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BER Upper Bound Expressions in Coded Two-Transmission Schemes
With Arbitrarily Spaced Signal Constellations

Mehmet Cagri Ilter, Halim Yanikomeroglu, and Pawel A. Dmochowski

Abstract—The main contribution of this letter is the derivation
of an upper bound BER expression, as a function of distances
between signal points, for arbitrary constellations, in a generic,
two-transmission scheme such as relaying, HARQ, or CoMP. The
approach utilizes the product-state matrix, and thus the arbitrar-
ily chosen constellations together with the encoders do not need
to satisfy the quasi-regularity property that includes geometrical
uniformity and symmetry. The channel fading is modeled using
a Nakagami-m distribution, both with and without correlation
between the two transmissions. We also allow for different path
loss at each transmission. The results are valid for general coded
schemes as long as a transfer function expression can be derived
(convolutional codes and trellis coded modulation). The upper
bounds are very accurate for BER values lower than 10−2 for any
chosen constellation.

Index Terms—Channel coding, constellation diagram, convolu-
tional codes.

I. INTRODUCTION

D UE to the ability to mitigate the adverse effects of
radio-wave propagation, such as fading and shadowing,

convolutional encoding has been extensively studied and uti-
lized in a wide range of wireless systems. While early research
on their performance analysis naturally focused on point-to-
point communications [1], present day applications call for
more advanced architectures such as point-to-multipoint and
multipoint-to-multipoint. To model scenarios such as CoMP
(coordinated multipoint transmission), HARQ, and relaying,
a generic of multi transmission has recently been proposed
[2]–[4].

Most studies of coded scenarios are restricted to systems sat-
isfying the uniform error property, [2], [4], [5], i.e., they assume
equal weight distance spectrum for every codeword regard-
less of the sequences transmitted. Consequently, they assume a
quasi-regular (QR) encoder-constellation pair, such as geomet-
rically uniform codes [6]. With this restriction, the performance
analysis of systems with coding schemes (e.g., convolutional
codes and trellis coded modulation (TCM)) utilizes the transfer
function calculation method described in digital communica-
tion textbooks, such as similar to that in classical systems
[1]. In [2], a Euclidean distance-based BER upper bound was
derived for coded maximal ratio combining (MRC) systems
in Nakagami-m channel. In [4] a similar technique is used
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for the studied generic multi-transmission scheme under the
assumption that no inter-transmission correlation exists.

Recent increase in the availability of advanced optimiza-
tion techniques to physical layer researchers has resulted in
renewed interest in a number of classic digital communica-
tions problems, including constellation optimization [7]–[9].
Unfortunately, the above conventional BER analysis is valid
only when the combination of the encoder and the constellation
is quasi-regular [6].1

In this letter we addresses this very problem. Rather than
adopting the conventional transfer function calculation tech-
nique previously used in the literature (such as [2], [4], [5]),
we utilize the product-state matrix technique adapted from
[11] to calculate the transfer function expression. The product-
state matrix technique allows us to develop very tight error
bounds for coded systems with completely arbitrary signal con-
stellations, making them suitable for far-reaching constellation
optimization applications.2

Specifically, the contribution of this letter is the derivation of
a very tight BER upper bound for a coded, two-transmission
system (modelling CoMP, HARQ or relaying) operating in a
Nakagami-m fading environment for any encoder-constellation
pair as long as a transfer function can be written. Unlike pre-
vious approaches, the proposed method calculates the transfer
function based on the product-state matrix technique which
does not require the constellation and encoder to satisfy the
quasi-regularity. We derive the expressions for the branch label
of the product-state matrix, in the presence of correlated fading
between the two transmission phases.

II. SYSTEM ARCHITECTURE

We consilder a system architecture consisting of two orthog-
onal transmission phases as shown in Fig. 1 where each
transmitter employs the same convolutional encoder, but not
necessarily the same constellation. During each transmission
phase, the same information bit sequence is first coded by a
rate R convolutional encoder, and the resulting bits are assigned
a signal point from an arbitrary M-ary constellation based on a
bit-to-symbol mapping rule. Note that throughout this letter, the
natural mapping is employed3.

The mapper output symbols {s(i)}, i = 1, 2, where i refers
to the transmission phase, are transmitted. The correspond-
ing received signals are given by ri = hi s(i) + ni , where
hi , i ∈ {1, 2}, denotes frequency non-selective Nakagami-m
fading coefficient with shaping parameter mi and average
fading power �i ; ni is the additive white Gaussian noise
(AWGN) sample with zero-mean and N0/2 variance per
dimension. Note that we allow the channel parameters to

1It was noted in [10] that the quasi-regularity does not necessarily result in
better performance.

2Constellation optimization is beyond the scope of this letter.
3For instance, in a 64-ary signalling scheme, s60 corresponds to the follow-

ing 6 bits: 111100.
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Fig. 1. Possible system realizations for the two orthogonal transmission
scheme.

vary between the transmission phases and that each sym-
bol is exposed to a different fading coefficient. Independent
fading between the phases is considered first followed by
the analysis for the correlated case, where the correla-
tion coefficient between h1 and h2, is defined as ρ =
cov

(|h1|2, |h2|2
)
/

√
var

(|h1|2
)

var
(|h2|2

)
, ρ ∈ [0, 1].

III. CALCULATION OF PRODUCT-STATE MATRIX AND

UPPER BOUND BER EXPRESSION

We now derive the upper bound BER for the coded two-
orthogonal transmission model described in Section II. In doing
so, we begin with the commonly known BER upper bound for
an encoder with a transfer function T (D, I ) [12, (9)]

Pb ≤ 1

k

∂

∂ I
T (D, I )

∣∣∣∣
I=1

. (1)

The calculation of T (D, I ) can differ based on the encoder and
constellation used. The popular transfer function calculation
method which appears in many digital communications text-
books (such as [1]) is only valid under the assumption of quasi-
regularity. In 1984, Biglieri proposed a general method which
can be readily used for both quasi-regular (QR) and non-QR
cases [11] (for details of quasi-regularity please refer to [6]).

A. Calculation of Product-State Matrix and Transfer Function

For an N -state convolutional encoder, N 2 ordered pairs of
product-states (u, v), can be defined where u is the encoder
state and v is the decoder state selected by the Viterbi decoder
(u, v ∈ {1, . . . , N }). Consider a N 2 × N 2 product-state matrix
S(D, I ) with entries based on transitions from (u, v) to (ū, v̄).
Using the notation in [11], the product-states can be divided
into two categories: ’good states’ G where u = v (the encoder
and the decoder states are the same), and ’bad states’ B
where u �= v. Using this classification and suitably ordering the
product-states, S (D, I ) can be written as [11]

S (D, I ) =
[

SGG (D, I ) SGB (D, I )
SBG (D, I ) SBB (D, I )

]
. (2)

Here, SGG (D, I ) and SBB (D, I ) include the transitions for
G → G and B → B, respectively. Likewise, SBG (D, I ) rep-
resents the transition for B → G and so forth. Let D(u,v),(ū,v̄)
denote the branch label for transition (u → ū) and (v → v̄). It
was shown in [13] that each entry of S (D, I ) can be written as

[S(D, I )](u,v),(ū,v̄) = p(u → ū|u)

×
∑

n

pn I a(u→ū)⊕a(v→v̄)D(u,v),(ū,v̄),

(3)
assuming both transitions (u → ū) and (v → v̄) exist, oth-
erwise [S(D, I )](u,v),(ū,v̄) = 0. The summation in (3) is over

possible n parallel transitions depending on a given encoder,
where pn denotes the probability of nth parallel transi-
tion between (u → ū) if it exists, otherwise pn = 1. In (3),
p (u → ū|u) is the conditional probability of transition from
state u to state ū given state u, a (u → ū) denotes the Hamming
weight of the information sequence for the transition from u to
ū [13]. Using the partitioning in (2), the transfer function can
be calculated as [11]

T (D, I ) = a + bT [I − SBB (D, I )]−1 c, (4)

where a = 1T SGG (D, I ) 1, b = 1T SGB (D, I ) , and c =
SBG (D, I ) 1. Here, 1 and I denote a unity matrix and iden-
tity matrix, respectively. Then, ∂T (D, I )/∂ I in (1) can be
expressed as

∂T (D, I )

∂ I
= 1

2N

(
a
′ + b

′T [I − SBB(D, I )]−1 c

+ bT [I−SBB(D, I )]−1 c
′+bT [I−SBB(D, I )]−1

SBB(D, I )
′
[I − SBB(D, I )]−1 c

)
, (5)

where (·)′ denotes element-wise derivative with respect to I .

B. Calculation of D(u,v),(ū,v̄)

Note that D(u,v),(ū,v̄) in (3) can be interpreted as the
Bhattacharyya parameter representing possibility of decoding
the erroneous transition (v → v̄) rather than the correct one
(u → ū) under ML (maximum likelihood) decoding [11]. For
a given bit-to-symbol mapper g (·) and corresponding binary
label of a specified transition b (·), D(u,v),(ū,v̄) is a function of
the distances between the output symbols s(i) = g (b (u → ū))
and the erroneously decoded symbols ŝ(i) = g (b (v → v̄)) for
each transmission phase i ∈ {1, 2}. For a given channel coeffi-
cient set, {h1, h2}, D(u,v),(ū,v̄) can be explicitly written as4

D(u,v),(ū,v̄)|{γ1,γ2} = exp{−d1γ1 − d2γ2}, (6)

where di = ∣∣s(i) − ŝ(i)
∣∣2

/4N0 and γi = |hi |2. Averaging (6)
over the channel statistics yields D(u,v),(ū,v̄) which we use to
obtain each entry of (2) which in turn will be used to compute
the upper bound BER using (5) and (1).

We now derive D(u,v),(ū,v̄) expression for Nakagami-m fading
scenarios with and without correlation between transmission
phases. From (6), the unconditional Bhattacharyya parame-
ter for the case of uncorrelated transmission phases can be
written as

D(u,v),(ū,v̄) =
∞∫

0

∞∫
0

dγ1dγ2 exp{− (d1γ1 + d2γ2)} fγ1,γ2 (γ1, γ2),

(7)

where fγ (γ1, γ2) denotes the joint PDF of γ1 and γ2.
1) Uncorrelated Case (ρ = 0): Here, the joint pdf is

simply fγ (γ1, γ2) = fγ (γ1) fγ (γ2), where fγ (γi ) denotes
the probability density function of the squared envelope of
Nakagami-faded channel coefficient, known to follow the
Gamma distribution [14]

fγi (γ ) = γ mi −1e
−γ

mi
�i

�i
mi mi

−mi �(mi )
, (8)

4The derivation of (6) is rather straightforward, and thus omitted here.
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where �i is the average fading power, mi ≥ 0.5, and � (·) is
the Gamma function [15]. Combining (7)–(8) and using [15,
eq. 3.35.2] one can, after some manipulation, obtain

D(u,v),(ū,v̄) =
(

�1d1

m1
+ �1

)−m1
(

�2d2

m2
+ �2

)−m2

. (9)

2) Correlated Case (0 < ρ ≤ 1): Fading correlation in the
two transmission phases is an important consideration, as it
can arise, for example, in an HARQ retransmission within
the coherence time of the channel [16]. We start by consid-
ering a special case, followed by a more general result. For
m1 = m2 = m, fγ (γ1, γ2) is given by [17]

fγ (γ1, γ2) = (γ1γ2)
0.5m−0.5mm+1e

− m
1−ρ

(
γ1
�1

+ γ2
�2

)

� (m)�1�2 (1 − ρ)
(√

ρ�1�2
)m−1

× Im−1

(
2m

√
γ1γ2ρ

(1 − ρ)
√

�1�2

)
, (10)

where Im−1 (·) denotes the modified Bessel function of order
m − 1 [15]. For �1 = �2 = 1, substituting (10) into (7) and
using [15, (6.643.2), (7.621.2)] lead to

D(u,v),(ū,v̄) =
m2m

((
d1+ m

1−ρ

)(
d2+ m

1−ρ

)
− m2ρ

(1−ρ)2

)−m

(1−ρ)m .
(11)

For the more general case of m1 �= m2,�1 �= �2, the joint PDF
fγ (γ1, γ2) is given by [17] as

fγ (γ1, γ2) = (1 − ρ)m2

∞∑
k=0

{
(m1)kρ

k

k!

(
m1

�1 (1 − ρ)

)m1+k

×
(

m2

�2 (1−ρ)

)m2+k
γ1

m1+k−1

� (m1+k)

γ2
m2+k−1

� (m2 + k)
e

−1
(1−ρ)

(
m1γ1
�1

+ m2γ2
�2

)

×1 F1

(
m2 − m1, m2 + k; ρm2γ2

�2 (1 − ρ)

)}
, (12)

where 1 F1 (·, ·; ·) is the Kummer confluent hypergeometric
function [15], and (m1)k denotes the Pochhammer symbol.
Substituting (12) into (7) and using [15, (3.351.2)] to integrate
over γ1, result in

D(u,v),(ū,v̄) =
∞∑

k=0

C

⎧⎨
⎩

∞∫
0

dγ2e
−

(
m2

�2(1−ρ)
+ d2

sin2�

)
γ2

γ2
m2+k−1

× 1 F1

(
m2 − m1, m2 + k; ρm2γ2

�2 (1 − ρ)

)

×
(

m1

�1 (1 − ρ)
+ d1

sin2�

)−m1−k

� (m1 + k)

⎫⎬
⎭ , (13)

where C is a constant. After some rearrangement and the
utilization of [15, (7.522.9)], (13) can be rewritten as

D(u,v),(ū,v̄) =
∞∑

k=0

C

{(
m2

�2 (1 − ρ)
+ d2

sin2�

)−m2−k

× � (m2 + k) 2 F1 (m2 − m1, m2 + k; m2 + k; M)

×
(

m1

�1 (1 − ρ)
+ d1

sin2�

)−m1−k

� (m1 + k)

}
. (14)

TABLE I
MONTE CARLO SIMULATION PARAMETERS

In (14), 2 F1 (·, ·; ·; ·) denotes the Gauss hypergeometric func-
tion [15] and M is defined as

M = ρm2

�2 (1 − ρ)
(

m2
�2(1−ρ)

+ dl,2

sin2�

) . (15)

Finally, utilizing the identity 2 F1 (a, b; b; c) = (1 − c)−a [15,
(9.121.1)], we obtain D(u,v),(ū,v̄) as

D(u,v),(ū,v̄) =
∞∑

k=0

(m2ρ)k+m2

(
m1

m1 + �1d1 − �1d1ρ

)m1+k

× (m1)k
1

k!
(m2 − �2d2 (ρ − 1))−m1−k

(
1

ρ
− 1

)m2

× (− (m2 + �2d2) (ρ − 1))m1−m2 . (16)

The D(u,v),(ū,v̄) expressions in (9), (11) and (16) are first sub-
stituted into (3) and then used in (5) and (1) to obtain the BER
upper bound. This is computed in the following section.

IV. NUMERICAL SCENARIOS

We now present simulation results to validate the upper
bound BER expressions derived in Section III. We consider
4-ary and 64-ary signalling. The selected convolutional
encoders, along with the values of other key parameters are
listed in Fig. 1. The infinite sum in (16) for the case of correlated
fading with m1 �= m2 was truncated after 15 terms.

A. Arbitrary 4-Ary Signalling

We first consider Scenarios I and II with 4-ary signalling
and a rate R = 1/2 convolutional encoder [2, 1]8. The arbi-
trary 4-ary constellations given in Table I were obtained using a
random number generator. Based on the QR criteria described
in [6], Constellation-I in conjunction with the above encoder
results in a non-QR system. In contrast, to enable a compari-
son to the previous bounds in the literature which are obtained
based on the transfer function ([2], [4]), Constellation-II was
chosen to satisfy QR. The constellations were fixed between
transmission phases. Fig. 2 shows the BER obtained by simula-
tion and the developed upper bound BER expression using (1)
with (9) as well as the BER bound obtained by the conventional
transfer function calculation [2], [4].

As it can be seen from Fig. 2, the proposed BER bound
expression is very tight for both QR and non-QR scenarios.
For the QR case (Scenario II), the conventional and proposed
methods are almost identical, but as expected, the conventional
bound fails to predict the performance of the non-QR scenario.

B. Arbitrary 64-Ary Signalling

Scenarios III and IV consider 64-ary signalling and a rate
R = 1/3 convolutional encoder, [133, 171, 165]8, deployed in
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Fig. 2. Bit error probability of the two-transmission scheme for arbitrary 4-ary
and 64-ary signalling.

Fig. 3. CDF of �SNR over 500 random constellation realizations for 4-ary
signalling.

downlink control information (DCI) specified in the 3GPP LTE
standard [18]. To generate arbitrary 64-ary constellations, the
rotation technique in [12] was used, with θ = 0 and π/5, and
θ = 0 and π/8, for transmission phases 1 and 2, respectively.
Note that we were unable to generate a 64-ary constellation
which satisfies QR when paired with above coder. Scenario III
features a 0.46 dB SNR difference between the received signal
levels in the transmission phases. As seen in Fig. 2, the upper
bounds obtained by (11) and (16) show good agreement with
the simulated BER results in moderate and high SNR regions. It
is seen that for the scenarios considered, the BER upper bounds
are fairly tight in the high SNR regions with BER ≤ 10−2.

C. Upper Bound BER Tightness Measure

Due to the space limitations, simulation results in Section IV-
A, B consider only a few specific scenarios. In this section, we
evaluate the BER bound accuracy for a large number of ran-
domly generated 4-ary constellations. Specifically, for a BER
target, Pb,th , we calculate the error �SNR between the actual,
simulated SNR required for Pb,th , and the SNR obtained using
the bound derived in Section III. By plotting the CDF of
�SNR, the characteristics of both the uncorrelated and cor-
related expressions can be investigated for a broad range of
constellation pairs. As seen in Fig. 3, the proposed upper bound
BER expressions show better agreement for uncorrelated cases
with both equal and unequal Nakagami-m shaping parameters.

The SNR discrepancy obtained is limited to around 0.3 dB.
Thus, the proposed method performs well over most of the
realizations.

V. CONCLUSIONS

We have presented a very tight upper bound BER expres-
sion for convolutional coded two-transmission signalling. In
contrast to previous work, our method applies to generic 2D
constellations and is not limited to those satisfying the quasi-
regularity. We have derived the branch label expressions given
in (9), (11), and (16) to generate the product-state matrix used
in the transfer function calculation. Since the upper bound BER
expressions presented here only require a generic transfer func-
tion for a given encoder (i.e., convolutional and trellis coded
modulation codes), the results can be utilized in constellation
searches over various coded two-transmission scenarios.

REFERENCES

[1] A. Viterbi and J. Omura, Principle of Digital Communication and
Coding. New York, NY, USA: McGraw-Hill, 1979.

[2] S. Zummo, “Union bounds on the bit error probability of coded MRC in
Nakagami-m fading,” IEEE Commun. Lett., vol. 10, no. 11, pp. 769–771,
Nov. 2006.

[3] H.-T. Pai, Y. S. Han, and Y.-J. Chu, “New HARQ scheme based on decod-
ing of tail-biting convolutional codes in IEEE 802.16e,” IEEE Trans. Veh.
Technol., vol. 60, no. 3, pp. 912–918, Mar. 2011.

[4] M. C. Ilter and H. Yanikomeroglu, “An upper bound on BER in a coded
two-transmission scheme with same-size arbitrary 2D constellations,” in
Proc. IEEE 25th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun.
(PIMRC), Sep. 2014, pp. 687–691.

[5] X. Zhang, Y. Zhao, and L. Zou, “Optimum asymmetric constellation
design for trellis-coded modulation over Gaussian channels,” IEEE
Commun. Lett., vol. 13, no. 7, pp. 528–530, Jul. 2009.

[6] S. Benedetto, M. Mondin, and G. Montorsi, “Performance evaluation of
trellis-coded modulation schemes,” Proc. IEEE, vol. 82, no. 6, pp. 833–
855, Jun. 1994.

[7] J.-E. Porath and T. Aulin, “Design of multidimensional signal con-
stellations,” IEE Proc. Commun., vol. 150, no. 5, pp. 317–323, Oct.
2003.

[8] F. Kayhan and G. Montorsi, “Joint signal-labeling optimization under
peak power constraint,” Int. J. Satell. Commun. Netw., vol. 30, no. 6,
pp. 251–263, Sep. 2012.

[9] C. Hager, A. Graell i Amat, A. Alvarado, and E. Agrell, “Design of APSK
constellations for coherent optical channels with nonlinear phase noise,”
IEEE Trans. Commun., vol. 61, no. 8, pp. 3362–3373, Aug. 2013.

[10] S. Nagaraj, “Performance analysis of coded SSK modulation
on block fading channels,” IEEE Trans. Veh. Technol., doi:
10.1109/TVT.2015.2477295, to be published.

[11] E. Biglieri, “High-level modulation and coding for nonlinear satellite
channels,” IEEE Trans. Commun., vol. 32, no. 5, pp. 616–626, May 1984.

[12] D. Divsalar, M. Simon, and J. Yuen, “Trellis coding with asymmetric
modulations,” IEEE Trans. Commun., vol. 35, no. 2, pp. 130–141, Feb.
1987.

[13] J. Shi and R. D. Wesel, “Efficient computation of trellis code generating
functions,” IEEE Trans. Commun., vol. 52, no. 2, pp. 219–227, Feb. 2004.

[14] M.-S. Alouini, A. Abdi, and M. Kaveh, “Sum of gamma variates and
performance of wireless communication systems over Nakagami-fading
channels,” IEEE Trans. Veh. Technol., vol. 50, no. 6, pp. 1471–1480, Nov.
2001.

[15] I. S. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products,
7th ed. New York, NY, USA: Academic, 2007.

[16] S. M. Kim, W. Choi, T. W. Ban, and D. K. Sung, “Optimal rate adapta-
tion for hybrid ARQ in time-correlated Rayleigh fading channels,” IEEE
Trans. Wireless Commun., vol. 10, no. 3, pp. 968–979, Mar. 2011.

[17] T. Piboongungon, V. Aalo, C. Iskander, and G. Efthymoglou, “Bivariate
generalised gamma distribution with arbitrary fading parameters,”
Electron. Lett., vol. 41, no. 12, pp. 709–710, 2005.

[18] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA);
Multiplexing and channel coding (3GPP TS 36.212 version 8.7. 0 Release
8),” Jun. 2009.


