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Plan

I Introduce some new concepts relating to reals with low initial
segment complexity.

I Relate them to known degree classes.

I Relate them to known notions of lowness for initial segment
complexity.

I Our idea is that lowness concepts like K -trivialty, Schnorr triviality,
(non-)complexity, have been so successful that perhaps we should
seek relaxations of these concepts and if they are interesting.

I Here we relax K -triviality.

I Recall that we had no idea at the beginning that K -triviality would be
so interesting.



Initial Segment Complexity

I Theme: Q(A � n) for Kolmogorov complexities Q give insight into the
relative randomness of Q, and interplay with computational power.

I For example Schnorr : A is random iff K (A � n) ≥+ n.

I Variations such as effective dimensions.

I Variations such as complex and autocomplex via orders and PA
degrees etc.

I Recent Barmpalias, Hölzl, Lewis, Merkle “Computably enumerable
sets that resemble Ω”

I Barmplais survey: “Measures of Randomness”



Initial Segment Lowness

I X is low for random means Y random iff Y is X -random.

I X is K -trivial iff for all n, K (X � n) ≤ K (n) + c, for all n.

Theorem (Chaitin)

X is computable iff for all n, C (X � n) ≤ C (n) + c for all n. That is,
C -trivial=computable.



A trivial story

I A = {〈e, n〉 : ∃s(We,s ∩ As = ∅ ∧ 〈e, n〉 ∈We,s

and ∧
∑
〈e,n〉≤j≤s 2−K(j)[s] < 2−(e+2))}.

I This A is K -trivial, non-computable.

Theorem (Downey, Hirschfeldt, Nies, Stephan)

If A is K-trivial then A solves Post’s problem. That is, a one line
description of a Turing incomplete set.

Theorem (Nies)

1. A is K -trivial iff

2. A is low for randomness iff

3. A ≤ X for some A-random X (with Hirschfeldt)

4. A is low for K meaning KA = K .



Why do we feel they are important?

I K -trivials are ubiquitous with maybe 15 characterizations.

I Bring to the fore themes of traceing.

I Variations have been used to solve longstanding questions in
computability theory and in logic.

I Newer variations with weaker initial segment properties.

I For example low for K up to g (Herbert, Hirschfeldt-Weber)
K (n) ≤ KA(n) + g(n) for (∆0

2) order g .

I First fundamentally enumerable property. No forcing.



Some old and new relatives

Definition
I We will say that A is weakly K -resolute iff for all (computable) orders

h, K (A � n) ≥+ K (A � h(n)).

I Similarly for C -.

Definition (Franklin, Greenberg, Stephan, Wu)

A is anti-complex iff for all orders h, C (A � h(n)) ≤ n.

Definition (Lathrop and Lutz)

A is called ultracompressible iff for all orders g , K (A � n) ≤+ K (n) + g(n).

Definition

A is Kummer anti-complex iff for all orders g , C (A � n) ≤ C (n) + g(n).

I Note that in the first two definitions, think of h as fast growing, and
the second two g as very slow growing.



I A natural way to construct sets with low initial segment complexity is
to “thin them out”.

I The f -shift of A, Af , results by f (n) ∈ Af iff n ∈ A.

Definition

A is called Q-resolute (Q ∈ {C ,K}) iff for all computable orders f with
f (n) ≥ n, and all m,

Q(A � m) =+ Q(Af � m).

Lemma

1 If A is Q-resolute then A is weakly Q-resolute.

2 If A is (weakly) Q-resolute and B ≡Q A then B is (weakly)
K -resolute.

3 If A is weakly Q-resolute and B ≤wtt A, then B ≤Q A.



I Proof of 3. Let B ≤wtt A, and hence Q(B � n) ≤+ Q(A � f (n)) for
some computable f . But A if A is weakly Q-resolute then
Q(A � n) ≥+ Q(A � f (n)).

I Proof of 2. Let f be the computable shift. Then
Q(B � n) ≤+ Q(A � n) ≤+ Q(Af � n) ≤+ Q(Bf � n). The weak case
is similar.

I Proof of 1. Suppose that A is Q-resolute. Then A ≡Q Af . Hence
Q(A � n) ≥+ Q(Af � f (n)) =+ Q(A � f (n)).



Anticomplex

Lemma

If A is weakly K-resolute then A is anticomplex.

Reason: n ≥ C (A � n) ≥+ C (A � h(n)).

Corollary

If A is weakly K resolute the A ≤wtt X for some Schnorr trivial set X .

REcall: A is Schnorr trivial iff for all computable measure machines M,
there is a computable measure machine M̂ such that for all n,
KM̂(A � n) ≤+ KM(n).
Recall: computable measure machine has µ(dom(M)) = r for a
computable real r .
Recall: X is Schnorr random iff for all such machines M,
KM(X � n) ≥+ n. (Downey-Griffiths)



Basic Properties

Theorem

1. Every K -resolute set X is ultracompressible.

2. Every C -resolute set is Kummer anti-complex.

3. The converse is not true.



I 1 and 2. Let g be an order (slow growing) and choose and order f so
that f (g(n)) = n. The Q(Xf � n) ≤+ Q(n) + Q(g(n)). This is
because Xf has at most Xf � n has at most at most g(n) nonzero
bits. But X is Q-resolute. Hence Q(X � n) ≤+ Q(n) + Q(g(n)).
xiThis means Q(X � n) ≤+ Q(n) + g(n) and hence X is
ultracompressible/Kummer-anticomplex.

I 3. Next frame



Array Computable Degrees

Definition (Downey, Jocksuch and Stob)

We say that a is array computable iff for some order h with h(0) ≥ 1, all
g ≤T a is h(n)-c.e. (ie g(n) = lims g(n, s) with
|{s | g(n, s + 1) 6= g(n, s)}| ≤ h(n).

Strictly speaking, not a definition, but a theorem. It can be shown that
any order will do, proof in Downey-Hirschfeldt or Nies for instance.

Theorem

If a is is array computable then it is completely ultracompressible and
Kummer anti-complex. (and anticomplex)

Theorem (Kummer)

If a is array noncomputable then it contains a c.e. set which is neither.



I Suppose that X is array computable. let f be an order. Want to show
Q(A � n) ≤+ Q(n) + f (n). Let Q = K . Let g(n) = log log f (n), say.
Then X � n is g -traceable, as X is array computable, that is
X � n ∈ Vn with |Vn| ≤ g(n).

I Consuder then the algorithm M which on input σ simulates U(σ),
and if it halts we will define M(σν) potentially for all ν ∈ 2log |V|U(σ)||.

I The idea is that when τ occurs in V|U(σ)|, we use the next leaf ν of

2log |V|U(σ)|| whn another string occurs in V|U(σ)|. This works.

I The C case is easier.



I Kummer showed that if a is array noncomputable then it contains A
such that ∃∞nC (A � n) ≥+ 2 log n.



Theorem

There is an array computable X which is not weakly Q-resolute.

Re : ΦX
e total implies ΦX

e is id-ce.
Placed as nodes τ on the tree. If τ∞ then we must build a witness.
We build h such that for all e, exists n, K (X � n) 6≥ K (X � h(n))− e.
Nodes on the tree with guesses. Action: has a bit of measure, 2−e(σ)

which it lowers K (As � n), freezes that and then challenges the opponent
to match on Ks(As � h(n)) and we get to change At [n + 1, h(n)], etc. The
point is to choose n >> e.



Shifts

I Note that if A is K -trivial then A is K -resolute.

I However, there are degrees which are completely K -resolute and not
K -trivial.

I We begin with constructions of K -resolute sets.

Lemma

Let f be an order. Then every c.e. m-degree contains a set X such that
X ≡K Xf .

I Given Y define g(n) = f n(0) and X = {g(n) | n ∈ Y }. X ≡m Y .
Clearly Q(X � n) ≥+ Xf . Conversely, given Xf � n, note that all the
bits are 0 except perhaps the first k + 1 members, t0, . . . , tk , of
F = {f i (0) | i ∈ ω} below n. Note that X (ti ) = Xf (ti+1) for i < k,
thus to describe X � n we only need Xf � n and the value of X (tk).
That is, X ≤rK Xf .



Theorem

Every high c.e. degree contains a K -resolute set.

Theorem

Suppose that S is CEA(∅′). Then there is a c.e. K -resolute set X with
X ′ ≡T S.



I The idea for the high degree theorem is to use the m-degree results
and use highness to guess totality for functions. That is, iterate the
methodology making A “very sparse”.

I The idea for the other one is similar, noting that enumeration is not
actually necessary except for coding, but sparsification is. The
“noise” is computable. This uses a tree.

Definition

I Given X ,Y and g , let X ⊗g Y be the set obtained by replacing the g(i)-th
bit of X by the i-th bit of Y .

I If g is increasing, and E is computable we say A is g -sparse if A = E ⊗f X
for some X and computable f , with g(f (i)) < f (i + 1). A is sparse if it is
g -sparse for all computable g .



Theorem
I Every sparse set is Q-resolute.

I Every sparse hyperimmune set is high.

I Sparse sets form a meager class.

I There is a special Π0
1 class of sparse (and hence resolute) sets.

They are all pretty straightforward, the last one uses the expected
construction. It also follows by the work of Ian Herbert and Lempp, Miller,
Ng, Turetsky, Weber on low for dimension reals.



Completely K -resolute degrees

Definition (Ladner and Sasso)

X is called (strongly) contiguous if for all (not necessarily c.e.) Y ≡T X ,
Y ≡wtt X .

Theorem (Ng)

X is contiguous iff X is strongly contiguous.

Theorem

If X is strongly contiguous then X is completely Q-resolute, and for all
c.e. Y ≡T X , Y ≡Q X .

Theorem

There are strongly contiguous degrees where the above is true removing
the “c.e.” before the Y .

Direct construction for the last one. Probably true for all contiguous.



Corollary

There are degrees a containing only one Q-degree and are not K -trivial.

That is because there are properly low2, and superlow-non-K -trivial
contiguous degrees, for instance. Note also the Herbert et al gives this,
but there ones are all low, as low for information is GL1.

Theorem

There exist degrees a containing only one Q-degree and are neither
contiguous nor K -trivial. They are completely Q-resolute.

The proof is that Q allows for a small number of errors, but enough to
make A 6≤wtt B, with A ≡T B. Think of ΓB = A where the use is allowed
to change but only a small number of times, like a slowly growing order.
This makes a ≤rK reduction.



An aside

Theorem

If a is made so that all elements are sparse, then thay are all Schnorr
trivial.

Suppose that U is a computable measure machine. The proof is to think
about the function f (n) that computes where µ(dom(U)) ≤ 2−2

n+1
, say.

Use this and the sparseness to calculate M witnessing that A ∈ a is
Schnorr trivial.
Notice it is enough to be narrow (Binns). Recall: A is narrow iff for all
orders h, there is a Π0

1 class P containing A with the width at level n
≤ h(n).
The construction of such degrees is essentially the contiguous one. Is that
sufficient?



Back to the contiguous story

Theorem

Suppose that a is wtt-bottomed. Then the bottom A is (weakly)
K -resolute.

Suppose that A is not h-resolute. Thus for all c there are infinitely many n
with K (A � n) 6≥ K (A � h(n)). We build B ≡T A to meet the
requirements. The reduction ∆B = A is by markers δ(n, s) The other one
is simple permitting. δ(n, s) move as usual via some kind of kicking. We
we move δ(n, s) only if A � h(n)[s] changes, and must move it when A � n
changes.
Let Γe denote the e-wtt reduction. We meet

Re : ΓB 6= A.

When nothing else happens and n enters As we simply put δ(n, s) into Bs

and kick δ(m, s) for m ≥ n, to big numbers.



I Re asserts control of n if `(e, s) > h(n) at stage s for the first time.
Re asserts control of As � h(n).

I We make a description of As � h(n) matching As � n with weighting
2−(e+2). Such descriptions will be enumerated at e-expansionry
stages.

I If At � h(n) changes after this for the first time we will enumerate
δ(n, s) into Bs+1 (rather than perhaps some γ(m, s) for
m ∈ [n + 1, h(n)].)

I The key fact is that if γBe = A then after the nest expansion stage, if
A � h(n) changes, then it must be that some i ≤ n enters A also since
else B � γ(n, s) would not change.

I The result follows by finite injury, since if any Re acted confinally,
then it would demonstrate that K (A � n) ≥+ K (A � h(n)).



Not every c.e. degree

Theorem

There exists a c.e. degree a containing no ultracompressible set. They can
be, e.g. high2 or low.

We build A to meet Re : ΦA
e = We ∧ ΓWe

e = A implies We is not weakly
resolute at order he .
he is built at the mother node τ . Worker nodes σ try to demonstrate that
K (W � n) 6≤ K (W � n) + h(n) + e. Again packets of measure at σ, and
local control via links back at τ with enough layers to kill e. Put them in
reverse order.



Thank You


