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Abstract— General analysis of expected per-terminal signal-
to-interference-plus-noise-ratio (SINR) and ergodic per-cell sum
spectral efficiency for a multi-cellular system with coordi-
nated regularized zero-forcing (RZF) precoding is presented.
An application to two-tier small-cell networks is considered,
assuming independent and identically distributed (i.i.d.) and
semi-correlated Rayleigh fading channels, with spatial correlation
at the base station. Our analysis caters for equal and unequal
correlation matrices for each terminal. For the i.i.d. case and
when each terminal is assigned an equal correlation matrix,
our expressions are averaged over the eigenvalue densities of
the channel correlation matrices, which follow an uncorre-
lated and correlated complex central Wishart distribution. With
unequal correlation matrices, we exploit the high signal-to-noise-
ratio (SNR) convergence of RZF precoding to zero-forcing (ZF)
precoding and use a second-order Neumann series expansion to
derive closed-form approximations to the expected RZF SINR
and ergodic sum spectral efficiency, via the expected ZF SNR
and ergodic sum spectral efficiency. Our numerical results show
the adverse effects of intercellular interference, along with the
improvements in the above-mentioned performance metrics with
network-wide coordination over cell-wide and macro-only coor-
dination strategies. The derived expressions are robust to changes
in system dimensions, operating SNRs, and correlation levels.

Index Terms— SINR, spectral efficiency, BS coordination,
RZF precoding, two-tier small-cell networks, complex Wishart
matrices.

I. INTRODUCTION

MULTIUSER multiple-input multiple-output
(MU-MIMO) systems have gained a tremendous

amount of attention due to the multiplexing gains resulting
from their ability to jointly serve a multiplicity of non-
cooperative terminals in the same time-frequency interval [1].
On the downlink, this has led to improvements in the spectral
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efficiency and bit error rates [2]. However, further challenges
arise in practical cellular networks, where downlink
transmission takes place simultaneously to terminals in
multiple co-channel cells, due to a frequency re-use factor
of one. In such systems, due to the increased numbers of
interfering sources, inter-cellular interference (ICI) remains
an impairment, limiting the achievable performance [3].
As a result, the terminal signal-to-interference-plus-noise-
ratio (SINR) can not be improved by simply increasing the
base station (BS) transmit power, since this leads to stronger
ICI. This is particularly disadvantageous for terminals near
the cell-edge, which suffer from lower SINR and spectral
efficiency [4].

To minimize such performance loss, BS coordination has
been proposed (see e.g., [3]–[5] and references therein),
such that multiple BSs could be connected via low-latency,
high bandwidth backhaul links, allowing for the transfer
of out-of-cell channel state information (CSI). This results
in coordinated downlink transmission of data to terminals
in multiple cells, while mitigating or reducing intra-cellular
interference (IUI) and ICI. Advances in coordinated beam-
forming have also been made in small-cell networks, as shown
in [6] and [7]. Here, different tiers of low powered BSs may
operate on the same frequency band as the macrocell, in which
case ICI rapidly degrades the terminal SINR with increasing
numbers of small-cells [8]. For conventional multi-cellular
systems, coordinated beamforming has been extensively stud-
ied to evaluate the performance of frequency-division-duplex
systems (see [9], [10] and the references therein).

For downlink MU-MIMO systems, linear processing tech-
niques such as matched-filter and zero-forcing (ZF) precoding
have been identified as practical alternatives to the optimal,
high complexity non-linear approaches, such as dirty-paper-
coding [1], [11]. It is well known that in the low signal-to-
noise-ratio (SNR) regime, ZF precoding suffers from noise
inflation, leading to lower per-terminal spectral efficiency. To
compensate for this, regularized zero-forcing (RZF) precoding
uses a regularization parameter to control the relative effects of
noise and remaining interference at the terminal [12]. RZF has
thus proven to be an effective precoding technique for single-
cell MU-MIMO systems [13], [14]. Its performance has also
been evaluated for multi-cellular systems with large antenna
arrays, under independent and identically distributed (i.i.d.), as
well as semi-correlated Rayleigh fading channels [15], [16].

The instantaneous distribution of SINR and sum spectral
efficiency has also been characterized with stochastic geometry
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often for small-cell networks (see e.g., [17] and references
therein). However, the majority of prior work (see [11], [14],
[18]–[20]) routinely assumes a fixed spatial correlation matrix
for each terminal, despite their geographical differences that
lead to different levels of local scattering, in turn resulting
in wide variations in the correlation patterns for each termi-
nal [21]. In addition to the inter-element spacing at the BS
array, this significantly influences the resulting performance. In
the large system regime, deterministic limits to the RZF SINR
and sum spectral efficiency with unequal correlation matrices
have been analyzed in [13] and [22]. A more general limiting
analysis with other types of transmit and receive processing in
the presence of unequal correlation structures is presented in
[15]. However, in the large system regime, solutions are often
presented numerically (see [13], [15], [22]) by iteratively solv-
ing a system of fixed point equations, where it is not straight-
forward to inspect the expressions and evaluate the impact of
changes in the system and/or propagation parameters. In con-
trast to this, we provide explicit analytical expressions that do
not require iterative solutions to a set of linked equations. The
resulting insights are most obvious in the high SNR regime,
where we use ZF precoding to approximate the RZF per-
formance with unequal correlation structures.1 In general, to
derive the expected SINR and expected sum spectral efficiency,
we average over the myriad of fast-fading, unless otherwise
specified. More specifically, our contributions are as follows:

• We derive tight analytical expressions to approximate the
RZF expected per-terminal SINR and ergodic spectral
efficiency for i.i.d. and semi-correlated Rayleigh fading
channels with spatial correlation at the BS. For equal
correlation matrices at each terminal, our expressions
are averaged over the arbitrary eigenvalue densities of
the instantaneous channel correlation matrix. To the best
of our knowledge, such analysis has not been carried
out previously and is considered to be cumbersome
in [12] and [23], where the expected SINR and ergodic
sum spectral efficiencies are averaged over the isotropic
eigenvector matrix for simplicity.

• With unequal correlation matrices, we consider the high
SNR regime, where RZF precoding converges to ZF pre-
coding. Following the spatial correlation model in [24],
we approximate the RZF performance with ZF, and use a
second order Neumann series expansion to derive closed-
form approximations of the expected ZF SNR and ergodic
sum spectral efficiency. In comparison to previous studies,
such as [15] and [13], our approximations provide clear
insights into the impact of unequal correlation struc-
tures, along with other system parameters that influence
the achievable expected SNR and ergodic sum spectral
efficiency.

• For a two-tier small-cell network, we demonstrate the
gain in the expected per-terminal SINR and ergodic
spectral efficiencies due to network coordination relative
to macro-only and cell-wide coordination. We show the

1It is well known that in the high SNR regime, RZF precoding converges
to ZF precoding, as the regularization parameter tends to zero (see [12], [14]
and references therein).

effects of network densification on a per-terminal
and system-wide basis with uniform, cell-edge and
cell-centric small-cell placement under i.i.d. and
semi-correlated fading. The performance of such systems
with unequal correlation matrices is superior to that where
each terminal is assigned a fixed correlation matrix. We
demonstrate the tightness of our approximations with
variation in the system dimensions across the SNR range
considered.

Notation: We use boldface upper and lower case symbols
to represent matrices and vectors. The M × M identity matrix
is denoted as I M , while the (i, j)-th entry of the matrix H is
denoted by H i, j . The transpose, Hermitian transpose, inverse
and trace operators are denoted by (·)T, (·)H, (·)−1 and tr [·],
respectively. We use h ∼ CN

(
0, σ 2

)
to denote an i.i.d. random

vector having complex Gaussian entries with zero mean and
variance σ 2. || · ||F and | · | denote the Frobenius and scalar
norms, while det (·), per (·) and �·� denote the determinant,
sign of a permutation and floor operators, respectively. E [·]
denotes the statistical expectation over fast-fading, while wher-
ever the expectation is performed over a different random
variable, separate notation is introduced in the text. (H)·;k ,
(H)i;k and (H)i j ;kl denote the matrix H with column k, row
i and column k, as well as rows i, j and columns k, l removed,
respectively.

II. MATHEMATICAL PRELIMINARIES

A. Channel Models and Eigenvalue Densities

Consider a point-to-point Rayleigh fading MIMO system
with M transmit and L receive antennas, respectively. The
L × M channel matrix, H , has zero-mean complex Gaussian
entries. The statistical properties of such channels rely on the
instantaneous channel correlation matrix

W �
{

H HH if L ≤ M

HH H if L > M,
(1)

which follows a complex Wishart distribution. We note that in
all cases, H is normalized such that E[|H i, j |2] = 1. We denote
m = min (M, L) and n = max (M, L).

Definition 1 (Uncorrelated Rayleigh Fading): Uncorrelated
Rayleigh fading is a reasonable model when there is ade-
quate spacing between transmit and receive antenna elements
with large angular spreads to induce independent and identi-
cally distributed (i.i.d.) fading in H . Under these conditions,
W follows an uncorrelated complex central Wishart struc-
ture with m degrees of freedom (d.o.f.) and a covariance
matrix Im . Let λ denote an arbitrary eigenvalue of W drawn
from λ1, . . . , λm . The density of λ, denoted by f0, is then
given in [25]

f0 (λ) = m−1
m∑

i=1

(i − 1)

(i − 1 + n − m)
λn−me−λκ(n−m)

i−1 (λ)2 , (2)

where κ(n−m)
i−1 is a generalized Laguerre polynomial of order

i − 1, defined as

κ
(n−m)
i−1 (λ) �

i−1∑

s=0

(−1)s
(

i + 1 + n − m

i − 1 − s

)
λs

s! . (3)
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Similarly, let (λ1, λ2) be any two arbitrary unordered eigen-
values of W . The joint density of such pair is denoted by
f0 (λ1, λ2) and is given in [25]

f0 (λ1, λ2) = (m (m − 1))−1
m∑

i=1

m∑

j=1
j �=i

(λ1λ2)
n−m e−(λ1+λ2)

×�
(
κ
(n−m)
i−1 (λ1)

2 κ
(n−m)
j−1 (λ2)

2 − κ
(n−m)
i−1 (λ1)

× κ
(n−m)
j−1 (λ1) κ

(n−m)
i−1 (λ2) κ

(n−m)
j−1 (λ2)

)
,

(4)

where

� = (i − 1)! ( j − 1)!
(i − 1 + n − m)! ( j − 1 + n − m)! . (5)

Definition 2 (Semi-Correlated Rayleigh Fading): Due to
space limitations in practical MIMO antenna arrays and
limited angular spreads, MIMO channels in practice often
exhibit a spatially correlated structure. We model the effects
of transmit spatial correlation as [26]

H sc = H iid R
1
2
t , (6)

where H iid ∼ CN (0, 1) and Rt is a M × M transmit spatial
correlation matrix with M distinct eigenvalues, θ1, . . . , θM .
Here, W is known to follow a correlated complex central
Wishart structure with m d.o.f. and covariance matrix Rt.
From [27], the density of an arbitrary eigenvalue, λsc, of the
correlated central Wishart matrix is given by

fo,sc (λsc) = 1

m
∏n

i< j

(
θ j − θi

)
∑n

l=1

∑n

k=n−m+1
λm+k−n−1

sc

× e−λsc/θl θn−m+1
l Dl,k/� (m − n + k) , (7)

with Dl,k is the (l, k)-th co-factor of a n × n matrix whose
(l, k)-th entry is given by θ k−1

l .

Corollary 1: Let W = HH
sc H sc, where the L × M (L > M)

channel matrix H sc = H iid R
1
2
t , with θ1, . . . , θm denoting the

m distinct eigenvalues of Rt �= Im . The joint density of
any two (unordered) arbitrary eigenvalues of W , (λ1, λ2), is
given by

fo,sc (λ1, λ2) = χ̂

m−1∑

i=0

m−1∑

j=0
j �=i

(−1)i+ j−p(i, j ) λi+n−m
1 λ

j+n−m
2

×
m∑

k=1

m∑

l=1
l �=k

(−1)k−1 e−λ1/θk (−1)l−p(l) e−λ2/θl

× det (�)i, j ;k,l , (8)

where the (l, k)-th element of � is given by e−λl/θk and χ̂ =
χ (−1)� m

2 � (m − 2)! with

χ = 1

m!∏m
l=1 (n − l)!det (Rt)

n ∏m
k<l

(
1
θl

− 1
θk

) . (9)

Moreover,

p(i, j) =
{

0 if i > j

1 if i ≤ j
and p(l) =

{
0 if k > l

1 if k ≤ l.
(10)

Proof: The joint density of L unordered eigenvalues is
given in matrix tensor form in [28]. From the result in [28],
the density can be expressed in terms of determinants which
are then expanded via Laplace expansions of the columns
containing λ1 and λ2 to give (8). �

Corollary 2: Let W = Hsc HH
sc, where the L × M (M ≥ L)

channel matrix H sc = H iid R
1
2
t , with θ1, . . . , θn denoting the n

distinct eigenvalues of Rt �= In . The joint density of any two
(unordered) arbitrary eigenvalues of W , (λ1, λ2), is given by

fo,sc (λ1, λ2) = T (n − 2)!
m−1∑

i=0

m−1∑

j=0
j �=i

(−1)i+1−p(i,l)
m∑

o=1

(−1)o−1

× θn−m−1
o λi

1e−λ1/θ0

m∑

p=1
p �=o

(−1)p−p(o) θn−m−1
p

× λ j
2e−λ2/θp�, (11)

where T = 1/
∏n

j=1 j ! det (�n), with �n defined as the n ×n
Vandermonde matrix

�n �

⎡

⎢
⎣

1 θ1 . . . θn−1
1

...
...

. . .
...

1 θn . . . θn−1
n

⎤

⎥
⎦, (12)

p (i, l) and p (o) are equivalently defined in (10), while � �
det(

(
�n,m

)
o,p;i+n−m+1, j+n−m+1) with

�n,m �

⎡

⎢
⎣

1 . . . θn−m−1
1 θn−m−1

1 e−λ1/θ1 . . .
...

...
...

...
...

1 . . . θn−m−1
n θn−m−1

n e−λ1/θn . . .

⎤

⎥
⎦. (13)

Proof: Following the procedure in Appendix A with
Corollary 1 yields the desired result. �

Remark 1: We note that the results in Corollaries 1 and 2
have been derived by Zanella and Chiani [28] in tensor form.
This form can also be used here, however, for the ease of
subsequent analysis, we expand these densities into finite
summations resulting in (8) and (11), respectively.

B. Integrals and Special Functions

Throughout the paper, we make use of the following inte-
grals and special functions. Let

Ja,b,c (ξ) =
∞∫

0

λae−λ/c

(λ+ ξ)b
dλ, where a, b and c ≥ 1. (14)

We solve (14) by substituting λ = ω − ξ to obtain

Ja,b,c (ξ) =
∞∫

ξ

(ω − ξ)a e−(ω−ξ)/c

ωb
dω

=
a∑

f =0

(
a

f

)
(−ξ)a− f eξ/c

∞∫

ξ

ω f −be−ωdω

︸ ︷︷ ︸
J (b)

. (15)
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We are interested in two special cases of J (b) (ξ), when b = 1
and b = 2. These are given by

J (1) (ξ) =
∞∫

ξ

ω f −1e−ωdω =
{

Ei (1, ξ) if f = 0

� ( f, ξ) if f ≥ 1,
(16)

and

J (2) (ξ) =
∞∫

ξ

ω f −2e−ωdω =

⎧
⎪⎨

⎪⎩

−Ei (1, ξ)+ e−ξ
ξ2 if f = 0

Ei (1, ξ) if f = 1

� ( f − 1, ξ) if f ≥ 2,

(17)

where Ei (·, ·) is the generalized exponential integral and
� (·, ·) is the incomplete gamma function.

III. SYSTEM MODEL

A. Downlink Received Signal

We consider the downlink of a two-tier, multi-cellular,
MU-MIMO system with K cells in total, where tier one
consists of macro and tier two consists of microcell BSs.
BS k, located at the origin of cell k in either tier is equipped
with Mk transmit antennas, simultaneously serving Lk non-
cooperative single antenna user terminals in the same time-
frequency interval. We assume that perfect backhaul links
with zero latency and infinite bandwidth are present between
the K cells. We also assume narrow-band transmission with
uniform power allocation. We denote the 1 × Mk downlink
channel vector from BS k to terminal l located in cell k as
hk,l,k . The ICI channel from BS j to user terminal l in cell
k is denoted by h j,l,k , where j �= k. Both the desired and
interfering channels are assumed to follow correlated Rayleigh

fading with h j,l,k = u j,l,k R
1
2
j,l,k , where u j,l,k ∼ CN

(
0, I M j

)

and R j,l,k is the transmit spatial correlation matrix for channel
h j,l,k . In the case where each terminal has an equal correlation
matrix, R j,l,k = R j ; ∀l, k. Whilst we postpone the discussion
of the particular structure of R j,l,k to Section VI, we note
the generality of the presented channel model, allowing us
to consider any type of antenna correlation structure in R j,l,k .
Although we consider the general case of MU-MIMO in a two-
tier small-cell network, the above model is also of relevance
to large antenna arrays, where strong antenna correlation may
arise due to inadequate inter-element spacing or lack of multi-
path diversity [15].

With CSI at BS k, the received signal at the l-th terminal
in the k-th cell is given by

yl,k =
√
βk,l,k

ηk
hk,l,k gl,ksl,k

︸ ︷︷ ︸
desired signal

+
√
βk,l,k

ηk

Lk∑

m=1
m �=l

hk,l,k gm,ksm,k

︸ ︷︷ ︸
intra-cellular interference (IUI)

+
K∑

j=1
j �=k

√
β j,l,k

η j
h j,l,k

L j∑

q=1

gq, j sq, j

︸ ︷︷ ︸
inter-cellular interference (ICI)

+ v̄l︸︷︷︸
noise

, (18)

Fig. 1. Two-tier small-cell network with randomly distributed small-cells in
each macrocell.

where gl,k is the Mk × 1 un-normalized precoding vector for
the l-th terminal in cell k and ηk is the precoder normalization
parameter, discussed later, for the k-th cell. sl,k is the trans-
mitted data symbol from BS k to terminal l with unit mean
power and v̄l denotes white Gaussian noise at the l-terminal
where v̄l ∼ CN (0, σ 2

l ). βk,l,k and β j,l,k are the desired and
interfering received powers at the l-th terminal in cell k from
the desired and interfering BSs, respectively. We model the
received power from BS j to terminal l in cell k as [29]

β j,l,k = Pt, jς

(
d0

d j,l,k

)α j

ψ j,l,k . (19)

Here, Pt, j is the transmit power of BS j . Note that the
transmit power of a given BS depends on the tier it is located
in. ς is a unit-less constant for geometric attenuation at
the reference distance d0, assuming far-field, omni-directional
transmit antennas. d j,l,k is the distance from BS j to terminal l
in cell k and α j is the attenuation exponent dependent on
the transmitting BS and the propagation scenario. ψ j,l,k =
10(Sσs/10) models the effects of shadow-fading with a log-
normal distribution, where S ∼ N (0, 1) and σs is the shadow-
fading standard deviation. Fig. 1 depicts a typical two-tier net-
work configuration composed of multiple macro and overlaid
small-cells. We show the effects of downlink propagation to
terminal 1 in macrocell 7’s coverage area, as it causes IUI to
terminal 2 and experiences ICI from the nearby micro BSs.
Each BS is connected via the baseband backhaul unit and K
is the total number of BSs in the network (macro and small-
cell). For adequate quality of service provisioning, we include
an exclusion radius around the macro BS, where no small-cells
can be located.

B. Transmit Spatial Correlation Scenarios

The literature contains many studies where correlation
matrices are assumed equal for each terminal [11], [14],
[18]–[20] as well as studies considering unequal correlation
matrices [13], [15], [22], [24], [30]. In situations where the
BS illuminates the same set of scatterers for all terminals,
a constant transmit correlation matrix is valid. For example,
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if the BS is surrounded by a ring of scatterers, then the
resultant correlation matrices are simply governed by a zeroth-
order Bessel function of the first kind. Naturally, this is a more
sensible model at the terminal, which may be in dense clutter.
Nevertheless, it illustrates the point that when the departing
rays from the BS arrive at the same scatterers, then constant
correlation matrices occur. In contrast to this, the model in [30]
essentially assumes that the BS illuminates separate rings
of scatterers around each terminal. This gives rise to wide
variations in the correlations for different terminals. These are
extreme cases where the BS illuminates either the same or
disjoint sets of scatterers for each terminal. In reality, it is
likely that some scatterers are common to some terminals and
distinct to others. This is an interesting modeling question
outside the scope of this paper. Here we focus on the two
edge cases of equal and unequal correlation matrices using
the models in [24].

C. Regularized Zero-Forcing (RZF) Precoding

We consider RZF precoding [12] to design the downlink
beamforming vectors to each terminal. First, we focus on
the case where each BS performs RZF to terminals in its
own coverage area, and later we extend this to other network
coordination types. The un-normalized RZF precoding vector
for the l-th terminal in cell k is the l-th column of the Mk ×Lk

matrix, Gk , such that

Gk � HH
k

(
Hk HH

k + ξk I Lk

)−1
, (20)

where Hk � [hT
k,1,k , hT

k,2,k , . . . , hT
k,Lk ,k]T is the composite

matrix containing the channel vectors of all Lk terminals
in cell k. Following [31], we normalize the precoder matrix
in (20) by ηk = ||Gk ||2/Lk ensuring E

[||gl,k ||2
] = 1. The

constant ξk > 0 denotes the regularization parameter designed
at BS k. Following [31], we consider

ξk = 1

K L

K∑

k=1

Lk∑

l=1
l �=k

1

βk,l,k
, (21)

where K and L are the total number of cells and terminals
within the system, respectively. While selecting ξk to maxi-
mize the SINR has been considered in [12] for a single-cell
system, maximization of SINR in the case of multiple cells
leads to a coupled optimization problem [12]. The computation
of ξk in (21) requires BS k to know all large-scale fading
coefficients, and assumes ideal backhaul links to deliver the
large-scale fading parameters of all terminals to BS k. This
assumption is reasonable, since RZF requires CSI at the BS
and large-scale fading co-efficients vary much more slowly
than the fast-fading.

D. Network Coordination Strategies

1) Cell-Wide Coordination: In this strategy, the BSs in
both tiers perform single-cell RZF processing. That is, each
BS coordinates the desired and IUI locally. ICI is, however,
present from other cells, as the RZF precoder does not consider
any ICI channels in its design. The composite channel matrix

to compute the RZF precoders for Lk terminals in cell k is
given by

Hk �
[

hT
k,1,k, hT

k,2,k, . . . , hT
k,Lk ,k

]T
. (22)

2) Network-Wide Coordination: In this strategy, the serving
BS applies RZF precoding not only to the channels of its
own terminals, but also considers ICI to other terminals in the
system. The serving and interfering links can be determined
using cell-specific pilot signaling (assuming perfect channel
estimation in the absence of pilot contamination and the avail-
ability of sufficient number of orthogonal reference signals).
Then, all interfering channels from other cells are delivered to
the serving cell BS via the backhaul interface. The composite
channel matrix, Hk , for cell k with network-wide coordinated
RZF processing can now be defined as

Hk �
[

ZT
1 , ZT

2 , . . . , ZT
j , . . . , ZT

K

]T
, (23)

where Z j �
[

hT
j,1,k, . . . , hT

j,Lk,k

]T
. With this composite

channel matrix, (20) can still be used, however, the precoder
Gk only contains the Lk columns of (20) corresponding to
the terminals in cell k (columns

∑k−1
i=1 Li + 1 to

∑k
i=1 Li ).

Similarly, ηk is the Frobenius norm of Gk with Lk columns
only. Since network-wide coordination requires knowledge
of all instantaneous channel vectors at BS k, it introduces
significant backhaul overheads. Whilst not practical, such a
strategy allows us to evaluate the upper bound (best case
performance) of the expected per-terminal SINR and ergodic
per-cell spectral efficiency in such interference dominated
scenarios.

3) Macro-Only Coordination: In this strategy, we assume
that the macrocell BSs have knowledge of the ICI channels to
terminals located in tier-two cells. The macrocells then utilize
this out-of-cell CSI to coordinate downlink transmission to its
own, as well as to terminals in tier-two cells. The composite
channel used to obtain the RZF precoding matrix for BS k is
equivalent to (23) and (22), if BS k is a macro and microcell,
respectively.

IV. EXPECTED PER-TERMINAL SINR AND ERGODIC

PER-CELL SPECTRAL EFFICIENCY

From (18), the SINR at the l-th terminal in cell k being
served by BS k can be written as

ρl,k =
βk,l,k
ηk

|hk,l,k gl,k |2

σ 2
l + βk,l,k

ηk

Lk∑

m=1
m �=l

|hk,l,k gm,k |2+
K∑

j=1
j �=k

β j,l,k
η j

L j∑

q=1
|h j,l,k gq, j |2

.

(24)

From (24), the expected per-terminal SINR can be obtained
by performing E

[
ρl,k

]
. Exact evaluation of E

[
ρl,k

]
is cum-

bersome, thus we employ the commonly used first-order delta
method expansion as shown in [14], [32], and [32]–[34] to
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approximate E
[
ρl,k

]
, allowing us to write

E
[
ρl,k

]

≈
βk,l,k
η̃k

E
[|hk,l,k gl,k |2

]

σ 2
l + βk,l,k

η̃k

Lk∑

m=1
m �=l

E
[|hk,l,k gm,k |2

]+
K∑

j=1
j �=k

β j,l,k
η̃ j

L j∑

q=1
E
[|h j,l,k gq, j |2

]
,

(25)

where the quantities η̃k � E [ηk ] and η̃ j � E
[
η j
]
, respec-

tively.
Remark 2: The approximation used in (25) is a standard

first-order Delta expansion and is of the form E
[ X

Y

] ≈ E[X ]
E[Y ] ,

where X and Y contain standard quadratic forms [14], [32],
[32], [34], [35]. The accuracy of such approximations relies
on Y having a small variance relative to its mean. This can
be seen by applying a multivariate Taylor series expansion
of X

Y around E[X ]
E[Y ] , as shown in the analysis methodology

of [34], [35]. In particular, the quadratic forms in (25) are well
suited to this approximation as Mk and Lk start to increase,
where the approximation is shown to be extremely tight.
This is due to the quadratic forms averaging their respective
individual components, minimizing their variance relative to
their mean. For further discussion, we refer the interested
reader to Appendix I of [34], where a detailed mathematical
proof of the approximation accuracy can be found.

From (25), the resulting ergodic spectral efficiency for
terminal l in cell k (in bits/seconds/Hz) is given by E

[
Rl,k

] =
E
[
log2

(
1 + ρl,k

)]
. As such, the ergodic sum spectral effi-

ciency for the Lk terminals in cell k can be approximated as

E
[
Rsum,k

] = E

⎡

⎣
Lk∑

l=1

log2
(
1 + ρl,k

)
⎤

⎦

≈
Lk∑

l=1

log2
(
1 + E

[
ρl,k

])
. (26)

Remark 3: Note that (26) leads to an approximation rather
an upper bound via Jensen’s inequality, as the value of E

[
ρl,k

]

is itself an approximation [36]. Moreover, the summation over
Lk terminals in cell k takes care of the fact that E

[
ρl,k

]

could be different depending on l and k, due to relative
differences in the physical location of the terminal, causing
further differences in the level of geometric attenuation and
log-normal shadow-fading.

A. Expected Signal Power

The expected signal power in (25) is given by

δl,k = βk,l,k

η̃k
E

[
|hk,l,k gl,k |2

]
. (27)

Via an eigenvalue decomposition, we denote Hk HH
k =

U�UH. The expectation in (27) over the isotropic distribution
of U can be written as [12]

�l,k = E

[
|hk,l,k gl,k |2

]
= E

⎡

⎣
(

m∑

l=1

λl

λl + ξk
|uk,l |2

)2
⎤

⎦, (28)

where m is the minimum of the transmit and receive dimen-
sions. For cell-wide coordination, m � min (Lk ,Mk), whilst
for network-wide coordination, m � min

(∑K
k=1 Lk ,Mk

)
,

respectively. λl is the l-th eigenvalue corresponding to the l-th
diagonal entry in � and uk,l denotes the (k, l)-th entry of U .
(28) can be further averaged over the entries of U and can be
written as [12]

�l,k = E

[
|hk,l,k gl,k |2

]

= 1

m (m + 1)

⎧
⎨

⎩
Eλ

⎡

⎣

(
m∑

l=1

λl

λl + ξk

)2
⎤

⎦

+ Eλ

[
m∑

l=1

(
λl

λl + ξk

)2
]⎫⎬

⎭
, (29)

where Eλ [·] denotes the expectation over the eigenvalues.
From this, η̃k can also be inferred as

η̃k = τE

[
||Gk ||2F

]
= τEλ

[
m∑

l=1

λl

(λl + ξk)
2

]

, (30)

where τ = 1
Lk

for cell-wide and 1∑K
k=1 Lk

for network-wide

coordination, as every column of Gk is identically distributed.
The expressions in (29) and (30) can be further averaged
over the density of the eigenvalues as shown in the fol-
lowing Theorems and Lemmas for uncorrelated and semi-
correlated Rayleigh fading channels with equal correlation
matrices.

Theorem 1: When Rk = Im , the expected value of
∑m

i=1
λ
μ
i

(λi+ξk)
2 , over the eigenvalues of Hk HH

k is given by

Sμk =
m∑

i=1

(i − 1)!
(i − 1 + n − m)!

i−1∑

z=0

i−1∑

l=0

l �=z

(−1)z+l
(

i − 1 + n − m

i − 1 − z

)

×
(

i − 1 + n − m

i − 1 − l

)
1

z!l! Jμ+n−m+z−l,2,1 (ξk) , (31)

where Jμ+n−m+z−l,2,1 (ξk) is as defined in (15).
Proof: See Appendix A. �
Theorem 2: For Mk ≤ Lk or Mk > Lk , where

θ1, . . . , θn are the eigenvalues of Rk �= In , the expected

value of
∑m

i=1
λ
μ̄
i

(λi+ξk)
2 , over the eigenvalues of Hk HH

k is
given by

S̄μ̄k = 1
∏n

i< j

(
θ j − θi

)
∑n

l=1

∑n

k=n−m+1

θn−m−1
l Dl,k

� (m − n + k)

× Jm+k−n−1+μ̄,2,θl (ξk) , (32)

where Dl,k and Jm+k−n−1+μ̄,2,θl (ξk) are as defined
in (7) and (15), respectively.

Proof: See Appendix B. �
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Lemma 1: When Rk = Im , the expected value of(∑m
i=1

λi
λi+ξk

)2
is given by

Qk = S2
k +

m∑

i=1

m∑

j=1
j �=i

�

×

⎧
⎪⎪⎨

⎪⎪⎩

( i−1∑

f =0

i−1∑

z=0
z �= f

(−1) f +z
(

n − m + i − 1

i − 1 − f

)

×
(

n − m + i − 1

i − 1 − z

)
1

f !z! Jn−m+1− f +z,1,1 (ξk)

)2

×
( i−1∑

f =0

i−1∑

z=0
z �= f

(−1) f +z
(

n − m + i − 1

i − 1 − f

)

×
(

n − m + j − 1

i − 1 − f

)

× 1

f !z! Jn−m+1+ f +z,1,1 (ξk)

)2

⎫
⎪⎪⎬

⎪⎪⎭
, (33)

where � and Jn−m+1+ f +z,1,1 (ξk) are as defined in (5)
and (15), respectively.

Proof: See Appendix C. �
Lemma 2: Let Mk ≤ Lk , where θ1, . . . , θm are the m eigen-

values of Rk �= Im . The expected value of
(∑m

i=1
λi

λi+ξk

)2
is

given by

Q̄k = S̄2
k + χ̂

m∑

i=0

m∑

j=0
j �=i

m∑

k=1

m∑

l=1
l �=k

(−1)i+ j−p(i, j ) (−1)k−1+l−p(l)

× det (�)i, j ;k,l Ji+n−m+1,1,θk (ξk) Jj+n−m+1,1,θl (ξk) ,

(34)

where χ̂ , p (i, j), p (l) and � are as defined in (8)
and (10), respectively. The integrals Ji+n−m+1,1,θk (ξk) and
Jj+n−m+1,1,θl (ξk) are defined in (15).

Proof: See Appendix D. �
Lemma 3: Let Mk > Lk , where θ1, . . . , θn are the n eigen-

values of Rk �= In . The expected value of
(∑m

i=1
λi

λi+ξk

)2
is

given by

Q̃k = S̄2
k + n (n − 1) χ(n − 2)!

n−1∑

i=0

n−1∑

l=0
l �=i

n∑

o=1

n∑

p=1
p �=o

(−1)i+1−p(i,l)

× (−1)o−1+p−p(i,l)(−1)o−1+p−p(o)θn−m−1
o det (�n)o,p

× det (�)i,l;o,p Ji+1,1,θo (ξk) Jl+1,1,θp (ξk) . (35)

The quantities χ , p (i, l) and p (o) are as given in (9) and (10).
Moreover, �n and � are as defined in (12) and (8),
respectively.

Proof: Following the steps in Appendix D using (7) and (11)
yields the desired result. �

Remark 4: The generality of the results derived in
Theorems 1, 2 and Lemmas 1, 2 and 3 is worth mentioning.

The results are applicable for any system dimension, operating
SNR and spatial correlation level. The analysis methodology
is also applicable to other channel models (so long as the nec-
essary densities are known), such as i.i.d and semi-correlated
Ricean fading. Although we consider an application to two-
tier small-cell networks, the results are equally as applicable
to classical multi-cellular systems operating with conventional
or large antenna arrays.

Remark 5: The results of Lemmas 2 and 3 have further
applications to analysis involving complex correlated central
Wishart matrices, such as the analysis of second order statistics
of semi-correlated channels, leading to the variance of capacity
for such channels.

Using the results derived in Theorems 1, 2 and Lemmas 1,
2, 3, we can express (29) for i.i.d. and semi-correlated
Rayleigh fading channels as in (36), as shown at the top of
the next page. In the same manner, the expected value of the
normalization parameter, η̃k for cell k can also be stated for
i.i.d. and semi-correlated Rayleigh fading channels, as in (37).
These are shown on top of the next page.

Thus, the expected signal power, δl,k , in (27) can be written
in (38) on top of the next page for the i.i.d. case and semi-
correlated cases, respectively.

B. Expected Interference Power

From (25), the expected interference power at the l-th
terminal in cell k is given by

ιl,k = βk,l,k

η̃k

{∑Lk

m=1
m �=l

E

[
|hk,l,k gm,k |2

] }

+
∑K

j=1
j �=k

β j,l,k

η̃ j

{∑L j

q=1
E

[
|h j,l,k gq, j |2

] }
. (39)

For network-wide coordination, following the methodology
of [12], the expected interference power can be evaluated as
the difference between the total power (signal and interference)
and the desired signal power at the l-th terminal in cell k. The
total power at terminal l is given by

γl,k = E

[
||Hk Gk ||2F

]
= τ Lk

{

Eλ

[
m∑

l=1

(
λl

λl + ξk

)2
]}

. (40)

Subtracting the expected desired signal power in δl,k from
γl,k yields the interference power at the l-th terminal in cell k.
More specifically, under i.i.d. Rayleigh fading, ιl,k is given by

ιi.i.d.
l,k = βk,l,k

η̃ i.i.d.
k

{(
Lk − 1

Mk − 1

)(
γ i.i.d.

l,k − �i.i.d.
l,k

)}

+
∑K

j=1
j �=k

β j,l,k

η̃i.i.d.
j

{(
Lk

Mk − 1

)(
γ i.i.d.

l, j − �i.i.d.
l, j

)}
. (41)

The equivalent expressions for semi-correlated scenarios,
ι
Mk≤Lk
l,k and ιMk>Lk

l,k , can be obtained by replacing η̃i.i.d.
k , η̃i.i.d.

j ,
γ i.i.d.

l,k , γ i.i.d.
l, j , �i.i.d.

l,k and �i.i.d.
l, j with their semi-correlated counter-

parts for Mk ≤ Lk and Mk > Lk , respectively. With cell-wide
coordination, the above approach can be used to find the IUI
(first term in (39)). However, as the RZF processor designed
at BS k is independent of the ICI channels, the second term
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�i.i.d.
l,k = Qk + S(2)k

m (m + 1)
, �

s.c.,Mk≤Lk
l,k = Q̄k + S̄(2)k

m (m + 1)
, �

s.c.,Mk>Lk
l,k = Q̃k + S̄(2)k

m (m + 1)
. (36)

η̃i.i.d.
k = S(1)k

m
, η̃

s.c.,Mk≤Lk
k = S̄(1)k

m
, η̃

s.c.,Mk>Lk
k = S̄(1)k

m
. (37)

δi.i.d.
l,k = βk,l,k

η̃ i.i.d.
k

�i.i.d.
l,k , δ

s.c.,Mk≤Lk
l,k = βk,l,k

η̃
s.c.,Mk≤Lk
k

�
s.c.,Mk≤Lk
l,k , δ

s.c.,Mk>Lk
l,k = βk,l,k

η̃
s.c.,Mk>Lk
k

�
s.c.,Mk>Lk
l,k . (38)

in (39) must be evaluated separately, as demonstrated in the
following theorem.

Theorem 3: In the presence of cell-wide coordination, the
expected value of ICI (second term of (39)) for terminal l in
cell k is given by

E

[
|h j,l,k gq, j |2

]
=E

[
gH

q, j R j gq, j

]
= 1

L j

∑M j

i=1
θ2

i f 2
i , (42)

where θi is the i -th eigenvalue of R j and fi for
i = {

1, . . . ,M j
}

is derived in Appendix E.

Proof: One can regonize that E
[|h j,l,k gq, j |2

] = E

[
gH

q, j R j

gq, j

] = tr
[

R j E

[
gq, j gH

q, j

]]
. Now, E

[
gq, j gH

q, j

]
= 1

L j
E

[
G j GH

j

]
, as the columns of G j are identically distributed.

Expressing G j = HH
j

(
H j HH

j + ξ j I L j

)−1
and identifying

that H j = U j R
1
2
j , we denote V j = U j� j and decompose

R j = φ jθ jφ
H
j , where θ j = diag

[
θ1, . . . , θM j

]
giving

E

[
gH

q, j R j gq, j

]

= 1

L j
tr

[
φH

j R2
jφ j E

[
V j

(
V jθ j V H

j + ξ j I L j

)−2
V j

]]
. (43)

Noting that the expectation in (43) results in a diagonal matrix
containing f1, . . . , fM j yields the desired expression in (42),
where fi is derived in Appendix E. �

C. Expected Per-User SINR and Ergodic Per-Cell
Spectral Efficiency

The expected SINR in (25) can now be written as a function
of δl,k , ιl,k , η̃k and η̃ j . That is,

E

[
ρi.i.d.

l,k

]
≈ δi.i.d.

l,k

σ 2
l + ιi.i.d.

l,k

E

[
ρ

s.c.Mk≤Lk
l,k

]
≈ δ

s.c.Mk≤Lk
l,k

σ 2
l + ι

s.c.Mk≤Lk
l,k

E

[
ρ

s.c.Mk>Lk
l,k

]
≈ δ

s.c.Mk>Lk
l,k

σ 2
l + ι

s.c.Mk>Lk
l,k

, (44)

for the i.i.d. and semi-correlated cases, respectively. The
expected SINRs can be translated into an approximation for
the ergodic spectral efficiency of cell k by following (26),
giving

E

[
Ri.i.d.

sum,k

]
≈
∑Lk

l=1
log2

(
1 + E

[
ρi.i.d.

l,k

])
, (45)

for the i.i.d. and equivalently for the semi-correlated scenarios.
Having derived the expected SINR and ergodic sum spectral
efficiency approximations, we evaluate their accuracy with
the coordination strategies discussed in Section III-D, for a
two-tier small-cell system in Section VI.

V. HIGH SNR ZF APPROXIMATION WITH UNEQUAL

SPATIAL CORRELATION MATRICES

In this section, we derive new results for the expected per-
terminal SINR and ergodic per-cell spectral efficiency with
unequal spatial correlation matrices for each terminal. For
tractability of analysis, we consider the high SNR regime,
where we can approximate the results for RZF with those for
ZF precoding. We focus on the case of network-wide coor-
dination, where the terminal correlation matrices follow the
model in [24], which considers an exponential structure with
a complex correlation co-efficient, ϕ, where |ϕ| (magnitude
of ϕ) captures the effects of inter-element spacing at the BS
and a unique phase, assumed uniform on [a, b], some subset
of [0, 2π] is used to differentiate the terminals. The channel
from BS k to terminal l in cell j with a terminal specific

correlation matrix is given by hk,l, j = uk,l, j R
1
2
k,l, j , as defined

in Section III-A.
With network-wide coordination, the

∑K
i=1 Li × Mk com-

posite channel matrix, Hk �
[
ZT

1 , ZT
2 , . . . , ZT

K

]T
, where Zk

denotes the downlink channel to all terminals in cell k, given

by Zk �
[

hT
k,1,k, . . . , hT

k,Lk ,k

]T
. We note that Zk has an iden-

tical form to (22). The corresponding Mk × Lk un-normalized
ZF precoding matrix is defined as Gk �

[
HH

k

(
Hk HH

k

)−1 ]
X :Z

for the Lk terminals located in cell k with X = ∑k−1
i=1 Li + 1

and Z = ∑k
i=1 Li . The notation [A]X :Z denotes columns

X to Z of A. We normalize the ZF matrix for cell k by
ηk � ||Gk ||2F/Lk . As Hk Gk = [

Hk HH
k

(
Hk HH

k

)−1 ]
X :Z =

[0, . . . , I X :Z , . . . , 0]T, perfect cancellation of IUI and ICI
takes place allowing us to express the received signal at
terminal l in cell k as

yl,k =
√
βk,l,k

ηk
sl,k + v̄l , (46)

where βk,l,k , sl,k and v̄l are as defined in (19) and (18),
respectively. With uniform power allocation and recognizing
that E

[|sl,k |2
] = 1, the received SNR for terminal l is given

in [14]

ρZF
l,k = βk,l,k

σ 2
l ηk

= βk,l,k

σ 2
l trX :Z

[ (
Hk HH

k

)−1 ] , (47)
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where trX :Z [A] represents the trace of the diagonal block of A
involving rows and columns X to Z . To avoid computing the
inverse in (47), we approximate

(
Hk HH

k

)−1
with a classical

order N Neumann series (NS) as in [37] and denote Hk HH
k =

Mk I∑K
i=1 Li

+ �k . Hence, �k = Hk HH
k − Mk I∑K

i=1 Li
with

E [�k] = 0, allowing us to express

(
Hk HH

k

)−1 ≈ 1

Mk

N∑

p=0

(−1)p
(

�k

Mk

)p

= 1

Mk

N∑

p=0

p∑

i=0

(
p

i

)
(−1)i

(Mk)
i

(
Hk HH

k

)i
. (48)

Substituting (48) into (47) yields

ρZF
l,k ≈ βk,l,k

σ 2
l trX :Z

[
1

Mk

∑N
p=0

∑p
i=0

(p
i

) (−1)i

(Mk)
i

(
Hk HH

k

)i] . (49)

From (49), the expected SNR of terminal l in cell k can be
approximated as

E

[
ρZF

l,k

]
≈ βk,l,k

σ 2
l

1
Mk

n∑

p=0

p∑

i=0

(p
i

) (−1)i

Mi
k

E

[
trX :Z

[(
Hk HH

k

)i]]
, (50)

using the univariate special case of the first-order Delta expan-
sion motivated in Remark 2. In what follows, with a two-term
NS (i.e., N = 2), we present a closed-form expression of (50).

Theorem 4: When hk,l, j = uk,l, j R
1
2
k,l, j , where uk,l, j ∼

CN
(
0, I Mk

)
and Rk,l, j is a terminal specific transmit spatial

correlation matrix, the RZF expected per-terminal SINR can
be approximated with a ZF expected per-terminal SNR with
the use of a two-term NS in the high SNR regime. For the
l-th terminal in cell k being served by BS k, this is given by

E

[
ρZF

l,k

]
≈ βk,l,k (Mk)

3

σ 2
l

[
Lk (Mk)

2+
[
Lk
∑K

k=1 Lk trX :Z
[
R̄ R̄k

]]] , (51)

where R̄ �
∑K

j=1
∑L j

l=1 Rk,l, j
∑K

j=1 L j
is the average correlation matrix of

all terminals in the system and R̄k �
∑Lk

l=1 Rk,l,k

Lk
is the average

correlation matrix for the terminals in cell k, respectively.
Proof: See Appendix F. �
Following (45), the expected per-terminal SNR can be

easily translated to the ergodic per-cell sum spectral efficiency.
We verify the accuracy of Theorem 4 in Section VI, where we
also present comparisons of the expected SINR and ergodic
sum spectral efficiency with those obtained by having an equal
correlation matrix at all terminals.

Remark 6: Theorem 4 provides a closed-form approxima-
tion to an extremely complex situation where all terminals
have unequal correlation matrices. The structure of (51)
demonstrates the impact of unequal correlation matrices, pri-
marily through trX :Z

[
R̄ R̄k

]
. It is straight forward to show that

this partial trace tends to maximize as R̄k approaches R̄, the
case of equal correlation matrices, maximizing the expected
noise power, thereby reducing the expected ZF SNR. As a
result of this, the SNR performance of equal correlation
matrices tend to act as a lower bound on the performance

of such systems. Moreover, fixing the partial trace in the
denominator of (51), along with the other propagation para-
meters, the effects of increasing Mk and Lk can be readily
observed from the expression. Firstly, increasing Mk with Lk

fixed increases the expected signal power cubically, while
increasing the expected noise power quadratically, resulting
in a net increase in the expected signal power of O (Mk).
On the other hand, fixing Mk and increasing Lk leads to
an exponential amplification of the expected noise power by
O
(
1/Lk + K L2

k

)
, while the signal power remains unaltered.

For both cases, O (·) denotes the “order” notation.

VI. NUMERICAL RESULTS

We consider a two-tier network of macro and microcells.
Unless otherwise specified, the simulation parameters were
been obtained from [38]. Net transmit powers of macrocell
k and microcell j , Pt,k and Pt, j are 46 dBm and 30 dBm,
respectively. Large-scale propagation effects of geometric
attenuation and shadow-fading follow the model in (19), where
for d0 = 1 m, ς = 31.54 dB [29]. The decay exponents
αk = 4 and α j = 3.5, whilst the shadow-fading standard
deviation, σs = 8.0 dB. Without loss of generality, the noise
power at terminal l in cell k is unity, i.e., σ 2

l = 1. Circular
cell radii of 1 km and 70 m are assumed for cell k and j ,
respectively. The location of BS k remains fixed, whilst the
location of BS j varies depending on the scenario considered
(discussed later). We constrain the placement of BS j outside
a 70 m exclusion radius from BS k. The total number of single-
antenna terminals being served by BSs k and j are Lk = 5
and L j = 3, which are distributed uniformly over the area
of the respective cells. The number of serving antennas at
BSs k and j (Mk and M j ) vary depending on the scenario
considered (Mk ,M j > Lk, L j or Mk ,M j ≤ Lk, L j ). For
the former, Mk = 8, M j = 4 and for the latter, Mk = 4,
M j = 2, respectively.2 With equal correlation matrices, we
model the presence of spatial correlation at BSs k and j
with the Kronecker model, where (Rk)x,z = (

R j
)

x,z =
ϕ|x−z| for x, z ∈ {1, . . . ,Mk } and ∈ {

1, . . . ,M j
}

has an
exponential structure [26]. On the other hand, when each
terminal is assigned an unequal correlation matrix, we employ
the model in [24] where each correlation matrix has a structure
proportional to ϕ|x−z| modeling the inter-element spacing and
an independent [0, 2π] uniformly distributed phase component
is multiplied modeling the terminal distribution in a cell. We
assess the performance of the system with equal and unequal
correlation matrices in Sections VI-B and VI-C, respectively.

A. Simulation Settings

An arbitrary network of 11 BSs comprising of 1 macro
and 10 microcells is considered, unless otherwise speci-
fied. Uniform, cell-edge and cell-centric microcell place-
ments within the macrocell is considered, as shown in
Figs. 2(a), 2(b) and 2(c), respectively. For cell-edge and cell-
centric placements, we restrict the microcells outside the

2With Mk ≤ Lk , BS k tries to serve more terminals than the number
of transmit antennas. In practice, such systems rely on user scheduling
mechanisms to decide on the suitable operating conditions.
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Fig. 2. Varying microcell placements. (a) Uniform microcells. (b) Cell-edge microcells. (c) Cell-centric microcells.

cell-edge and inside the cell-centric exclusion areas, marked
with black circles in Figs. 2(b) and 2(c). These exclusion
zones were numerically determined using the 10-th and
90-th percentiles of the cumulative distribution function (CDF)
of the received SNR (defined later) for a macro terminal.
In particular, the cell-edge of a macrocell was identified as
877 m to 1000 m from the center and the cell-center was
identified from the origin of the macrocell to 230 m.3 The
70 m macro exclusion zones are marked with cyan circles in
Figs. 2(a), 2(b) and 2(c). The microcells are denoted with red
circles with its associated terminals denoted with red crosses.
Likewise, terminals associated to the macro BS are marked
with blue crosses. Finally, macro and micro BSs are denoted
with blue and green diamonds.

The results in subsection B include evaluation of the sim-
ulated and approximated expected SINR and ergodic sum
spectral efficiency in (25), (44), (26) and (45) for i.i.d. and
semi-correlated channels, respectively with equal correlation
matrices. In subsection C, with unequal correlation matrices,
we evaluate the expected SNR performance of (51) and
translate this to approximate the ergodic spectral efficiency
as shown in (45). We obtain all results using 105 inde-
pendent trials with the coordination strategies discussed in
Section III-D. We define SNR as the ratio of the average
received signal power to the receiver noise power.4

B. Tightness of Expected SINR and
Ergodic Spectral Efficiency

Fig. 3 shows the expected SINR (E [ρ]) CDF of a macro
terminal with cell-centric, cell-edge and uniform microcell
placements at SNR=10 dB with ϕ = 0 and M ≤ L.
The expectation is performed over the fast-fading with the
distribution representing the randomness in terminal position
and shadow-fading. We consider the case with no microcells as
a baseline. The cell-centric microcell placement results in the
best macro user SINR performance, as the terminals are dis-
tributed uniformly over the macrocell coverage area and thus
have higher probability of being further away from the micro

3The cell-edge and cell-centric exclusion zones are sensitive to the chosen
numerical parameters.

4The averaging in the received signal power is performed over the large-
scale fading parameters.

Fig. 3. CDF of E[ρ] for a macrocell terminal at SNR=10 dB with ϕ = 0
and M ≤ L .

BSs, resulting in less ICI. This is followed by uniform and cell-
edge placements, which often result in closer proximity to a
typical macro terminal, having an adverse effect on its SINR.
The SINR gains of network-wide coordination relative to cell-
wide coordination are more prominent in the lower half of the
CDF (<0.5), where the combined effects of noise with IUI
and ICI dominate.5 In contrast, at higher probabilities (>0.9),
the spread between the extreme cases of cell-centric microcells
with network-wide coordination and cell-edge microcells with
cell-wide coordination becomes narrower, due to the reduction
in IUI and ICI relative to the signal power. This in-turn
suggests that the cell-edge rates of the system (<0.1) may have
higher variability than the peak-rates of the system (>0.9) and
will benefit more from coordination. We also observe that in
all cases, the derived SINR approximations closely follow the
simulated responses over the entire probability range.

Fig. 4 shows an equivalent CDF of a typical micro terminal.
Here, we consider the case of a single microcell in the macro
coverage area as the baseline. Naturally, all three coordination
strategies are applicable to the micro terminal. As expected,

5For the typical macro terminal, cell-wide and macro-only coordination
result in equal performance due to the nature of the respective coordination
strategies. Thus, for clarity, the expected SINR distributions with macro-only
coordination are omitted.
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Fig. 4. CDF of E[ρ] for a microcell terminal at SNR=10 dB with ϕ = 0
and M ≤ L .

the opposite trend to that in Fig. 3 is seen, where the cell-edge
microcell placement results in superior performance, followed
by uniform and cell-centric placements, where ICI from the
macrocell is likely to be higher. At probability 0.5, irrespective
of the microcell placement, macro-only and cell-wide coordi-
nation strategies reduce the expected SINR by approximately
4 dB and 10 dB relative to network-wide coordination, as the
CDFs exhibit parallel behavior. As before, higher variability in
the SINRs can be seen at lower probabilities and the derived
SINR approximations are seen to remain tight against the
simulated equivalents.

Keeping all other propagation parameters the same, we now
consider the case of M > L, where we first evaluate the
expected SINR and ergodic sum spectral efficiency approxi-
mation accuracy. For the sake of clarity, we consider a typical
macrocell terminal and focus on the specific case of network-
wide BS coordination with cell-centric and cell-edge microcell
placements.6 With increasing numbers of serving antennas
at the macro BS and a fixed number of terminals in both
macro and microcells, Fig. 5 demonstrates the expected SINR
and ergodic sum spectral efficiency performance. An increase
in the expected SINR and ergodic sum spectral efficiency is
observed for both microcell placements, at the cost of increas-
ing the spatial d.o.f. (as a result of more serving antennas),
which allows for better ICI control via coordinated RZF. Both
the approximations are seen to become tighter with increasing
numbers of service antennas. This is due to the quadratic
forms in the numerator and denominator of (25) (and therefore
(26)) averaging their individual components, providing the
variance reduction required relative to their mean. To precisely
characterize the accuracy of both approximations, a relative
absolute approximation error as a percentage can be defined,
such that ErrorE[ρl,k ][%] = |(True − Approx.)/(True)| × 100.
Moreover, Fig. 5 also depicts the approximation accuracy as
a percentage. While increasing the macro service antennas
exponentially vanishes the approximation error, a very small

6Since the trends resulting from the three types of microcell placements are
identical for further results considered, to enhance legibility, the subsequent
figures only include cell-edge and cell-centric placements, respectively.

error is observed at lower numbers of service antennas. For the
expected SINR, an approximation accuracy of 5% is achieved
with M = 8, while for the ergodic sum spectral efficiency, a
5% error corresponds to M = 4 (both indicated on Fig. 5’s
lowest two subplots with green diamonds). The reduction in
the spectral efficiency approximation error is due to the log-
arithm in the spectral efficiency calculation, providing further
averaging on the expected SINR approximation.

With M > L, the improvement in the expected per-terminal
SINR as a function of SNR is demonstrated in Fig. 6 for
a typical macro terminal. Here, the averaging is performed
globally over the link gains, as well as the multi-path fading,
denoted by Eβ,h [·].

The analytical expressions remain tight throughout the
entire SNR range considered. The baseline case of no micro-
cells demonstrates a near linear increase in the expected SINR
with increasing SNR, as the serving antennas at the macro BS
exceeds the total number of terminals, nulling the IUI. The
remaining cases with cell-wide and network-wide coordination
still suffer from ICI, saturating the SINR in the high SNR
regime. Under semi-correlated Rayleigh fading, the expected
per-terminal SINR is seen to degrade with increasing levels
of spatial correlation at the BS. Fig. 7 shows the expected
SINR of a macro terminal as a function of spatial correlation,
ϕ. While varying ϕ from 0 − 0.6 has very little effect on the
expected SINR, from ϕ = 0.7 onwards, a heavy penalty in the
expected SINR is paid due to a greater reduction in the usable
spatial d.o.f. This trend is visible for all microcell placements
irrespective of the coordination strategy. The reduction in the
spatial d.o.f. can alternatively be interpreted as an increase in
the IUI, thus decreasing the per-terminal SINR. Although not
shown, the same trend in the degradation of expected per-user
SINR can be observed for a micro terminal. For all cases,
our analytical approximations remain tight even for extremely
high levels of channel correlation.

Figs. 8 and 9 demonstrate the ergodic per-cell sum spec-
tral efficiency distributions (E [Rsum]) for the macro and a
given microcell, following (26) and (45), respectively. For the
macrocell, higher variability in the peak rates is observed in
comparison to cell-edge and median rates, as the combined
effect of IUI and ICI impacts performance. Equivalently,
for the typical microcell, higher variability in the cell-edge,
median and peak rates demonstrates its sensitivity to the
aggregate interference and its location within the macrocell.
This suggests that the cell-edge, median and peak-rates will
benefit from BS coordination.

C. Impact of Unequal Correlation Matrices

We now consider a network of 4 BSs composing of 1 macro
and 3 overlaid microcells. Keeping the same constraints in
the microcell placements as in subsection B, we evaluate the
performance of the system with network-wide coordination
where each terminal is assigned an unequal correlation matrix
capturing the effects of inter-element spacing at the BS and
terminal locations in the cell. Following the model described
in Section V, for each subsequent result, we consider |ϕ| = 0.9
with uniformly distributed phase on [0, 2π]. As ZF precoding
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Fig. 5. E [ρ], E [Rsum] and approximation accuracy for a typical macrocell terminal vs. the number of macro BS antennas. Note that M > L and SNR=10
dB with ϕ = 0.

Fig. 6. Eβ,h[ρ] vs. SNR of a macro terminal with M > L and ϕ = 0.

is employed, we consider 16 and 10 antennas at macro and
micro BSs serving 3 macro and 2 microcell terminals.

Figs. 10 and 11 show the expected per-terminal SNR for
the typical macro and microcell terminals. Due to zero inter-
ference, and the relatively large number of serving antennas in
comparison to the number of terminals, a significant increase
in the macro and micro terminal SINRs can be observed.
In such scenarios, where interference is not the performance
limiting factor, the need for coordination is less convincing
than in previous cases. For both the macro and micro ter-

Fig. 7. Eβ,h [ρ] vs. ϕ for a macro terminal at SNR=10 dB with M > L .

minals, varying the microcell placements has a very minor
impact on their SINRs. The two-term NS approximations to
the expected ZF per-terminal SNR is seen to remain tight
for all coordination mechanisms in both Figs. 10 and 11,
respectively. A comparison to the RZF expected per-terminal
SINR is made in the baseline cases of no micros and one
micro in Figs. 10 and 11, where ZF expected SNR is shown to
closely match the RZF performance. Also, the expected SNR
performance with unequal correlation matrices is superior
in Figs. 10 and 11 than the case where each terminal has
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Fig. 8. Macrocell E [Rsum] at SNR=10 dB with M > L and ϕ = 0.

Fig. 9. Microcell E [Rsum] at SNR=10 dB with M > L and ϕ = 0.

Fig. 10. CDF of E [ρ] for a macro terminal with unequal correlation matrices
at SNR=10 dB.

an equal correlation matrix, due to the denominator of (51)
increasing, as predicted earlier in Remark 5. This gap is
seen to translate into the ergodic spectral efficiency for the
macrocell and remains approximately constant across the SNR
range considered. This is shown in Fig. 12, where the derived
approximations retain their tightness and are thus insensitive
to changes in SNRs.

Fig. 11. CDF of E [ρ] for a micro terminal with unequal correlation matrices
at SNR=10 dB.

Fig. 12. Macrocell E [Rsum] vs. SNR with unequal correlation matrices.

Fig. 13. Large system approx. comparison of E [ρ] vs. L with M = 32 and
L = 3, . . . , 18.

Finally, it is interesting to note that the remarkably simple,
novel expression provided in (51) has a similar accuracy to
that provided by limiting fixed point algorithms. For example,
[22] provides an asymptotic single-cell solution which is
implemented in Fig. 13 for the case of M = 32 antennas,
serving L ∈ {3, . . . , 18} terminals in a macrocell where the
correlation matrices are computed from [24] with |ϕ| = 0.9
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and a uniformly distributed phase between [0, 2π]. As can be
seen, our approach offers a small accuracy improvement and
is an alternative approach if a single expression is preferred
to a fixed point solution.

VII. CONCLUSION

A general analytical framework for characterizing the
expected SINR and ergodic sum spectral efficiency of a multi-
cellular system was presented. An application to two-tier
small-cell networks was considered with varying degrees of
coordinated RZF processing. Assuming both i.i.d. and semi-
correlated Rayleigh fading, with equal correlation matrices, the
analytical expressions were averaged over eigenvalue densities
of the respective complex Wishart matrices. In the high SNR
regime, with ZF precoding, closed-form expressions were
derived to approximate the RZF expected SINR and ergodic
spectral efficiency with unequal correlation matrices. Numeri-
cal results demonstrated the tightness of analytical expressions
over a wide range of SNRs, spatial correlation levels and
system dimensions. It was observed that the gains in the
expected per-terminal SINR and ergodic spectral efficiencies
were influenced by microcell locations and varying degrees
of BS coordination, as they directly impacted the systems’
ability to suppress ICI. Under semi-correlated fading, the
expected SINR decreased with increasing levels of spatial
correlation due to a loss in the usable spatial degrees of
freedom. Expected SINR and ergodic spectral efficiencies
with unequal correlation matrices were observed to be greater
than the case with equal correlation matrices as demonstrated
analytically.

APPENDIX A
PROOF OF THEOREM 1

We begin with the fact that

Sμk = Eλ

[
m∑

i=1

λ
μ
i

(λi + ξk)
2

]

= m
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0

λμ

(λ+ ξk)
2 f0 (λ) dλ

}
,

(52)

where Eλ [·] denotes the expectation over the eigenvalues
and f0 (λ) is the density of an arbitrary eigenvalue, λ, from
{λ1, . . . , λm}. To evaluate (52) for an uncorrelated central
Wishart matrix, we substitute (2) into (52), resulting in
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After some algebraic manipulation, we can write (53) as

Sμk =
m∑
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The integral in (54) has the form of Ja,b,c (ξk) defined
in (15), where a = μ + n − m + z − l, b = 2 and c = 1.
Following the solution provided in (17) yields the desired
expression in (31).

APPENDIX B
PROOF OF THEOREM 2

Substituting the arbitrary density defined in (7) into (52)
results in

S̄μ̄k = m
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Upon some simplification, we arrive at

S̄μ̄k = 1
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i< j
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θ j − θi

)
∑n

l=1

∑n

k=n−m+1

θn−m−1
l Dl,k

� (m − n + k)

×
⎧
⎨

⎩

∞∫

0

λ
m+k−n−1+μ̄
sc e−λsc/θl

(λsc + ξk)
2 dλsc

⎫
⎬

⎭
, (56)

where Dl,k and � (m − n + k) are as defined in (7). The
integral in (56) is of the form of Ja,b,c (ξ) in (15), where
a = m + k − n − 1 + μ̄, b = 2 and c = θl , where θl is the
l-th eigenvalue of Rk . Substituting the result of (17) into the
required integral yields the desired expression in (32).
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(57)

where Eλ [·] denotes expectation over the eigenvalues and
λa , λb denote an arbitrary pair of eigenvalues. Via the result
derived in Theorem 1, we can evaluate the first term in (57).
By denoting the joint density of (λa, λb) as f0 (λa, λb), we can
write (57) as (58), shown on top of the next page. Using
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f0 (λa, λb) in (4) allows us to write (58) as
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After some simplifications, we can express (59) as
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where � is as defined in (5). The integrals in (60) can be
split into two parts, as shown in (61) on top of the next page.
As the double integrals in (61) are of the same function with
different variables, we can write (61) by squaring the result of
a single integral, such that
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Recognizing that the integrals in (62) have the same
form as Jn−m+1+ f +z,1,1 (ξk) and substituting the solution
of (15) in (62) yields the desired expression in (33).

APPENDIX D
PROOF OF LEMMA 2

We begin by substituting the result in Corollary 1 into (58)
where Qk and Sk are replaced by their correlated central
counterparts in Q̄k and S̄k giving
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where χ̂ , p (i, j), p (l) and � are as defined in (8) and (10).
After some mathematical simplifications, we are able to
write (63) as
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The integrals in (64) are of the same form, with varying powers
of i and j for λa and λb. Their general solution is presented
in (15). Upon substituting the solution of the integrals in (64)
yields the expression in Lemma 2.

APPENDIX E
CALCULATION OF fi IN (42)
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v1, . . . , vM j

]
, we recognize that

fi = E

[
vi

(
V jθ j V H

j + ξ j I L j

)−2
vi

]

= − ∂

∂ξ j
E

[
vH

i

(
V jθ j V H

j + ξ j I L j

)−1
vi

]
, (65)
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Qk = S2
k +

m∑

i=1

m∑

j=1

j �=i

�

⎧
⎨

⎩

∞∫

0

∞∫

0

(
e−λaλn−m+1

a

λa + ξk

)(
e−λaλn−m+1

a

λa + ξk

) (
κ
(n−m)
i−1 (λa)

2 κ
(n−m)
j−1 (λb)

2
)

dλbdλa

−
∞∫

0

∞∫

0

(
e−λaλn−m+1

a

λa + ξk

)(
e−λbλn−m+1

b

λb + ξk

)
(
κ
(n−m)
i−1 (λa) κ

(n−m)
j−1 (λa) κ

(n−m)
i−1 (λb) κ

(n−m)
j−1 (λb)

)
dλbdλa

⎫
⎬

⎭
. (61)

E

[
trX :Z

[(
Hk HH

k

)−1
]]

≈ 1

Mk

[

3Lk − 3

Mk
(Lk Mk)+ 1

(Mk)
2

[

Lk (Mk )
2 + Lk

K∑

k=1

Lk trX :Z
[
R̄ R̄k

]
]]

= 1

(Mk)
3

[

Lk (Mk)
2 + Lk

K∑

k=1

Lk trX :Z
[
R̄ R̄k

]
]

. (70)

using a known result from matrix differentiation.
Invoking the rank-1 adjustment formula [39],
we obtain fi = − ∂

∂ξ j
E

[
X i

1+X iθi

]
, where X i =

vH
i

( (
V j
)
.;i (θ)i;i

( (
V j
)
.;i
)H)−1

vi . Now, X i is exactly
the SINR of a minimum-mean-square-error (MMSE)
combiner studied in [40]. Denoting F̄Xi (xi ) as the

complimentary CDF of X i , fi = − ∂
∂ξ j

∞∫

0

F̄Xi (xi )

1+θi xi
dxi .

Since F̄Xi (xi ) is given in [40], fi can be found
by routine integration followed by differentiation
w.r.t. ξ j . Denoting (θ)i;i = diag

[
θ
(i)
1 , . . . , θ

(i)
M j −1

]
,

we obtain

fi = τ̃m1ξ
m1−1
j

(m1 − 1)! Ii,m1+1
(
ξ j
)−

L j∑

l=m1+1

τ̃l

(l − 1)!det (�0)

×
(
(l − 1) ξ l−2

j det (�1)+ ξ l−1
j det (�2)

)
, (66)

where m1 = L j − M j , τ̃l =
{

1 if l ≥ 1

0 otherwise
and Ii,m1+1

(
ξ j
) =

eξ j/θi
m1−1∑

s=0

(m1−1
s

) (−1)m1−1−s

θ i+1−s
i ξ s−1

j
J (2)

(
ξ j
θi

)
, respectively. J (2)

(
ξ j
θi

)

is as defined in (17). Moreover, when r �= M j − L j + l − 2,

(�0)r,s =
(
θ
(i)
s

)r−1
and (�1)r,s = (�2)r,s = (�0)r,s , whilst

when r = M j − L j + l − 2,

(�1)r,s =
(
θ(i)s

)r
∞∫

0

xm1−1
i e−ξ j xi

(1 + θi xi )
2 (1 + θ

(i)
s xi)

dxi and

(�2)r,s = −
(
θ(i)s

)r
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0

xm1
i e−ξ j xi

(1 + θi xi )
2 (1 + θ

(i)
s xi )

dxi , (67)

with both the integrals having closed-form solutions via partial
fraction decomposition.

APPENDIX F
PROOF OF THEOREM 4

From (48), when N = 2, we have

(
Hk HH

k

)−1

= 1

Mk

[

I∑K
i=1 Li

− Hk HH
k

Mk
+ I∑K

i=1 Li
+ 1

(Mk )
2

×
((

Hk HH
k

)2 − 2Mk Hk HH
k + M2

k I∑K
i=1 Li

)]

= 1

Mk

[
3I∑K

i=1 Li
− 3

Mk
Hk HH

k + 1

(Mk )
2

(
Hk HH

k

)2
]
. (68)

Taking the partial trace of (68) yields

trX :Z
[(

Hk HH
k

)−1
]

≈ 1

Mk

[
3Lk − 3

Mk
trX :Z

[
Hk HH

k

]

+ 1

(Mk )
2 trX :Z

[(
Hk HH

k

)2
]]
.

(69)

After some simplifications, the expected value of (69) can be
written as (70), as shown at the top of this page for space

reasons. Note that in (70), R̄ �
∑K

j=1
∑L j

l=1 Rk,l, j
∑K

j=1 L j
is the average

correlation matrix of all terminals and R̄k �
∑Lk

l=1 Rk,l,k
Lk

is the
average correlation matrix for terminals in cell k. Substituting
(70) into (47) yields the desired expression in (51).
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