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ABSTRACT
We consider how to maintain the topological order of a di-
rected acyclic graph (DAG) in the presence of edge inser-
tions and deletions. We present a new algorithm and obtain
a marginally improved complexity result over the previously
known O(||δ||log||δ||). In addition, we provide an empirical
comparison against three existing solutions using random
DAG’s. The results show our algorithm to out perform the
others on sparse graphs. Finally, we show how the algorithm
can be extended to identify strongly connected components
online.

Our motivation for this work arises from efforts to build effi-
cient pointer analyses, where identifying cycles in a dynamic
graph has a significant impact on performance.

1. INTRODUCTION
For a directed acyclic graph (DAG), D = (V, E), a topolog-
ical ordering, ord, maps each vertex to a priority value such
that, for all edges x→ y ∈ E, it is the case that ord(x) <
ord(y). For digraphs (i.e. directed graphs), the presence
of cycles or strongly connected components prohibits any
valid topological ordering. To be precise, a strongly con-
nected component of a digraph, G = (V, E), is a subgraph
S = (Vs, Es) such that each node in Vs is reachable from ev-
ery other using only edges in Es. By collapsing each strongly
connected component into a single node we obtain a DAG,
often referred to as the condensation graph.

There exist well known linear time algorithms for computing
the topological order of a DAG and the strongly connected
components of a digraph (see e.g. [1]). However, these algo-
rithms are considered offline as they compute their solution
from scratch.

In this paper we examine online algorithms, which only per-
form work necessary to update the solution after a graph

change. We say that an online algorithm is fully dynamic if
it supports both edge insertions and deletions. A partially
dynamic algorithm is termed incremental/decremental if it
supports only edge insertions/deletions.

The contributions of this paper are as follows:

1. A new fully dynamic algorithm for maintaining the
topological order of a directed acyclic graph.

2. A complexity result for this algorithm which improves
upon the best previously known result.

3. A new complexity analysis of an existing algorithm,
called MNR, by Marchetti-Spaccamela et al. [2].

4. An experimental comparison of these two algorithms
and another, called AHRSZ, by Alpern et al [3].

5. Extensions to both MNR and PK for the incremental
strongly connected components problem.

The new algorithm takes it roots from MNR, while exhibit-
ing complexity similar to AHRSZ. Our claim is that it offers
an improvement over AHRSZ by a constant factor in both
time and space and is easier to implement, due to its sim-
plicity. In particular, it does not need the complicated Deitz
and Sleator ordered list structure [4] used by AHRSZ..

1.1 Organisation
The paper will proceed as follows: Section 2, while not es-
sential for the remainder, will examine the motivation be-
hind this work; Section 3 covers related work; in Section 4
we begin by examining the complexity parameters used as
a basis for comparing the algorithms; Section 4.1 presents
our new algorithm and Sections 4.2 details MNR and pro-
vides a new complexity analysis of it. This facilitates a com-
parison against PK and AHRSZ and also helps explain its
observed behaviour; Section 4.3 covers AHRSZ and Section
4.4 identifies where it loses out to PK; Section 5 details our
experimental work. This includes a comparison of the three
algorithms and a study examining when the standard offline
algorithm should be used; finally, we summarise our findings
and discuss future work in Section 7.



[trans]
τ1 ⊇ {τ2} τ3 ⊇ τ1

τ3 ⊇ {τ2}
[deref1]

τ1 ⊇ ∗τ2 τ2 ⊇ {τ3}
τ1 ⊇ τ3

[deref2]
∗τ1 ⊇ τ2 τ1 ⊇ {τ3}

τ3 ⊇ τ2
[deref3]

∗τ1 ⊇ {τ2} τ1 ⊇ {τ3}
τ3 ⊇ {τ2}

Figure 1: A simple inference system for pointer analysis

2. MOTIVATION
The motivation behind this work arises from efforts to speed
up pointer analyses. The purpose of such an analysis is
to determine the target set for all pointer variables in a
program, without executing it. This information is useful
for, among other things, compiler optimisations, automatic
parallelisation and error checking tools.

A pointer analysis can be formulated using simple set con-
straints, generated from the program source. A small lan-
guage is used for this purpose, where the domain of variables
is denoted by VAR. Thus, the constraints take the form:

p ⊇ q | p ⊇ {q} | p ⊇ ∗q | ∗p ⊇ q | ∗ p ⊇ {q}

where p and q are variables from VAR and ‘∗’ is the usual
dereference operator. Those involving a dereference are re-
ferred to as complex. A solution to a set of these constraints
is an assignment to each variable from P(VAR), such that
all constraints are satisfied. Thus, for example, if p ⊇ {q}
then q is in the solution of p and we say that p points to q.
Any such solution will always be approximate [5] and the
aim is to produce the smallest target set possible for each
variable.

The solution is obtained by exhaustively deriving all facts
under the simple inference system shown in Figure 1. To
help put this into context, consider the following example:

int a,*p,*q,**x;

p=&a; (1) p ⊇ {a}
y=&q; (2) y ⊇ {q}
x=y; (3) x ⊇ y
*x=p; (4) ∗x ⊇ p

(5) x ⊇ {q} (trans, 2 + 3)
(6) q ⊇ p (deref2, 4 + 5)
(7) q ⊇ {a} (trans, 1 + 6)

Here, we see some simple C statements (left) and their asso-
ciated constraints (right). Below the line, we see constraints
derived using the inference rules of Figure 1. The problem of
exhaustively deriving all facts under this system can be re-
duced to the problem of dynamic transitive closure [6] and,
thus, the best known bound on time complexity is O(n3).

To solve a constraint set (i.e. derive all facts), we formulate
them into a constraint graph with vertices and edges rep-
resenting variables and constraints respectively. Thus, con-
straint a ⊇ b becomes edge a ← b. This idea was first used
by Heintze and Tardieu [6]. Initially, complex constraints
cannot be represented as the solution for the dereferenced
variable is at least partially unknown. Instead, they result
in edges being added to the graph during the solving process

(via the deref rules). So, in the above example, the con-
straint ∗x ⊇ p is not initially represented by an edge in the
constraint graph. However, it will lead to the edge q ← p
being added when (6) is derived.

One interesting observation about this system is that vari-
ables involved in a strongly connected component (e.g. a ⊇
b ⊇ a) must, by definition, have the same final solution. Ex-
ploiting this property by collapsing these cycles into single
nodes leads to a significant reduction in computation time.
However, the dynamic nature of the constraint graph re-
quires an online solution and, hence, is the reason behind
this work. The reader is referred to [7].

3. RELATED WORK
At this point, it is necessary to clarify some notation used
throughout the remainder. Note, in the following definitions
we assume G = (V, E) is a directed graph:

Definition 1. The path relation, ;, holds if ∀x, y ∈ V.[x;

y ⇐⇒ x→ y ∈ET ], where GT = (V, ET ) is the transitive
closure of G. If x;y, we say that x reaches y and that y is
reachable from x.

Definition 2. The set of edges involving vertices from a
set, S ⊆ V , is E(S) = {x→y | x→y ∈ E∧ (x ∈ S∨y ∈ S)}.

Definition 3. The extended size of a set of vertices, K ⊆
V , is denoted ||K|| = |K| + |E(K)|. This definition origi-
nates from [3].

The offline topological sorting problem has been widely stud-
ied and optimal algorithms with Θ(||V ||) (i.e. Θ(|V |+ |E|))
are known (see e.g. [1]). Similarly, an Θ(||V ||) algorithm for
finding the strongly connected components of a digraph was
presented by Tarjan [8]. A few minor improvements to this
have since been proposed [9, 10], although the complexity
bound remains.

For the issue of maintaining online the strongly connected
components of a digraph, we are aware of only one previ-
ously known algorithm, due to Fähndrich et al. [11]. This
operates by exhaustively searching from y, when a new edge
x→ y is added, to determine whether x is reachable and,
hence, a cycle has been introduced. This approach is infe-
rior to the algorithms we present later which, by maintain-
ing a topological ordering of nodes, can prune this search
dramatically. However, it is interesting to note that their
motivation is similar to ours.

The problem of maintaining a topological ordering online
also appears to have received little attention. Indeed, there



are only two existing algorithms which, henceforth, we refer
to as AHRSZ [3] and MNR [2]. We have implemented both
and will detail their working in Section 4. For now, we wish
merely to examine their theoretical complexity. We begin
with results previously obtained:

• AHRSZ - For a single edge insertion, it achieves an
O(||δ||log||δ||) time complexity, where δ is the number
of nodes needing reprioritisation [3, 12].

• MNR - Here, an amortised time complexity of O(|V |)
over Θ(|E|) insertions has been shown [2].

There is some difficulty in relating these results as they are
expressed differently. However, they both suggest that each
algorithm has something of a difference between best and
worst cases. This, in turn, indicates that a standard worse-
case comparison would be of limited value. Determining
average-case performance might be better, but is a difficult
undertaking.

In an effort to find a simple way of comparing online algo-
rithms the notion of bounded complexity analysis has been
proposed [13, 3, 14, 12, 15]. Here, cost is measured in
terms of a parameter δ, which captures the change in in-
put and output. In other words, δ measures the amount of
work needed to update the solution after some incremental
change. For example, an algorithm for the online topologi-
cal order problem will take as input < D, ord >, producing
<D, ord′ > as output. Thus, the size of the change in input
and output (i.e. |δ|) will be the number of vertices whose
priority has changed. Under this system, an algorithm is
described as bounded if its worse-case complexity can be ex-
pressed purely in terms of δ.

Ramalingam and Reps have also shown that any solution to
the online topological ordering problem cannot have a con-
stant competitive ratio [12]. This suggests that competitive
analysis may be unsatisfactory in comparing algorithms for
this problem.

In general, online algorithms for directed graphs have re-
ceived scant attention, of which the majority has focused on
shortest paths and transitive closure (see e.g. [16, 17, 18, 19,
20, 21]). Solutions to the latter all employ matrix multipli-
cation in one form or another and this causes problems when
dealing with large graphs. For undirected graphs, there has
been substantially more work and a survey of this area can
be found in [22].

The final area relating to work in this paper is that of ran-
dom graphs. The standard model of random graphs used in
the literature is G(n, p) [23]:

Definition 4. The model G(n, p) is a probability space
containing all graphs having a vertex set V = {1, 2, . . . , n}
and edge set E ⊆ {V × V }. Each possible edge exists with
a probability p independently of any others.

4. ONLINE TOPOLOGICAL ORDER
We now examine three algorithms for online maintenance
of a topological order: PK, MNR and AHRSZ. The first
being our contribution. Before doing this however, we must
examine in more detail the complexity parameter δ.

Definition 5. Let G = (V, E) be a directed graph and
ord a valid topological order. For an edge insertion x→ y,
the affected region is denoted ARxy and defined as {k ∈
V | ord(y) ≤ ord(k) ≤ ord(x)}.

Definition 6. Let G = (V, E) be a directed graph and ord
a valid topological order. For an edge insertion x→ y, the
complexity parameter δxy is defined as {k ∈ ARxy | y ;

k ∨ k;x}.

In what follows we use δxy where others have used δ, to
aid our presentation. Notice that δxy will be empty when x
and y are already correctly prioritised (i.e. when ord(x) <
ord(y)). We say that invalidating edge insertions are those
which cause |δxy| > 0. To understand how the definition
of δxy originates, we must consider which nodes need to be
reprioritised after an edge insertion. The idea of a minimal
cover, put forward by Alpern et al. [3] provides the answer.

Definition 7. For a directed graph G = (V, E) and an
invalidated topological order ord, the set K of vertices is a
cover if ∀x, y ∈ V.[x;y∧ ord(y)<ord(x)⇒ x ∈ K∨y ∈ K].

This states that, for any connected x and y which are in-
correctly prioritised, a cover K must include x or y or both.
We say that K is minimal if it is not larger than any valid
cover. Although we provide no proof, it is easy enough to see
that Kxy ⊆ δxy for any minimal cover Kxy after an insertion
x→y. Our reason then, for choosing δxy over minimal cover
as the complexity parameter arises from the simple fact that
it allows more useful bounds to be expressed on algorithms
MNR and PK. Also, we feel it relates more naturally to the
way all three algorithms operate.

4.1 The PK Algorithm
We now present our algorithm for maintaining the topologi-
cal order of a graph online. As we will see in the coming Sec-
tions, it is similar in design to MNR, but achieves a bounded
complexity result which MNR does not. For a DAG D, the
algorithm implements the topological ordering, ord, using
an array of size |V |, called the node-to-index map or n2i
for short. This maps each vertex to a unique integer, such
that for any edge x→ y in D, n2i[x] < n2i[y]. Thus, when
an invalidating edge insertion x→y is made, the algorithm
must update n2i to preserve the topological order property.
The key insight here is that we can do this by simply reor-
ganising nodes in δxy. That is, in the new ordering, n2i′,
nodes in δxy are repositioned so as ensure a valid topological
ordering, using only positions previously held by members of
δxy. All other nodes remain unaffected.



For example, consider the following situation, caused by an
invalidating edge x→y:

y a b c x

affected region

Here, nodes are laid out in topological order (i.e. increasing
in n2i value from left to right) with members of δxy shown.
As n2i is a total and contiguous ordering, the gaps must
contain nodes, which we omit to simplify the discussion.
The affected region contains all nodes (including those not
shown) between y and x. Now, we can obtain a correct
topological ordering by moving y, a, c up the order and x, b
down it, giving:

b x y a c

affected region

Let us partition the nodes of δxy into two sets: RF and RB .
The former contains y and those reachable from it, whilst
RB contains x and those reaching it. We can now make an
important observation:

Lemma 1. Assume D = (V, E) is a DAG and ord a valid
topological order. Let x → y be an invalidating edge in-
sertion, which does not introduce a cycle. If RF = {z ∈
ARxy | z=y ∨ y;z} and RB = {z ∈ ARxy | z=x ∨ z;x},
then no edge exists from any a∈RF to any b∈RB.

Proof. Suppose such an edge, a→b, existed. This would
make x reachable from y as, by definition of RF and RB , y
reaches a and b reaches x. Hence, the new edge x→y causes
a cycle, which is a contradiction.

Using this we can begin to understand how the algorithm
works: it first identifies RB and RF . Then, it pools the
indices occupied by their nodes and, starting with the lowest,
allocates increasing indices first to members of RB and then
RF . The key here is that the relative order of nodes in RB

is preserved and likewise for RF . So, in the above example,
RB = {b, x} and RF {y, a, c} and the algorithm proceeds by
allocating b to the lowest available index, like so:

affected region

b x a cy

? ? ? ? ?

after this, it will allocate x to the next lowest index, then y
and so on.

procedure add edge(x, y)
lb = n2i[y]; ub = n2i[x]; if lb < ub then

// Discovery
dfs-f(y); dfs-b(x);
// Reassignment
reorder();

procedure dfs-f(n)
mark n as visited;
RF ∪= {n};
forall n→w ∈ E do

if n2i[w] = ub then abort; //cycle
// is w unvisited and in affected region?
if w not visited ∧ n2i[w]<ub then dfs-f(w);

procedure dfs-b(n)
mark n as visited;
RB ∪= {n};
forall w→n ∈ E do

// is w unvisited and in affected region?
if w not visited ∧ lb<n2i[w] then dfs-b(w);

procedure reorder()
// sort sets to preserve original order of elements
sort(RB); sort(RF );
// load RB onto array L first
for i = 0 to |RB |−1 do

w = RB [i]; RB [i] = n2i[w];unmark w; push(w, L);
// now load RF onto array L
for i = 0 to |RF |−1 do

w = RF [i]; RF [i] = n2i[w];unmark w; push(w, L);
merge(RB , RF , R);
// allocate nodes in L starting from lowest
for i = 0 to |L|−1 do n2i[L[i]] = R[i];

Figure 2: The PK algorithm. The “sort” function

sorts an array such that x comes before y iff n2i[x] <
n2i[y]. “merge” combines two arrays into one whilst

maintaining sortedness. “dfs-b” is similar to “dfs-

f” except it traverses in the reverse direction, loads

into RB and compares against lb.

The algorithm is presented in Figure 2 and the following
summarises the two stages:

Discovery: The set δxy is identified using a forward depth-
first search from y and a backward depth-first search from x.
Nodes outside the affected region are not explored. Those
visited by the forward and backward search are placed into
RF and RB respectively. The total time required for this
stage is Θ(||δxy||).

Reassignment: The two sets are now sorted seperately
into increasing topological order (i.e. according to n2i),
which we assume takes Θ(|δxy|log |δxy|) time. We then load
RB into array L followed by RF . In addition, the pool of
available indices, R, is constructed by merging indices used
by elements of RB and RF together. Finally, we allocate by
giving index R[i] to node L[i]. This whole procedure takes
Θ(|δxy|log |δxy|) time.



Algorithm PK has time complexity Θ((|δxy|log |δxy|)+||δxy||).
This improves upon the existing bound of O(||δxy||log||δxy||)
obtained for AHRSZ [3]. Section 4.3 will examine the rea-
sons behind this improvement in more detail. Finally, we
provide the correctness proof:

Lemma 2. Assume D = (V, E) is a DAG and n2i an
array, mapping vertices to unique values in {0 . . . |V | − 1},
which is a valid topoligical order. If an edge insertion x→
y does not introduce a cycle, then algorithm PK obtains a
correct topolocial ordering.

Proof. Let n2i′ be the new ordering found by the al-
gorithm. To show this is a correct topological order we
must show, for any two vertices a, b where a → b, that
n2i′[a] < n2i′[b] holds. Let reaches(v) = {x | x = v ∨ v ;

x}. An important fact to remember is that the algorithm
only uses indices of those in δxy for allocation. Therefore,
z ∈ δxy ⇒ n2i[y] ≤n2i′[z]≤n2i[x]. There are seven cases
to consider:

Case 1: a ∈ reaches(x) ∧ n2i[a] > n2i[x]. Here neither
a or b have been moved as they lie outside affected region.
Thus, n2i[a] < n2i[b] ⇒ n2i′[a] < n2i′[b].

Case 2: a ∈ reaches(x) ∧ n2i[a] = n2i[x]. We know
x = a and n2i′[x] ≤ n2i[x] < n2i[b], as x had highest index
available to any in δxy. Also, b outside affected region, so
n2i′[b] = n2i[b].

Case 3: a∈ reaches(x) ∧ n2i[a]< n2i[x]. Here, a reach-
able from x only along x→y. Thus, a ∈ reaches(y) and so
a ∈ δxy. If b outside affected region then n2i′[a]≤ n2i[x] <
n2i[b] and n2i[b] = n2i′[b]. Otherwise, a, b ∈ RF and their
relative order is preserved in n2i′ by sorting.

Case 4: y∈ reaches(b) ∧ n2i[b]<n2i[y]. Similar to case
1 as a and b outside affected region.

Case 5: y ∈ reaches(b) ∧ n2i[b] = n2i[y]. We know,
y = b and n2i[a] < n2i[y] ≤ n2i′[y], as y had lowest index
available to any in δxy. Also, a outside affected region, so
n2i′[a]=n2i[a].

Case 6: y∈ reaches(b) ∧ n2i[b]>n2i[y]. Here, b reaches
y along x→ y. Hence, x ∈ reaches(b) and so b ∈ δxy. If
a outside affected region then n2i[a] < n2i[y] ≤ n2i′[b] and
n2i′[a] = n2i[a]. Otherwise, a, b ∈ RB and their relative
order is preserved in n2i′ by sorting.

Case 7: a /∈ reaches(x) ∧ y /∈ reaches(b). By Defini-
tion 6 a, b /∈ δxy and so, they are not repositioned. Thus,
n2i[a]<n2i[b] ⇒ n2i′[a]<n2i′[b].

4.2 The MNR Algorithm
The algorithm of Marchetti-Spaccamela et al. operates in a
similar way to PK by using a total ordering of vertices. This
time two arrays, n2i and i2n, of size |V | are used with n2i as
before. The second array i2n, is the reverse mapping of n2i,
such that i2n[n2i[x]] = x holds and its purpose is to bound
the cost of updating n2i. The difference from algorithm PK
is that only the set RF is identified, using a forward depth-
first search. Thus, for the example we used previously only
y, a, c would be visited:

procedure add edge(x, y)
lb = n2i[y]; ub = n2i[x]; if lb < ub then dfs(y);shift();

procedure dfs(n)
mark n as visited;
forall n→s ∈ E do

if n2i[s] = ub then abort; //cycle
// visit s if not already and is in affected region
if s not visited ∧ n2i[s]<ub then dfs(s);

procedure shift()
for i = lb to ub do

w = i2n[i]; // w is node at topological index i
if w marked visited then

// w reachable from y so will reposition after x
unmark w; push(w, L); shift=shift+1;

else allocate(w, i− shift);
//now place y and nodes reachable from it
for j = 0 to |L|−1 do

allocate(L[j], i−shift); i= i+1;

procedure allocate(n, i)
// place n at index i
n2i[n] = i; i2n[i] = n;

Figure 3: The MNR algorithm. This first marks

those nodes reachable from y in ARxy and then shifts

them to lie immediately after x in i2n.

y a c

affected region

b x

To obtain a correct ordering the algorithm shifts nodes in
RF up the order so that they hold the highest positions
within the affected region, like so:

cayxb

affected region

Notice that these nodes always end up alongside x and that,
unlike PK, each node in the affected region receives a new
position. We can see that this has achieved a similar effect
to PK as every node RB must have lower index than any in
RF .

For completeness, the algorithm is presented in Figure 3 and
the two stages are summarised in the following, which as-
sumes an invalidating insertion x→y:

Discovery: A depth-first search starting from y and lim-
ited to ARxy marks those visited. This requires O(||δxy||)
time.



Reassignment: Marked nodes are shifted up into the po-
sitions immediately after x in i2n, with n2i being updated
accordingly. This requires Θ(|ARxy|) time as each node be-
tween y and x in i2n is visited.

Thus we obtain, for the first time, the following complexity
result for algorithm MNR: O(||δxy|| + |ARxy|). This high-
lights an important difference in the expected behaviour be-
tween PK and MNR as the affected region (ARxy) can con-
tain many more nodes than δxy. Thus, we would expect
MNR to perform badly when this is so.

4.3 The AHRSZ Algorithm
The algorithm of Alpern et al. employs a special data struc-
ture, due to Dietz and Sleator [4], to implement a priority
space which permits new priorities to be created between ex-
isting ones in O(1) worse-case time. This highlights the main
difference between this and the other two, which use arrays
and integers to implement the priority space. The algorithm
operates in two stages with the first, like PK, consisting of
a forward and backward search. This time, however, it is
the minimal cover Kxy (recall Definition 7) which is being
identified and not δxy in full.

We now examine each stage in detail, assuming an invali-
dating edge insertion x→y:

Discovery: The set of nodes to be reprioritised is deter-
mined by simultaneously searching forward from y and back-
ward from x. During this, nodes queued for visitation by
the forward (backward) search are said to be on the forward
(backward) frontier. At each step the algorithm extends
the frontiers toward each other. The forward (backward)
frontier is extending by visiting a member with the lowest
(largest) priority. The following diagrams aim to clarify this:

y a xb c

backward
frontier

forward
frontier

ed

In the above, members of the forward/backward frontiers
are marked with a dot. Initially, each frontier consists of a
single starting node, determined by the invalidating edge.
The algorithm proceeds by extending each frontier:

y a xb c

backward
frontier

forward
frontier

ed

Here we see that, for example, the forward frontier has been
extended by visiting y and this results in a, e being added

and y removed. In the next step, a will be visited as it
has the lowest priority of any on the frontier. Likewise, the
backward frontier will be extended next time by visiting b as
it has the largest priority. Thus, we see that the two frontiers
are moving toward each other and, indeed, the search stops
when they “meet” — when each node on the forward frontier
has a priority greater than any on the backward frontier. An
interesting point here is that the frontiers may meet before
RB and RF have been fully identified. Thus, the discovery
stage may identify fewer nodes than that of algorithm PK.
Also, it is important to realise that AHRSZ has no notion
of the affected region and, thus, can place nodes outside it
onto a frontier. However, such nodes are never visited.

The worse-case scenario is when all members of δxy are vis-
ited. Thus, we get an O(||δxy||log ||δxy||) bound on discov-
ery. The log factor arises from the use of priority queues to
implement the frontiers, which we assume are heaps.

Reassignment: The reassignment process also operates in
two stages. The first is a depth-first search of those visited
during discovery and computes a ceiling on the new priority
for each node, where:

ceiling(x) = min({ord(y) | y /∈DA ∧ x→y} ∪
{ceiling(y) | y∈DA ∧ x→y} ∪ {+∞})

In a similar fashion, the second stage of reassignment com-
putes the floor:

floor(y) = max({ord′(x) | x→y} ∪ {−∞})

Note that, ord′(x) is the topological ordering being gener-
ated. Once the floor has been computed the algorithm as-
signs a new priority, ord′(k), such that floor(k) < ord′(k) <
ceiling(k). An O(|δxy|log |δxy|+|E(δxy)|) bound on the time
complexity of reassignment is obtained. Again, the log fac-
tor arises from the use of a priority queue. The bound is
slightly better than for discovery as only nodes in DA are
placed onto this queue.

The discovery stage dominates the time complexity, giving
an overall bound of O(||δxy||log ||δxy||) for AHRSZ [3, 12].

4.4 How PK wins
We can now see that the difference between the complexity
of PK and AHRSZ arises from the use of priority queues in
the latter to implement the frontiers. In contrast, algorithm
PK sorts the visited nodes once discovery is complete. How-
ever, it seems reasonable to conclude that AHRSZ could be
modified to achieve the improved bound by, firstly, ensuring
nodes outside the affected region are never placed onto a
frontier. Secondly, by providing a constant time check for
frontier membership.

5. EXPERIMENTAL STUDY
To experimentally compare the three algorithms, we mea-
sured their performance over a large number of randomly
generated DAGs. We have investigated how insertion cost
varies with |V |, |E| and batch size. The latter relates to
the processing of mutiple edges together. Although none of



the algorithms we discuss offer any advantage from process-
ing multiple edges at once, the standard offline topological
sort does, and it is interesting to consider when it becomes
economical to use. Our procedure was to construct a ran-
dom DAG, with a given number of vertices and outdegree,
and measure the time taken to insert 5000 edges. This was
repeated 50 times and the average taken to form a data
point. Note, non-invalidating edges were included in our
measurements. To generate a random DAG, we select from
the probability space Gdag(n, p), a variation on G(n, p):

Definition 8. The model Gdag(n, p) is a probability space
containing all graphs having a vertex set V = {1, 2, . . . , n}
and an edge set E ⊆ {(i, j) | i < j}. Each edge of such a
graph exists with a probability p independently of others.

For a DAG in Gdag(n, p), we know that there are at most
n(n−1)

2
possible edges. Thus, we can select uniformly by

enumerating each edge and inserting with probability p.

The data, presented in Figures 4, 5 and 6, was generated on
a 900Mhz Athlon based machine with 1GB of main memory,
running Redhat 8.0. The executables were compiled using
gcc 3.2, with optimisation level “-O2”. Timing was per-
formed using the gettimeofday function. The implementa-
tion itself was in C++ and took the form of an extension
to the Boost Graph Library [24]. The source code is avail-
able online at http://www.doc.ic.ac.uk/~djp1/projects/
oto-test. Our implementation of AHRSZ employs the O(1)
amortised (not O(1) worse-case) time structure of Dietz and
Sleator [4]. This seems reasonable as they themselves state
it likely to be more efficient in practice.

5.1 Discussion
The clearest observation from Figures 4 and 5 is that algo-
rithms PK and AHRSZ have similar behaviour, while MNR
is quite different. From the examination in Section 4, this
was expected as it reflects their complexity bounds. Fur-
thermore, we know that AHRSZ is more complicated than
PK and thus, the slight difference between them should be
no surprise.

Figure 4: These graphs show the effect of changing |V |,
while maintaining constant outdegree. Looking at the left-
most graphs, we observe an initial gradient for PK and
AHRSZ, which quickly tails off. For MNR we see at small
|V | it performs well, but in general exhibits linear behaviour.
The rightmost graphs measure average size of δxy and ARxy.
They indicate that ARxy has linear complexity in |V |, while
δxy does not, and show a strong resemblence with the run-
time behaviour of the three algorithms. The curve for δxy

is perhaps the most interesting feature of these graphs, al-
though we cannot explain it.

Figure 5: These graphs show the effect of varying outde-
gree. For PK and AHRSZ we see an initial gradient which
eventually levels off, while we note that MNR is worst (best)
overall for sparse (dense) graphs. The two graphs on the
right go someway toward explaining this behaviour. They
show that, at some point, ||δxy|| begins to dominates over
|ARxy|. Thus, the behaviour of MNR is governed initially
by |ARxy| and then by |δxy|. However, it achieves a speedup

procedure dfs(n) // new edge is x→y
mark n as visited;
forall n→s ∈ E do

// visit s if not already and is in affected region
if s not visited ∧ n2i[s]<ub then dfs(s);
// back propagate in comp information
in component(n) = in component(n)∨ in component(s);

Figure 7: Illustrating how the depth-first search

from Figure 3 can be extended to back propagate

in component information.

over PK because it only performs one depth-first search in-
stead of two.

There are two other interesting features of this data. Firstly,
we see that |ARxy| goes down as outdegree increases. We
suspect that this can be explained by considering that, as
|E| increases, the graphs are becoming more ordered. Thus,
the number of distinct chains is decreasing and, hence, the
number of invalidating edges within the same chain is in-
creasing. The other interesting aspect of the data is that we
observe both a positive and negative gradient for |δxy|. This
is expected as the average number of nodes reachable from
any will increase with |E|. Thus, we would expect |δxy| to
increase accordingly. However, |δxy| is also governed by the
size of the affected region. Thus, as |ARxy| has a negative
gradient we must eventually expect δxy to do so as well.
Certainly, when |ARxy| ≈ |δxy|, this must be the case. In
fact, the data indicates that the downturn happens someway
before this. However, although |δxy| decreases, the increas-
ing number of edges appears to counterbalance this, as we
observe that ||δxy|| does not exhibit a negative gradient.

Figure 6: These graphs compare an offline topological sort
(implemented using the depth-first search approach) to those
we are studying. They show a significant advantage is to be
gained from using the online algorithms when the batch size
is small. Indeed, the data suggests that the online algo-
rithms compare favourably even for large batch sizes. It is
important to realise here that the online algorithms can only
process one edge at a time. Thus, their graphs are flat as
they cannot obtain an advantage from processing edges in
batches.

6. ONLINE STRONG COMPONENTS
In this section we show how algorithms PK and MNR can be
extended to the problem of incrementally detecting strongly
connected components. In both cases, the approach is very
similar and based upon a simple observation: if a new edge
x → y introduces a cycle then x must be visited during a
forward depth-first search from y.

Thus, it is easy enough to tell whether a cycle has been
created during the discovery stage of each algorithm. The
question is, how can we identify the members of that cy-
cle? By definition, any node z on a path from y to x
must be in the cycle and any other node is not. There-
fore, we maintain an extra bit of storage for each node,
referred to as in component. Initially, this is false for all
nodes and, before starting the forward search from y, we
set in component(x) = true. The idea now is to back-
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Figure 4: Experimental data on random graphs with varying —V—.
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Figure 5: Experimental data for fixed sized graphs with varying outdegree.
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Figure 6: Experimental data for varying batch sizes comparing the three algorithms against a DFS based

offline topological sort

propagate in component information along edges traversed
by the depth-first search. Figure 7 details how this can be
done for the discovery stage of MNR. The extension to PK
is much the same, although care must be taken to reset the
visited flag for any nodes reached in dfs-f before moving
onto dfs-b as all predecessors of nodes in the component
must be found.

Once a cycle C has been detected we collapse all its nodes
into one. Thus, all members of C are now represented by a
single node in the ordering and we are effectively maintain-
ing the topological order of the condensation graph.

7. CONCLUSION
We have presented a new algorithm for maintaining the
topological order of a graph online, provided a complexity
analysis, correctness proof and shown it performs better, for
sparse graphs, than any previously known. Furthermore, we
have provided the first empirical comparison of algorithms
for this problem over a large number of randomly generated
acyclic graphs. For the future, we are interested in investi-
gating variants on these algorithms, which offer better per-
formance for batch updates. We also consider a hybrid of
MNR and PK and one of AHRSZ and MNR to be interest-
ing ideas. Also, we are aware that the properties of random
graphs may not reflect real life structures and, thus, addi-
tional data on graphs found in practice would be of benefit.
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