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Fast, accurate, and automatic extraction of parameters of nuclear magnetic res-

onance free induction decay (FID) signal for chemical spectroscopy is a chal-

lenging problem. Recently, the Steiglitz‐McBride algorithm has been shown

to exhibit superior performance in terms of speed, accuracy, and automation

when applied to the extraction of T2 relaxation parameters for myelin water

imaging of brain. Applying it to FID data reveals that it falls short of the second

objective, the accuracy. Especially, it struggles with the issue of missed spectral

peaks when applied to chemical samples with relatively dense frequency spec-

tra. To overcome this issue, a preprocessing stage of subband decomposition is

proposed before the application of Steiglitz‐McBride algorithm to the FID sig-

nal. It is demonstrated that by doing so, a considerable improvement in accu-

racy is achieved. But this is not gained at the cost of the first objective, the

speed. An adaptive subband decomposition is employed in conjunction with

the Bayesian information criteria to carry out an efficient decomposition

according to spectral content of the signal under investigation. Furthermore,

adaptive subband decomposition and the Bayesian information criteria also

serve to make the resulting algorithm independent of user input, which also ful-

fills the third objective, the automation. This makes the proposed algorithm

favorable for fast, accurate, and automatic extraction of FID signal parameters.
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1 | INTRODUCTION

One of the classic problems in magnetic resonance spec-
troscopy is the analysis of the free induction decay (FID)
signal. In parametric approaches, the FID is modeled as
a sum of complex, damped sinusoids (cisoids) buried in
complex additive white Gaussian noise.[1] The general
objective is to estimate the number as well as the param-
eters of the cisoids in the FID signal, that is, complex
amplitudes, damping factors, and frequencies.

In practice, however, the task suffers from a number
of problems. First, the number of cisoids in the signal
model is often unknown. Second, the number of samples
. wileyonlinel
is quite large. Third, magnetic field inhomogeneities and
variations in the chemical environment increase the com-
plexity of the generated FID signal. All these problems
make the accurate extraction of FID parameters a chal-
lenging task.[2]

Furthermore, this problem has also applications in
physics, chemistry, biology, and engineering.[3]
1.1 | Prior work

Many techniques are available in the literature that
attempt to address FID analysis, such as maximum
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entropy, linear prediction, and state‐space based
methods.[4–6] Broadly, these methods can be categorized
in two groups: nonparametric and parametric.

Most popular of the nonparametric methods is the
Fourier transform. This has been the most obvious
approach for the estimation of FID parameters for a long
time. But the drawbacks of this approach are equally well
established, including limited resolution and large
estimate variance.[7] These problems are further exacer-
bated when, due to magnetic inhomogeneities and low
magnetic field strength, the spectra of the cisoids overlap
strongly. All these problems suggest the need for an
alternative method that can cope with these issues in a
robust manner.

Parametric time‐domain methods, due to their supe-
rior resolution, have been shown to surpass their nonpara-
metric counterparts.[8] Several parametric estimators for
multiple‐damped exponentials—such as filter diagonaliza-
tion method,[9] Hankel singular value decomposition,[10]

Hankel total least squares,[6] complete reduction to ampli-
tude frequency table (CRAFT),[11] and matrix pencil[12]—
have been shown to accurately quantitate and extract the
parameters of the FID signal.[13] However, many of these
methods (though not CRAFT) require the number of
cisoids in the signal model to be known a priori, and this
can introduce a systematic bias into their estimates. Fur-
thermore, due to the use of SVD, these methods can be
computationally expensive for large data lengths. How-
ever, a localized version of matrix pencil method has
recently been proposed, which promises to overcome this
issue.[14]

Recently, the Steiglitz‐McBride method (SM) has been
applied to extract the parameters of an exponential signal
model.[15] This method has been shown to exhibit supe-
rior performance over most of the existing methods when
applied to the extraction of T2 relaxation parameters for
myelin water imaging of the brain—a problem that
employs such an exponential signal model.[8] Also, it has
been shown to be completely user‐input free. These
advantages make the SM method an excellent choice for
the extraction of FID parameters.

However, as we will show, the SM method, when
applied to the FID signal, suffers from notable perfor-
mance issues, especially the issue of missed spectral
peaks. This can be mainly attributed to three causes. First,
the signal‐to‐noise ratio (SNR) of the FID signal can be
low if the magnetic field strength is low. Second, the spec-
tral resolution of the FID signal can be limited due to
mutual overlap of resonance peaks. Third, the length of
the FID signal can be quite large because the time taken
for the signal to fade into the noise can be quite long.[16]

As a result, the SM method struggles for performance
when applied to the FID signal.
1.2 | Contributions

In order to rectify these problems, we suggest a prepro-
cessing stage of subband decomposition before the appli-
cation of the SM method to the FID signal in order to
recover its parameters. We show that this proposition
solves the above three issues because the subband decom-
position results in an increase in the subband SNR, an
increase in spectral resolution, and a decrease in the
length of the subband signals,[17] which makes the execu-
tion of the SM method in individual subbands much
faster. This serves to offset any of the additional computa-
tional overheads that may be incurred due to the subband
decomposition process. Finally, we employ an adaptive
subband decomposition process[18] and incorporate the
Bayesian information criteria (BIC) for model order selec-
tion[19] in order to make the algorithm completely inde-
pendent of user input.
2 | PROBLEM FORMULATION

2.1 | Signal model

The FID signal is modeled as a sum of N‐damped complex
sinusoids (cisoids), being observed as M samples, regu-
larly spaced in time by Δ:

rðmÞ ¼ ∑
N

n¼1
ζne

−αnþ jωnð ÞmΔ þ vðmÞ; (1)

where m=0,…,M−1, j ¼ ffiffiffiffiffiffi
−1

p
and ζn=xn+jyn is the com-

plex amplitude of the nth component. αn>0 and ωn are
its decay rate and frequency, respectively. The noise
process v(m) is assumed white and complex normal,
having zero mean and variance σ2. We assume that
sampling rate 1/Δ is sufficient for all frequency compo-
nents to be adequately represented in the sampled sig-
nal. Also, we assume that M is sufficiently high for
the signal to have faded by the Mth sample, that is,
MΔαn≫1∀n.
2.2 | Least square formulation

The problem is to estimate {ζn, αn,ωn,N}. This estimation
problem is generally modeled as the least‐square (LS)
fitting procedure[20]:

min
fζn;pngNn¼1

∑
M−1

m¼0
rðmÞ−∑

N

n¼1
ζnp

m
n

����
����
2

(2)

with pn ¼ e −αnþ jωnð ÞΔ. However, this minimization prob-
lem is nonlinear and highly ill conditioned, and N is
unknown.
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2.3 | ARMA representation

Under the assumption that v(m) is white, 1 can be
modeled as an autoregressive moving average (ARMA)
process of the form[21]:

rðmÞ ¼ −∑
N

i¼1
aðiÞrðm−iÞ þ ∑

N−1

i¼0
bðiÞvðm−iÞ; (3)

which has been called the minimal ARMA representation
of r(m). However, the information of the noiseless part of
1 remains in the AR part of 2.
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FIGURE 2 Free induction decay signal for ethanol (real part)
3 | STEIGLITZ ‐MCBRIDE
ALGORITHM

The Steiglitz‐McBride algorithm (SMA), also known as
the iterative prefiltering algorithm, was originally intro-
duced for computing LS estimates of linear system param-
eters. It does so by polynomial reparameterization of the
problem 2 using the ARMA representation in 3.[22]

min
faðiÞgNi¼1;fbðiÞgN−1

i¼0

1
2π

∫π

−π
RðzÞ− BðzÞÞ

AðzÞÞ
����

����
2

dω; (4)

where B(z) and A(z) are represented by

BðzÞ ¼ bð0Þ þ bð1Þz−1 þ ⋯þ bðN−1Þz−Nþ1 (5)

AðzÞ ¼ 1þ að1Þz−1 þ ⋯þ aðNÞz−N (6)

such that

BðzÞ
AðzÞ ¼ ∑

N

n¼1

ζn
1−pnz−1

: (7)
The SMA recursively computes the estimate of A(z) by
solving the following equation:

min
faðiÞgNi¼1;fbðiÞgN−1

i¼0

∑
M−1

m¼0

RðzÞAðzÞ−BðzÞ
ÂðzÞ

� �2

; (8)

where A(z) is the updated estimate and ÂðzÞ is the initial
estimate. ÂðzÞ is initialized to 1. This process is repeated
until no further improvement in the residue is observed.
Then the roots of ÂðzÞ are computed to obtain p̂n. Finally,

ζ̂ n are computed using

ζ̂ n ¼ ð1−p̂nz
−1ÞBðzÞ

ÂðzÞ
� �

z¼p̂n

: (9)
FIGURE 1 Illustration of the employed

filterbank structure and the decomposition

stages[18]
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4 | MODEL ORDER SELECTION

SMA requires model order input since the true value of N
in 1 is generally unknown. For this purpose, the BIC is
considered due to its superior performance[19] when com-
pared with alternatives such as Akaike information crite-
rion and generalized information criterion. BIC adds an
extra term to the LS cost function in 2.

Mlog ∑
M−1

m¼0
jrðmÞ−∑

N

n¼1
ζnp

m
n j2

� �
þ 2NlogðMÞ: (10)

The extra term penalizes higher order models if they do
not yield a significant improvement in the residue. This
prevents spurious estimates caused by noise, which do
not actually contribute to the reconstruction of r(m). Fur-
thermore, this extra term does not incur a significant com-
putational cost.
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FIGURE 3 Comparison of regenerated free induction decay

spectra of ethanol to the original one. At this scale, no difference

is visible between the true ethanol spectrum and that reconstructed

using the proposed algorithm. SMA = Steiglitz‐McBride algorithm

TABLE 1 A comparison of experimental results

Data Proposed algorithm

Chemical
sample

Expected
peaks

Time
(s)

MSE
(10−6) Depth

Missed
peaks

Ex
pe

Alcohol 7 2.7 5.7 9 0 3

Methanol 5 1.8 0.4 8 0 2

Ethanol‐amine 14 3.7 2.2 9 0 4

Acetic acid 11 1.5 6.6 7 0 3

Propionic acid 8 2.6 1.4 9 0 3

Valeric acid 22 4.1 6.7 10 0 5

Lactose 149 5.7 25 11 0 13

Note. SMA = Steiglitz‐McBride algorithm.
5 | ADAPTIVE SUBBAND
DECOMPOSITION

Subband decomposition reduces the fullband problem to
several subband problems of lower model order. This pro-
vides advantages of an increase in SNR, an increase in fre-
quency resolution, a decrease in signal length, and a
decrease in computational complexity.[17] This gives an
edge to the estimating algorithm in terms of speed and
accuracy compared with the fullband problem. We adopt
a uniform, multistep decomposition, in which the signal
is successively filtered and decimated by a factor of 2 at
each stage. Illustration of filterbank structure and the
SMA LCModel

cess
aks

Time
(s)

MSE
(10−6)

Missed
peaks

Time
(s)

MSE
(10−6)

Missed
peaks

1.2 820 2 1.8 6.3 1

0.3 124 3 0.9 1.2 0

0.7 388 10 1.1 5.7 4

0.9 149 8 0.8 8.1 2

0.5 242 5 1.6 2.9 0

0.7 21 17 1.3 13 13

0.2 478 147 0.5 431 144
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FIGURE 4 Comparison of the original and estimated 1H

spectrum of the lactose signal. Inset displays the zoomed view of

the smallest peak captured by the proposed approach. This peak is

almost 35,000 times smaller than the largest peak in the signal.

Proposed algorithm took just 5.7 s to capture all 149 peaks in the

signal. Mean squared error achieved was 2.5×10−5



744 ANJUM ET AL.
decomposition stages is provided in Figure 1. Decimation
filters considered here are Coiflets (Coif5). Decomposition
is obtained as follows[23]:

rq;sðmÞ ¼ ∑
N ′

n¼1
ζ ′np

′m
n þ vq;sðmÞ (11)

for m ¼ 0; 1; ⋯; M̂−1, where M′ is the number of
subband samples. N′≤ N is the number of cisoids in the

subband (q,s). ζ ′n and p′
m
n are subband counterparts of
the fullband parameters ζn and pmn in the (q,s)th subband.

Once the subband estimates p̂′mn are obtained, they can be
converted to fullband using

p̂m
n ¼ ðp̂′m

n Þ1=2qe jπ 2sþ1
2qþ1 for ω∈½0;π�; (12)

p̂m
n ¼ ðp̂′m

n Þ1=2qe jπð2sþ1
2qþ1−1Þ for ω∈½−π; 0�: (13)

Fullband estimates of ζ̂n
′ are computed using 9. Since the

filters are not ideal, they will overlap as depicted in
FIGURE 5 (a) Quantitation results

achieved by the proposed algorithm for a

representative fermentation broth in 90%

H2O. Proposed algorithm took 12.4 s

compared with 3.5 min taken by complete

reduction to amplitude frequency table[11]

and does not require regions of interest to

be specified. (b, c) Expansion of

quantitation results displaying overlaid

component spectra (from bottom to top,

experimental, estimated, residual, and

component spectra)
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Figure 1. As a result, frequency components may appear
in several bands. In order to uniquely determine to which
subband a component belongs, the following criteria can
be applied to select the correct band[17]:

maxjSq;sðe jω̂ ′

iÞj; (14)

where ω̂′

i is the frequency chosen in the (q,s)th such that
it had the highest amplitude in that band's spectrum

Smðe jω̂ ′

iÞ as compared with the other bands in which it
appeared. Finally, to make the subband decomposition
adaptive, a BIC‐based stop criteria using the frequency
domain residual of the fullband signal can be
adopted.[18]
6 | ALGORITHM

The entire process is summarized as an algorithm as
follows:

1. Check each subband for poles according the BIC
criteria in 10.

2. If no poles present, halt.
3. If poles present, extract parameters using SMA and

decompose further.
4. Repeat steps from (1) to (3) until a global halt is

reached.
5. Map estimated p′

m
n to fullband values using

12 and 13.
6. Employ 9 to estimate ζ̂ n.
FIGURE 6 (a) Quantitation results obtained by the proposed algorit

(b) Expansion of quantitation results displaying overlaid component spe

component spectra)
7 | EXPERIMENTAL RESULTS

In this section, we present experimental results
obtained by the application of the proposed algorithm
to real‐time FID data. The data were acquired from a
Magritek Spinsolve®SPA218 1.4.1.2717 system. The
chemical sample used was ethanol. Its 1H NMR spec-
trum—including multiplicity of spectral peaks due to
the spin‐spin coupling—can be completely character-
ized by its chemical structure.[24] The FID signal
was used “as‐is” without any preprocessing, for exam-
ple, filtering, baseline correction or noise removal.
The filters employed for subband processing were
the fifth‐order “Coiflet" filters due to their sharp cut-
off, flat magnitude response, and relatively small
group delay.[25]

Figure 2 shows the recorded FID signal for ethanol.
Figure 3 depicts a comparison of spectrum of this signal
with those estimated by the proposed algorithm and the
SMA. Clearly, the latter is unable to capture all peaks of
the ethanol spectrum. By contrast, the proposed algo-
rithm successfully captures all of them; it was able to do
so at the decomposition depth of 9 that took 2.8 s for a sig-
nal length of 32,768 samples on an Intel 3.40 GHz CPU.
The execution time of the proposed algorithm is compara-
ble with 1.9 s taken by the SMA, which missed 10 out of
14 spectral peaks.

Also in Figure 3, though no visible difference is
observed between the true and estimated spectra at the
given scale, Cramer‐Rao Lower Bound (CRLB) analysis
predicts some variance between the true and estimated
peak amplitudes. This can be explained by considering
the analytical CRLB derived for the damped cisoid
hm for valeric acid (experimental, estimated, and residual spectra).

ctra (from bottom to top, experimental, estimated, residual, and
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model.[26,27] The results show that—out of all model
parameters—complex amplitudes have the highest asso-
ciated error variance. As a result, a difference in the
amplitudes of true and estimated peaks would be
observed. This variance cannot be reduced below the
limit set by the CRLB.

For further elucidation, we also compared the spectra of
numerous other chemical compounds with those recon-
structed by the proposed algorithm, the SMA and the
LCModel—a software for automatic quantitation of 1H
NMR data and freely available at http://s‐provench‐er.com.
Each time, a different FID signal was selected and processed,
and its spectrum was generated for comparison. Results are
presented for the execution time, depth of decomposition
for the proposed algorithm, mean squared error (MSE)
between the reconstructed spectra, the number of peaks
estimated in excess and the number of peaks missed, if any.
The results are depicted in Table 1. These results again
confirm our earlier observations; first that the execution time
incurred by the proposed algorithm is comparable with the
SMA/LCModel and second that the number of peaks missed
by the SMA/LCModel becomes quite significant as the FID
signal grows in complexity.

This is particularly evident in the case of the FID sig-
nal for lactose, a disaccharide sugar found in milk, and
an extremely challenging signal for a quantitation
method due to a very large number of signal samples
(>30,000), a large number of resonances (>100), a very
large dynamic range (90 dB), and an extremely challeng-
ing noise floor (with many resonances lying well below
the noise). The 1H spectrum for lactose is depicted in
Figure 4.

Out of 149 peaks, the SMA and the LCModel were
able to capture only two and six peaks, respectively.
On the other hand, the proposed algorithm was able
to resolve all 149 spectral peaks. This included the
smallest resonance peak that, as also depicted in
Figure 4, was almost 35,000 times smaller than the
largest peak in the spectrum. The proposed algorithm
was able to do so in just 5.7 s. The MSE achieved
was 2.5×10−5.

Finally, performance of the proposed algorithm is
compared with CRAFT, a Bayesian algorithm for quan-
titative NMR mixture analysis.[11] The CRAFT analysis
for 28 regions of interest of 1H NMR spectrum of a rep-
resentative fermentation broth in 90% H2O took approx-
imately 3.5 min. The proposed algorithm, on the other
hand, took only 12.4 s to process the entire spectrum
and, contrary to CRAFT, did not require the regions of
interest to be specified. A close agreement between the
true and estimated spectra is observed in Figure 5. A
similar close agreement is demonstrated in Figure 6
for valeric acid.
8 | CONCLUSION

In this article, a subband SMA has been proposed for fast,
accurate, and automatic estimation of the parameters of
an FID signal for chemical spectroscopy. The proposed
algorithm is more accurate in estimating the FID signal
parameters when compared with the alternative paramet-
ric methods and has a similar speed.
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