valued Euclidean function for \mathcal{R} and satisfies $\hat{\phi} \neq \phi$.

Proof.

Since $\hat{\phi}(T) = \phi_{\mathcal{R}}(T) < \phi(T)$, it is immediate that $\hat{\phi} \neq \phi$. As α was chosen minimal, for any $A \in R$, there exists a $Q \in R$ with $\phi(A + QT) < \phi(T)$ as $\phi(A + QT) = \phi_{\mathcal{R}}(A + QT) < \phi_{\mathcal{R}}(T) = \alpha$.

Theorem

(RCA₀) The statement

MEF: every Euclidean domain has a minimal Euclidean function

proves ACA₀.

Proof

Fixing a set X in the model, we show X' exists. We consider the X-computable ring whose units are $\Sigma_1^0(X)$ -complete constructed by relativizing Schrieber's construction of a computable subring of the rationals whose units are intrinsically Σ_1^0 -complete. As noted in the introduction, the (relativized) ring \mathcal{R} has a computable Euclidean function, namely $\phi(a/b) = a$. Thus, it is a Euclidean domain, i.e., it has a Euclidean function in the model.

Consequently, by MEF, we may fix a minimal Euclidean function ϕ for \mathcal{R} (so that $\phi \leq \phi'$ for all ϕ' in the model). We argue that $\phi = \phi_{\mathcal{R}}$. If not, the function $\hat{\phi}$ of the lemma above is in the model as $\hat{\phi} \equiv_{\mathcal{T}} \phi \equiv_{\mathcal{T}} \emptyset$ and is a Euclidean function for \mathcal{R} . But then we would have $\hat{\phi} < \phi$, contradiction the minimality of ϕ . Thus it must be the case that $\phi = \phi_{\mathcal{R}}$. As $\phi_{\mathcal{R}}$ computes X', the model must be closed under the Turing Jump.

- As the set R_0 is Σ_1^0 , being the collection of units
- The set R_n is Π_{2n}^0 for $0 < n < \mathbb{N}$.
- If $\phi_{\mathcal{R}}$ is finitely-valued, then $\phi_{\mathcal{R}}$ is $\emptyset^{(\omega)}$ -computable.
- In the transfinite case the same for n on some path in Π¹₁.
- So proof theoretically upper bounds for the finite case is ACA_0^+ and transfinitely $\Pi_1^1 - CA_0$.

Theorem

There is a Euclidean computable domain \mathcal{R} having no transfinitely-valued computable Euclidean function ϕ . Moreover, every transfinitely-valued Euclidean function ϕ for \mathcal{R} computes \emptyset' .

Theorem

There is a computable Euclidean domain \mathcal{R} for which the set R_1 is Π_2^0 -complete.

Theorem

There is a Euclidean computable domain \mathcal{R} for which there is no finitely-valued \emptyset' -computable Euclidean function ϕ .

Theorem

There is a computable Euclidean domain \mathcal{R} having no computable finitely-valued Euclidean function but having a computable transfinitely-valued Euclidean function.

• We use extensions of the ideas of Schrieber.

Definition (Schrieber 1985)

If *K* is a field and $\{X_i\}_{i \in \mathbb{N}}$ is a set of variables, denote by $K \langle X_i \rangle_{i \in \mathbb{N}}$ the commutative ring of reduced fractions p/q with $p, q \in K[X_i]_{i \in \mathbb{N}}$ and $X_i \not\mid q$ for all *i*.

Thus, every element *x* of the commutative ring *K* ⟨*X_i*⟩_{*i*∈ℕ} is the product of a monomial *m* and a unit *u*.

Theorem (Schrieber 1985)

The function $\phi(x) = \phi(mu) := \deg(m)$, where m is a monomial and u is a unit, is the least Euclidean function for $K \langle X_i \rangle_{i \in \mathbb{N}}$. In particular, $K \langle X_i \rangle_{i \in \mathbb{N}}$ is a Euclidean domain.

 All the Euclidean domains we construct will be of the form
 K ⟨X_i⟩_{i∈ℕ}, where the field K is either ℚ or ℚ(Z_j)_{j∈ℕ}, for some sets
 of formal variables {X_i}_{i∈ℕ} and {Z_j}_{j∈ℕ}.

Proposition (Samuel 1971)

If \mathcal{R} is an integral domain and $A, T \in R$ are nonzero, then $\phi_{\mathcal{R}}(T) \leq \phi_{\mathcal{R}}(AT)$.

Proof.

The function $\phi(T) := \min_{0 \neq A \in B} \phi_{\mathcal{R}}(AT)$ satisfies

$$\phi_{\mathcal{R}}(T) \leq \phi(T) \leq \phi_{\mathcal{R}}(1T) = \phi_{\mathcal{R}}(T)$$

as a consequence of the minimality of ϕ_R and taking 1 for *A*. It is clear that ϕ , and thus ϕ_R , has the desired property.

Proposition

[Folklore] If \mathcal{R} is an integral domain, $A, T \in R$ are nonzero, and A is a nonunit, then $\phi_{\mathcal{R}}(T) < \phi_{\mathcal{R}}(AT)$.

Proof.

Since A is a nonunit, it follows AT does not divide T. Thus

$$\min_{\boldsymbol{Q}\in\boldsymbol{R}}\{\phi_{\mathcal{R}}(\boldsymbol{T}+\boldsymbol{Q}\boldsymbol{A}\boldsymbol{T})\} < \phi_{\mathcal{R}}(\boldsymbol{A}\boldsymbol{T})$$

by virtue of the definition of R_{α} . By the proposition above (as $1 + QA \neq 0$ for all $Q \in R$), we have $\min_{Q \in R} \{ \phi_{\mathcal{R}}(T + QAT) \} = \min_{Q \in R} \{ \phi_{\mathcal{R}}(T(1 + QA)) \} \ge \phi_{\mathcal{R}}(T).$

Killing transfinite computable functions

 Instead of killing the ordinal based functions work on computable suborderings of Q. le (partial) computable relations

$$\mathsf{E}_{\phi}(x,y) := \{(x,y) \in \mathsf{R} imes \mathsf{R} : \phi(x) \leq \phi(y).$$

This is justified because E_{ϕ} is computable if ϕ is a computable transfinitely-valued Euclidean function.

- Idea Have a {*E_i*}_{*i*∈ℕ} of partial computable binary relations. The idea is to determine whether *E_i*(*X_i*, *Y_i*) or *E_i*(*Y_i*, *X_i*) (if either computation converges) and assure this cannot be the case by making either *X_i* a power of *Y_i* or *Y_i* a positive power of *X_i*.
- At stage *s*, we introduce terms X_s and Y_s. For each *i* ≤ *s*, we check whether E_i(X_i, Y_i)↓= 1 or E_i(Y_i, X_i)↓= 1. If either has newly converged, we put X_i = Y^s_i if E(X_i, Y_i)↓= 1 and Y_i = X^s_i otherwise. Finally, at each stage *s*, we continue the enumeration of the ring, working towards Q ⟨X_i, Y_i⟩_{i∈N}

- Fix a ⊓₂⁰-complete set S and a computable predicate P(i, s) so that i ∈ S if and only if ∃[∞]s [P(i, s)].
- Begin with \mathbb{Q} and expressions $\{Z_i\}_{i \in \mathbb{N}}$.
- Make $Z_i = X_{i,j} Y_{i,j}$ beginning with j = 0
- When the Π⁰₂ predicate looks correct make Y_{i,j} a unit, and move to fresh variables Z_i = X_{i,j+1} Y_{i,j+1}
- If $i \in S$, Z_i has rank 1, as every Y is turned into a unit,
- If $i \notin S$, Z_i has rank 2 as it gets stuck on some $Z_{i,j}Y_{i,j}$.

- Rely on the fact that if *any* rank function has something of rank *n*, then the *minimal* one has rank ≤ *n*.
- Want to kill φ_e(x) = lim_s φ_e(x, s) i.e. show it has no limit or the limit is wrong. Might as well take φ_e(x, s) as primitive recursive.
- Wlog we assume that if φ_e(x, s) ≠ φ_e(x, s + 1), then one of the two is 0.
- At stage s we compute φ_e(X_e, s). If this is ≠ φ_e(X_e, s + 1), introduce φ_e(X_e, s + 1) + 1 many new variables X_{e,s,0}, X_{e,s,1},..., X_{e,s,φ_e(X_{e,s})} to the ring R and declare their product equal to X_e.

- Analyze Schrieber's construction.
- At each stage *s*, we create a term X_s . For each $i \le s$ for which $\phi_i(X_i)$ newly converges, we create a new variable Y_i and set $X_i = Y_i^{\phi_i(X_i)+1}$.
- The X_i are mapped to N (or N + 1 depending on your notation system). They then drop to an assigned value if φ_i(X_i) ↓.

1) The Division Algorithm, Euclid's Algorithm, and Euclidean Domains

2 Transfinite Euclidean Domains and Rings

$\mathfrak{3}$ Computing Any Euclidean Function ϕ for $\mathcal R$ and $\phi_{\mathcal R}$

Open Questions

Question

What's the correct answer? How to control even R_2 ?

Remark

- This is the limit of the techniques for this kind of ring. The point is that everything is defined by the rank 1 elements, and hence Ø" can figure out the ranks of everything.
- Similar remarks seem to apply to any introduction of *algebraic* elements.
- We could not seem to control the introduction of +, so controlling Z + QX to not be a unit for all Q in the ring.
- Maybe the answer is yes, meaning that all domians are actually controlled by low level ranked sets.
- Same questions apply to rings in place of domains.

Question

Is there a computable Euclidean domain (ring) having (classically) no Euclidean function with range strictly less than ω_1^{CK} ? What about the reverse math? finite valued has upper bound ACA₀⁺, and transfinite Π_1^1 -CA.

Question

What more can be said [classically] about (transfinite) Euclidean domains? What more can be said about computable (transfinite) Euclidean domains?

Question

Is there a computable Euclidean domain (ring) having (classically) no Euclidean function with range strictly less than ω_1^{CK} ? What about the reverse math? finite valued has upper bound ACA₀⁺, and transfinite Π_1^1 -CA.

Question

What more can be said [classically] about (transfinite) Euclidean domains? What more can be said about computable (transfinite) Euclidean domains?

Thank you

Rod Downey (VUW)

Computable Euclidean Domains and Euclidea