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Abstract—Analytical expressions to approximate the expected
per-user signal-to-interference-plus-noise-ratio (SINR) and er-
godic sum-rate of a multiuser multiple-input-multiple-output
system are presented. Our analysis assumes uncorrelated Ricean
fading channels with regularized zero-forcing precoding on the
downlink. The derived expressions are averaged with respect
to the previously unknown arbitrary eigenvalue densities of
the complex non-central Wishart distributed channel correlation
matrix. To aid the derivation of the expected SINR, we derive
analytical expressions for the joint density of two arbitrary
eigenvalues of the complex non-central Wishart matrix. Unlike
previous studies, our model caters to the presence of a unique
Rice factor for each user terminal, making it suitable for analysis
of modern systems, such as small cells and millimeter-wave. Our
findings suggest that while the presence of strong line-of-sight
has an adverse effect on the expected SINR and ergodic sum-
rates, increasing the variability of Rice factors enhances the peak
rate performance of the system. Our analysis can be applied to
arbitrary system dimensions and is seen to remain tight across
the signal-to-noise-ratio range considered.

I. INTRODUCTION

Multiuser multiple-input-multiple-output (MU-MIMO) sys-
tems have received considerable attention in recent times due
to their multiplexing gains and their ability to jointly serve
a multiplicity of user terminals over the same time-frequency
interval [1]. On the downlink, this has led to enhancements
in the spectral efficiency and bit error rate [2]. Due to the
broadcast nature of the downlink channel, MU-MIMO sys-
tems typically suffer from inter-user interference, leading to
lower per-user signal-to-interference-plus-noise-ratio (SINR)
and spectral efficiency. This has greatly motivated the use
of channel aware pre-processing techniques, such as spatial
precoding at the base station (BS). With channel knowledge at
the BS, high complexity, non-linear precoding techniques such
as dirty-paper coding (DPC) are known to achieve capacity [3].
In comparison, sub-optimal, linear pre-processing techniques
have been identified as more practical due to their lower
complexity [4].

More recently, with the focus on large antenna arrays at the
BS, for measured non-line-of-sight (NLoS) channels, linear
pre-processing techniques such as zero-forcing precoding have
achieved 98% of DPC capacity [5]. However, to overcome

noise inflation in the low signal-to-noise-ratio (SNR) regime,
regularized zero-forcing (RZF) precoding was proposed in
[4]. Several works have theoretically characterized the SINR
and spectral efficiency gains of downlink MU-MIMO systems
with RZF pre-processing (see [4, 6] and references therein).
However, most works tend to adopt the simple Rayleigh fading
model, appropriate for modeling rich scattering environments.
Rayleigh fading fails to capture the presence of line-of-sight
(LoS), which may be a dominant feature of future wireless
systems operating with large antenna arrays in small cells,
using the candidate millimeter-wave (mmWave) spectrum [7].
Thus, understanding the performance of MU-MIMO systems
operating with LoS conditions is of growing importance.
Limited numbers of works have considered the use of Ricean
fading channels in the MU-MIMO context [8–10], where the
focus has largely been on analyzing sum-rate and energy
efficiency performance of the system, rather than performance
on a per-user basis. Moreover, for simplicity, [8–10] evaluate
the system performance with a fixed Rice factor for each
terminal, despite their different geographical locations.

Unlike [8–10], in this paper, we consider a Ricean fading
channel model, where we examine the effects of LoS prop-
agation on the expected per-user SINR and ergodic sum-rate
of a downlink MU-MIMO system with RZF precoding. We
consider both microwave and mmWave channel parameters,
where we develop a general analysis methodology scalable
to any system dimension and SNR levels. To the best of
authors’ knowledge, such general treatment of the expected
per-terminal and ergodic sum-rate analysis has not been carried
out previously. Moreover, we analyze the per-user and system
performance with a unique Rice factor for each terminal. More
specifically, our main contributions can be summarized as
follows:
• We derive tight analytical expressions to approximate

the expected per-user SINR and ergodic sum-rate of the
system with Ricean fading channels. Expected signal
and interference powers are derived by averaging over
the appropriate eigenvalue densities of the complex non-
central Wishart channel correlation matrix. To the best of



the authors’ knowledge, such an analysis has not been
carried out previously.

• To aid the derivation of the expected per-user SINR, we
derive analytical expressions for the joint density of a
pair of arbitrary eigenvalues of the non-central Wishart
distribution. This too has not been studied previously,
with prior works targeting approximations to mimic the
non-central Wishart structure (see [8, 9]).

• Our analysis is robust to changes in system dimension
and considers the important case where each user in the
system has a unique Rice factor. Our findings suggest
that increasing the mean of the Rice factor in both the
microwave and mmWave frequency bands has an adverse
effect on the expected per-user SINR and ergodic sum-
rate. Moreover, with a fixed mean, we demonstrate the
impact of increased Rice factor variability, where we
show that the onset of low Rice factors results in a larger
occurrence of higher rates.

Notation: Boldface lower and upper case symbols represent
vectors and matrices, respectively. IM is the M ×M identity
matrix and diag (H) denotes diagonal entries of H . The trans-
pose, Hermitian transpose and inverse operators are denoted
by (·)T, (·)H and (·)−1, respectively. We use h ∼ CN

(
µ, σ2

)
to denote a complex Gaussian distribution for h, where each
element of h has mean µ and variance σ2. || · ||F and | · |
denote the Frobenius and scalar norms, while ∀ reads as
“for all”. E [·], per (·) and b·c represent statistical expectation,
permutation and floor operators, respectively.

II. SYSTEM MODEL

We consider the downlink of a single cell, MU-MIMO
system in an urban microcell (UMi) environment. The BS is
equipped with M transmit antennas configured in a uniform
linear array (ULA) to serve L non-cooperative single antenna
user terminals (M ≥ L) in the same time-frequency interval.

A. Channel Model

We assume an uncorrelated Ricean fading channel where
the 1×M small-scale fading channel between the BS and the
l-th user terminal can be expressed as

hl =

√
Kl

Kl + 1
h̄l +

√
1

Kl + 1
hw,l. (1)

The specular (LoS) and diffuse (scattered) components of the
channel are denoted by h̄l and hw,l, respectively. Kl is the
unique Rice (K) factor for the l-th user terminal, denoting the
ratio between the power of the specular and diffuse compo-
nents [11]. hw,l ∼ CN (0, 1), while the specular component of
the channel is governed by the response of its transmit array
steering vector, h̄l = [1, ej2πd cos (θl), . . . , ej2πd(M−1) cos (θl)]
[12]. Here, d is the equidistant antenna spacing normalized
by the carrier wavelength and θl is the angle-of-departure
(AoD) of the specular component, for the l-th user terminal.
As we consider uncorrelated downlink transmission, we set the
inter-element spacing to a half-wavelength and assume that θl
is uniformly distributed within the interval [0, 2π]. From the

definition of the per-user channel in (1), a composite L×M
small-scale fading channel matrix H̃ ,

[
hT

1,h
T
2, . . . ,h

T
L

]T
.

This can also be written as

H̃ =
√

Φ
(√

K̄H̄ + Hw

)
=
√

ΦH, (2)

where K̄ , (1/L)
∑L
l=1Kl, Φ , diag

(
1

K1+1 , . . . ,
1

KL+1

)
,

the composite specular channel matrix H̄ ,[√
K1

K̄
h̄T

1, . . . ,
√

KL
K̄

h̄T
l

]T
and Hw is the composite diffuse

channel matrix, respectively. We model the distribution of
user terminals in the cell as uniform with respect to (w.r.t.) the
cell area. The received power at the l-th terminal is denoted
by β̃l = ρAζl (r0/rl)

α and is composed of the total transmit
power, ρ, with large-scale fading effects. In particular, A
is the unit-less constant for the geometric attenuation at a
reference distance r0, rl is the link distance between the
BS and the l-th terminal, α is the attenuation exponent and
ζl represents the effects of shadow fading which follows a
log-normal distribution, i.e., 10 log10 ζl ∼ N

(
0, σ2

sh

)
. Since

Φ simply scales the user channels, the overall channel can
be viewed as a small-scale fading channel matrix, H , with
equivalent received powers, βl = Φl,lβ̃l = β̃l (Kl + 1)

−1.
This overall channel is used throughout the paper, which
allows us to leverage previous analytical results on Ricean
channels of the form in (2). For the remainder of the paper,
we refer to SNR as the ratio of the long term received signal
power to the noise power at the receiver.

Conditioned on the cell size and the relative proximity
of the user terminals to the BS, we employ a probability
based approach following [13, 14] to statistically determine
if a given terminal experiences LoS or NLoS propagation
conditions. The LoS and NLoS probabilities are a function
of the link distance, from which the LoS and NLoS geometric
attenuation and other link characteristics are obtained. We
consider transmission in both the microwave and mmWave
frequency bands for which we employ propagation parameters
from [13] for the former and [14] for the latter. We delay the
discussion of the above mentioned parameters to Section IV.

B. Per-User SINR and Ergodic Sum-Rate

We assume narrow-band transmission with equal power al-
location to each user terminal. With perfect channel knowledge
at the BS, the received signal at the l-th user terminal can be
written as

yl =

√
βl
η
hlwlsl +

√
βl
η

L∑
i=1
i 6=l

hlwisi + zl, (3)

where wl is the un-normalized precoding vector from the BS
to terminal l, sl is the data symbol desired for terminal l,
such that E

[
|sk|2

]
= 1. η is the precoder normalization to

ensure that the overall transmit power remains unchanged.
zl ∼ CN

(
0, σ2

l

)
models the effects of additive white Gaussian

noise at l-th terminal. In this paper, we consider RZF precod-
ing to design the downlink precoding vectors, where wl is the
l-th column of the M × L precoding matrix, W , defined as

W ,
(
HHH + ξIM

)−1
HH. (4)



Here ξ = L/SNR ≥ 0 denotes the regularization parameter
chosen from [4] to maximize SINR at the terminal. Fol-
lowing [15], the RZF precoding matrix is normalized with
η = ||W ||2F/L, ensuring the total transmit power remains ρ.
The received signal in (3) can be translated into a received
SINR and expressed as

SINRl =

βl
η |hlwl|2

σ2
l + βl

η

L∑
i=1
i6=l

|hlwi|2
. (5)

To this end, the instantaneous achievable downlink rate of the
l-th user can be computed as Rl = log2 (1 + SINRl). As such,
the ergodic sum-rate (measurable in bits/seconds/Hz) is

E [Rsum] = E

[
L∑
l=1

log2 (1 + SINRl)

]
, (6)

where the expectation is taken over the small-scale fading
in H . For the remainder of the paper, we denote m =
min (M,L) and n = max (M,L), assuming M ≥ L, as
mentioned earlier. In the following section, we derive tight
analytical expressions to approximate the expected per-user
SINR and ergodic sum-rate of the system.

III. EXPECTED SINR AND ERGODIC SUM-RATE
APPROXIMATIONS

The expected per-user SINR at the l-th user terminal can
be approximated as [16]

E [SINRl] ≈
βl
η̃ E
[
|hlwl|2

]
σ2
l + βl

η̃

L∑
i=1
i6=l

E [|hlwi|2]

, (7)

where η̃ = E [η]. In the following, we derive the expectations
in (7) for the respective signal and interference powers.

A. Expected Signal Power
Via an eigenvalue decomposition, we denote HHH =

QΛQH. Then, from [4], the expected value of the desired
signal power in (7) can be written as

δl = E
[
|hlwl|2

]
= E

( m∑
i=1

λi
λi + ξ

|ql,i|2
)2
 . (8)

Here, λi is the i-th eigenvalue corresponding to the i-th diago-
nal entry in Λ and ql,i denotes the entry of Q corresponding to
row l and column i, respectively. Further taking the expectation
over the entries of Q yields [4]

δl=
1

m (m+ 1)

E

( m∑
i=1

λi
λi + ξ

)2
+E

[
m∑
i=1

(
λi

λi + ξ

)2
] .

(9)
Note that (9) relies on an isotropic distribution for Q, which
does not hold for a fixed specular component. However, if
averaged over the random AoD values in the transmit array
steering response, Q retains its isotropic properties leading to
(9). The expectations in (9) can be evaluated further over the
eigenvalue densities of HHH and are presented in Theorems
1 and 3, respectively.

Theorem 1: Let φ1, . . . , φm be the m eigenvalues of
K̄H̄HH̄ , then the expected value of

∑m
i=1

(λi)
c

(λi+ξ)
2 w.r.t. the

eigenvalues of HHH , an uncorrelated non-central Wishart
matrix, is given by

G
(c)
l =m

[
Θ

m∑
j=1

m∑
i=1
i 6=j

∞∑
p=0

(
K̄ + 1

)n−m+j ((
K̄ + 1

)
φi
)pD (i, j)

p!(n−m+ 1)p

µ̄∑
γ=0

(
µ̄

γ

)
(−ξ)µ̄−γ eξ(K̄+1)

∞∫
ξ

xγ−2e−x(K̄+1)dx

]
. (10)

Here, µ̄ = c− 1 + n−m+ j,

Θ =
e−

∑
i φi

m ((n−m)!)
m

m∏
k<q

(φq − φk)
(11)

and D (i, j) is the (i, j)-co-factor of the m × m ma-
trix A, whose (q, k)-th entry is given by (A)q,k =
(n−m+ k − 1)! 1F1 (n−m+ k, n−m+ 1, φq), with 1F1

being a Kummer confluent hypergeometric function. More-
over, (n−m+ 1)p = (n−m+ p)!/ (n−m)! and

∞∫
ξ

xγ−2e−x(K̄+1)dx=Ψ×


−Ei(1, ξ̃) + e−ξ̃

ξ̃2
; γ = 0

Ei(1, ξ̃) ; γ = 1

Γ(γ − 1, ξ̃) ; γ ≥ 2,

(12)

where Ψ = 1

(K̄+1)
γ−1 , ξ̃ = ξ

(
K̄ + 1

)
, Ei (·, ·) is the

generalized exponential integral and Γ (·, ·) is the incomplete
gamma function, respectively.

Proof: See Appendix A.
Theorem 2: With φ1, . . . , φm as the m eigenvalues of

K̄H̄HH̄ , the joint density of any two arbitrary eigenvalues,
(λ1, λ2), of HHH is given by

f (λ1, λ2)=C

m−1∑
i=0

m−1∑
j=0
j 6=i

m∑
r=1

m∑
s=1
s6=r

(−1)
u

Ξ̃ (r, s; i, j) gr,i (λ1) gs,j(λ2) ,

(13)
where u = i+ j + r + s− p (i, j)− t (r, s) with

p(i, j) =

{
0 ; j ≤ i
1 ; j > i

and t(r, s) =

{
0 ; s ≤ r
1 ; s > r.

(14)

C = Θ [(ς − 1)!]
m

(−1)
bm2 c (n− 2)!, (15)

where Θ is as defined in (11). ς = n−m+ 1,

Ξ̃ (r, s; i, j) = (φrφs)
−v/2

Ξ (r, s; i, j) (16)

and ga,b (λ) = λv/2+be−λIv
(
2
√
φaλ

)
, where v = n − m.

Ξ (r, s; i, j) is a determinant with rows r, s and columns i, j
removed, where the d-th entry of the f -th column is given by
Γ(ς+%f )

Γ(ς) 1F1 (ς + %f , ς, φd). %f = f − 1, Γ (·) is the gamma
function and Iv (·) is the modified Bessel function of the first
kind.

Proof: See Appendix B.
Remark 1: Theorem 2 is used in computing the expected



per-user SINR and has general applicability for analysis in-
volving complex non-central Wishart matrices. Prior works
(see [8, 9]) often approximate the non-centrality of the Wishart
matrix by its central counterpart via an adjustment of its
covariance matrix. In contrast with this, we analyze the non-
central Wishart structure in its exact form for further analysis
in Theorem 3.

Theorem 3: With φ1, . . . , φm as the m eigenvalues of

K̄H̄HH̄ , the expected value of
(∑m

i=1
λi
λi+ξ

)2

w.r.t. the
eigenvalues of HHH is given by

Dl= G
(2)
l +Eλ

 m∑
a=1

m∑
b=1
b 6=a

(
λa

λa + ξ

)(
λb

λb + ξ

)
= G

(2)
l +m (m− 1)C

m−1∑
i=0

m−1∑
j=0
j 6=i

m∑
r=1

m∑
s=1
s6=r

(−1)
u

∆, (17)

where C and u are as defined in (15) and (13), respectively.
∆ = Ξ̃ (r, s; i, j) Jr,iJs,j , where Ξ̃ (r, s; i, j) is as defined in
(16) and

Ja,b=

∞∑
ε=0

[
φ
ε+n−m

2
a

ε! (ε+ n−m)!

]
µ̂∑
γ=0

(
µ̂

γ

)
(−ξ)µ̂−γeξ

∞∫
ξ

xγ−1e−xdx,

(18)
where µ̂ = ε+ n−m+ b+ 1 ≥ 2 and the integral in (18) is
a special case of the integral in (12).

Proof: See Appendix C.
Using the derived results in (10) and (17), the expected

signal power at the l-th user terminal in (9) can be written as

δl =
Dl +G

(2)
l

m (m+ 1)
. (19)

The expected value of the precoder normalization parameter
can also be found from the derived results such that

η̃ =
1

m
E
[
||W ||2F

]
=

1

m
Eλ

[
m∑
i=1

λi

(λi + ξ)
2

]
=
G

(1)
l

m
. (20)

B. Expected Interference Power

The total expected received power (desired and interfering
powers) at the l-th terminal can be written as [4]

ϕl=
E
[
||HW ||2F

]
m

=
1

m

[
Eλ

{
m∑
i=1

(
λi

λi + ξ

)2
}]

=
G

(2)
l

m
.

(21)
Following [4], we define the expected interference power at
user l, ιl, as the difference between the total expected received
power and the expected signal power. Thus,

ιl = ϕl − δl =
G

(2)
l

m
−
Dl +G

(2)
l

m (m+ 1)
. (22)

Using (19), (20) and (22), the expected SINR for the l-th
terminal can now be written as a function of δl and η̃ and
ιl as

E [SINRl] ≈
βl
η̃ δl

σ2
l + βl

η̃ (m− 1) ιl
. (23)

Remark 2: The generality of the results derived in Theorems
1 and 3 is worth mentioning. The theorems are applicable for
any system dimension and hold for arbitrary rank LoS and
NLoS channels [17]. The derived results can also be applied to
other systems, such as small cell networks, where a hierarchy
of BSs may be present. In such cases, the additional presence
of inter-cellular interference can be characterized in exactly
the same manner as above [18].

Using Jensen’s inequality, the approximated per-user SINR
in (23) can be translated into an upper bound on the ergodic
sum-rate, written as [3]

E [Rsum] ≤
L∑
l=1

log2 (1 + E [SINRl]) , (24)

where the expectation is again taken over the fast-fading in
H . The accuracy of the derived analytical expressions is
demonstrated in the following section.

IV. NUMERICAL RESULTS

In this section, we present numerical results for a UMi
scenario with the parameters specified in Table I. Unless oth-
erwise specified, parameters for the microwave and mmWave
cases were selected from [13] and [14], respectively. Based

Parameter Value

Microwave mmWave

Carrier frequency [GHz] 2 28
Transmit power [ρ] [dBm] 30 30

Bandwidth [MHz] 20 100
Noise variance [dBm] −120 −113

LoS attenuation exponent [α] 2.2 2
NLoS attenuation exponent 3.67 2.92

LoS unit-less attenuation constant [A] [dB] 28 61.4
NLoS unit-less attenuation constant 22.7 72

LoS shadow fading standard deviation [σsh] 3 5.8
NLoS shadow fading standard deviation 4 8.7

K-Factor mean [dB] 9 12 [19]
K-Factor standard deviation [dB] 5 3 [19]

TABLE I
SYSTEM PARAMETERS

on the link distance, rl, we employ a probabilistic approach to
determine whether the user terminal experiences LoS or NLoS
conditions. For the microwave case, the probability of the l-th
user terminal experiencing LoS is governed by [13]

PLoS (rl) =
(

min (18/rl, 1)
(
1− e−rl/36

))
+ e−rl/36. (25)

Naturally, the probability of the user experiencing NLoS is
then determined by PNLoS = 1 − PLoS. Equivalently, for the
mmWave case [14],

PLoS (rl) = (1− Pout (rl)) e
−ωLoS rl , (26)

where 1/ωLoS = 67.1 meters and Pout is the outage probability,
occurring when the attenuation in either the LoS or NLoS
states is sufficiently large. For simplicity, in this study we
set Pout = 0 in determining the LoS and NLoS probabilities.
Note that (26) is also applicable for performance evaluation
at frequencies higher than 28 GHz, such as 73 GHz as shown



in [14]. Upon determining the link state of each terminal, we
select the corresponding link parameters to model the large-
scale propagation effects of geometric attenuation and shadow
fading, as specified in Table I. Following [13] and [19],
we assign a unique K-factor, Kl, for the l-th user terminal
from a log-normal distribution with the mean and standard
deviation specified in Table I. We refer to this as K ∼
ln (mean, standard deviation). It is worth observing that the
mean of K increases, while its standard deviation decreases,
as we transition from microwave to mmWave frequency bands.

First, the accuracy of the proposed expected per-user SINR
in (23) is examined. Fig. 1 illustrates the expected SINR for a
given terminal as a function of SNR for a system with M = 10
and L = 3. In addition to the microwave and mmWave cases,
we consider uncorrelated Rayleigh fading as a baseline case
for comparison purposes. Also for comparison purposes, we
consider the case where each user terminal is assigned a fixed
K-factor of 5 dB. Two trends can be observed: First is the fact
that increasing the mean of K has an adverse effect on the
expected SINR. This is due to the fact that an increase in the
mean K implies a stronger specular component in the channel,
which reduces multi-path diversity and in turn reduces the
channel rank. Equivalently, this effect can be interpreted by
an increase in the level of correlation in the channel, leading
to lower usable spatial degrees of freedom. This leads to higher
inter-user interference and in-turn a lower SINR is observed at
the user terminal. Secondly, our proposed approximations are
seen to remain sufficiently accurate for the entire SNR range
for all cases. It is worth mentioning that in most statistical
channel models, the overall geometric attenuation (combined
effect of distance based attenuation with shadow fading) for
a given terminal is unrelated to its K-factor. In practice, LoS
links are known to leverage lower attenuation and less fading.
In such cases, the resulting gains in the link budget may
compensate for the loss of multi-path diversity. Moreover, the
results presented here are for commonly considered scenarios,
where the composite specular channel matrix may have a
unit rank. It has been shown in [20] that for certain array
geometries giving a full rank specular matrix, Ricean fading
behaves like Rayleigh fading. Thus, it is likely that results for
higher rank specular channels will be scenario dependent.

We now study the impact of increasing M on the expected
per-user SINR with a fixed number of terminals in the system.
Fig. 2 depicts the expected per-user SINR as a function
of M with L = 5 at SNR = 10 dB. We observe that
increasing M naturally increases the expected per-user SINR.
However, the expected SINRs can be seen to slowly saturate
with growing M . This is a result of channels to multiple
terminals becoming asymptotically pairwise orthogonal, such
that the inner product of any two channel vectors tends to zero.
This has been famously coined as convergence to favorable
propagation conditions in the large MIMO literature [21].
However, as we consider uncorrelated downlink transmission,
the size of the ULA grows with the number of transmit antenna
elements. Taking this into account, we only consider up to
M = 30 transmit antennas with an inter-element spacing of a
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Fig. 1. Expected per-user SINR vs. SNR with M = 10 and L = 3.
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Fig. 2. Expected per-user SINR vs. M with L = 5 at SNR = 10 dB.
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Fig. 3. Ergodic sum-rate CDFs with M = 10, L = 3 at SNR = 10 dB.

half wavelength. It can also be observed that an increase in the
mean of K results in a slower growth in the expected per-user
SINR. For all cases, the derived approximations remain tight
and are robust to changes in system size. This is consistent
with Remark 2.

We now examine the influence of LoS on the ergodic sum-
rate. Specifically, in Fig. 3 with M = 10 and L = 3 at
SNR = 10 dB, we compare the cumulative distribution func-
tions (CDFs) of the derived ergodic sum-rate approximation
in (24) with its simulated counterpart. The ergodic sum-rate is
obtained by averaging over fast-fading with the CDFs repre-
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Fig. 4. Ergodic sum-rate comparison at CDF values of 0.1, 0.5 and 0.9 with
M = 10, L = 3 at SNR = 10 dB.

senting the variations in the link gains and the K factors. We
observe that although the approximations remain extremely
tight, the sum-rates achieved from (24) are marginally higher
than the simulated responses, due to the upper bound using
Jensen’s inequality. We again observe that a stronger specular
component has an adverse effect on the ergodic sum-rate,
which is seen to degrade with increasing K.

As a further matter, we investigate the impact of variability
in K factors, for a constant mean. Fig. 4 depicts the ergodic
sum-rate at the CDF values of 0.1, 0.5 and 0.9, respectively.
We observe that increasing the variability of K at the CDF
values of 0.1 and 0.5 leads to a degradation in the ergodic sum-
rates. In contrast, at the upper end of the CDF (the peak rate
scenario of CDF= 0.9), increasing the variability improves the
ergodic sum-rate. This behavior is related to the log-normal
nature of the K factor distribution. Increasing the variance
amplifies the range of K from zero to very large values. Hence,
at the lower end of the sum-rate CDF, the increased occurrence
of large K values tends to reduce performance. However, at the
upper end of the CDF, where the sum-rate is already high, the
increased variability helps as more K values close to zero are
generated. Essentially, the increased variability in K increases
the variability in the sum-rate and correspondingly the cell
edge rates are lowered, while the peak rates are enhanced.

V. CONCLUSION

The paper presents a tight approximations of expected per-
user SINR and achievable ergodic sum-rate of a MU-MIMO
system with RZF precoding under Ricean fading channels. The
analysis is robust to changes in system size, SNR levels and
can be applied to LoS and NLoS channels. Arbitrary eigen-
value densities of the complex non-central Wishart channel
correlation matrix are shown to be fundamental to the analysis.
In deriving the expected SINR, we derive the joint density
of two arbitrary eigenvalues for the non-central Wishart. Our
results suggest that increasing the specular component of the
channel has an adverse effect on the expected SINR and
ergodic sum-rate, while increasing variability in the K factor
enhances peak rates, while reducing cell-edge rates. To the best
of the authors’ knowledge, the evaluation of the variability of
K is novel and can help to identify sensitivities in system
performance.
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where f0 (λ) is the density of an arbitrary eigenvalue selected
from {λ1, . . . , λm}. Using f0 (λ) in [22] allows us to write
(27) as
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Extracting the constants and simplifying (28) yields
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We let µ̄ = c−1+n−m+j+p ≥ 2 and evaluate the integral
in (29) via a change of variables, such that λ = x − ξ. This
gives the integral in (29) as
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where the integral in (30) is as defined in (12). Substituting
(30) into (29) and letting Θ = e−

∑
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∏m
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yields
the desired expression in (10).
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Invoking Appendix A.2 of [22], the joint (unordered) den-
sity of the m eigenvalues, λ1, . . . , λm of
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where Ξ1 is the determinant of 0F1 (n−m+ 1, φiλj), with
0F1 (·, ·) being the scalar hypergeometric function. Recogniz-
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ς = n − m + 1 and decomposing the first product in (31)
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can write (31) as
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. To find f (λ1, λ2), we

integrate over λ3, . . . , λm, i.e., over columns 3, . . . ,m in Ξ2.



The resulting entries of Ξ2 can now be written as
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Reordering the columns such that % is ordered from
0, 1, . . . ,m − 1 and performing the Laplace expansion on
columns i, j (containing λ1 and λ2) yields
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Further simplifying and denoting u = i+ j+ r+s−p (i, j)−
t (r, s), v = n − m, C = Θ [(ς − 1)!]
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yields the expression in (13).
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Using the density derived in (13), we begin by stating
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where C, u and ga,b (λ) are as defined in (15) and (13),
respectively. Substituting the definition of ga,b (λ) into (35)
yields
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for any two arbitrary eigenvalues (λ1, λ2), where
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with v = n −m. To evaluate the above integral, we convert
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into its equivalent series form giving
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Denoting µ̂ = ε+n−m+ b+ 1 ≥ 2, we evaluate the integral
in (38) with a change of variable, where λ = x − ξ. Upon
doing this, after some simplifications we obtain
∞∫
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dλ =
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Note that the integral in (39) is a special case of the integral
in (12). Substituting (39) into (38) and (38) into (36) yields

the desired expression in Theorem 3.

REFERENCES

[1] T. Marzetta, “Noncooperative cellular wireless with unlimited numbers
of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11,
pp. 3590–3600, Nov. 2010.

[2] D. Gesbert, M. Shafi, D. Shiu, P. Smith, and A. Naguib, “From theory
to practice: An overview of MIMO space-time coded wireless systems,”
IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 281–302, Apr. 2003.

[3] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broad-
cast scheduling using zero-forcing beamforming,” IEEE J. Sel. Areas
Commun., vol. 24, no. 3, pp. 528–541, Mar. 2006.

[4] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A
vector-perturbation technique for near-capacity multiantenna multiuser
communication-Part I: Channel inversion and regularization,” IEEE
Trans. Commun., vol. 53, no. 1, pp. 195–202, Jan. 2005.

[5] X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, “Linear pre-coding
performance in measured very-large MIMO channels,” in Proc. IEEE
Veh. Technol. Conf. (VTC) Fall, Sept. 2011, pp. 1–5.

[6] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL
of cellular networks: How many antennas do we need?” IEEE J. Sel.
Areas Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.

[7] S. Sun, T. Rappaport, R. Heath, A. Nix, and S. Rangan, “MIMO
for millimeter-wave wireless communications: Beamforming, spatial
multiplexing, or both?” IEEE Commun. Mag., vol. 52, no. 12, pp. 110–
121, Dec. 2014.

[8] Q. Zhang, J. Shi, K.-K. Wong, H. Zhu, and M. Matthaiou, “Power
scaling of uplink massive MIMO systems with arbitrary-rank channel
means,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 966–981,
Oct. 2014.

[9] C. Kong, C. Zhong, M. Matthaiou, and Z. Zhang, “Performance of
downlink massive MIMO in Ricean fading channels with ZF precoder,”
in Proc. IEEE Int. Conf. on Commun. (ICC), Jun. 2015, pp. 1776–1782.

[10] W. Tan, S. Jin, J. Wang, and M. Matthaiou, “Achievable sum-rate of
multiuser massive MIMO downlink in Ricean fading channels,” in Proc.
IEEE Int. Conf. on Commun. (ICC), Jun. 2015, pp. 1453–1458.

[11] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge University Press, 2005.

[12] F. Farrokhi, G. Foschini, A. Lozano, and R. Valenzuela, “Link-optimal
space-time processing with multiple transmit and receive antennas,”
IEEE Commun. Lett., vol. 5, no. 3, pp. 85–87, Mar. 2001.

[13] 3GPP TR 36.873 v.12.2.0, Study on 3D channel models for LTE. 3GPP,
Jun. 2015.

[14] M. Akdeniz, Y. Liu, M. Samimi, S. Sun, S. Rangan, T. Rappaport,
and E. Erkip, “Millimeter wave channel modeling and cellular capacity
evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1164–1179,
Jun. 2014.

[15] D. Nguyen and T.Le-Ngoc, “MMSE precoding for multiuser MISO
downlink transmission with non-homogeneous user SNR conditions,”
EURASIP J. Adv. Signal Process., vol. 85, no. 1, pp. 1–12, Jun. 2014.

[16] L. Yu, W. Yiu, and R. Langley, “SINR analysis of the subtraction-based
SMI beamformer,” IEEE Trans. Signal Process., vol. 58, no. 11, pp.
5926–5932, Nov. 2010.

[17] H. Tataria, P. Smith, P. Dmochowski, and M. Shafi, “General analysis
of multiuser MIMO systems with regularized zero-forcing precoding
under spatially correlated Rayleigh fading channels,” in Proc. of IEEE
Int. Conf. on Commun. (ICC), 2016.

[18] H. Tataria, P. Smith, M. Shafi, and P. Dmochowski, “Generalized analy-
sis of coordinated regularized zero-forcing precoding: An application
to two-tier small cell networks,” submitted to IEEE Trans. Wireless
Commun., 2015.

[19] T. Thomas, H. Nugyen, G. MacCartney, and T. Rappaport, “3D mmWave
channel model proposal,” in Proc. IEEE Conf. on Veh. Technol. (VTC-
Fall), Sep. 2014, pp. 1–6.

[20] P. Driessen and G. Foschini, “On the capacity formula for multiple input-
multiple output wireless channels: A geometric interpretation,” IEEE
Trans. Commun., vol. 47, no. 2, pp. 173–176, Feb. 1999.

[21] E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive MIMO
for next generation wireless systems,” IEEE Commun. Mag., vol. 52,
no. 2, pp. 186–195, Feb. 2014.

[22] G. Alfano, A. Lozano, A. Tulino, and S. Verdú, “Mutual information
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