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Abstract—A general framework for the analysis of expected
per-user signal-to-interference-plus-noise-ratio (SINR) of a mul-
tiuser multiple-input-multiple-output system is presented. Our
analysis assumes spatially correlated Rayleigh fading channels
with regularized zero-forcing precoding on the downlink. Unlike
previous works, our analytical expressions are averaged over the
eigenvalue densities of the complex Wishart distributed channel
correlation matrix. To aid the derivation of the expected per-user
SINR, we derive a closed-form expression for the joint density of
two arbitrary eigenvalues of the complex Wishart matrix. In
the high signal-to-noise-ratio (SNR) regime, with zero-forcing
precoding, we derive analytical expressions to approximate the
instantaneous per-user SNR and show that it is approximately
gamma distributed. The generality of the approximations is
validated with numerical results over a wide range of system
dimensions, spatial correlation and SNR levels.

I. INTRODUCTION

Multiuser multiple-input-multiple-output (MU-MIMO) sys-
tems have gained tremendous amounts of attention due to the
multiplexing gains resulting from their ability to simultane-
ously serve a multiplicity of user terminals in the same time-
frequency interval [1]. This has led to enhancements in spectral
efficiency and bit error rate in the downlink [2]. The under-
lying channel for downlink MU-MIMO transmission is often
referred to as the MIMO broadcast channel (MIMO-BC) [3].
The MIMO-BC suffers from inter-user interference, leading
to a lower signal-to-interference-plus-noise-ratio (SINR) at a
given user terminal. This has motivated the use of channel
aware pre-processing techniques, such as spatial precoding at
the base station (BS).

If the BS has channel knowledge, dirty-paper coding (DPC)
is known to achieve the capacity of a Gaussian MIMO-BC
[3]. However, DPC is a non-linear precoding technique with
high complexity. In comparison, sub-optimal linear precoding
methods have been identified more practical due to their lower
complexity [4]. Moreover, with the introduction of large an-
tenna arrays, the preponderance of serving antennas at the BS
over the terminals has shown that linear precoding techniques,
such as zero-forcing (ZF) beamforming can achieve up to
98% of the DPC capacity [5]. However, to compensate for
noise inflation in the low signal-to-noise-ratio (SNR) regime,
regularized zero-forcing (RZF) precoding was proposed [4].
In practice, as the deployment of large antenna arrays must

be carried out in confined volumes, the adverse effects of
spatial correlation on the per-user SINR and achievable rate
will be inevitable, due to antenna elements residing in close
proximity. Hence, analysis of MU-MIMO systems with spatial
correlation is of greater significance in understanding the
practically realizable gains [6].

Numerous works have theoretically characterized the perfor-
mance of downlink MU-MIMO systems by means of SINR
and sum-rate analysis (see [7, 8] and references therein).
However, much of this work considers simple uncorrelated
Rayleigh fading channels. The sum-rate performance of con-
ventional and large MU-MIMO systems under spatially corre-
lated channels with linear precoding and combining techniques
was analyzed in [9, 10] and references therein. The effects
of transmit spatial correlation with antenna coupling on the
sum-rate performance has been studied in [6]. In [11, 12],
pre-processing at the BS is specifically tailored for correlated
channels to maximize the sum-rate performance. However, the
focus of all the above has been on characterizing cell-wide
performance, rather than performance on a per-user basis.
Motivated by this, we analyze the expected per-user SINR
performance via an eigenvalue decomposition of the Wishart
distributed channel correlation matrix, where we consider av-
eraging over the density of the respective eigenvalues. In doing
so, we extend the results of [4] that only consider averaging
over the isotropic eigenvector distribution for simplicity.

In particular, the contributions of the paper are as follows:
• We derive tight analytical expressions to approximate

the expected per-user SINR with spatial correlation at
the BS. Our expressions are averaged over the arbitrary
eigenvalue densities of the complex Wishart channel
correlation matrix. To the best of the authors’ knowledge,
such an analysis has not been carried out previously and
was considered to be extremely difficult in [4].

• To aid the derivation of the expected signal and inter-
ference powers at a given terminal, we derive a closed-
form expression for the previously unknown joint density
of two arbitrary eigenvalues of the channel correlation
matrix.

• At high SNRs, as RZF precoding converges to ZF pre-
coding, we derive analytical expressions to approximate



the instantaneous per-user SNR. We demonstrate that
the instantaneous per-user SNR approximately follows a
gamma distribution and derive its parameters.

• The generality and tightness of the developed expressions
is verified via numerical results with a wide-range of
system dimensions, spatial correlation levels and SNRs
in the system.

Notation: Boldface lower and upper case symbols represent
vectors and matrices, respectively. IM denotes the M ×M
identity matrix. The transpose, Hermitian transpose, inverse
and trace operators are denoted by (·)T, (·)H, (·)-1 and tr (·),
respectively. We use h ∼ CN

(
µ, σ2

)
to denote a complex

Gaussian distribution for h, where each element of h has mean
µ and variance σ2. || · ||2F and | · | denote the Frobenius and
scalar norms, while ∀ reads as “for all”. E [·], Var [·], per (·)
and det (·) represent statistical expectation, variance, sign of
permutation and determinant operators, respectively.

II. SYSTEM MODEL
A. Signal Model

We consider the downlink of a MU-MIMO system, where
the BS is equipped with an array of M transmit antennas, serv-
ing K non-cooperative single antenna user terminals (M ≥ K)
in the same time-frequency interval. We assume narrow-band
transmission and equal power allocation to each terminal. With
perfect channel knowledge at the BS, the received signal at the
k-th terminal can be written as

yk =

√
βk
η
hkwksk +

√
βk
η

K∑
i=1
i 6=k

hkwisi + zk, (1)

where βk is the received power from the BS to the k-th termi-
nal (discussed later in the text). We model the channel vectors,
hk, as hk = uk

√
R, where uk ∼ CN (0, IM ) is the fast-

fading channel vector and R is a transmit correlation matrix.
We postpone the discussion of the particular structure of R
to Section V. However, we note the generality of the present
channel model, as it allows us to consider any type of antenna
correlation structure in R. Although we consider the general
case of MU-MIMO, the above model is of particular relevance
for large antenna arrays, where strong antenna correlation may
arise as a result of inadequate inter-element spacing or lack
of multi-path diversity [13]. wk is the M × 1 un-normalized
precoding vector from the BS to the k-th terminal and sk is the
data symbol desired for the k-th user, such that E

[
|sk|2

]
= 1.

Following [14], η = ||W ||2F/K is the precoder normalization
factor, such that the transmit power per-terminal is normalized
to ε. zk ∼ CN

(
0, σ2

k

)
models the effects of additive white

Gaussian noise at the k-th terminal. The received power from
the BS to the k-th terminal is modeled as in [15], where

βk = εζ

(
d0

dk

)α
ψk. (2)

Here, ζ is a unit-less constant for geometric attenuation at
a reference distance d0, assuming far-field, omni-directional
transmit antennas, dk is the link distance from the BS to user
k, α is the attenuation exponent and ψk = 10(Sjσs/10) models

the effects of shadow-fading with a log-normal distribution,
where Sj ∼ N (0, 1) and σs is the shadow-fading standard
deviation. The corresponding value of each parameter has been
chosen from [15] and tabulated in Section V. Finally, we refer
to SNR as the ratio of the long term received power to the
noise power at the receiver.
B. Downlink Precoding and Per-User SINR

In this study, we use RZF precoding to design the downlink
precoding vectors. Here, wk is the k-th column of the M×K
precoding matrix, W , defined as

W ,
(
HHH + ξIM

)−1
HH, (3)

where H ,
[
hT

1,h
T
2, . . . ,h

T
K

]T
is a K × M matrix com-

posed by concatenating individual user channels. The constant
ξ = K/SNR > 0 denotes the regularization parameter and
is chosen from [4] to maximize SINR at the receiver. The
received signal in (1) can be translated into a received SINR
for the k-th terminal and expressed as

SINRk =

βk
η |hkwk|2

σ2
k + βk

η

K∑
i=1
i 6=k

|hkwi|2
. (4)

III. EXPECTED PER-USER SINR ANALYSIS

Following [16], the expected SINR for the k-th terminal can
be approximated as

E [SINRk] ≈
βk
η̃ E

[
|hkwk|2

]
σ2
k + βk

η̃

K∑
i=1
i 6=k

E [|hkwi|2]

, (5)

where η̃ = E [η]. In the following, the main technical results
of the paper are presented, as we derive the expectations in
(5) for the signal and interference powers, respectively. For
the remainder of the paper, we denote n = max (M,K) and
m = min (M,K), assuming M ≥ K, as mentioned earlier in
the text.

A. Expected Signal Power
By eigenvalue decomposition, we denote the complex

Wishart distributed channel correlation matrix, HHH =
QΛQH. Then, the expected value of the numerator in (5) is
denoted by δk and can be written as [4]

δk = E
[
|hkwk|2

]
= E

( m∑
i=1

λi
λi + ξ

|qk,i|2
)2
 , (6)

where λi is the i-th eigenvalue corresponding to the i-th
diagonal entry in Λ. qk,i denotes the entry of Q corresponding
to the k-th row and i-th column. Using the fact that Q has an
isotropic distribution, the expectation in (6) can be simplified
by averaging over the entries of Q, which yields [4]

δk=
1

m (m+ 1)

{
Eλ

[(
m∑
i=1

λi
λi + ξ

)2]
+Eλ

[
m∑
i=1

(
λi

λi + ξ

)2
]}
.

(7)



The expectations in (7) can be further evaluated with respect
to (w.r.t.) the density of the eigenvalues and are given in
Theorems 1 and 3, respectively.

Theorem 1: If θ1, . . . , θn are the n eigenvalues of R, then
the expected value of

∑m
i=1

(λi)
µ̄

(λi+ξ)
2 , w.r.t. the eigenvalues of

HHH is given by

G
(µ̄)
k = mL

m∑
l=1

m∑
j=1
j 6=l

D (l, j)

[(
θn−m−1
n−m+l Φ2 (n−m+ l)

)
−

(
n−m∑
p=1

n−m∑
q=1
q 6=p

[
Ψ−1

]
q,p
θq−1
n−m+lθ

n−m−1
p Φ2 (p)

)]
, (8)

where
[
Ψ−1

]
q,p

denotes the (q, p)-th entry of
[
Ψ−1

]
. The

constant
L =

det (Ψ)

m
∏n
q<p (θp − θq)

∏m−1
p=1 p!

, (9)

with Ψ being an (n−m)× (n−m) Vandermonde matrix

Ψ =

1 θ1 . . . θn−m−1
1

...
...

. . .
...

1 θn−m . . . θn−m−1
n−m

 ,
while D (l, j) is the (l, j)-th co-factor of the m × m matrix
whose (p, q)-th entry equals

(q − 1)!

θn−m+q−1
n−m+p −

n−m∑
e=1

n−m∑
f=1

[
Ψ−1

]
e,f
θe−1
n−m+pθ

n−m+q−1
f

 .

Φ2 (a) =

µ̄∑
γ=0

(
µ̄

γ

)
(−ξ)µ̄−γ eξ/θa

∞∫
ξ

xγ−2e−xdx, (10)

where µ̄ = 2 + j − 1 and

∞∫
ξ

xγ−2e−xdx =

 −Ei(1, ξ) + e−ξ
ξ2 ; γ = 0

Ei(1, ξ) ; γ = 1
Γ(γ − 1, ξ) ; γ ≥ 2,

(11)

with Ei (·, ·) and Γ (·, ·) being the generalized exponential
integral and incomplete gamma functions, respectively.

Proof: See Appendix A.
Theorem 2: When θ1, . . . , θn are the n eigenvalues of R,

the joint density of any arbitrary pair of eigenvalues, (λ1, λ2),
of HHH is given by

f0 (λ1, λ2) = T (n− 2)!

m−1∑
i=0

m−1∑
l=0
l 6=i

(−1)
i+l−p(i,l)

m∑
o=1

(−1)
o−1

θn−m−1
o λi1e

−λ1/θo

m∑
p=1
p 6=o

(−1)
p−p(0)

θn−m−1
p λl2e

−λ2/θpΘ, (12)

where

T =
1∏m

j=1 j!∆
with ∆ =

1 θ1 . . . θn−1
1

...
...

. . .
...

1 θn . . . θn−1
n

 . (13)

Furthermore,

p (i, l) =

{
0 ; i > l
1 ; i ≤ l, p (o) =

{
0 ; p > o
1 ; p ≤ o, (14)

and Θ = det (∆o;pΞo,p;i,l) with

Ξ =

1 . . . θn−m−1
1 θn−m−1

1 e−λ1/θ1 . . .
...

...
...

1 . . . θn−m−1
n θn−m−1

n e−λ1/θn . . .

 .
Note that ∆o;p and Ξo,p;i,l denote the reduced versions of ∆
with row o and column p removed and Ξ with rows o, p and
columns i, l removed.

Proof: See Appendix B.
Remark 1: The result derived in Theorem 2 is used to

compute the expected per-user SINR and has general ap-
plicability for analysis involving complex Wishart matrices
with spatially correlated channels. It is also worth mentioning
that the result is scalable to arbitrary numbers of transmit
and receive antennas and allows us to analyze the higher
order statistics of spatially correlated channels, further used
to characterize the capacity distribution of such channels [17].

Theorem 3: When θ1, . . . , θn are the n eigenvalues of R,

the expected value of
(∑m

i=1
λi
λi+ξ

)2

w.r.t. the eigenvalues of
HHH is given by,

Dk=G
(2)
k +m (m− 1)T (n− 2)!

m−1∑
i=0

m−1∑
l=0
l 6=i

m∑
o=1

m∑
p=1
p 6=o

(−1)
i+l−p(i,l)

(−1)
o−1

θn−m−1
o (−1)

p−p(o)
Θ Φ1 (o) Φ1 (p) , (15)

where T , p (i, l), p (o) and Θ are as defined in (13) and (14),
respectively.

Φ1 (o) =

µ̂∑
γ=0

(
µ̂

γ

)
(−ξ)µ̂−γ eξ/θo

∞∫
ξ

xγ−1e−xdx, (16)

where µ̂ = i+1 and the integral is a special case of the integral
in (11). Φ1 (p) has the same form as Φ1 (o) with µ̂ = l + 1.

Proof: See Appendix C.
Using (8) and (15), we can write the expected signal power

at the k-th terminal as
δk =

Dk +G
(2)
k

m (m+ 1)
. (17)

The expected value of the precoder normalization parameter, η̃,
can also be expressed w.r.t. the eigenvalue densities of HHH
as
η̃ =

1

m
E
[
||W ||2F

]
=

1

m
Eλ

[
m∑
i=1

λi

(λi + α)
2

]
=

1

m
G

(1)
k . (18)

B. Expected Interference Power
From [4], we note that the total expected received power

(desired and interference) at the k-th user terminal can be
written as

ϕk =
E
[
||HW ||2F

]
m

=
1

m

[
Eλ

{
m∑
i=1

(
λi

λi + α

)2
}]

=
1

m
G

(2)
k . (19)



From this, the expected interference power at the k-th terminal
can be defined as ιk, the difference between the total expected
received power and the expected signal power [4]. Hence,

ιk = ϕk − δk =
1

m
G

(2)
k −

Dk +G
(2)
k

m (m+ 1)
. (20)

From (17), (18) and (20), the expected SINR at user k can
now be written as a function of δk, η̃ and ιk as

E [SINRk] ≈
βk
η̃ δk

σ2
k + βk

η̃ (m− 1) ιk
. (21)

Remark 2: As well as being robust to changes in system
dimensions, the derived results can also be applied to other
system types, such as heterogeneous cellular networks, where
a hierarchy of BSs may be present. In such cases, the addi-
tional presence of inter-cellular interference can be character-
ized in the same manner as shown above [18]. Furthermore,
the analysis is also applicable to other channel distributions,
such as Ricean fading, as shown in [19].

The accuracy of the derived analytical expression in (21)
is demonstrated in Section V. In the following section, we
consider the high SNR regime, in which we approximate the
instantaneous per-user RZF SINR with ZF precoding.

IV. HIGH SNR APPROXIMATION

It is well known that the performance of RZF precoding
converges to ZF precoding in the limit of increasing SNR [4].
This is due to the fact that the regularization constant, ξ → 0,
as SNR → ∞. The per-user SINR remains as defined in (4).
However, as ZF completely eliminates MU interference, the
SINR at the k-th terminal becomes an SNR defined as

SNRZF
k =

βk

σ2
k tr
{
(HHH)

−1} . (22)

In the case of uncorrelated Rayleigh fading channels, it is
well known that the SNR of classic ZF exactly follows a Chi-
squared distribution [20]. As the Chi-squared distribution is a
special case of the gamma distribution, we are motivated to
approximate SNRZF

k with a gamma distribution in this more
general situation. In order to use this approximation, the shape
and scale parameters of the gamma distribution have to be
derived, as shown in Theorem 4.

Theorem 4: If SNRZF
k follows a gamma distribution, then

ω = tr
{(

HHH
)−1}

is an inverse gamma random variable,
denoted as Γ (%, χ)

−1, where the shape and scale parameters

% = 2 +
E [ω]

2

Var [ω]
and χ =

βk(
1 + E[ω]2

Var[ω]

)
E [ω]

, (23)

are found from (47) and (48) in Appendix D using the method
of moments.

Proof: See Appendix D.
We evaluate the accuracy of Theorem 4 in the following

section.
V. NUMERICAL RESULTS

Unless otherwise specified, the simulation and analytical re-
sults are generated with the parameters specified in Table I. We

Parameter Value

Cell type & radius Circular & 100 meters (m)
User distribution uniform w.r.t. cell area

Reference distance, d0 1 m
Unit-less geometric attenuation constant, ζ 31.54 dB

Attenuation exponent, α 3.7
Shadowing standard deviation, σs 8 dB

TABLE I
SYSTEM PARAMETERS

model the presence of spatial correlation at the BS assuming
fixed physical spacing with a Kronecker model, where the
correlation assumed constant for each terminal follows an ex-
ponential distribution with the correlation matrix, Rij = ρ|i−j|

for i, j ∈ {1, . . . , n} [21]. The Rayleigh assumptions include
rich scattering around the BS and here it is reasonable to
assume constant correlation per-terminal, dependent only on
the array structure. Naturally, ρ = 0 results in an uncorrelated
Rayleigh fading channel and conversely ρ = 1 represents a
fully correlated channel, comparable to having a co-located
antenna array at the BS. For each subsequent result, the noise
power at each terminal was set to unity and 104 Monte-Carlo
simulations were carried out.

First, the accuracy of the proposed expected per-user SINR
approximation in (21) is examined. Fig. 1 illustrates the
expected per-user SINR as a function of SNR for a system
with M = 7 and 10 with K = 6. As can be readily observed,
the proposed approximation remains sufficiently accurate for
the entire SNR range of interest. In addition, we observe that
increasing ρ to 0.9 has an adverse effect on the expected per-
user SINR, as an increase in the level of correlation reduces
the spatially usable degrees of freedom, resulting in a loss
in the per-user SINR. An alternative interpretation of this
could be that reducing the spatial degrees of freedom at the
BS increases the level of inter-user interference, leading to a
lower per-user SINR. The analytical approximations are seen
to remain tight even with an extremely high level of spatial
correlation in ρ = 0.9 for both M = 7, 10 cases, respectively.
This fact is also evident in Fig. 2, where the expected per-
user SINR is shown to exponentially degrade as a function of
ρ for M = 7 and 10 at SNR = 10 dB. The derived analytical
approximations are seen to remain very accurate for the entire
range of ρ.

We now study the impact of increasing M on expected
SINR with K remaining fixed. Fig. 3 shows the expected per-
user SINR as a function of M with K = 6 at SNR = 10 dB.
While the expected SINR increases, its diminishing returns
can be observed with increasing M . This is a result of the
channels to multiple users becoming asymptotically pairwise
orthogonal, as the typical angular spacing between any two
terminals is greater than the angular Rayleigh resolution of
the transmit array [1]. In-turn this reduces the inner product
of any two channel vectors to zero. This has famously been
recognized as convergence to favorable propagation conditions
in the large MIMO system literature [1]. We can also observe
that with increasing levels of spatial correlation, the rate of
saturation also increases. For all cases, the derived expressions
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are seen to remain tight with increasing M , consistent with
Remark 2. Fig. 4 depicts the accuracy of Theorem 4, (with
M = 10 and K = 5), where we see that at high SNR, with
RZF converging to ZF, the instantaneous ZF per-user SNR
very closely follows the gamma distribution for all values of
ρ considered. Hence, not only can mean SINRs be provided,
but precise distributional results in the high SNR regime can
also be derived.

VI. CONCLUSION

The paper presents a general framework for the analysis
of expected per-user SINR for MU-MIMO systems with RZF
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Fig. 4. Expected per-user SINR/SNR with a gamma distribution approxima-
tion at SNR = 20, 30 dB with M = 10 and K = 5.

precoding under spatially correlated Rayleigh fading channels.
The analysis is robust to changes in system size, spatial cor-
relation levels and SNRs in the system. Arbitrary eigenvalue
densities of the complex Wishart channel correlation matrix
are shown to be fundamental to the analysis. In deriving the
expected SINR, we derive the joint density of two arbitrary
eigenvalues for the complex Wishart matrix. In the high SNR
regime, convergence of RZF to ZF was observed, and a
distributional approximation to the instantaneous per-user SNR
was introduced, where SNR was shown to closely follow the
gamma distribution.

APPENDIX A
PROOF OF THEOREM 1

Eλ

[
m∑
i=1

(
λi

λi + ξ

)2
]

= m

 ∞∫
0

(
λ

λ+ ξ

)2

f0 (λ) dλ

 , (24)

where f0 (λ) is the density of an arbitrary eigenvalue of
HHH . Invoking Theorem 2 of [22], (24) becomes

mL

m∑
l=1

m∑
j=1
j 6=l

D (l, j)

[ ∞∫
0

(
λ

λ+ ξ

)2

λj−1
(
θn−m−1
n−m−l e

−λ/θn−m+l

−
n−m∑
p=1

n−m∑
q=1
q 6=p

[
Ψ−1

]
q,p

θq−1
n−m+lθ

n−m−1
p e−λ/θp

)
dλ

]
, (25)

where the θ’s are the eigenvalues of R and L, D (l, j), Ψ are as
defined in (9), respectively. After some trivial simplifications,
(25) becomes

mL

m∑
l=1

m∑
j=1
j 6=l

D (i, j)

θn−m−1
n−m+l

∞∫
0

λ2+j−1

(λ+ ξ)
2 e
−λ/θn−m+ldλ−

n−m∑
p=1

n−m∑
q=1
q 6=p

[
Ψ−1

]
q,p
θq−1
n−m+lθ

n−m−1
p

∞∫
0

λ2+j−1

(λ+ ξ)
2 e
−λ/θpdλ

 . (26)



We recognize that the integrals in (26) have an identical form.
Denoting µ̄ = 2 + j − 1 and solving for the general case by
substituting λ = x− ξ, we obtain

Φ2 (a) =

∞∫
0

λµ̄e−λ/θa

(λ+ ξ)
2 dλ =

∞∫
ξ

(x− ξ)µ̄ e−(x−ξ)/θa

(x)
2 dx

=

µ̄∑
γ=0

(
µ̄

γ

)
(−ξ)µ̄−γ eξ/θa

∞∫
ξ

xγ−2e−xdx, (27)

where solution to the integral in (27) is given in (11). Substitut-
ing (27) into (26) and simplifying yields the desired expression
in (8).

APPENDIX B
PROOF OF THEOREM 2

We begin with the joint density of m distinct eigenvalues
given by [17]

f (λ1, . . . , λm) = T
∑
φ

(−1)
per(φ)

m∏
i=1

λφii det (Ξ) , (28)

where T and Ξ are as defined in (13) and (14), respectively.
Integrating over λ3, . . . , λm in (28) yields,

f0 (λ1, λ2) =
(n− 2)!
m∏
j=1

j!

m−1∑
i=0

m−1∑
l=0
l 6=i

(−1)
i+l−p(i,l) det (∆Ξil) ,

(29)
where Ξil is equivalent to Ξ with columns i and l ordered
corresponding to λ1 and λ2 and p (i, l) is as defined in (14).
Performing a Laplace expansion on the i-th column with λ1,
we obtain (30). Performing a second Laplace expansion on
the determinant in (29) with λ2 and the j-th column yields
the expression in Theorem 2.

APPENDIX C
PROOF OF THEOREM 3

Dk = G
(2)
k +m (m− 1)

∞∫
0

∞∫
0

(
λ1

λ1 + ξ

)(
λ2

λ2 + ξ

)
f0 (λ1, λ2) dλ2dλ1. (31)

Substituting the result from Theorem 2 and extracting the
constants yields

Dk = G
(2)
k +m (m− 1)T (n− 2)!

m−1∑
i=0

m−1∑
l=0
l 6=i

(−1)
i+l−p(i,l)

m∑
o=1

θn−m−1
o

m∑
p=1
p 6=o

(−1)
p−p(o)

Θ

∞∫
0

∞∫
0

(
λ1

λ1 + ξ

)(
λ2

λ2 + ξ

)

λi1e
−λ1/θoλl2e

−λ2/θpdλ2 dλ1, (32)

where p (o) and Θ are as defined in (14), respectively.

Further simplification yields

Dk=G
(2)
k +m (m− 1)T (n− 2)!

m−1∑
i=0

m−1∑
l=0
l 6=i

m∑
o=1

m∑
p=1
p 6=o

(−1)
i+1−p(i,l)

(−1)
o−1

θn−m−1
o (−1)

p−p(o)
Θ

∞∫
0

λi+1
1

λ1 + ξ
e−λ1/θodλ1

∞∫
0

λl+1
2

λ2 + ξ

e−λ2/θpdλ2. (33)

After recognizing that the integrals in (33) have identical form,
we solve for the general case via change of variables where
λ = x− ξ and µ̂ = i+ 1, resulting in

Φ1 (o) =

µ̂∑
γ=0

(
µ̂

γ

)
(−ξ)µ̂−γ eξ/θo

∞∫
ξ

xγ−1e−xdx. (34)

The integral in (34) is a special case of the integral in (11).
Likewise, by denoting µ̂ = l + 1, we can evaluate Φ1 (p).
Substituting Φ1 (o) and Φ1 (p) into (33) yields the desired
expression in (15).

APPENDIX D
PROOF OF THEOREM 4

Assuming that ω−1 is Γ (%, χ), we observe that

E
[
ω−1

]
= ((%− 1)χ)

−1
, (35)

and
Var
[
ω−1

]
=
(
(%− 1) (%− 2)χ2

)−1
. (36)

Re-arranging the equalities in (35) and (36) gives (23). Also,
since ω =

∑m
i=1 λ

−1
i , it is straight forward to show that

E [ω] = mE
[
λ−1

]
, (37)

where λ is an arbitrary eigenvalue and

E
[
ω2
]

= mE
[
λ−2

]
+m (m− 1)E

[
(λ1, λ2)

−1 ]
, (38)

where λ1 and λ2 are a pair of arbitrary eigenvalues. Hence
(23) relies on E

[
λ−1

]
and E

[
(λ1λ2)

−1 ], which are derived
below.

We begin with (28) and integrate over λ2, . . . , λm. Upon
reordering the columns of Ξ, in the same way as in (29), we
obtain

f(λ) = T (m− 1)!

m−1∑
i=0

det (∆Ξi) , (39)

where Ξi is the column corresponding to λ excluding the i-th
entry. Thus,

E
[

1

λ

]
=T (m− 1)!

∞∫
λ=0

{[
Ξo (λ)

λ

]
+

m−1∑
i=1

[
Ξi (λ)

λ

]}
dλ, (40)

where

Ξi (λ) =

n∑
j=1

(−1)
n−m+i+j−1

Ξi,jθ
n−m−1
j e−λ/θj . (41)

When i ≥ 1, we obtain



f0 (λ1, λ2) =
(n− 2)!
m∏
j=1

j!

m−1∑
i=0

m−1∑
l=0
l 6=i

(−1)
i+l−p(i,l)

(−1)
n−m

m∑
o=1

(−1)
o−1

θn−m−1
o λi1e

−λ1/θodet (∆oΞi,l;o) . (30)

∞∫
0

Ξi (λ)

λ
dλ=

n∑
j=1

(−1)
n−m+i+j−1

Ξi,jθ
n−m−1
j θij (i− 1)!

= (i− 1)!

n∑
j=1

(−1)
j
Ξi,j (−θj)n−m+i−1

. (42)

Via substitution, it is straightforward to show that
∞∫

0

λie
−λ/θdλ =

∞∫
0

(vθ)
i
e−vθ dv = θi+1 i!. (43)

When i = 0,
∞∫

0

Ξo (λ)

λ
dλ = lim

ε→0


n∑
j=1

κjEi (1, ε/θj)

 , (44)

where κj = (−1)
n−m+j−1

Ξo,jθ
n−m−1
j . Now as ε → 0,

Ei (1, ε/θj) ≈ c+loge (ε/θj) = c+loge (ε)− loge (θj), where
c is an arbitrary constant. This yields
∞∫

0

Ξo (λ)

λ
dλ=

n∑
j=1

(−1)
n−m+j

Ξo,jθ
n−m−1
j loge (θj) , (45)

since
∑n
j=1 κj = 0. This follows from the fact that

det (∆Ξ)=

n∑
j=1

(−1)
n−m+j−1

θn−m−1
j Ξo,j=

n∑
i=1

κj=c, (46)

since ∆Ξ has two equal columns in n−m and n−m+1 and
therefore has zero determinant. Combining the above results
gives

E
[

1

λ

]
= T (n− 1)!


n∑
j=1

(−1)
n−m+j

Ξo,jθ
n−m−1
j loge (θj) +

m−1∑
i=1

(i− 1)!

n∑
j=1

(−1)
j
Ξi,j (−θj)n−m+i−1

 . (47)

Similarly, integrating the density in (28) over λ3, . . . , λk and
following the above steps yields

E
[

1

λ1λ2

]
= 2T (n− 2)!

{
n∑
l=1

(−1)
n−m+l Eiljθn−m−1

l

loge (θk) +

m−1∑
i=1

m−1∑
j=1
j 6=i

Ξi,j

}
. (48)
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