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THIS LECTURE:

I I have decided to give a brief account of some of the things
I am currently interested in rather than a detailed lecture.
Talk to me if you are interested.

I Parameterized Complexity
I Generic Case Complexity
I Algorithmic Randomness
I Reverse Mathematics



PARAMETERIZED COMPLEXITY

I A mathematical idealization is to identify “Feasible” with P
(polynomial time). (I won’t even bother looking at the
problems with this.)

I With this assumption, the theory of NP-hardness is an
excellent vehicle for mapping an outer boundary of
intractability, for all practical purposes.

I Indeed, assuming the reasonable current working
assumption that NTM acceptance is Ω(2n), NP-hardness
allows for practical lower bound for exact solution for
problems.

I A very difficult practical and theoretical problem is “How
can we deal with P?”.

I More importantly how can we deal with P − FEASIBLE ,
and map a further boundary of intractability.



I Lower bounds in P are really hard to come by. But this
theory will alow you establish infeasibility for problems in P,
under a reasonable complexity hypothesis.

I Also it will indicate to you how to attack the problem if it
looks bad.

I As we soon see, sensitizing the run times to parameters
allows the development of a distinctive and often useful
toolkit.

I The theory equips us with both a positive and negative tool
kit.



I’M DUBIOUS; EXAMPLE?

I Below is one application that points at why the
completeness theory might interest you.

I The great PCP Theorem of Arora et. al. allows us to show
that things don’t have PTAS’s on the assumption that
P6=NP.

I Some things actually do have PTAS’s. Lets look at a
couple taken from recent major conferences: STOC,
FOCS, SODA etc.



I Arora 1996 gave a O(n
3000
ε ) PTAS for EUCLIDEAN TSP

I Chekuri and Khanna 2000 gave a O(n12(log(1/ε)/ε8)) PTAS
for MULTIPLE KNAPSACK

I Shamir and Tsur 1998 gave a O(n22
1
ε −1)) PTAS for

MAXIMUM SUBFOREST

I Chen and Miranda 1999 gave a O(n(3mm!)
m
ε +1

) PTAS for
GENERAL MULTIPROCESSOR JOB SCHEDULING

I Erlebach et al. 2001 gave a O(n
4
π

( 1
ε2

+1)2( 1
ε2

+2)2
) PTAS for

MAXIMUM INDEPENDENT SET for geometric graphs.



I Deng, Feng, Zhang and Zhu (2001) gave a
O(n5 log1+ε(1+(1/ε))) PTAS for UNBOUNDED BATCH

SCHEDULING.
I Shachnai and Tamir (2000) gave a O(n64/ε+(log(1/ε)/ε8))

PTAS for CLASS-CONSTRAINED PACKING PROBLEM (3
cols).



REFERENCE RUNNING TIME FOR A
20% ERROR

ARORA (AR96) O(n15000)

CHEKURI AND KHANNA (CK00) O(n9,375,000)

SHAMIR AND TSUR (ST98) O(n958,267,391)

CHEN AND MIRANDA (CM99) > O(n1060
)

(4 PROCESSORS)
ERLEBACH ET AL. (EJS01) O(n523,804)

DENG ET. AL (DFZZ01) O(n50)

SHACHNAI AND TAMIR (ST00) O(n1021570)

TABLE: The Running Times for Some Recent PTAS’s with 20% Error.



WHAT IS THE PROBLEM HERE?

I Arora (1997) gave a PTAS running in nearly linear time for
EUCLIDIAN TSP. What is the difference between this and
the PTAS’s in the table. Can’t we simply argue that with
more effort all of these will eventually have truly feasible
PTAS’s.

I The principal problem with the baddies is that these
algorithms have a factor of 1

ε (or worse) in their exponents.
I By analogy with the situation of NP completeness, we

have some problem that has an exponential algorithm.
Can’t we argue that with more effort, we’ll find a much
better algorithm? As in Garey and Johnson’s famous
cartoon, we cannot seem to prove a better algorithm. BUT
we prove that it is NP hard.



I Then assuming the working hypothesis that there is
basically no way to figure out if a NTM has an accepting
path of length n except trying all possibilities there is no
hope for an exact solution with running time significantly
better than 2n. (Or at least no polynomial time algorithm.)

I Moreover, if the PCP theorem applies,then using this basic
hypothesis, there is also no PTAS.



I In the situation of the bad PTAS’s the algorithms are
polynomial. Polynomial lower bound are hard to come by.

I It is difficult to apply classical complexity since the classes
are not very sensitive to things in P.

I Our idea in this case is to follow the NP analogy but work
within P.



I What parametric complexity has to offer:
I Then assume the working hypothesis that there is

basically no way to figure out if a NTM has an accepting
path of length k except trying all possibilities. Note that
there are Ω(nk ) possibilities. (Or at least no way to get the
“k ” out of the exponent or an algorithm deciding k -STEP

NTM,)



I One then defines the appropriate reductions from k -STEP

TURING MACHINE HALTING to the PTAS using k = 1
ε as a

parameter to argue that if we can “get rid” of the k from
the exponent then it can only be if the working hypothesis
is wrong.



EFFICIENT PTAS’S

I Even if you are only interested in “classical” problems you
would welcome a methodology that allows for “practical”
lower bounds in P, modulo a reasonable complexity
assumption.

I An optimization problem Π has an efficient P-time
approximation scheme e (EPTAS) if it can be approximated
to a goodness of (1 + ε) of optimal in time f (k)nc where c
is a constant and k = 1/ε.



BAGZAN, CAI-CHEN

I (without even the formal definition) (Bazgan (Baz95), also
Cai and Chen (CC97)) Suppose that Πopt is an
optimization problem, and that Πparam is the corresponding
parameterized problem, where the parameter is the value
of an optimal solution. Then Πparam is fixed-parameter
tractable if Πopt has an EPTAS.



I Parameterized complexity allows for an extended “dialog”
with the problem at hand. (More on this soon).



I Others to use the hardness theory include the following
I (Alekhnovich and Razborov (AR01)) Neither resolution not

tree-like resolution is automizable unless W [P] is
randomized FPT by a randomized algorithm with one-sided
error. (More on the hypothesis later)

I Frick and Grohe showed that towers of twos obtained from
general tractability results with respect to model checking
can’t be gotten rid of unless W [1] = FPT , again more later.



PARAMETERS

I Without even going into details, think of all the graphs you
have given names to and each has a relevant parameter:
planar, bounded genus, bounded cutwidth, pathwidth,
treewidth, degree, interval, etc, etc.

I Also nature is kind in that for many practical problems the
input (often designed by us) is nicely ordered.



TWO BASIC EXAMPLES

I VERTEX COVER
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k vertex cover? (Vertices
cover edges.)

I DOMINATING SET
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k dominating set? (Vertices
cover vertices.)



I VERTEX COVER is solvable by an algorithm O in time
f (k)|G|, a behaviour we call fixed parameter tractability,
(Specifically 1.2745kk2 + c|G|, with c a small absolute
constant independent of k .)

I Whereas the only known algorithm for DOMINATING SET
is complete search of the possible k -subsets, which takes
time Ω(|G|k ).



BASIC DEFINITION(S)

I Setting : Languages L ⊆ Σ∗ × Σ∗.
I Example (Graph, Parameter).
I We say that a language L is fixed parameter tractable if

there is a algorithm M, a constant C and a function f such
that for all x , k ,

(x , k) ∈ L iff M(x) = 1 and

the running time of M(x) isf (k)|x |C .
I E.g. VERTEX COVER has C = 1. Vertex Cover has been

implemented and shown to be practical for a class of
problems arizing from computational biology for k up to
about 7000 and n large.

I One example: Langston et. al. 2008 Innovative
computational methods for transcriptomic data analysis: A
case study in the use of FPT for practical algorithm design
and implementation. in The Computer Journal,
51(1):26–38, 2008.



DOES THIS MATTER?

I The table below illustrates why this might be interesting.

n = 50 n = 100 n = 150
k = 2 625 2,500 5,625
k = 3 15,625 125,000 421,875
k = 5 390,625 6,250,000 31,640,625
k = 10 1.9× 1012 9.8× 1014 3.7× 1016

k = 20 1.8× 1026 9.5× 1031 2.1× 1035

TABLE: The Ratio nk+1

2k n for Various Values of n and k



I Note that we are using arbitarily f (k) = 2k , and sometimes
we can do better. (Such as the case of VERTEX COVER)

I So the FPT is interesting since it works better than
complete search for problems where we might be
interested in small parameters but large input size.



POSITIVE TECHNIQUES

I Elementary ones
I Include Kernelization, Bounded search trees, Struction,

Crown Reductions, IP Relaxation, Lenstra’s IP bounded
Variable, Iterative Compression.

I Colour Coding and Greedy Localization
I Graph Structure Theory Width metrics: treewidth, cutwidth

d-inductive graphs etc.
I Logical metatheorems Courcelle’s Theorem, Excluded

Minor theorems, Bidimensionality.
I Limits



REDUCTIONS AND INTRACTABILITY

I Natural basic hardness class: W [1]. Does not matter what
it is, save to say that the analog of Cook’s Theorem is
SHORT NONDETERMINISTIC TURING MACHINE
ACCEPTANCE
Instance: A nondeterministic Turing Machine M and a
positive integer k .
Parameter: k .
Question: Does M have a computation path accepting the
empty string in at most k steps?



I If one believes the philosophical argument that Cook’s
Theorem provides compelling evidence that SAT is
intractible, then one surely must believe the same for the
parametric intractability of SHORT NONDETERMINISTIC
TURING MACHINE ACCEPTANCE.

I Moreover, recent work has shown that if SHORT NTM is
fpt then n-variable 3SAT is in DTIME(2o(n))



I Given two parameterized languages L, L̂ ⊆ Σ∗ × Σ∗, say
L ≤FPT L̂ iff there are (computable) f , x 7→ x ′, k 7→ k ′ and a
constant c, such that for all x ,

(x , k) ∈ L iff (x ′, k ′) ∈ L̂,

in time f (k)|x |c .
I Lots of technical question still open here.



ANALOG OF COOK’S THEOREM

I Analog of Cook’s Theorem: (Downey, Fellows, Cai, Chen)
WEIGHTED 3SAT≡FTP SHORT NTM ACCEPTANCE.
WEIGHTED 3SAT

Input: A 3 CNF formula φ
Parameter: k
Question: Does φ has a satisfying assignment of Hamming
weigth k , meaning exactly k literals made true.



W-HIERARCHY

I Think about the usual poly reduction from SAT to 3SAT. It
takes a clause of size p, and turns it into many clauses of
size 3. But the weight control goes awry. A weight 4
assignment could go to anything.

I We don’t think WEIGHTED CNF SAT≤ftpWEIGHTED 3 SAT.
I Gives rise to a heirarchy:

W [1] ⊆W [2] ⊆W [3] . . .W [SAT ] ⊆W [P] ⊆ XP.

I XP is quite important, it is the languages which are in
DTIME(nf (k)) with various levels of uniformity, depending
on the choice of reductions.



I XP has k -CAT AND MOUSE GAME and some other games ((DF99a)),
I W [P] has LINEAR INEQUALITIES, SHORT SATISFIABILITY, WEIGHTED CIRCUIT

SATISFIABILITY ((ADF95)) and MINIMUM AXIOM SET((DFKHW94)).
I Then there are a number of quite im portant problems from combinatorial pattern

matching which are W [t] hard for all t : LONGEST COMMON SUBSEQUENCE (k =
number of seqs.,|Σ|-two parameters) ((BDFHW95)), FEASIBLE REGISTER
ASSIGNMENT, TRIANGULATING COLORED GRAPHS, BANDWIDTH, PROPER
INTERVAL GRAPH COMPLETION ((BFH94)), DOMINO TREEWIDTH ((BE97)) and
BOUNDED PERSISTE NCE PATHWIDTH ((McC03)).

I W [2] include WEIGHTED {0, 1} INTEGER PROGRAMMING, DOMINATING SET
((DF95a)), TOURNAMENT DOMINATING SET ((DF95c)) UNIT LENGTH
PRECEDENCE CONSTRAINED SCHEDULING (hard) ((BF95)), SHORTEST
COMMON SUPERSEQUENCE (k )(hard) ((FHK95)), MAXIMUM LIKELIHOOD
DECODING (hard), WEIGHT DISTRIBUTION IN LINEAR CODES (hard), NEAREST
VECTOR IN INTEGER LATTICES (hard) ((DFVW99)), SHORT PERMUTATION
GROUP FACTORIZATION (hard).

I W [1] we have a collection including k -STEP DERIVATION FOR CONTEXT

SENSITIVE GRAMMARS, SHORT NTM COMPUTATION, SHORT POST

CORRESPONDENCE, SQUARE TILING ((CCDF96)), WEIGHTED q–CNF

SATISFIABILITY ((DF95b)), VAPNIK–CHERVONENKIS DIMENSION ((DEF93))

LONGEST COMMON SUBSEQUENCE (k , m = LENGTH OF COMMON SUBSEQ.)

((BDFW95)), CLIQUE, INDEPENDENT SET ((DF95b)), and MONOTONE DATA

COMPLEXITY FOR RELATIONAL DATABASES



ALGORITHMS IN NATURE

I One of my own research agendas has been to understand
why algorithms work better (or worse) than we expect. This
is where parameterized complexity came from. (Exploiting
the fact that almost all data from “real life” has parameters
bounded in some way. This can yield a lot of good
algorithmics.)

I One aspect of this came from group theory through the
work of Schupp, Myasnakov, and others on “generic case
complexity.”



REFERENCES

I Asymptotic Density for c.e. Sets (with Jockusch and
Schupp) in preparation.

I Generic Computability, Turing Degrees and Asymptotic
Density (Jockusch and Schupp), to appear, JLMS.

I Generic case complexity, decision problems in group
theory and random walks, (Kapovich, Miasnikov, Schupp
and Shpilrain) J. Algebra, (2003)

I Genericity, the Arshantseva-Ol’shanskii technique and the
isomorphism problem for one relator groups, (Kapovich
and Schupp) Math Ann (2005)



BACKGROUND

I Classical complexity, P, NP etc seems often the wrong
model for actual behaviour of problems.

I E.g Simplex Algo, Polynomial Identity Testing etc.
I Other models: Parameterized complexity

(Downey-Fellows), average case complexity
(Gurevich-Levin), smoothed analysis (Spielman-modern
version of average case)

I The first does not always explain things it seems, and the
last two are hard to apply (distributions etc)

I New method suggested by Kapovich, Miasnikov, Schupp
and Shpilrain in 2003.



ASYMPTOTIC DENSITY

I A finite alphabet Σ

I Let S be a subset of Σ∗. For every n ≥ 0 let Sdn denote
the set of all words in S of length at most n.

I Let
ρn(S) =

|Sdn|
|Σ∗dn|

I Upper density (Borel)

ρ(S) := lim sup
n→∞

ρn(S)

I Similarly, Lower density
I (asymptotic) density If the actual limit

ρ(S) = limn→∞ρn(S) exists



GENERIC CASE COMPLEXITY

I A subset S of Σ∗ is generic if ρ(S) = 1 and S is negligible if
ρ(S) = 0

I exponentially fast Exist 0 ≤ σ < 1 and C > 0 such that for
every n ≥ 1 we have 1− ρn(S) ≤ Cσn. In this case we say
that S is strongly generic.

I A (partial) Φ | Σ∗ → {0,1} is a generic description of S if
Φ(x) ↓→ Φ(x) = S(x) and the domain of Φ is generic.

I A set S is called generically computable if there exists a
partial computable function Φ which is a generic
description of S.



OTHER EXAMPLES

I Using what is called is called the quotient method and can
be used for any G = 〈X ,R〉 subgroup of K of finite index for
which there is an epimorphism K → H hyperbolic and not
virtually cyclic, to show generically solvable word problem.

I Applies also to 1-relator groups with ≥ 3 generators
similarly (no bound for Magnus’ solution), plus
isomorphism problem; and braid groups, and
automorphism problems for free groups etc.

I Boone’s group also, unknown if there is a one without a
generically solvable word problem. (See also Gilman,
Miasnikov and Osin for the strong case)

I See the papers by Schupp, Kapovich etc.



LOTS OF QUESTIONS

I Understand this better.
I What about other structures.
I Generic case model theory and coarse model theory.
I How does this relate to classical complexity, etc.



ALGORITHMIC RANDOMNESS

I Have heard talks about how to use computation theory to
understand randomness via things like effective null sets,
effective betting.

I Recall α is ML-random iff α is not ∩nUn where Un is a c.e.
open set of measure ≤ 2−n.

I Also recall A is K -trivial iff K (A � n) ≤K (n) all n iff
K A =+ K .

I Have been looking at exact pairs for K -trivials, and integer
valued randomness, especially with Barmpalias and with
Nies.



I For example, BD classified the c.e. Turing degrees
containing IVR’s as the aray noncomputables.

I To wit: a martingale is played on 2<ω and has
f (σ) = f (σ0)=f (σ1)

2 . (Fairness)
I α is ML-random iff no left c.e. martingale succeeds on it

meaning that lim supn f (α � n)→∞.
I α is integer valued random iff no integer valued martingale

succeeds. (Think of a “real” casino.)
I Also I think we can prove that the K -trivials have an exact

pair (BDN) (reasonably longstanding technical question)



I (BD) have also studied reals with K (α � n) ≥+ K (α � f (n)
for each computable order f . (weakly K -resolute)

I Such c.e. sets can be Turing complete, not all c.e. degrees
have them, and there is a non-K -trivial completely
K -resolute degree.

I Also talking with Ted Slaman’s student Ian Herbert about
mutual information for reals, akin to symmetry of
information a ’la Levin.



SPECULATIVE, PHYSICS

I There are obvious things like Brownian motion.
I The Asarin-Fouché-Kjos-Hanssen-Nerode approach is to

look (as usual) at the space of continuous f [0,1]→ R with
the uniform metric d(f ,g) = sup|f (x)− g(x)| and Wiener
measure. Then you can classify the notion of an individual
random Brownain motion using Kolmogorov complexity.

I The question is what does this say about “real” Brownain
motion?

I Classical physics treats space-time as a manifold. So most
processes are pde’s and presumably they are
“computable” in the sense that if I closely approximate the
input the same is true of the output. Thus in that context,
the above would make some sense. As does algorithmic
randomness.



PHYSICS CONTINUED

I There is a nice research programme and lots of interesting
questions here.

I Can such a system generate randomness? or even
incomputability (Pour-El, Richards)?

I According to my friendly physicist (Matt Visser) and most
of my reading (e.g. Speakable and unspeakable in
quantum physics, Bell’s Theorem, the recent essay
competition in FQXi), quantum phyics could be hard to
reconcile with the manifold interpretation.

I At the heart of quantum physics at the Planck level, things
seem highly non-continuous. When, for example, we
observe spin, it (with some degree of randomness)
chooses.

I How to interpret this. There are at least 4-6 interpretations
and one could speculate that algorithmic randomness
might have a show at sheding light on this subject.



I It could be that at at some level nothing is computable yet
(like looking at a TV from afar) it all looks smooth and
computable.

I I am aware of no framework at all which can be used to
computationally represent this, and it would seem a very
interesting project to do this.

I I like it as I would need to learn some physics and could
charm a physicist, maybe with logic.

I Also the work of Shannon→Lee Ruebel on GPAC if the
world is a manifold.



BIOLOGY

I What about the processes of biology?
I At the speculative level, the sizes of computation occuring

in cell walls is nano-scale and hence must experience
some quantum effects. Thus it is tied to the above.

I There is a recent programme begun by Winfree in 1998
representing DNA as tile self assemply. The idea is you
have tiles with rules and a nondeterministic bonding
according to the rules.

I This seems a natural model to try to model real DNA and I
think also you could add a randomness mutation to the
rules. This has not been explored, but the Lutz-Adleman
group have looked at this and it seems very promising.

I What about doing this in reverse, maybe proving such
randomness is necessary for viability of a system.



I Of course there are older ideas using K -complexity.
I There is no accepted notion of good similarity between

genertic information, (e.g. music also), e.g. maximum
parsimony, maximum likelihood etc.

I Idea: why not use K -complexity. So the common
information is measured by an approximation to
Kolmogorov complexity.

I As compression algorithms improve, this seem to work
better.



REVERSE MATHEMATICS

I Looking at e.g. FIP. Every infinite family has a maximal
subfamily where every finite subset has nonempty finite
intersection.

I As Sets this is equivalent to ACA0 over RCA0.
I (With Diamondstone, Greenberg, Turetsky) As families the

FIP (those that can compute solutions to all computable
families) degrees below 0′ are exactly the degrees
bounding 1−generic ones.

I (DDGT) But there is a minimal one. Note Damir Dzharfarov
has shown that the degrees are all hyperimmune.



Thank You
I


