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NOTATION

I Real is a member of Cantor space 2ω with topology with
basic clopen sets [σ] = {σα : α ∈ 2ω} whose measure is
µ([σ]) = 2−|σ|.

I Strings = members of 2<ω = {0,1}∗.
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WHAT THE IDEA IS

I Use tools from complexity theory and computability theory
to understand the intuitive idea of randomness.

I How to reconcile the fact that one string looks more
random than another but statistically they occur with the
same probability.

I How to understand the idea that an individual sequence
can be random; or “somewhat random” (and what does
that mean, anyway?)

I Applications: complexity, crypto, quantum, Brownian
motion, analysis, and others.
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INTUITIVE RANDOMNESS
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Which seem random?
000000000000000000000000000000000000000000000000000000000000
001101001101001101001101001101001101001101001101001101001101
010001101100000101001110010111011100000001001000110100010101
001001101101100010001111010100111011001001100000001011010100
010101110110111101110010011010110111001101101000011011110111
011101111100110110011010010000111111001101100000011011010101
000001100010111000100000000101000010110101000000100000000100
010100110111101101110101010000010111100000010101110101010001
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THREE APPROACHES TO RANDOMNESS AT AN

INTUITIVE LEVEL

I The statistician’s approach: Deal directly with rare patterns
using measure theory. Random sequences should not
have effectively rare properties. (von Mises, 1919, finally
Martin-Löf 1966)

I Computably generated null sets represent effective
statistical tests.

I The coder’s approach: Rare patterns can be used to
compress information. Random sequences should not be
compressible (i.e., easily describable) (Kolmogorov, Levin,
Chaitin 1960-1970’s). Want K (α � n) ≥ n for all n.

I Kolomogorov complexity; the complexity of σ is the length
of the shortest description of σ.

I The gambler’s approach: A betting strategy can exploit rare
patterns. Random sequences should be unpredictable.
(Solomonoff, 1961, Scnhorr, 1975, Levin 1970)

I No effective martingale (betting) can make an infinite
amount betting of the bits.
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I No time to get into exact definitions.
I The plain Kolmogorov complexity C(σ) is the length of the

shortest description of σ via a universal transducer.
I Also use prefix-free complexity where the machine works

like telephone numbers. (Levin, etc) This is denoted by K

DEFINITION
A real α is 1-random iff K (α � n) ≥ n −O(1). for all n.
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MARTINGALES AND SUPERMARTINGALES

I Recall that a martingale is a betting strategy
F : 2<ω → R+ ∪ {0} so that F (σ) = F (σ0)+F (σ1)

2 . If = is
replaced by ≤ then this is a supermartingale.

I Succeeds if lim supn→∞ F (α � n) =∞.
I For example, a random real should have long sequences

of 0’s else I could devise a (computable) martingale to
succeeed on it.

I Recall α is 1-random iff no c.e. supermartingale succeeds
on alpha. Here c.e. is computable from below. (Schnorr)

Rod Downey Victoria University Wellington New Zealand Yet More on Dimension



ORDERS

I This is concerned with the “speed” of success.
I Schnorr called a function h and order, if h is

nondecreasing and limn h(n) =∞. Computable unless
specified otherwise.

I If F is a martingale and h is an order the h-success set of
F is the set:

Sh(F ) = {α : lim sup
n→∞

F (α � n)

h(n)
→∞}.

I (Schnorr) A real α is Schnorr random iff for all computable
orders h and all computable martingales F , α 6∈ Sh(F ).
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HAUSDORFF DIMENSION

I 1895 Borel, Jordan
I Lebesgue 1904 measure
I In any n-dimensional Euclidean space, Carathéodory 1914

µs(A) = inf{
∑

i

|Ii |s : A ⊂ ∪i Ii},

where each Ii is an interval in the space.
I 1919 Hausdorff s fractional; and refine measure 0.
I For 0 ≤ s ≤ 1, the s-measure of a clopen set [σ] is

µs([σ]) = 2−s|σ|.

I Mayordomo has the following characterization of effective
Hausdorff dimension:

I (Lutz) An s-gale is a function F : 2<ω 7→ R such that

F (σ) = 2s(F (σ0) + F (σ1)).

Similarly we can define s-supergale, etc.
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I Theorem (Mayordomo) For a class X the following are
equivalent:

(I) dim(X ) = s.
(II) s = inf{s ∈ Q : X ⊆ S[d ] for some s-supergale F }.

I Lutz says the following:
“Informally speaking, the above theorem says the the
dimennsion of a set is the most hostile environment (i.e.
most unfavorable payoff schedule, i.e. the infimum s) in
which a single betting strategy can achieve infinite
winnings on every element of the set.”
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GALES VS SUPERGALES

I In (ii) we can replace supergale by gale because of the
work of Hitchcock.

I This requires work. Essentially you show that for all ε > 0
there is a s + ε-martingale which is universal for all
s-supermartingales.

I Open question: is there e.g. a multiplicatively optimal
s-gale? Can one delete the ε from Hitchcock’s Theorem?

Rod Downey Victoria University Wellington New Zealand Yet More on Dimension



I Theoerm (Mayordomo): The effective Hausdorff dimension
of a real α is

lim inf
n→∞

K (α � n)

n
= (lim inf

n→∞

C(α � n)

n
)

I (Schnorr) “To our opinion the important statistical laws
correspond to null sets with fast growing orders. Here the
exponentially growing orders are of special significance.”

I When asked at Dagstuhl he commented that he did not
have Hausdorff dimension in mind.
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EXTRACTING RANDOMNESS

I An easy example of something which has effective
dimension 1

2 is to take Ω and spread it out by inserting 0’s
every second bit. (Tadaki etc)

I Question: (Reimann, Terwijn) Can randomness always be
extracted from positive dimension? What about dimension
1?

I Question (Reimann) Can dimension 1 always be extracted
from positive dimension.
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THREE THEOREMS

I Theorem (Miller) There is a Turing cone of dimension 1
2 .

I Theorem (Greenberg and Miller) There is a real of effective
Hausdorff dimension 1 of minimal degree.

I Theorem (Zimand) Hausdorff dimension 1 can be
extracted from two independent sources of positive
dimension. (In fact 1− ε) can be extracted from
independend sources where the initial segment (plain)
complexity is eventually bigger than c log n for all c.)

Rod Downey Victoria University Wellington New Zealand Yet More on Dimension



THE GREENBERG-MILLER THEOREM

I (GM) There is a real of effective Hausdorff dimension 1
which does not bound a random real. (Earlier claimed was
of minimal degree but that is open as it relied on
Kumabe-Lewis.)

I The proof idea. First generalize the notion of s-measure to
functions (orders).

I Observe that if the order is sufficiently slowly growing then
the resultant set has effective Hausdorff dimension 1.

I Now force with bushy (Kumabe) trees in something like
“computably bounded” Baire space. This is a kind of
miniature Prikry forcing.
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ZIMAND’S THEOREM

I “small” is O(log) for our purposes.
I Independence: want to express the fact that X and Y have

little common information.
I X and Y are C-independent iff for all n,m,

C(X � nY � m) ≥ C(X � n) + C(Y � m)−O(log n + log m).

I A stronger form is noted by Calude and Zimand
CX (y � n) ≥ C(Y � n)−O(log n) and CY (X � n) ≥ C(X �
n)−O(log n).

I Now suppose we have independent sources X and Y of
positive dimension.

I Break the X and Y into blocks X1X2 . . . , Y1Y2 . . . suitably
chosen so that the conditional complexity of Xi+1 is
reasonably high relative to X1 . . .Xi .
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I Done using: If q are rational, and that for almost all n,
C(X � n) > qn and C(Y � n) > qn. Let 0 < r < q. For any
n0 sufficiently large, if we take 0 < r ′ < q − r , and then
n1 = d1−r

r ′ en0. Then: C(X �n1
n0+1 |X � n0) > r(n1 − n0).

I Thus if b = d1−r
r ′ e.

I Let t0 = 0 and t1 = b(t0) with ti+1 = b(t0 + · · ·+ ti). For
i ≥ 1 define Xi = X �titi−1

.

I |Xi | = |Yi | = n0b2(1 + b)i−3 for i ≥ 3.
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THE COMBINATORIAL HEART

I Compress the pair Ei(Xi ,Yi) 7→ Zi . We get a truth table
reduction generated by the sequence E1,E2, . . . ..

I Z = Z1Z2 . . . is the desired real.
I We say that a function E : 2n × 2n → 2m is (r ,2)-regular iff

for every k1, k2 ≥ rn, and any subsets Bi ⊆ 2n with |Bi | = ki
for i = 1,2, then for any σ ∈ 2m,

|E−1(σ) ∩ (B1 × B2)| ≤ 2
2m |B1 × B2|.

I Here m = mi = i2. The idea is that any target string z has
essentially the same number of pre-images in B1 × B2, and
hence E−1(z) ∩ B × B can be enumerated effectively, so
that if z has low complexity, then it becomes too easy to
describe the pair. (Devil in details)
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THE EXTRACTOR IDEA

I Independent strings x and y of length n with
C(x),C(y) = qn for positive rational q.

I E : 2n × 2n → 2m for each suitably large enough rectangle
B1 × B2 E maps about the same number of pairs to each
τ ∈ 2m.

I B × B ∈ 2qn × 2qn, any A ⊆ 2m, |E−1(A)| ≈ |B×B|
2m |A|.

I z = E(x , y), the C-complexity of z must be large.
I If C(z) < (1− ε)m, then we note that

(I) The set B = {σ ∈ 2n | C(σ) = qn} has size aproximately
2qn.

(II) The set A = {τ ∈ 2m | C(τ) < (1− ε)m} has size < 2(1−ε)m.
(III) (x , y) ∈ E−1(A) ∩ B × B.

I |E−1(A) ∩ B × B| ≤ (2qn)2

2εm .
I Hence C(x , y) ≤ 2qn − εm, by c.e. listing.
I But, x and y are C-independent and hence

C(xy) ≈ C(x) + C(y) = 2qn, a contradiction.
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THE CONSTRUCTION

I Step 1. Split X = X1X2 . . . and Y = Y1Y2 . . . as above,
using the parameters r = q

2 and r ′ = q
4 ..

I We remark that for each i

C(Xi |X i−1) > rni and C(Yi |Y i−1) > rni .

I Step 2. For the parameter mi = i2, find a ( r
2 ,2)-regular

function. Define Zi = Ei(Xi ,Yi).
I Step 3. Define Z = Z1Z2 . . . .
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PACKING DIMENSION

I Idea is to replace outer measure by inner measure.
I We use the Athreya, Hitchcock, Lutz, Mayordomo

characterization. The packing dimension of a real α is of a
real α is

lim sup
n→∞

K (α � n)

n
= (lim sup

n→∞

C(α � n)

n
)

I Interesting as 2-generics have high efffective packing
dimension, measure meets category.

Rod Downey Victoria University Wellington New Zealand Yet More on Dimension



I What Turing degrees contain reals of high packing
dimension?

I Fortnow,Hitchcock,Aduri,Vinochandran, Wang have proven
that if a real has packing dimension above > 0, then there
is one of the same weak truth table degree of packing
dimension 1− ε.

I hence for degrees a 0-1 Law for effective packing
dimension.

I (Open Question) is there a real of effective packing
dimension 1 inside each degree of packing dimension 1?
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THE PROOF

I This proof is due to Bienvenu.
I Have K (X � n) ≥ tn some t. Break X into intervals of size

[mk ,mk+1) a large number. Then for any t ′ < t
m

∃∞kC(X � mk ) ≥ t ′mk . (Kolmogorov computations)

I Now let s = lim supk
C(X�mk )

mk .
I Now we have rationals s1 < s < s2 and when we see τk

with τk 7→ X � mk |τk | ≥ s1mk , |τk | < s2mk we output
Zk = τk . Then Z = Z1Z2 . . . works by easy calculations.

I The original proof was a bit different, but also nonuniform,
and actually gave polynomial time reductions using
complex multisource extractors of Impagliazzo and
Widgerson.
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HOW TO WORK WITH PACKING DIMENSION

The following lemma is implicit in, e.g. Conidis

LEMMA
There is a computable mapping (σ, ε) 7→ nε(σ) which maps a
finite binary string σ ∈ 2<ω and a positive rational ε to a natural
number n such that there is some binary string τ of length n
such that

K (στ)

|στ |
≥ 1− ε.
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A MINIMAL DEGREE OF PACKING DIMENSION 1

I We prove this theorem of Downey and Greenberg.
I We force with clumpy trees. These are clumps generated

by the nε above and separated by long stretches.
I The Lemma allows us to make sure that we only have the

branches of the perfect clumpy trees at the clumps in a
Spector style forcing.
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I The same kind of idea can be used to construct a rank one
c.e. real of packing dimension 1. (Conidis)

I Have a clump, move only left, with long stretches of zeroes
extending.

I Imteresting as this is not possible for Hausdorff dimension.
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DEGREES

I (Downey, Jockusch, Stob) Recall that a is array
noncomputable iff for all f ≤wtt ∅′ there is a function g ≤T a
such that

∃∞n(g(n) > f (n).

I Array computability is stronger than being totally ω-c.e.
(DG) where bfb is this iff all functions g ≤T b are ω-c.e..

I These latter ones crop up in randomness via e.g.
computable finite randomness (Brodhead,D,Ng). Also in
the cL-degrees (Barmpalias,D, Greenberg) These c.e.
degrees are definable (D, Greenberg, Weber)
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THEOREM
(DG) A c.e. degree contains a real of effective packing
dimension 1 iff it is array noncomputable.
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I One direction. First notice that for c.e. sets, array
computable is the same as traceable. (Ismukhametov)

I That is for any computable order h, and all functions
g ≤T A, there is a weak array Wq(n) : n ∈ ω, such that
|Wq(n)| < h(n) and g(n) ∈Wh(n).

I Think g(n) = A � n.
I If the trace is very slow growing, then we can describe with

very few bits of information, an idea of Kummer.
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I The harder direction. To make the real complex, at some
clump we need to be able to move left often enough lift the
dimension.

I Then you could use the classical version of anc.
I c.e. set A is anc iff for all very strong arrays Dk(n) : n ∈ ω

(ie |Dk(n+1)| > |Dk(n)|), for all e there is a n with
We ∩ Dk(n) = A ∩ Dk(n). This is a kind of “multiple
permitting”.

I Actually works for pb-generic. so outside of the c.e.
degrees.
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RELATED RESULTS

I Kummer’s gap. We know that a c.e. set can have maximal
complexity C(A � n) as 2 log n. Solovay showed that it is
impossible to have that almost always.

I (Kummer) Either a c.e. degree is array computable and all
initial segments are within (1 + ε) log n + O(1). or the
degree contains a set which is infinitely often
2 log n −O(1).
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CHARACTERIZATION

I First guess: packing dimension 1 iff anc.
I False superlow randoms are ac, and similarly

hypermmune-free randoms.
I Second guess: packing dimension 1 iff non-c.e. traceable.

Reasonable since random reals are all non-c.e. traceable.
I Theorem (Downey and Ng) There is a ∆0

3 real A which is of
hyperimmune-free degree and not c.e. traceable, such that
every real α ≤T A has effective packing dimension 0.

I Maybe this has something to do with lowness like Schnorr,
Kurtz etc:

I Theorem (Downey and Ng) There is a real A ≤T ∅′ which is
not c.e. traceable, such that every real α ≤T A has
effective packing d imension 0.
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I The proofs again use this notion of highly branching trees
instead of Cantor space, (a finite extension argument+)
over a Spector-style forcing. within the sequence of
conditions, for A ∈ [Te] we need to kill off ΦA

j (x � n) ≤ x
2 for

almost all x . The fatness of the tree will be enough to make
sure that there is enough of the condition left to perform
the construction.

I This is an external function describing the splits of the tree.
Diagonalization is possible as the tracing must be
arbitrarily slow.

I Leaving enough of a tree relies on a certain level by level
“majority vote” argument. This relies on the fact we only
need to describe sets below the trees rather than functions.

I In some sense this gives implicit descriptions on the
survivors of the tree, and hence allows us to keep the
complexity down with long intervals and clumps.
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CONIDIS’ THEOREM

I There is a degree a of packing dimension 1 that does not
contain a real of packing dimension 1.

I The proof uses the Downey-Ng ideas, with slowly growing
trees.

I Question : Is there a degree of Hausdorff dimension 1 that
does not compute a real of (packing) (Hausdorff)
dimension 1?
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OTHER INTERESTING THINGS

I Shift complex sets for all n,m there is a d such that the
C(A �m+n

m ≥ (1− ε)n − d .
I The exist (Levin) can be used for aperiodic tilings.
I Miniaturizing things e.g. Automatic dimension (Schnorr,

Lutz) Lempl-Ziv, etc
I Poly classes and separations. E.g. can there be a

polynomial reduction of ∅′ to the collection of non-random
strings. (Allender etc)

I Many, many more: see my recent open question paper
(home page)
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Thank you
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