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Abstract—We consider spectrum sensing in a cognitive radio
network, with arbitrary numbers of primary and secondary
users. Based on the sphericity test, we first analyze centralized
spectrum sensing where all the data available at the secondary
users are combined for the signal detection of primary users.
We derive accurate approximations for the false alarm and
detection probabilities which are also compared against the
approximations already available in literature. Next, we analyze
distributed spectrum sensing where only partial data from each
secondary user is used in the signal detection of primary users.
Two novel techniques namely, the multisample sphericity test and
meta analysis, are proposed and analyzed. Instead of sending all
the raw data received at the secondary user terminals, in the
multisample sphericity test and meta analysis only one or two real
numbers are required to be sent to a central processor to make a
decision about the presence of primary users. Accurate analytical
expressions on the false alarm and detection probabilities are
derived and numerical examples are provided to verify their
accuracy. Receiver operating characteristic (ROC) curves are also
presented to compare the performance of the proposed methods.

Index Terms—

Cognitive radio, distributed spectrum sensing, sphericity test.

I. INTRODUCTION

In view of the radio spectrum’s scarcity, it is necessary to
find new techniques for its efficient use in wireless commu-
nications. In [1], it was revealed that some frequency bands
in the radio spectrum are largely unoccupied most of the
time. Cognitive radio is a promising technology that can
be used to improve radio spectrum utilization, by allowing
unlicensed secondary users to share the spectrum resources
of licensed primary users [2]–[7]. One principal requirement
of this approach is that secondary user transmission does not
cause intolerable interference to the primary users. This is
achieved by the secondary users’ ability to detect the presence
of primary users, which is commonly referred to as spectrum
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sensing. If no primary users are detected, the secondary users
are allowed to utilize the primary user’s licensed spectrum.

A. Related work and Motivation
Spectrum sensing acts as an important tool in detecting the

so called spectrum holes, i.e., idle frequency bands that are
temporarily unused by the corresponding primary users, to
efficiently deliver secondary user data, while protecting the
communication quality of the primary user [8]. It has also
been included in the IEEE 802.22 standard, built on cognitive
radio techniques [9].

Several spectrum sensing techniques have been pro-
posed in the literature including energy-based detectors [10],
[11], eigenvalue-based spectrum sensing techniques [12]–[14],
matched-filter based detectors [15] and covariance based spec-
trum sensing techniques [16], etc. The energy-based detectors
are usually simple to implement, but they require knowledge
of the effective noise variance. In the present work, we
focus on eigenvalue-based spectrum sensing which does not
require knowledge of the noise variance and offers remarkably
improved performance for specific signal categories. In the
literature, many optimal eigenvalue-based spectrum sensing
techniques have been proposed and analysed under the as-
sumption of a single active primary user [12]–[14]. However,
in cellular systems the existence of multiple, simultaneously
transmitting primary users is a prevailing condition and very
little is known about performance under the presence of
multiple primary users.

For such systems, a novel spectrum sensing algorithm,
based on the sphericity test, has been proposed in [17].
The authors use the optimal generalized likelihood ratio test
(GLRT) paradigm and simulate the false alarm and detection
probabilities. However, no analytical derivation relating to the
performance measures was presented. In [18], the authors
adopt the same model as in [17] and derive analytical formulae
to approximate the false alarm and detection probabilities in
the presence of multiple primary users. The approximation was
derived by matching the moments of test statistics to a Beta
distribution. For the special case of only two secondary users
the approximations in [18] reduce to the exact performance
measures. In [19] and [20], the authors derive exact expres-
sions for the moments of the GLRT statistic, and show that
the normalized GLRT statistic converges in distribution to a
Gaussian random variable when the number of antennas and
observations grow large at the same rate.

While the optimal GLRT technique considered in [17]–
[20] exhibits high detection performance, it requires a central
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processor that gathers and processes the raw data received by
all the secondary user terminals. This centralized architecture
limits the applicability of the GLRT technique to large net-
works due to the resulting communication and computation
burden. In order to overcome this problem, we are motivated to
consider more decentralized spectrum sensing techniques that
require only partial information to be exchanged between the
secondary users and the central processor. More specifically,
we consider cases where the secondary users process the data
locally at the terminal, and share the processed data with the
central processor to make the final decision.

B. Contributions

In this paper, we consider a general cognitive radio system
with an arbitrary number of primary and secondary user
terminals. Based on the sphericity test and the GLRT statistic
we investigate the detection performance of centralized and
decentralized spectrum sensing. Our novel contributions are
detailed as follows:

• Under centralized spectrum sensing we derive easy-to-
evaluate closed-form approximations for the false alarm
and the detection probabilities. Based on numerical ex-
amples, we illustrate the accuracy of our approximations
and compare them against the analytical approximations
in [18] and [20].

• Under distributed spectrum sensing we propose two novel
techniques, namely, the multisample sphericity test and
meta analysis. In the multisample sphericity test each sec-
ondary user calculates and sends only two real numbers,
specifically, the trace and the determinant of the sample
covariance matrix, to detect the primary user signal.
Under this scheme, we derive easy-to-evaluate, closed-
form approximations for the false alarm and detection
probabilities when the secondary users are subject to
equal or unequal noise variances.

• In meta analysis each secondary user is required to
calculate and send only one real number, i.e., the extreme
probability value, more commonly known as the p-value,
of the current test statistic. Under this technique also, we
derive an easy-to-evaluate, closed-form approximation for
the false alarm probability.

• Furthermore, we compare the performance of the novel
techniques with other simple binary fusion methods,
where each secondary user terminal makes a binary
decision about the presence of primary users and all
the decisions are simply combined through binary AND
or OR operation at the central processor. Under binary
fusion techniques also, we conduct a rigorous theoretical
analysis by deriving closed-form approximations for the
test statistics distributions under both hypothesis.

• We present extensive numerical examples to illustrate the
accuracy of our results. Using the receiver operating char-
acteristics (ROC), curves we compare the performance
of the proposed techniques. We observe that both the
multisample sphericity test and meta analysis have similar
performance even though meta analysis requires only half
the amount of information sent to the central processor.

The rest of the paper is organized as follows. In Section II we
present the system model and outline the sphericity test based
centralized test statistics. The theoretical analyses on deriving
the false alarm and detection probabilities are also presented.
In Section III, we present the novel techniques of multisample
sphericity test and meta analysis, and analyze the false alarm
probability and detection probabilities. We also compare the
performance of different distributed spectrum sensing tech-
niques based on ROC curves and present numerical examples.
The paper is concluded in Section IV.

II. CENTRALIZED SPECTRUM SENSING

We consider a standard wireless communications system
with P primary user terminals and M secondary user ter-
minals. The secondary user terminals are tasked with coop-
eratively determining the presence of primary users and the
secondary user terminal m is equipped with Qm antennas
such that, K =

∑M
m=1 Qm. In this system, each secondary

user terminal is connected to a central processor1, that coop-
eratively detects the presence of primary users. The amount
of information exchanged to the central processor could vary
depending on the type of spectrum sensing technique used.
This detection problem can be formulated as a binary hypoth-
esis test, where the null hypothesis, H0, denotes the absence
of primary users and the non-null hypothesis, H1, denotes the
presence of primary users. Under centralized spectrum sensing
we assume that all the signals received at the secondary user
terminals are available at the central processor. As such, the
n-th sample vector, xn, received at the central processor can
be modeled as

H0 : xn = wn no primary users present
H1 : xn = Hs+wn primary users present, (1)

where s = [s1, s2, . . . , sP ]
T is the P × 1 data vector, which

contains the zero mean transmitted symbols from the P
primary users, wn is the K × 1 additive white Gaussian
noise vector at the n-th sample with E[wnw

†
n] = σ2IK and,

H = [h1,h2, . . . ,hP ] is the K × P channel matrix between
the P primary users and K receive antennas. We collect N in-
dependent and identically distributed sample vectors such that
the observed received signal matrix is X = [x1,x2, . . . ,xN ].
Similar to [18], we assume that the channel H remains
constant during this time. Note that unless otherwise specified,
the results in this paper do not assume a specific distribution
for H. We also assume that the primary users signal follows
an independent and identically distributed zero mean Gaussian
distribution and is uncorrelated with the noise.

A. Sphericity Test
Let us define the sample covariance matrix R = XX†

such that when no primary users are present R follows an
uncorrelated complex Wishart distribution with population
covariance matrix

Σ =
E[XX†]

N
= σ2IK . (2)

1One of the secondary user terminals could be selected as the central
processor.
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When primary users are present, for a given H, R follows
a correlated complex Wishart distribution with population
covariance matrix

Σ =
P∑
i=1

γihih
†
i + σ2IK , (3)

where γi = E[sis†i ] defines the transmission power of the i-
th primary user. Thus, the hypothesis testing in (1) can be
rearranged to test the structure of the population covariance
matrix Σ as

H0 : Σ = σ2IK no primary users present

H1 : Σ ≻ σ2IK primary users present, (4)

where A ≻ B denotes that A−B is a positive definite matrix.
Note that no a priori knowledge on H, P and σ2 is assumed at
the secondary user terminals. The most critical information for
the secondary user is whether or not there are active primary
users and the number of active users is not relevant. As such,
we reject H0 if we have reason to believe that Σ departs from
the spherical structure of Σ = σ2IK , which is the well-known
sphericity test [21], [22].

Different test criteria can be considered for the detection
problem in (4). In this paper, we consider detectors of the
Neyman-Pearson type, which involves comparing the gener-
alized likelihood ratio to a user-designed detection threshold
[23]. The generalized likelihood ratio used for determining H0

or H1 in (4) can be written as

L =
supσ2∈R+L(X|σ2IK)

supΣ≻0L(X|Σ)
, (5)

where L(X|σ2IK) is the likelihood function of the observation
matrix under hypothesis H0 and L(X|Σ) is the likelihood
function of the observation matrix under hypothesis H1.
Maximizing these likelihoods over the unknown parameters,
i.e., finding the maximum likelihood estimates of σ2 under
H0, and of σ2, γ1, γ2, . . . , γP and H under H1, results in the
GLRT statistic [24]

TS =
|R|(

1
K tr(R)

)K . (6)

More details on the derivation of TS can be found in [18],
[24]. Now, to determine H0 or H1 admits

TS ≷H0

H1
ζ, (7)

where ζ is a user-specified detection threshold. Thus, the
central processor calculates TS and declares that the primary
user signals are present if TS < ζ, while no primary user
signals are believed to be present if TS > ζ.

B. Performance Measures

We consider two performance measures for the sphericity
test based detection, namely, the false alarm probability de-
noted by Pfa and the detection probability denoted by Pd. In
the following, we present the analytical results of those per-
formance measures in closed-form expressions. We note that
under centralized spectrum sensing approximate expressions

for the false alarm probability and detection probability are
derived in [18], [20]. In [18], the test statistic is approximated
by a beta variable based on the moments of the distributions in-
volved. In [20], the inverse of the test statistic is approximated
using a Gaussian random variable. In the present paper, we
derive alternative approximations for Pfa and Pd that are more
accurate and yet easy-to-evaluate. In addition to the simplicity,
our results are based on chi-squared (for Pfa) and normal
(for Pd) approximations, which have a rigorous mathematical
basis in asymptotic expansions as shown in [24, pg. 436] and
[22, pg. 351], respectively. Numerical examples are presented
comparing our results with the results in [18], [20].

1) Probability of false alarm: The false alarm probability
is the probability of wrongly declaring H1, i.e., H1 is chosen
given that H0 is the true hypothesis. It can be defined as

Pfa = Pr[TSH0 ≤ ζ], (8)

where TSH0 is TS defined under hypothesis H0. From (8),
note that Pfa is the CDF of TSH0 , evaluated at ζ which can
be denoted by FTSH0

(ζ). The threshold ζ should be carefully
chosen such that Pfa is small and it can be calculated by
numerically inverting FTSH0

(ζ), i.e.,

ζ = F−1
TSH0

(Pfa). (9)

In order to analyse Pfa, first we use the result in [18, eq.
(35)] to find the exact moments of the N -th power of TSH0 ,
i.e., TSN

H0
, as

E[TSnN
H0

] = KKn Γ(NK)

Γ(NK + nNK)

K∏
k=1

Γ(N + nN − k + 1)

Γ(N − k + 1)
,

(10)

where n denotes the n-th moment and Γ(·) denotes the gamma
function [25, eq. (8.310)]. Next, we proceed to compare these
moments with [24, Section 8.5.1, eq. (1)]. We observe that
the expression in [24, Section 8.5.1, eq. (1)] reduces to (10)

when the constant K = Γ(NK)
(∏K

k=1 Γ(N + 1− k)
)−1

,
b = 1, a = K, y1 = NK, xk = N ∀ k ∈ {1, 2, . . . , a},
η1 = 0 and {−ξ1,−ξ2, . . . ,−ξa} = {0, . . . ,K}. Hence we
can directly apply the general theory of asymptotic expansions
in [24, Section 8.5.1] to derive an approximation to the CDF
of −2Nρ ln(TSH0) under the null hypothesis as

Pr[−2ρ ln(TSH0) ≤ x] ≈ Pr[χ2
f ≤ x], (11)

where f = K2 − 1, ρ = N − 1+2K2

6K , and χ2
f denotes a

chi-squared distribution with f degrees of freedom. Note that
the full expression for the CDF of −2Nρ ln(TSH0) in [24]
contains additional correction terms written in-terms of higher
order chi-squared distributions. For simplicity, we ignore these
correction terms and approximate Pr[−2Nρ ln(TSH0) ≤ x]
by the chi-squared distribution in (11). We also note that this
results can be obtained by using [26], [27]. Following simple
mathematical manipulations (11) can be expressed as

Pr
[

TSH0 ≥ exp

(
− x

2Nρ

)]
≈ Pr[χ2

f ≤ x]. (12)
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Fig. 1. Probability of false alarm vs the detection threshold for centralized
spectrum sensing.

Hence, we can derive an approximation for the CDF of TSH0

as

Pr[TSH0 ≤ x] ≈ 1− Pr[χ2
f ≤ −2Nρ ln(x)]. (13)

Thus, Pfa for centralized spectrum sensing can be approxi-
mated as

Pfa ≈ 1− Pr[χ2
f ≤ −2Nρ ln(ζ)]. (14)

Comparing (14) with [18, eq. (17)] and [20, eq. (11)] we notice
that our results has a much simpler form and is very easy to
evaluate.

Fig. 1 plots the Pfa versus the detection threshold ζ for dif-
ferent numbers of secondary user terminals, by setting M = 4
and 5. The secondary use terminals are allocated Qm = 2
antennas each. We also change the number of observations,
by setting N = 20 and 100. For each simulation trial, the
noise components are drawn from an independent complex
Gaussian distribution. The simulation curves are generated
based on Monte-Carlo simulation, while the analytical curves
are generated using the approximation in (14). The figure
illustrates extremely close agreement between the analytical
approximation and the simulation curves. For a given detection
threshold, an increase in M results in an increase in Pfa. We
also compare these results with the beta and Gaussian approx-
imations in [18] and [20]2, respectively. We observe that when
compared to the accuracy of our analytical approximation, the
beta approximation in [18, eq. (17)] is slightly loose in the
lower tail when N = 20 and, the Gaussian approximation in
[20, eq. (11)] is slightly loose in the lower tail when N = 100.

2In Fig. 1 we plot the Gaussian approximation in [20], without the
correction terms. We agree that adding the correction terms will make
the approximation more accurate, but the complexity of the approximation
increases as it requires the calculation of the third and the fourth central
moments of X . Therefore, to keep the complexity comparable with (14) and
[18, eq. (17)] we ignore the correction terms in [20, eq. (11)].

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ζ

10-2

10-1

100

P
d

Simulation

Analytical

Beta Approximation in [18]

Gaussian Approximation in [20]

Fig. 2. Probability of detection vs the detection threshold for centralized
spectrum sensing.

2) Probability of detection: The detection probability is the
probability of declaring correctly H1, i.e., H1 is chosen given
that H1 is the true hypothesis. It can be defined as

Pd = Pr[TSH1 ≤ ζ]

= FTSH1
(ζ), (15)

where TSH1 is TS defined under hypothesis H1 and FTSH1
(ζ)

is the CDF of TSH1 evaluated at ζ.
In order to analyse Pd, we first use [22, Theorem 8.3.9] to

learn that under H1, the distribution of the variable ln(TSH1)
is closely Gaussian. This is also confirmed by the Monte-Carlo
simulations which showed that the empirical distribution of
ln(TSH1) approaches a Gaussian as the number of observa-
tions grows large. Motivated by these observations we proceed
to approximate the CDF of TSH1 using a Gaussian distribution
as

Pr[TSH1 ≤ x] ≈ Pr[Z ≤ ln(x)], (16)

where Z ∼ N (µ, ν2), µ = K
2 ln(m2)− 2K ln(m1) and ν2 =

K2 ln(m2)−2K2 ln(m1) denote the mean and the variance of
the Gaussian distribution. The terms m1 and m2 denote the
first and the second moments of TS−1/K

H1
, respectively, and

are given by (17) and (18) at the top of the next page, with
σ2 < λ1 ≤ λ2 ≤ . . . ≤ λK < ∞ denoting the eigenvalues of
HH† + σ2IK . A detailed proof of (16) is given in Appendix
A.

Based on (16), Pd for centralized spectrum sensing can be
approximated as

Pd ≈ Pr[Z ≤ ln(ζ)]. (19)

Comparing (19) with [18, eq. (25)] and [20, eq. (11)] we notice
that our result has a much simpler form and is trivial evaluate.

Fig. 2 plots Pd versus the detection threshold ζ for a network
with P = 3 primary users, M = 5 and N = 100. The
secondary user terminals are allocated Qm = 2 antennas each.
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m1 =

(
NK − 1

K2

) K∏
k=1

λ
−1/K
k

K−1∏
j=0

Γ(N −K − 1/K + 1 + j)

Γ(N −K + 1 + j)

K∑
i=1

λi, (17)

m2 =

(
NK − 2

K3

) K∏
k=1

λ
−2/K
k

K−1∏
j=0

Γ(N −K − 2/K + 1 + j)

Γ(N −K + 1 + j)

 K∑
i=1

λi +

(
N − 2

K

)( K∑
i=1

λi

)2
 , (18)

We fix the transmit power values as γ1 = γ2 = γ3 = −10
dB and plot the detection probability for three different
channel realizations. The simulation curves are generated
based on Monte-Carlo simulation, while the analytical curves
are generated using the approximation in (19). The figure
illustrates close agreement between the approximation and the
simulation curves. We also compare this results with the beta
and Gaussian approximations in [18] and [20]. We observe
that the approximation in [20] and our result have very close
performance as the distributions of both 1/TSH1 and ln(TSH1)
are closely Gaussian. Observing the lower tail of the plots,
we also understand that the accuracy of each approximation
depends on the random channel realization that is selected.

III. DECENTRALIZED SPECTRUM SENSING

In this section, we consider decentralized spectrum sensing.
Under the centralized spectrum sensing we assume that all the
signals received at secondary user terminals are received at the
central processor. However, centralized spectrum sensing is not
very suitable for practical implementations of cognitive radio
networks. This is because calculating TS requires the sharing
of all raw data received at the M secondary user terminals
with the central processor, producing considerable network
overhead. Based on the sphericity test and the GLRT statis-
tic, in the following we analyze two new spectrum sensing
techniques namely, the multisample sphericity test and meta
analysis that require the exchange of only partial information,
with the central processor. Furthermore, we investigate the
simple binary fusion technique and compare the performance.

We consider the same system model as described in Section
II. Under this distributed setup we define the two hypotheses,
H0 and H1, for sphericity as

H0 : Σm = σ2IQm for all m ∈ {1, 2, . . . ,M},
H1 : Σm ≻ σ2IQm for at least one m ∈ {1, 2, . . . ,M},

(20)

where Σm = E[XmX†
m]/N is the population covariance

matrix with Xm denoting the Qm ×N observed data matrix
at the secondary user terminal m.

A. Multisample sphericity test

In this subsection we present the first novel distributed
spectrum sensing technique named, the multisample sphericity
test. Based on the distributed setup, the generalized likelihood

ratio for determining H0 or H1 defined in (20) can be written
as

L̃ =
supσ2∈R+L̃(X1,X2, . . . ,XM |σ2IQ1 , . . . , σ

2IQM
)

supΣ1≻0,...,ΣM≻0L̃(X1,X2, . . . ,XM |Σ1, . . . ,ΣM )
,

(21)

where L̃(X1,X2, . . . ,XM |σ2IQ1 , . . . , σ
2IQM ) is the likeli-

hood function of the observation matrices under hypothesis
H0 and L̃(X1,X2, . . . ,XM |Σ1, . . . ,ΣM ) is the likelihood
function of the observation matrices under hypothesis H1. Fol-
lowing the derivation methodology in [22, Theorem 8.3.2] and
maximizing these likelihoods over the unknown parameters,
the modified GLRT statistic for testing the above hypothesis
can be obtained as

MSTS =

∏M
m=1 |Rm|(

1
K

∑M
m=1 tr(Rm)

)K , (22)

where Rm = XmX†
m is the sample covariance matrix at

the secondary user terminal m. Note that the MSTS in (22)
reduces to a similar form to TS in (6) when M = 1.
Thus, instead of sending the whole matrix Xm, which is
the case with the centralized spectrum sensing, the multi-
sample sphericity test requires the secondary user terminal
m to calculate |Rm| and tr(Rm) and share with the central
processor the two real numbers. The central processor collects
all matrix determinants and traces from the M secondary user
terminals and calculates the global MSTS according to (22).
We determine H0 or H1 in the multisample sphericity test as

MSTS ≷H0

H1
ζ. (23)

In order to analyse the performance of the multisample
sphericity test, we next proceed to derive an analytical ex-
pression for Pfa and Pd based on (22).

1) Probability of false alarm: Based on [18], we first write
the exact n-th moment of the N -th power of MSTS under H0

as

E[(MSTSH0)
Nn] =

KnNKΓ(NK)

Γ(NK + nNK)

M∏
m=1

Qm∏
q=1

Γ(N + nN + 1− q)

Γ(N + 1− q)
, (24)

where MSTSH0 denotes the MSTS under H0, Similar to
Section II-B1, next we proceed to compare (24) with [24,
Section 8.5.1, eq. (1)]. We observe that the expression
in [24, Section 8.5.1, eq. (1)] reduces to (24) when the

constant K = Γ(NK)
(∏M

m=1

∏Qm

q=1 Γ(N + 1− q)
)−1

,
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Fig. 3. Probability of false alarm vs the detection threshold for scenario 01,
02 and 03 with N = 200, M = 5.

b = 1, a = K, y1 = NK, xk = N ∀ k ∈
{1, 2, . . . , a}, η1 = 0 and {−ξ1,−ξ2, . . . ,−ξa} =
{0, . . . , Q1 − 1, 0, . . . , Q2 − 1, . . . , 0, . . . , QM − 1}. Thus,
we follow the expansion method in [24, Section 8.5.1] and
derive an approximation to the CDF of −2ρ̃ ln(MSTSH0)
under the null hypothesis as

Pr[−2ρ̃ ln(MSTSH0) ≤ x] ≈ Pr[χ2
f̃
≤ x], (25)

where f̃ =
∑M

m=1 Q
2
m−1, ρ̃ = N− 1+K2−2K

∑M
m=1 Q3

m

6K(1−
∑M

m=1 Q2
m)

. Fol-
lowing simple mathematical manipulations an approximation
for the CDF of MSTS can be derived as

Pr[MSTSH0 ≤ x] ≈ 1− Pr[χ2
f̃
≤ −2ρ̃ ln(x)]. (26)

Thus, Pfa for the multisample sphericity test can be approxi-
mated as

Pfa ≈ 1− Pr[χ2
f̃
≤ −2ρ̃ ln(ζ)]. (27)

Fig. 3 plots Pfa versus the detection threshold ζ for different
number of antennas at each secondary user terminal. For fixed
M = 5, N = 200, we consider the following three scenarios.
In scenario 01, Q1 = 3, Q2 = 1 Q3 = 2, Q4 = 4 and
Q5 = 2. In scenario 02, Q1 = 2, Q2 = 1 Q3 = 1, Q4 = 3
and Q5 = 2, and in scenario 03, Qm = 1, ∀m ∈ {1, 2, . . . 5}.
As such, the root mean square (RMS) value of the number
of antennas is 2.6, 1.67 and 1, respectively. As observed in
the conference vesion of this paper [28], the figure illustrates
that the approximation is very accurate for all three scenarios
and for a given detection threshold the Pfa increases with the
increasing RMS value of Qm.

2) Probability of detection: We follow a similar ap-
proach to Section II-B2 and approximate the distribution of
ln(MSTSH1), where MSTSH1 denotes MSTS under H1, by
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Fig. 4. Probability of detection vs the detection threshold for N = 50, 100
and 200, with M = 2 and Qm = 3.

a Gaussian distribution with mean µ̃ and variance ν̃2. Let us
first define a new random variable X̃ such that

X̃ ≈ ln

(
1

MSTSH1

)
, (28)

and X̃ ∼ N (−µ̃, ν̃2). Based on (28), we can approximate the
first and the second moments of MSTSH1 as

m̃1 = E
[(

1

MSTSH1

)]
≈ E[eX ] = e−µ̃+ ν̃2

2 , (29)

m̃2 = E

[(
1

MSTSH1

)2
]
≈ E[e2X ] = e−2µ̃+2ν̃2

, (30)

where (29) and (30) are derived using the moment generating
function. Next, we take the ratio between (29) and (30) and
do some mathematical manipulations to derive approximate
expressions for µ̃ and ν̃2 in terms of m̃1 and m̃2 as

µ̃ ≈ ln(m̃2)− 2 ln(m̃1), (31)

ν̃2 ≈ 1

2
ln(m̃2)− 2 ln(m̃1). (32)

We derive the exact expressions for m̃1 and m̃2 in Appendix
C and the resultant closed-form expressions can be found in
(81) and (84), respectively.

Thus, the CDF Of ln(MSTSH1) can be approximated by

Pr[ln(MSTSH1) ≤ x] ≈ Pr[Z̃ ≤ x], (33)

where Z̃ ∼ N (µ̃, ν̃2), µ̃ and ν̃ can be approximated by
substituting (81) and (84) into (31) and (32), respectively.
Based on (33), Pd for decentralized spectrum sensing with
multisample sphericity test can be approximated as

Pd ≈ Pr[Z̃ ≤ ln(ζ)]. (34)

Fig. 4 plots Pd versus the detection threshold ζ for different
number of sample sizes N . Here we select an example where
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Fig. 5. Probability of false alarm vs the detection threshold for N = 50, 100,
and 200 with M = 4 and Qm = 2.

P = 2, M = 2, Q1 = Q2 = 3 and examine Pd for
N = 50, 100 and 200. We fix the transmit power values to
γ1 = γ2 = −10 dB. The simulation curves are generated
using Monte-Carlo simulations while the analytical curves are
generated using the approximation in (34). As the Gaussian
approximation is large sample based, we expect the approxi-
mation to be more accurate when N is large. This is clearly
illustrated by the close agreement between the approximation
and the simulation curves, especially when N = 100 and 200.

3) Multisample sphericity test with unequal noise variance:
Under the distributed hypothesis testing in (20) we assume
that the secondary user terminals experience the same noise
variance. While this is a very common assumption in the
communications literature, geographically separated secondary
user terminals may experience different noise variances due to
temperature changes and/or changes in the mechanical prop-
erties they experience. In that case, the distributed hypothesis
testing in (20) can be rearranged as

H0 : Σm = σ2
mIQm for all m ∈ {1, 2, . . . ,M},

H1 : Σm ≻ σ2
mIQm for at least one m ∈ {1, 2, . . . ,M},

(35)

where σ2
m is the noise variance at secondary user terminal

m. The GLRT statistic for testing the above hypothesis can
be obtained by following the same derivation methodology in
[22, Theorem 8.3.2] which results in

MSTS′ =
M∏

m=1

|Rm|(
1

Qm
tr(Rm)

)Qm
. (36)

As the new global test statistic in (36) takes a form different
to MSTS in (22), Pfa and Pd under unequal noise variances
lead to different approximations given by

Pfa ≈ 1− Pr[χ2
f̂
≤ −2ρ̂ ln(ζ)], (37)
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Fig. 6. Probability of detection vs the detection threshold for N = 50, 100,
and 200 with M = 4 and Qm = 5.

where ρ̂ = N −
∑M

m=1

Q3
m
3 −K

6 −
∑M

m=1
1

6Qm∑M
m=1 Q2

m−
∑M

m=1 Qm−M
, f̂ =

∑M
m=1 Q

2
m −

M and

Pd ≈ Pr
[
Ẑ ≤ ln(ζ)

]
, (38)

where Ẑ ∼ N
(∑M

m=1 µm,
∑M

m=1 ν
2
m

)
, µm = Qm

2 ln(m′
2)−

2Qm ln(m′
1) and ν2m = Q2

m ln(m′
2)−2Q2

m ln(m′
1). The terms

m′
1 and m′

2 are given at the top of the next page by (39) and
(40), respectively, with σ2

m < λm
1 ≤ λm

2 ≤ . . . ≤ λm
Qm

<

∞ denoting the eigenvalues of HmH†
m + σ2

mIQm and Hm

denoting the Qm × P channel matrix between the P primary
users and the Qm receive antennas at secondary user terminal
m. More details on the derivation of (37) and (38) are given
in Appendix B.

Fig. 5 plots Pfa versus the detection threshold ζ for different
number of sample sizes N . Here we select an example where
P = 3, M = 4, Qm = 2, ∀m ∈ {1, 2, . . . 4} and examine
N = 50, 100 and 200. The noise variances of the four
secondary user terminals are selected as σ2

1 = 1, σ2
2 = 2,

σ2
3 = 3 and σ2

4 = 4. Once again, the figure illustrates that
for all three cases the approximation in (37) is very accurate.
Note that the accuracy of (37) decreases for small N , since the
approximation ignores higher order terms of inverse powers of
N . Despite this, however, even for a small value of N = 50,
the approximation remains tight, as witnessed in Fig. 5.

Fig. 6 plots Pd versus the detection threshold ζ for different
number of sample sizes N . Here we select an example where
P = 3, M = 4, Qm = 5, ∀m ∈ {1, 2, . . . 4} and examine
N = 50, 100 and 200. We fix the transmit power values to
γ1 = γ2 = γ3 = −20 dB. Similar to Fig. 5, the noise variances
of the four secondary user terminals are selected as σ2

1 = 1,
σ2
2 = 2, σ2

3 = 3 and σ2
4 = 4. The figure clearly illustrates that

for all three cases the approximation in (38) is very accurate.
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m′
1 =

(
NQm − 1

Q2
m

) Qm∏
k=1

(λm
k )−1/Qm

Qm−1∏
j=0

Γ(N −Qm − 1/Qm + 1 + j)

Γ(N −Qm + 1 + j)

Qm∑
i=1

λm
i , (39)

m′
2 =

(
NQm − 2

Q3
m

) Qm∏
k=1

(λm
k )−2/Qm

Qm−1∏
j=0

Γ(N −Qm − 2/Qm + 1 + j)

Γ(N −Qm + 1 + j)

Qm∑
i=1

λm
i +

(
N − 2

Qm

)(Qm∑
i=1

λm
i

)2
 , (40)

B. Meta Analysis

In this subsection we present the second novel distributed
spectrum sensing technique named meta analysis. Meta anal-
ysis refers to the synthesis of data from multiple independent
tests. Several techniques of meta analysis are available in the
literature. In this paper, we use the Fisher’s method which
combines the results from several independent tests bearing
upon the same overall hypothesis to produce a global test
statistic [29].

Similar to the multisample sphericity test, under this dis-
tributed setup we can define the hypothesis H0 for sphericity
as given in (20). Based on the measurements over the N
time slots, each secondary user terminal calculates the extreme
value probabilities, commonly known as p-values. The p-value
at the secondary user terminal m can be written as

pm = Pr[TSm ≤ TSm|H0] (41)

where TSm = |Rm|
( 1

Qm
tr(Rm))

Qm
, is the random variable repre-

senting the local GLRT at the secondary user terminal m and
TSm is the current value of this test statistic. It is important to
note that the MSTS expression in (22) reduces to TSm when
M = 1. As such, we can follow the same steps as in the
derivation of Pfa in (14) to find an analytical approximation
for pm as

pm ≈ 1− Pr[χ2
fm ≤ −2ρm ln(TSm)], (42)

where fm = Q2
m − 1, ρm = N − 1+Q2

m−2Q4
m

6Qm(1−Q2
m) .

Having computed the p-value, each secondary user terminal
sends it to the central processor. Thus, instead of sending
the whole matrix Xm, which is the case with the centralized
spectrum sensing, meta analysis requires each secondary user
terminal to send a single real number. The central processor
collects all the p-values from the M secondary user terminals
and combines them according to Fisher’s method to produce
a global test statistic [29]

MATS = −2

M∑
m=1

ln(pm). (43)

We determine H0 or H1 in the meta analysis test as

MATS ≶H0

H1
ζ, (44)

where we reject the null hypothesis if MATS is larger than the
threshold ζ and reject the alternative hypothesis if MATS is
smaller than ζ. In order to analyse the performance of the meta
analysis sphericity test, we now proceed to derive analytical
expressions for Pfa based on (44). We would like to note that,
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Fig. 7. Probability of false alarm vs the detection threshold for meta analysis
when M = 3, 4 and 5.

due to the complexity of the derivation, we are unable to derive
an analytical expression for Pd under meta analysis.

1) Probability of false alarm: While the CDF of the test
statistic in (43) is commonly available in the meta analysis
literature [29], for the sake of completeness we summarize the
derivation of Pfa in the following. As the test statistic MATS is
a sum of the logarithms of p-values, in order to derive the CDF
of MATS we first focus on the CDF of − ln(pm). Following
[29] we use the inverse transform method and write

TSm = F−1
TSm,H0

(u), (45)

where FTSm,H0
is the CDF of TSm under the hypothesis

H0 and u is uniformly distributed between 0 and 1. Based
on (45) we can express the p-value in (41) as pm =
FTSm,H0

(F−1
TSm,H0

(u)) = u. Hence, pm is also uniformly
distributed between 0 and 1 and the CDF of − ln(pm) has an
exponential distribution. As the sum of M independent and
exponentially distributed random variables has a standard chi-
squared distribution with 2M degrees of freedom, we derive
the CDF of MATS as

Pr[MATS ≤ x] = Pr[χ2
2M ≤ x]. (46)

Thus, the exact closed-form expression for Pfa in meta analysis
can be derived as

Pfa = 1− Pr[χ2
2M ≤ ζ]. (47)
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From (47) we learn that Pfa for meta analysis only depends
on M and ζ, i.e., unlike in (14) for the multisample sphericity
test, it is not a function of the sensing duration N nor the
number of secondary user antennas Qm. In the following, we
use numerical examples to illustrate the accuracy of (47).

While in this paper we consider only the GLRT statistic to
calculate the p-values, it is important to note that meta analysis
can be implemented with secondary user terminals operating
with different test statistics. For example, the approach can
be used when one secondary user terminal uses the GLRT
statistic and another uses a simple power detector.

Fig. 7 plots the meta analysis Pfa versus the detection
threshold ζ for different numbers of secondary user terminals,
specifically M = 3, 4 and 5. In each case the secondary
user terminals are allocated unequal number of antennas as
noted in the figure. The observation window is N = 200.
We note that the parameters Qm and N do not effect the Pfa
in meta analysis. This is because under the null hypothesis
the p-values have a uniform distribution that varies between
zero and one. The distribution of these tail probabilities do
not change with Qm and N . Once again, the results obtained
using the analytical expression in (47) agree closely with the
Monte-Carlo simulations. Note that while the probability of
false alarm expression is exact, the p-values used to compute
MATS use the chi-squared approximation in (42), which is
the cause of the slight discrepancy between the simulated and
analytical results.

C. Binary Fusion

In this subsection we present the third distributed spectrum
sensing technique named binary fusion. In binary fusion each
secondary user terminal performs a GLRT based on its own
measurements and makes a binary decision about the presence
of primary users. Based on (6), the individual test statistic of
secondary user terminal m is given by TSm = |Rm|

( 1
Qm

tr(Rm))
Qm

.

To determine H0 or H1 at each secondary user terminal admits

TSm ≷H0

H1
ζ. (48)

Each secondary user terminal then sends its binary decisions
to the central processor. As such, instead of sending the whole
matrix Xm, in binary fusion the secondary user terminal
m sends only one bit of information. The central processor
collects all M decisions and performs a binary AND or OR
operation to form the final decision.

1) Probability of false alarm: If the binary AND operation
is used, the central processor declares H0 if at least one
secondary user terminal has declared H0. In other words, the
central processor declares H1 if and only if all the secondary
user terminals declared H1. As such, we can derive Pfa as

Pfa =
M∏

m=1

Pr[TSmH0 < ζ]. (49)

Based on (14) we can derive an analytical approximation for
Pfa in (49) as

Pfa ≈
M∏

m=1

[1− Pr[χ2
fm ≤ −2ρm ln(ζ)]], (50)
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Fig. 8. Probability of false alarm vs the detection threshold for binary fusion
with N = 200, M = 4 and Qm = 2.

where fm = Q2
m − 1, ρm = N − 1+Q2

m−2Q4
m

6Qm(1−Q2
m) .

Similarly, if the binary OR operation is used, the central
processor declares H0 if and only if all M secondary user
terminals have declared H0. In other words, the central pro-
cessor declares H1 if at least one secondary user terminal has
declared H1. Assuming independence of test statistics formed
by each secondary user terminal, the overall Pfa is given by

Pfa = 1−
M∏

m=1

[1− Pr[TSmH0 < ζ]] . (51)

Based on (14) we can derive an analytical approximation for
Pfa in (51) as

Pfa ≈ 1−
M∏

m=1

Pr[χ2
fm ≤ −2ρm ln(ζ)]. (52)

Fig. 8 plots Pfa versus the detection threshold ζ for both
binary AND and OR fusion techniques. Here we select an
example where M = 4, Qm = 2,∀m ∈ {1, 2, . . . 4} and
N = 200. The figure clearly illustrates that the approximations
in (50) and (52) very tightly follow the Monte-Carlo simulation
of binary AND and OR, respectively. The figure also illustrates
that for a given detection threshold the Pfa of binary OR fusion
is higher than that of binary AND fusion.

2) Probability of detection: If the binary AND operation
is used, the central processor declares H1 only if all M
secondary user terminals have declared H1. Therefore, similar
to the derivation of the false alarm probability, assuming
independence of test statistics formed by each secondary user
terminal, the overall Pd is written as

Pd =
M∏

m=1

Pr[TSmH1 < ζ]. (53)
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Based on (19) we can derive an analytical approximation for
Pd in (53) as

Pd ≈
M∏

m=1

Pr[Zm ≤ ln(ζ)], (54)

where Zm ∼ N (µm, ν2m).
Similarly, if the binary OR operation is used, the central

processor declares H1 if at least one secondary user terminal
has declared H1. As such, we can derive Pd as

Pd = 1−
M∏

m=1

[1− Pr[TSmH1 < ζ]] . (55)

Based on (19) we can derive an analytical approximation for
Pd in (55) as

Pd ≈ 1−
M∏

m=1

[1− Pr[Zm ≤ ln(ζ)]] . (56)

Whilst not shown here, due to page page limitation, based
on numerical results we observe that the the approximation in
(56) accurately follows the Monte-Carlo simulation of binary
OR fusion. The approximation in (54) is slightly loose in the
upper tail regime, where Pd is close to one.

D. Comparison

In this subsection we investigate the performance of dis-
tributed spectrum sensing schemes, by comparing the ROC
curves of multisample sphericity test, meta analysis, binary
fusion OR and binary fusion AND. In generating the ROC
curves we use our analytical approximations for Pfa and Pd,
that was derived in Section III. For meta analysis the Pd
performance is generated using Monte-Carlo simulations. It is
important to note that our accurate analytical approximations
save a significant amount of run time when compared to the
Monte-Carlo simulations.

It is important to note that the amount of information ex-
changed between the central processor and the secondary user
terminals are different in each distributed sensing technique. In
the multisample sphericity test each secondary user terminal
exchanges two real numbers with the central processor, while
in meta analysis this amount is halved. In binary fusion, the
amount of information exchanged is further reduced to a single
binary data bit per secondary user terminal.

Fig. 9 plots Pd versus Pfa for the four distributed sensing
schemes analyzed in this section. The Pfa approximations for
the multisample sphericity test, meta analysis, binary fusion
AND and binary fusion OR are generated using (27), (47),
(50) and (52), respectively. The Pd approximations for the
multisample sphericity test, binary fusion AND and binary
fusion OR are generated using (34), (54) and (56), respectively.
We fix M = 2, Q1 = Q2 = 3, P = 2 and examine N =
50, 100. The noise variance σ2 = 1 and γ1 = γ2 = −10 dB.

As expected, binary OR and binary AND fusion perform
worse than the other two, with binary OR fusion considerably
outperforming binary AND fusion. Importantly, we observe
a very small performance difference between that of the
multisample sphericity test and meta analysis. This represents
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Fig. 9. Probability of detection vs the probability of false alarm for distributed
spectrum sensing, when M = 2, Qm = 3, P = 2 and N = 50, 100.

a promising result, as the meta analysis approach halves the
feedback overhead of the multisample approach (one real
number per secondary terminal versus two real numbers). In
the tail regime, the performance of all four techniques seems
to coincide in the linear scale presented in Fig. 9. In the log
scale, we can observe that the performance the multisample
sphericity test and meta analysis outperforms binary fusion
even in the lower tail regime. For example, when N = 50 and
ζ = 0.01, i.e., in the lower tail regime, the Pd values of the
multisample sphericity test, meta analysis, binary fusion OR
and AND take 0.65, 0.56, 0.46 and 0.37, respectively. In the
upper tail regime, however, all the techniques seems to have
similar performance, with only binary fusion AND performing
worse than the other three. It is also important to note that the
plots in Fig. 9 were generated for one random instance of
channel values. The performance of all four techniques vary
when we change the channel values. However, we observe the
same pattern in all channel instances.

IV. CONCLUSION

Multiple-antenna signal detection has been investigated in
cognitive radio networks with arbitrary number of primary
and secondary users. Based on the sphericity test, we analyze
the performance of centralized and decentralized spectrum
sensing. In centralized spectrum sensing, all raw data available
at the secondary users are combined in signal detection while
in decentralized spectrum sensing only partial data needs to be
sent to a central processor. We propose two novel distributed
spectrum sensing techniques, namely, the multisample spheric-
ity test and meta analysis. In the multisample sphericity test
each secondary user terminal sends only two real numbers,
and in meta analysis they send only one real number to the
central processor. Thus the amount of data shared between
secondary users and the central processor is much less when
compared to the centralized spectrum sensing, allowing the
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application of these distributed spectrum sensing techniques
to larger cognitive radio networks. We have derived easy-
to-compute and accurate analytical expressions for the false
alarm and the detection probabilities. Furthermore, we analyze
the performance of two simple fusion techniques based on
binary AND and binary OR combining and provide accurate
approximations for the false alarm and the detection probabil-
ities. Extensive numerical examples are used to illustrate the
accuracy of our approximations. ROC curves are presented to
compare the performance of the proposed methods.

APPENDIX A
DISTRIBUTION OF TS UNDER H1

Here we present the proof of (16). As described in II-B2,
we are motivated to approximate the distribution of ln(TSH1)
using a Gaussian distribution with mean µ and variance ν2.
Let us first define a new random variable X such that

X ≈ ln

((
1

TSH1

)1/K
)
, (57)

and X ∼ N (−µ/K, ν2/K2). Based on (57), we can approx-
imate the first and the second moments of (TSH1)

−1/K as

m1 ≈ e−
µ
K + ν2

2K2 , (58)

m2 ≈ e−
2µ
K + 2ν2

K2 , (59)

where (58) and (59) are derived using the moment generating
function. Next, we take the ratio between (58) and (59) and
do some mathematical manipulations to derive approximate
expressions for µ and ν2 in-terms m1 and m2 as

µ ≈ K

2
ln(m2)− 2K ln(m1), (60)

ν2 ≈ K2 ln(m2)− 2K2 ln(m1). (61)

The exact expressions for the moments of (TSH1
)
−1/K can

be derived using [20, eq. (8)] which results in (60) and (61)
for m1 and m2, respectively. Thus, the CDF Of ln(TSH1

) can
be approximated by

Pr[ln(TSH1) ≤ x] ≈ Pr[Z ≤ x], (62)

where Z ∼ N (µ, ν2). The expression in (62) can be rear-
ranged as (16), completing the proof.

APPENDIX B
DERIVATION OF (37) AND (38)

Here we present a detailed derivation of (37) and (38). Let
us denote the random variable representing the local GLRT
at the secondary user terminal m by TSm = |Rm|

( 1
Qm

tr(Rm))
Qm

.

The terms TSmH0
and TSmH1

denote TSm under the null
hypothesis and the non-null hypothesis, respectively. It is
straightforward to derive the exact n-th moment of the N -
th power of TSmH0

by simply replacing K in (24) by Qm.
Noting that MSTS′ =

∏M
m=1 TSm, the n-th moment of the

N -th power of MSTS′ under the null hypothesis can then be
derived as

E[(MSTS′
H0

)Nn] =

M∏
m=1

QnNQm
m Γ(NQm)

Γ(NQm + nNQm)

Qm∏
q=1

Γ(N + nN + 1− q)

Γ(N + 1− q)
, (63)

where MSTS′
H0

denotes MSTS′ under H0. Similar to the
equal noise case, next we proceed to compare (63) with [24,
Section 8.5.1, eq. (1)]. We observe that the expression in
[24, Section 8.5.1, eq. (1)] reduces to (63) when the constant

K =
∏M

m=1 Γ(NQm)
(∏M

m=1

∏Qm

q=1 Γ(N + 1− q)
)−1

,
b = M , a = K, yj = NQj , xk = N ∀ k ∈
{1, 2, . . . , a}, ηj = 0 and {−ξ1,−ξ2, . . . ,−ξa} =
{0, . . . , Q1 − 1, 0, . . . , Q2 − 1, . . . , 0, . . . , QM − 1}. Thus,
we follow the expansion method in [24, Section 8.5.1] and
derive an approximation to the CDF of −2ρ̂ ln(MSTS′

H0
) as

Pr[−2ρ̂ ln(MSTS′
H0

) ≤ x] ≈ Pr[χ2
f̂
≤ x], (64)

which results in (37) for the false alarm probability of multi-
sample sphericity test under unequal noise variances.

Under the non-null hypothesis, we use the result in (16)
to first approximate the distribution of ln

(
TSmH1

)
using a

Gaussian distribution with mean µm and variance ν2m. Let
us first define a new random variable Xm such that Xm ∼
N (−µm/Qm, ν2m/Q2

m) and

Xm ≈ ln

( 1

TSmH1

)1/Qm
 . (65)

Based on (65), we can approximate the first and the second
moments of

(
TSmH1

)−1/Qm as

m′
1 ≈ e

− µm
Qm

+
ν2
m

2Q2
m , (66)

m′
2 ≈ e

− 2µm
Qm

+
2ν2

m
Q2

m , (67)

where (66) and (67) are derived using the moment generating
function. Next, we take the ratio between (66) and (67) and
do some mathematical manipulations to derive approximate
expressions for µm and ν2m in-terms m′

1 and m′
2 as

µm ≈ Qm

2
ln(m′

2)− 2Qm ln(m′
1), (68)

ν2m ≈ Q2
m ln(m′

2)− 2Q2
m ln(m′

1). (69)

The exact expressions for the moments of
(
TSmH1

)−1/Qm

can be derived using [20, eq. (8)] which results in (39) and (40)
for m′

1 and m′
2, respectively. Since MSTS′ =

∏M
m=1 TSm, we

can finally approximate the distribution of ln
(
MSTS′) using

a Gaussian distribution with mean
∑M

m=1 µm and variance∑M
m=1 ν

2
m and write

Pr[MSTS′
H1

≤ x] ≈ Pr
[
Ẑ ≤ ln(x)

]
, (70)

where here Ẑ ∼ N
(∑M

m=1 µm,
∑M

m=1 ν
2
m

)
, µm =

Qm

2 ln(m′
2)− 2Qm ln(m′

1). This results in (38) for the detec-
tion probability of multisample sphericity test under unequal
noise variances.
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APPENDIX C
DERIVATION OF m̃1 AND m̃2

In this section, we derive an analytical expressions for the
first and the second moments of 1

MSTSH1
. From [18, eq. (40)],

we learn that the PDF of the sample covariance matrix at the
secondary user terminal m, is given by

f(Rm) =
|Rm|N−Qm∆N,Qmexp

(
tr(−Σ−1

m Rm)
)

|Σm|N
, (71)

where ∆N,Qm = 1/
(
π

Qm
2 (Qm−1)

∏Qm−1
q=1 Γ(N − q)

)
. Based

on (71), we can write the r-th moment of 1
MSTSH1

as

E
[

1

MSTSr
H1

]
=

1

KKr

∫
R1

. . .

∫
RM

(∑M
m=1 tr(Rm)

)Kr

∏M
m=1 |Rm|r

×
M∏
j=1

|Rj |N−Qj∆N,Qj exp
(
tr(−Σ−1

j Rj)
)

|Σj |N
dR1 . . . dRM .

(72)

Assuming that all the secondary user terminals have the
same number of antennas, i.e., Qm = Q ∀{1, 2, . . . ,M}, we
rearrange (72) as

E
[

1

MSTSr
H1

]

=
1

KKr

M∏
m=1

∆N,Q

|Σm|r∆N−r,Q

∫
R1

. . .

∫
RM

(
M∑

m=1

tr(Rm)

)Kr

×
M∏
j=1

|Rj |N−Q−r∆N−r,Qexp
(
tr(−Σ−1

j Rj)
)

|Σj |N−r
dR1 . . . dRM .

(73)

Identifying that the M -fold integral in (73) represents the

expected value of
(∑M

m=1 tr(Rm)
)Kr

, we further simplify
(73) as

E
[

1

MSTSr
H1

]
=

1

KKr

(
∆N,Q

∆N−r,Q

)M
[

M∏
m=1

1

|Σm|r

]

× E

( M∑
m=1

tr(Rm)

)Kr
 . (74)

Based on (74), we next proceed to find m̃1. We set r = 1 in
(74) and write

m̃1 =
1

KK
∏Q−1

j=0 (N − 1− j)M
∏M

m=1 |Σm|

× E

( M∑
m=1

tr(Rm)

)K
 . (75)

Note that the derivation of the expected value of 1
MSTSH1

has

now reduced to deriving the K-th moment of
∑M

m=1 tr(Rm).

Let us denote ωm = tr(Rm). To derive the K-th moment of∑M
m=1 ωm we use the multinomial expansion and write

E

( M∑
m=1

ωm

)K


=
∑

∑
ij=K,0≤ij≤K

(
K!

i1!i2! . . . iM !

) M∏
m=1

E
[
ωim
m

]
, (76)

where the product in (76) results from the independence of
ωm. Note that ωm =

∑Q
i=1

λm
i χi

2 , where λm
i denotes the i-

th eigenvalue of hmh†
m + σ2

mIQm and χi denotes a random
variable with the standard chi-squared distribution, with 2(N−
1) degrees of freedom. Thus, we can express E

[
ωim
m

]
as

E
[
ωim
m

]
=

∑
∑

jq=im
,0≤jq≤im

(
im!

j1!j2! . . . jQ!

) ∏Q
q=1(λ

m
q )jqE

[
χ
jq
q

]
2im

,

(77)

where (77) are derived by applying the multinomial expansion.
Let us denote E

[
χ
jq
q

]
by µ

(2N−2)
jq

. The moments of a chi-
squared variable is well-known and can be found in [30] as

µ(2N−2)
q =

2jqΓ(jq +N − 1)

Γ(N − 1)
. (78)

We substitute (78) into (77), using which (76) can be re-
expressed as

E

( M∑
m=1

ωm

)K


=
∑

∑
ij=K,0≤ij≤K

[(
K!

i1!i2! . . . iM !

) M∏
m=1

Ξm,im

]
, (79)

where

Ξm,im =∑
∑

jq=im
,0≤jq≤im

[(
im!

j1!j2! . . . jQ!

) ∏Q
q=1(λ

m
q )jqµ

(2N−2)
q

2im

]
.

(80)

Substituting (79) into (75) we finally derive a closed-form
expression for m̃1 as

m̃1 =
1

KK
∏Q−1

j=0 (N − 1− j)M
∏M

m=1 |Σm|

∑
∑

ij=K,0≤ij≤K

×

[(
K!

i1!i2! . . . iM !

) M∏
m=1

Ξm,im

]
. (81)
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Based on (74), we next proceed to find m̃2. Following a sim-
ilar approach to deriving the K-th moment of

∑M
m=1 tr(Rm)

we derive the 2K-th moment of
∑M

m=1 tr(Rm) as

E

( M∑
m=1

ωm

)2K


=
∑

∑
ij=2K,0≤ij≤2K

[(
(2K)!

i1!i2! . . . iM !

) M∏
m=1

Θm,im

]
, (82)

where

Θm,im =∑
∑

jq=im
,0≤jq≤im

[(
im!

j1!j2! . . . jQ!

) ∏Q
q=1(λ

m
q )jqµ

(2N−4)
q

2im

]
,

(83)

and µ
(2N−4)
q =

2jqΓ(jq+N−2)
Γ(N−2) . Substituting (82) into (74)

when r = 2, we derive a closed-form expression for m̃2 as

m̃2 =
1[∏Q−1

j=0 (N − j − 1)M (N − j − 2)M
]∏M

m=1 |Σm|2

× 1

K2K

∑
∑

ij=2K,0≤ij≤2K

[(
(2K)!

i1!i2! . . . iM !

) M∏
m=1

Θm,im

]
.

(84)
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