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ABSTRACT
The relationships between objects in object-oriented programs are
as important as the objects themselves. Unfortunately, most object-
oriented programming languages provide little support forsuch re-
lationships, leaving the task of implementing them entirely to the
programmer. Relationships are typically hard-coded into the partic-
ipating classes, resulting in tangled code that unnecessarily couples
these classes together. The classes become harder to understand
and cannot be reused independently. Aspect-oriented programs can
model relationships explicitly, treating them as separateconcerns
that cross-cut their participants. We show how relationships can be
implemented as a library of aspects in Aspect/J. Aspects keep re-
lationships independent of their participants, making theresulting
programs easier to read, write and reuse, and as efficient as hand-
written code.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.2.11 [Software Engineering]: Software Architectures—
Languages

General Terms
Design, Languages

Keywords
Relationships, Associations, Aspect-Oriented Programming

1. INTRODUCTION
As John Donne once famously said: “no man is an island, entire
of itself”. The same situation exists in our programs — no ob-
ject stands alone. Indeed, without relationships, most objects are
meaningless: what use is a button widget if it cannot be placed into
a window for display? or a student which cannot be enrolled in
a course? or an album without any tracks? For this reason, rela-
tionships are as important as objects in most object-oriented anal-
ysis and design methodologies: class or instance diagrams show
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not only objects (or their defining classes), but also, crucially, the
relationships or associations between them, as well as specific at-
tributes of those relationships (e.g. that one window may contain
manybutton widgets; that disposing of the window also disposes
of its widgets and so on).

Modern object-oriented languages, however, carry relatively few
of these relationships through from design into implementation.
The exception that proves the rule is, of course, inheritance in its
various forms — that one class is a specialisation (or subtype) of
another or that it conforms to some interface. Support for this rela-
tionship is one of the defining features of the OO paradigm [40].
And yet, more mundane relationships — windows and widgets,
dungeons and dragons, students and courses, products and sales,
transactions and accounts — do not have this kind of direct sup-
port. Rather, their implementations are hand-crafted and smeared
across the objects which participate in those relationships. Most
OO languages do provide some support here, in the form of collec-
tion libraries, but this is fairly rudimentary. For example, a window
might have avector of widgets where each widget has a pointer
to the window. The code necessary to maintain this relationship
must ensure that adding a widget to a window updates the link —
but this is outside the scope of an individual collection class and,
hence, must be managed explicitly by the programmer.

In this paper, we tackle these problems by modelling relation-
ships as separable, cross-cutting concerns. The definitionof a re-
lationship, its attributes, and the code required to implement it are
moved out of the participating classes and into a separaterelation-
ship aspect. In this way, we increase the clarity and cohesion of
each participating class, since it now focuses solely on theobjects
it is modelling, rather than their relationships with otherobjects.
The implementation of the relationship can be improved, removed,
or replaced, without affecting the participating classes.Further-
more, the program’s coupling is reduced because, although the re-
lationship may be coupled to participants, they themselvesare not
coupled to the relationship. This allows them to be reused without
necessarily bringing along the implementation of the relationship
and, in particular, all the other participating classes.

This paper makes the following contributions:

• We demonstrate that Aspect/J can be used to model relation-
ships explicitly, separating them from their participating ob-
jects.

• We present an extensible implementation of relationship as-
pects, called theRelationship Aspect Library (RAL), that pro-
vides a diverse, interchangeable, range of relationships using
only features found in Java and Aspect/J.

• We provide preliminary performance data showing the Rela-
tionship Aspect Library is as efficient as hand-crafted code.



2. RELATIONSHIPS
Figure 1 shows the almost generic diagram of students attending
courses. Versions of this diagram are found in many publications
on relationships [2, 4, 28, 9]. Many students attend many courses;
Courses have a course code, a title string and a teacher; students
have numbers and (reluctantly, at least at our university’sregistry)
names. Such relationships (also known asassociationsin UML)
can be viewed as sets of pairs〈X, Y 〉 where〈Joe,COMP205〉 ∈
Attendsif Joeattends the courseCOMP205[33]. Here,Joeand
COMP205are said to beparticipantsin the relationship.

Figure 2 shows skeleton implementations of the student and course
classes in standard object-oriented style. At the top of each class
are the easy and obvious declarations for attributes (and signatures
for methods) that provide the central functionality for each class.
These are relatively simple, storing the key attributes anddoing
basic calculations. At the bottom of each declaration we findvar-
ious pieces of code for explicitly representing and maintaining the
relationships between these classes. This includes, for example,
data structures to record which student is attending which course
(and vice versa), as well as code for enrolling and withdrawing stu-
dents, whilst ensuring that all data structures remain consistent and
correct. But, consider the UML in Figure 1 again: we have three
classes, each with a few attributes, and simple straightforward re-
lationships between them. While the classes and attributestrans-
fer directly into our object-oriented language, the relationships do
not. Instead, their implementation is spread across the participating
classes which are more distant from the original UML as a result.
Clearly, there is some asymmetry here.

An inherent problem with the implementation of Figure 2 is
that the participating classes are infected with code and data struc-
tures implementing the relationships. The classes are muchlarger,
less cohesive, and more complex than they otherwise need to be.
Care is needed to ensure both participants keep the relationship
consistent (indeed, the code in Figure 2 contains such a mistake
in withdraw ). Changing any details of the relationship (such
as storingattends information only inCourse ) necessitates
changes in both participants. Nor does this approach scale well,
as larger systems will see classes participating in more relation-
ships. For example, students could be related to billing, alumni,
clubs membership, campus housing, transport concessions —all of
them further increasing the complexity ofStudent . The presence
of relationship code inStudent andCourse reduces the possi-
bility of their reuse. Perhaps we have a curriculum system detailing
courses and their prerequisites. Such a system does not careabout
which students are enrolled in which courses. To reuseCourse
in this system as it is implemented in Figure 2 necessarily means
includingStudent (even if not used) and allowing students to be
enrolled (which does not make sense in that application).

2.1 Relationship Aspects
To address these issues, we model relationships explicitlyas as-
pects, calledRelationship Aspects. Aspects are a natural fit for
modelling relationships. Conceptually, relationships are not classes,
rather they are separate concerns that crosscut several participating
classes. Pragmatically, relationship implementations often crosscut
their participating classes’ code, as illustrated in Figure 2, although
they can also be implemented as an additional class (e.g. using a
separateHashMap). The difference between these two approaches
is really an implementation detail — a trade-off for performance
over storage, as introducing fields gives faster lookup, butrequires
space in all instances of the class. Relationship aspects abstract
away these details, ensuring code belonging to the relationship is
always centralised, regardless of what implementation is chosen.

*

*
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Course

Code
Title
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Workload
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Name
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*

Name
Number

Student
**Attends*

Amount Teaches

Figure 1: A simple UML diagram, describing students that at-
tend courses.

class Student {
String name;
Integer number;
HashSet<Course> attends;

int totalWorkload() {
int total = 0;
for(Course c : attends) {

total = total + c.workload;
}
return total;

}}

class Course {
String code;
String title;
int workload;

HashSet<Student> attendees;
HashSet<Course> prerequisites;
HashMap<Faculty,Amount> teacher;

void enrol(Student s) {
if(s.totalWorkload() < 40) {

attendees.add(s);
s.attends.add(this);

}}
void withdraw(Student s) {

attendees.remove(s);
}}

Figure 2: A typical implementation of Fig. 1. Protection speci-
fiers on fields and accessor methods are omitted for simplicity.

Course comp205 = new Course(...);
Student Joe = new Student(...);

comp205.enrol(Joe);
for(Student x : comp205.attendees) {

System.out.println(x + " is enrolled"); }

Figure 3: Illustrating how the implementation of Figure 2
might be used.



class Student {
String name;
Integer number;

}
class Course {

String code;
String title;
int workload;

}

aspect Attends extends
SimpleStaticRel<Student,Course> {

int totalWorkload(Student s) {
int total = 0;
for(Course c : from(s)) {

total = total + c.workload;
}
return total;

}
void add(Student s, Course c) {

if(totalWorkload(s) < 40) super.add(s,c);
}}

aspect Teaches extends
StaticRel<Course,Faculty,Amount>{}

aspect Prerequisites extends
SimpleStaticReflexiveRel<Course>{}

Figure 4: Implementation of Figure 1 with relationship aspects.
Again, protection specifiers are omitted for simplicity.

Course comp205 = new Course(...);
Student Joe = new Student(...);

Attends.aspectOf().add(Joe,comp205);
for(Student x : Attends.to(comp205))

System.out.println(x + " is enrolled");

Figure 5: Illustrating how the implementation of Figure 4
might be used.

Relationship aspects provide a uniform interface for manipulating
the relationship (navigating, adding and removing participants) al-
lowing relationship implementations to be interchanged without af-
fecting client code.

Figures 4 and 5 show the basic idea. First, the extraneous code
and data structures required to implement the relationships are re-
moved fromStudent andCourse — thus, these classes corre-
spond more closely to the UML design. Then, we introduce three
relationship aspects which correspond directly to the three relation-
shipsAttends, PrerequisitesandTeachesin the design of Figure 1.

Attends is declared as a simple, static relationship from stu-
dents to courses. This is a many-to-many relationship, where a
student can be enrolled at most once in any given course. The dec-
laration extends agenericAspect/J aspect (SimpleStaticRel )
from our library, supplyingStudent andCourse for its generic
parameters. Because this aspect implements a “static” relationship,
fields and methods implementing the relationship will be embed-
ded directly into theStudent andCourse classes, resulting in
something almost identical to the hand-coded version of Figure 2

(see section 3 for details). The operations for enrolling, withdraw-
ing and so on have been replaced by standard methods for manipu-
lating relationships, such asadd() andremove() , provided by
the relationship aspect. Access to the relationship is viafrom()
andto() methods, wherefrom(x) returns the set ofCourse s
attended byx . Likewise, the set ofStudent s enrolled iny is
obtainable withto(y) .

We can immediately see from Figure 4 that the advantages of re-
lationship aspects lie in separating out the relationship concerns. In
the original implementation of Figure 2,Student andCourse
were tightly coupled — one always needed the other. In the re-
lationship aspect implementation, however, this is not thecase —
Student andCourse are independent. Thus, they can be reused
without modification in other applications whereAttendsdoes not
make sense. The code for checking a student is eligible to enrol
is now in one place, rather than being spread out over the partic-
ipants. This makes the program clearer, as this code is relevant
only to the relationship, rather than any of the participants. This
design is also more flexible as relationships can be added, removed
or replaced (by extending different relationship aspects)with ease.
Perhaps we need to change theAttendsrelationship to be imple-
mented using aHashMap, to allow efficient enumeration of all
〈Student, Course〉 pairs (e.g. for printing). Making this change to
the object-oriented implementation in Figure 2 is quite substantial
— code from bothStudent andCourse must be removed and
engineered into a new class; worse still, we could try and retrofit
the new requirements around the existing code (perhaps by using
more complex data structures inCourse andStudent ) leading
to more tangling of code and coupling to this specific application.
With relationship aspects, this change is trivial: we simply change
Attends to inherit fromSimpleHashRel and we are done.

The Teaches relationship aspect in Figure 4 is implemented
as a static relationship (StaticRel ). This differs from asimple
relationship in that a third type parameter specifies the class used
to represent pairs of objects — and so individual pairs can beob-
jects in their own right. In the example,Amount is a pair which,
in addition to storing a course and faculty member, stores a value
representing the amount of the course taught by the faculty mem-
ber. In UML terminology, this corresponds to anassociation class.
The final relationship declared in Figure 4 isPrerequisites. This
is a reflexiverelationship, meaning it connects objects of the same
type. As we will see, reflexive relationships also permit a richer set
of operations, compared with standard relationships.

In proposing relationship aspects, we are arguing that bothre-
lationships and classes should be represented explicitly,and sep-
arately, in a program’s text. This philosophy is fundamental to
the idea of relationship aspects and, we believe, promotes amore
reusable, flexible and simpler approach to design and to program-
ming. Of course, one might argue that this is simply a case of over
engineering — where time is wasted building in support for future
changes that never happen. Code using relationship aspectsis sim-
pler than code that implements relationships manually, however, so
using relationship aspects from the outset should come at noaddi-
tional programming cost, whilst still providing greater flexibility.

2.2 Dynamic Relationships
Some relationships do not exist for the entire life of the program.
Consider again the prerequisites relationship. This describes a graph
structure which is applicable to a large number of graph algorithms,
such as depth-first search and transitive closure. We can imagine
transitively closing the prerequisite graph to determine the com-
plete set of dependencies for each course. This might be doneeach
year to ensure a given degree can be completed in three years.Once



this check has been made, however, the transitive closure relation-
ship can be discarded. Unfortunately, using a static relationship to
implement the transitive closure would add fields to theCourse
class. Every course object would contain those fields, consuming
storage even when the relationship is not being used.

To support these situations, our library includesdynamicrela-
tionship aspects. While static relationship aspects represent rela-
tionships that are fixed (as typically intended in UML class dia-
grams), dynamic relationship aspects can be created by the pro-
grammer as and when required. For example, we can create a dy-
namic relationship (perhaps implemented by an external hash ta-
ble), use it to calculate the transitive closure, and dispose of it when
we are done.

3. RELATIONSHIP ASPECT LIBRARY
We have designed and implemented theRelationship Aspect Li-
brary (RAL) to allow programmers to use relationships aspects.
The relationship aspect library contains static and dynamic imple-
mentations for a range of relationships. The library is significant
because it successfully abstracts quite different implementations
using only features present in Java and Aspect/J. In this section,
we explore the design of the library focusing particularly on the re-
lationship interface provided by RAL, and the way both static and
dynamic relationships can implement this interface. The library it-
self is available for downloading under an open source license from
http://www.mcs.vuw.ac.nz/˜djp/RAL/ .

3.1 Relationships
The key concept in the library is theRelationshipinterface, which
provides the following main features:

interface Relationship<FROM,TO,
P extends Pair<FROM,TO>> {

public void add(P);
public void remove(P);
public Set<P> toPairs(TO t);
public Set<P> fromPairs(FROM f);
public Set<FROM> to(TO t);
public Set<TO> from(FROM f);
...

}

This interface represents a relationship as a set of pairs〈FROM, TO〉,
such that two objectsf andt are related if〈f, t〉 is in the set. The
type parametersFROMandTO dictate the permissible types off

and t. The third type parameter,P, determines the actual type of
the individual associations, and must extendPair<FROM,TO> :

interface Pair<FROM,TO> {
public FROM from();
public TO to();

}

The advantage of this third type parameterP is that it allows us to
treat individual pairs as objects, allowing them to model UML-style
association classes. Programmers can add state and behaviour to
their ownPair subclasses, benefiting from inheritance and poly-
morphism. For example, to store additional information within the
associations (such asAmount in Figure 1) we implement a spe-
cialisedPair class which includes this information.

Many relationships (such asAttendsin Figure 1) do not need
this extra behaviour. We call thesesimplerelationships, and pro-
vide aSimpleRelationship interface that does not require an

explicit Pair type parameter (we abbreviateFROMandTOwith F
andT for space reasons):

interface SimpleRelationship<F,T>
extends Relationship<F,T,FixedPair<F,T>> {

public boolean add(F f, T t);
public boolean remove(F f, T t);

}

For simple relationships, pairs are instances ofFixedPair , which
is a final class containing just twofinal fields holding the
FROMandTOreferences (hence, its instances are guaranteed to be
immutable). This frees simple relationship implementations from
the burden of having to store pairs explicitly — although they must
still be generated when eithertoPairs() or fromPairs() are
called. Thus, simple relationships benefit from leaving thePair
implementation up to the particular underlying relationship aspect.
For general relationships with user-defined pairs, this is not possi-
ble as we expect to get back the actual pair object put in.

Relationships arebidirectional. Given aFROMinstancef , we
can get theTO instances it is associated with throughfrom(f) .
Likewise, given aTO instancet, we get itsFROMinstances via
to(t) . Thus, from() enablesforward traversal, whileto()
givesbackwardtraversal. In a similar way,fromPairs(f) and
toPairs(t) return thePair objects matching〈f, ∗〉 and〈∗, t〉
respectively.

3.2 Static Relationships
A static relationship allows the programmer to indicate therela-
tionship will persist for the duration of the program. The idea is
that this information can be exploited to obtain a more efficient im-
plementation. The library provides a range of static relationship
aspects. Programmers can then implement a relationship which
cross-cuts the participants simply by extending a library aspect,
such asStaticRel<FROM,TO,P> , rather than modifying the
participants by hand. We employ Aspect/J’sinter-type declara-
tions to implement the static relationship aspects. The other main
features of Aspect/J (i.e. pointcuts / advice) are not needed for the
implementation. The basic static relationship aspect is defined as:

aspect StaticRel<F,T,P extends Pair<F,T>>
implements Relationship<F,T,P> {

interface Fwd<X> {}
interface Bwd<X> {}
declare parents : F implements Fwd<P>;
declare parents : T implements Bwd<P>;
HashSet<X> Fwd.fwd = new HashSet<X>();
HashSet<X> Bwd.bwd = new HashSet<X>();

public void add(P t) {
t.from().fwd.add(t);
t.to().bwd.add(t);

}
...

}

StaticRel is a generic aspect whose type parameters match those
of theRelationship interface. Thedeclares syntax is used
to modify the actual types ofF andT to implement theFwd<P>
andBwd<P> interfaces respectively. Then, a fieldfwd is defined
for Fwd<P>, which has the effect of definingfwd for every class
that implementsFwd<P> (i.e. the class participating in theFROM
position of the relationship). A similar situation holds for bwd and



Bwd<P>. An interesting question is what its means to define a
field for some class. In the current Aspect/J compiler (i.e.ajc ),
it means the field is physically inserted into the class. Thus, we
see how extendingStaticRel gives some almost identical to a
hand-coded implementation where fields are placed directlyinto
the participants (such asattends andattendees from Figure
2). However, it is important to realise the semantics of Aspect/J do
not dictate that fields must be physically inserted and, in some en-
vironments, this may differ. Nevertheless, we assume the most effi-
cient implementation available for permanently associating a field
with a class will be chosen and this corresponds with the ideaof a
static relationship.

An important point to understand here is that generic aspects
in Aspect/J are semantically different from generic classes in Java
where type parameters are purely syntactic (due to erasure). This
is because the actual values supplied for type parameters determine
the effect that extending a generic aspect has. Consider thefollow-
ing:

aspect X extends StaticRel<A,B,P> {};
aspect Y extends StaticRel<B,C,P> {};

The concrete aspectX results in fieldsFwd.fwd and Bwd.bwd
being defined for classesA andB respectively. Likewise,Y results
in Fwd.fwd andBwd.bwd being defined forB andC. Thus, the
effect of extendingStaticRel depends very much on the actual
type parameters supplied.

While multiple concreteStaticRel s (such asX andY above)
can coexist in the same program, an issue arises when they share
the sameFROMor TO type. This is because both aspects define a
Fwd.fwd (resp.Bwd.bwd ) field on the same class. In the current
Aspect/J implementation (ajc ), this results in a collision. We be-
lieve such fields should be distinguished according to the concrete
aspect they are instantiated within. Indeed, there are manyexam-
ples where this behaviour would be valuable, such as the parent-
child relationship [1] and the subject-observer pattern [13, 16]. As
a workaround, the library provides several copies ofStaticRel ,
namedStaticRelX for X ≥ 1. Thus, when two static relation-
ships share either theFROMor TO position, the situation can be
resolved by extending one of these alternative (but otherwise iden-
tical) implementations.

Finally, in practice the inter-type declarations forFwd.fwd and
Bwd.bwd are markedprivate — meaning these fields are vis-
ible only to code within the aspect itself. This ensures proper en-
capsulation by preventing other code from relying on the presence
of these fields.

3.3 Dynamic Relationships
Dynamic relationship aspects have fairly straightforwardimple-
mentations. A good example isHashRel :

class HashRel<F,T,P extends Pair<F,T>>
implements Relationship<FROM,TO,P> {

private HashMap<F,HashSet<P>> fwd;
private HashMap<T,HashSet<P>> bwd;
...

}

Thus we see that, contrasting withStaticRel , this implemen-
tation is completely dynamic — neither participants are actually
modified (i.e. have fields defined on them) and, instead, the rela-
tionship is implemented using twoHashMaps for efficient bidi-
rectional access. This means the relationship can be created as

// --- polymorphic method ---

void printFrom(Student s,
SimpleRelationship<Student,Course> r) {

for(Course c : r.from(s)) {
System.out.println(s + " attends " + c);

}}

// --- client code ---

aspect Attends extends
SimpleStaticRel<Student,Course> { }

SimpleRelationship<Student,Course> a =
Attends.aspectOf();

SimpleRelationship<Student,Course> b =
new SimpleHashRel<Student,Course>();

Student joe = new Student(...);
Course comp205 = new Course(...);

a.add(joe,comp205);
b.add(joe,comp205);
printFrom(joe,a);
printFrom(joe,b);

Figure 6: Static and dynamic relationships can be used inter-
changeably.

necessary and discarded when no longer needed. Note, the imple-
mentation of our dynamic relationship aspects do not use Aspect/J
constructs at all. Nevertheless, we regard them as aspects since they
replace code which might otherwise be tangled in the participants.

3.4 Relationship Polymorphism
The ability to use dynamic and static relationships polymorphi-
cally is an important advantage of our design. Figure 6 illustrates
the idea, showing both a static and dynamic relationship being
passed to a method that is unaware of the differences in theirim-
plementation. A key point is that a static relationship provides a
Relationship object through which it can be accessed. This
is a singleton object, which makes sense as it corresponds toa
static compile-time relationship. Notice that we exploit the fact
that Aspect/J implements aspects as singletons (in the normal case,
at least), providing access to their instances viaaspectOf() . Of
course, all this comes at some cost to efficiency as, insideprint() ,
the fields inserted intoStudent to implementAttends must be
accessed indirectly via the singleton object (although sufficient type
information is present that these accesses can be inlined byan op-
timising VM).

With hand-coded implementations, this kind of polymorphism
is much harder to achieve as the relationship code is spread across
— and tightly coupled with — the participants. Considering again
the example in Figure 2 it is quite hard to see how a single method
could print both the hardcoded relationship and an externalcollec-
tion without significant extra work.

3.5 Specialised Relationships
The relationship aspect library contains a number of different types
of relationship. This is important so that it can offer a realistic al-



ternative to hand-coded relationship implementations, since it must
be able to describe many of the diverse types of relationshipused
in practice. Figure 7 gives an overview of the main interfaces in
the library. A curious point is thatRelationship is not the
root of this hierarchy! This reflects the fact that, while we believe
Relationship captures the most fundamental concept, it is by
no means the simplest.

Figure 7 shows the structure of the key interfaces in the library.
The library provides a range of implementations for these, support-
ing both dynamic (e.g.ReflexiveHashRel ) and static (e.g.
ReflexiveStaticRel ) relationships. Compared to the basic
relationship implementations (StaticRel andHashRel ), these
interfaces either provide more functionality or enforce more con-
straints. For example, implementations ofOneToManyRelat-
ionship enforce the invariant that eachTOparticipant has at most
one FROMparticipant and raises an exception if this invariant is
broken. In the same way, implementations ofUndirectedRe-
lationship represent individual relationships internally in such
a way as there is no difference between〈x, y〉 and〈y, x〉.

A uni(directional) relationship represents a relationship which
can be traversed only in one direction. This corresponds to aunidi-
rectionalassociation in UML and represents a common structure in
programs, where only one of the participants has a referenceto the
other. We can think of this as providing a space optimisationin the
case that only one direction of traversal is required. Thus,it differs
from Relationship only in that neitherto() nor toPairs()
are necessary.

A multi-relationship may contain identical pairs, meaning it de-
scribes abagof pairs rather than a set. This would correspond, in
our Student-Course example, to allowing Joe to enrol in COMP205
more than once (presumably to allow him to attempt to sit the
exam twice). A multi-relationship implementation can be more ef-
ficient that a (set) relationship, because it can store pairsusing a
simpler and more efficient container (such asArrayList , rather
thanHashSet ). If we know that adding identical pairs can never
happen in our program (for whatever reason), choosing a multi-
relationship implementation can be more efficient. Observethat
Attends would correspond to a multi-relationship in Figure 2, if
it was implemented using anArrayList , rather than aHashSet .

A reflexive relationship represents the case whereFROM=TO.
That is, where the association goes between objects of the same
type (as forPrerequisites in Figure 1). Thus, reflexive rela-
tionships correspond to reflexive associations in UML. Thiscase
is special because it can describe complex structures such as trees
and graphs which permit a richer variety of operations. Reflex-
ive relationships can be traversed using depth-first or breadth-first
search and are amenable to a large variety of graph algorithms (such
as transitive closure, shortest-paths, cycle detection etc). A sub-
tle point is that reflexive relationships are directed,not undirected.
This may seem strange, since reflexive relationships provide bidi-
rectional access viafrom() andto() . However, it is important
to realise that, given a reflexive relationship over some type T and
two instancesx andy of T , we can still have two distinct tuples
〈x, y〉 (wherex is theFROMpart) and〈y, x〉 (wherey is theFROM
part).

In the sense that reflexive relationships describedirectedgraphs,
undirected relationships describeundirectedgraphs. Thus, the
distinction between the pairs〈x, y〉 and〈y, x〉 is lost, meaning that
if 〈y, x〉 is present then, by definition, so is〈x, y〉. This raises
the question as to whether an undirected relationship is a reflexive
relationship or vice versa. Certainly, any undirected relationship
can be represented as a reflexive relationship, while the converse
is not true — a reflexive relationship containing just〈x, y〉 is not

UniMultiRelationship

TreeRelationshipUndirectedRelationship

Relationship

MultiRelationshipUniRelationship

ReflexiveRelationshipOneToManyRelationship

Figure 7: An overview of the interface hierarchy for the Re-
lationship Aspect Library. Since these correspond to Java in-
terfaces, rather than classes, multiple inheritance is permitted.
To simplify the diagram, a some inheritance relationships have
been left out. For example, a tree relationshipis-a one-to-many
relationship.

undirected since〈y, x〉 is missing. The difficulty is that a method
expecting a reflexive relationship may be surprised when adding
〈x, y〉 automatically adds〈y, x〉 as well!

A one-to-many relationshipcorresponds to a relationship where
each participant has at most one parent. Thus, in UML terminology
it is a 〈0..1〉←→∗ association. In the case that the relationship is
also reflexive, then this constraint describes atree(hence, a one-to-
many, reflexive relationship is atree relationship). One-to-many
relationships are implemented by suitably simplified versions of the
many-to-many relationship aspects.

Finally, amanaged relationshipallows the entire set of associ-
ations it represents to be iterated. It is useful to separateout this
concept, since many relationship implementations do not naturally
support this operation. For example,StaticRel is not a man-
aged relationship, because its associations are distributed across
participants, but the relationship does not track those participants.
The library providesStaticManagedRel as an extension of
StaticRel which also records the set of participants. In this
way, all of its associations can be iterated, although this comes at a
cost — both in terms of performance and space usage. The library
does not provide an interfaceManagedRelationship ; rather,
we use theSet interface from the Java Collections Library. Thus,
StaticManagedRel implementsSet<Pair<FROM,TO>> , but
StaticRel does not.

These different concepts support different operations. For example,
Relationship includes the following:

interface Relationship<FROM,TO,P>
extends ... {
...
void clearFrom(FROM X);
void clearTo(TO X);

}

Thus,clearFrom(x) clears all pairs withx in the FROMposi-
tion, whileclearTo(x) clears all those withx in theTOposition.



In a reflexive relationship,FROM= TOand, hence, the following
is now possible:

interface ReflexiveRelationship<T,P>
extends Relationship<T,T,P> {
...
void clear(T x);

}

This clears all pairs wherex is in either theFROMor TOposition.

4. PERFORMANCE
We consider that performance is a crucial factor in determining
whether relationship aspects are likely to be adopted in practice.
Relationship aspects are unlike many other applications ofAOP,
such as debugging or logging, which can be removed before final
program deployment. Rather relationships are crucial to the func-
tionality of the program and, as such, their performance translates
directly into program performance. Therefore, we have evaluated
the performance of our relationship aspects, and compared them
with the hand-coded alternatives. We are not attempting to pro-
vide a definitive study — this is beyond the scope of this paperand
the space available. Instead, we present some straightforward ex-
amples as a proof-of-concept that the performance of relationship
aspects is comparable with that of hand-written code.

For each study that follows, we constructed two versions of the
test programs: a relationship aspect version and a hand-coded ver-
sion. The two were entirely separate, although very similar, with
the only difference being in the implementation of the relationships.
For the hand-coded version, these were implemented by manually
adding fields and accessor methods as necessary to the participants.
For the relationship aspect version, two relationship implementa-
tions were tested:StaticRel andHashRel . Thus, three im-
plementations were evaluated (i.e.StaticRel , HashRel and
hand coded) for each study. The experiments were repeated on
three different machines, with different processors and/or operat-
ing systems in an effort to see general trends. Details of these are
given in Table 1. In each case, Sun’s Java 1.5.0 (J2SE 5.0) Runtime
Environment and Aspect/J 1.5 (development snapshot 20060125)
were used1. Note, this development snapshot fixed a number of
bugs with the 1.5.0 release of Aspect/J needed to compile theRela-
tionship Aspect Library. Timing was performed using the standard
System.currentTimeMillis() method, which has a reso-
lution of 10ms or less, depending on the operating system. The
complete source for all the code used in each study can be obtained
from http://www.mcs.vuw.ac.nz/˜djp/RAL/ .

4.1 Study 1 — Students and Courses
For the first case study, we used the student-course example of Fig-
ures 2 + 4. We looked at the cost of enrolling students, iterating the
courses attended by each student and the students attendingeach
course. Our benchmark code consisted of creating 20,000 courses
and 100,000 students, performing 500,000 random enrolments and
running a tight loop which traversed the courses attended byeach
student, as well as the students enrolled in those courses (hence,
testing both directions of traversal), as shown below:

for(Student s : students) {
for(Course c : r.from(s)) {

for(Student s2 : r.to(c)) {
}}}

1We were unable to compare against the abc compiler, as this does
not currently support Java 1.5 generics.

Name Machine

Pentium M
Intel Pentium M 1.6Ghz, 1GB
RAM, Windows XP

Pentium IV
Intel Pentium IV 2.5Ghz, 1GB
RAM, NetBSD v3.99.7

PowerMac G5
64Bit PowerPC 1.8Ghz, 1GB
RAM, MAC OS X v10.4.2

Table 1: The three machines used in our experiments.

Here,r is the relationship object. For the hand-coded version, we
haves.from() rather thanr.from(s) . The entire procedure
was repeated 10 times to get an average runtime for each relation-
ship implementation.

4.2 Study 2 — Road Networks
For our second study, we looked at a relationship representing a
road network connecting cities together. This describes a graph
structure which is both reflexive (as cities are associated with cities)
and weighted (as roads have distance). Many interesting algorithms
are relevant to this relationship. A representative example is Dijk-
stra’s classic algorithm for determining theshortest-pathbetween
two points [8]. Our benchmark is an implementation of Dijkstra’s
algorithm computing the shortest path between every city (known
as the all-pairs, shortest paths problem). As input, we useda ran-
domly generated graph with 100 cities and 5000 roads of varying
distance. Each relationship implementation was tested on this same
input to ensure a fair comparison.

All three relationship implementations used the followingimple-
mentation ofPair to represent roads:

class Road implements Pair<City,City>
private final City from;
private final City to;
private int distance;
... // accessor methods as needed

}

Thus, we haveStaticRel<City,City,Road> and, likewise,
HashRel<City,City,Road> for the relationship aspect im-
plementations, while the hand coded version stored twoRoad sets
inside eachCity object (one for incoming roads and one for out-
going roads).

4.3 Results
The results are shown in Figures 8 and 9. The main observation
is that StaticRel is competitive with, but consistently slower
than the hand-coded implementation. The majority of this overhead
arises from our relationship implementations wrapping thesets re-
turned byfrom() / to() / toPairs() / fromPairs() with
immutable adaptors. This prevents clients modifying thesesets and
potentially putting the relationship in an inconsistent state. These
adaptors are created on-the-fly when these methods are called and,
hence, some cost is incurred. The hand coded implementations can-
not use such adaptors (asCourse.enrol(Student s) must
be able to modifys.attends ) and, thus, they have a slight ad-
vantage.

Figure 9 presents a few surprises. The relative behaviour ofthe
three implementations is remarkably consistent across allthree ma-
chines. More significant, is thatHashRel is consistently faster
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Figure 8: Charts of our experimental data for the student-
course benchmark (Study 1). For each machine, the data
is given relative to theStaticRel implementation, to allow
them to be shown on the same chart. Underneath each ma-
chine name, the absolute average time (in seconds) for the
StaticRel implementation is shown for reference.
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Figure 9: Charts of our experimental data for the road-
network benchmark (Study 2). For each machine, the data is
given relative to theStaticRel implementation, with the ab-
solute average time shown underneath (as for Figure 8).

than the other two (albeit by a small amount). This is strangebe-
causeHashRel must perform a hash table lookup in, for example,
from(x) to get the set of objects associated withx . In contrast,
the other two implementations store this set in objects’ fields. Thus,
they should benefit from a static lookup infrom(x) (hence, we
would expect them to be somewhat faster as in Figure 8). While
the exact reasons for the performance ofHashRel remain unclear,
there are some observations to make. The relationships usedin the
road-network are far smaller than for the student-course benchmark
— 100 objects and 5000 pairs, compared with 120,000 objects and
500,000 pairs. The road-network benchmark spends more time
traversing the relationship as the algorithm involved is more com-
plex. Thus, it seems plausible that the machine’s cache is coming

into play here. The idea is thatHashRel may fit entirely into the
cache where the other two do not. This could happen because the
shortest paths algorithm does not actually need access to any of the
additional state contained in aCity object. Rather, it needs the ref-
erence for aCity object in order to identify those it is connected
to. Thus, if the relationship is spread across theCity objects,
these will be loaded in their entirety into the cache. ForHashRel ,
however, theCity objects are not needed and, hence, they do not
occupy precious space in the cache. We must caution, of course,
that this is entirely speculative and further work is neededto fully
understand the performance ofHashRel .

In spite of this unexpected behaviour, Figure 9 does highlight an
interesting advantage of relationship aspects: differentrelationship
implementations can be quickly and easily tested since the relation-
ship code is properly abstracted. Exactly the same client code is
used in our static and dynamic relationship examples: the only dif-
ference is the declaration of aStaticRel or aHashRel . With
hand-coded relationships, however, this is not the case: converting
between different implementations means making large changes to
the code.

5. DISCUSSION
In this section, we discuss various issues in the design and imple-
mentation of relationship aspects.

5.1 Encapsulation and Attributes
Encapsulation is an important principle of software design: an ob-
ject’s implementation details should not be visible outside that ob-
ject. Representing relationships as aspects could be seen as break-
ing encapsulation, because (especially static) relationships may need
direct access to the internals of their participating objects. How-
ever, our aspect-oriented design strongly encapsulates the imple-
mentation of the relationships themselves. The relationship’s clients
(including their participating objects) manipulate the relationship
via theRelationship interface. Participants cannot access any
details of a particular implementation, and any fields or methods in-
serted into participating objects are visible only to the relationship.
This is in contrast to most object-oriented relationship designs [25]
— especially those that scatter the relationship implementations
across multiple classes (see figure 2) — which break objects’en-
capsulation rather more directly than our aspect-orienteddesigns.

Reifying each relationship as an aspect also makes it possible
to apply visibility constraints to each relationship individually, in-
dependently of its participating objects: in Aspect/J, relationship
aspects can be encapsulated within their defining package, their
defining class, or that class and its subclasses by using the stan-
dard Java-style access specifiers. Relationship aspects also make
explicit the choice between modelling associations by relationship
aspects and by object attributes (and thus fields or collections). Our
practice is to use fields or collections when the relationship is com-
pletely straightforward and unimportant in itself, that is, when there
are no invariants, constraints, or behaviours on the association, and
when in UML it would be modelled by an object’s attribute. For
example, a Student object could have a “name” String field, an“id”
Number field, and an “address” field holding a vector of strings;
none of these merit being implemented as a relationship. Butonce
the relationship is at all complex, has design invariants, constraints,
and behaviours of its own, then it should certainly be implemented
explicitly using a relationship aspect. Students attending courses,
making payment transactions, and their tenancy in halls of resi-
dence, for example, are all sufficiently important or complex to
model explicitly and implement with relationship aspects.



5.2 Relationship Reuse
Treating relationships as aspects facilitates code reuse.The com-
monRelationship interface makes it easier to reuse code, since
they permit relationship implementations to be interchanged with-
out changing the client code. Because Aspect/J allows inheritance
between aspects, we obviously permit inheritance among relation-
ship aspects. The Relationship Aspect Library uses inheritance to
organise its implementations, and programmers using the library
can also employ inheritance to organise their code.

There is one drawback to using inheritance to add common oper-
ations to relationship aspects. Aspect/J requires that each concrete
relationship aspect extends a generic abstract in the library — as in
the definition ofAttends in Figure 4:

aspect Attends extends
SimpleStaticRel<Student,Course> {

int totalWorkload(Student s) { }
...

}

At this point, any code added into the relationship, such as the
totalWorkload() method is tied to that relationship: it can-
not be reused across many different relationship implementations.
In Aspect/J, inheritance-based reuse is possible only withabstract
aspects, and then only via single inheritance. This can be partially
mitigated by makingAttends abstract, so many concrete rela-
tionships can inherit it and reusetotalWorkload() — this is,
after all, the principle underlying the design of the library. All these
concrete relationships, however, are now forced to use the same re-
lationship implementation.

There are a number of alternative designs that avoid this Aspect/J
limitation. Using a classically object-oriented approachbased on
the Decorator pattern [10], we can make a new relationship as-
pect that contains the extra code, but which delegates the core re-
lationship operations to a second relationship aspect. Anyexist-
ing relationships accessed via this decorator effectivelygain the
additional behaviour. Given that Aspect/J is an aspect-oriented lan-
guage, however, we can place the behaviour we wish to reuse into a
separate aspect that mixes it into those relationship aspects needing
the extra behaviour.

The issue discussed here is an example of a more general prob-
lem identified with reusing Aspects in Aspect/J [23]. The scenario
arises when an abstract aspect containing the primary implemen-
tation defers itsbindingvia an abstract pointcut. Abinding aspect
extending this then provides the concrete pointcut (i.e. the binding).
The problem (as above) is that any code in the binding aspect (in-
cluding the binding itself) cannot be reused with differentabstract
aspects (perhaps providing alternative, but equivalent implementa-
tions). More advanced aspect-oriented languages, such as CaesarJ
[23, 22], address this problem directly and would alleviatethe issue
identified here with our relationship aspects.

5.3 Relationships and Behaviour
This paper has focused exclusively on the structural aspects of mod-
elling relationships, such as the interfaces for adding, removing and
navigating pairs. Behavioural aspects have not been considered.
That is, the possibility that objects may behave differently when
participating in a relationship from when they are not. Consider
again the student-course example of Figure 1. In practice, acourse
will have many more attributes, such as a curriculum, than wehave
shown. Such attributes will change over time in line with changes
to the course. A useful constraint would be to prevent any changes
when students are attending the course — it would be unfair ifthe

curriculum changed just before the exam! Thus,Course objects
behave differently (i.e. they don’t accept changes) when they are
participating in a relationship from when they are not (i.e.they do
accept changes).

Aspect-oriented languages should provide a natural means of ex-
pressing these behavioural aspects of relationships. We hope to
consider this in more detail in the future and it will be interesting to
see whether Aspect/J and the Relationship Aspect Library can fully
support these ideas.

5.4 Relationships and Patterns
Using aspects to represent relationships has much in commonwith
using aspects to represent role models and patterns [18, 13,14].
From our perspective, many important patterns are primarily re-
lationships with added behaviour. The Composite and Interpreter
patterns [10], for example, are primarily tree relationships with ad-
ditional behaviour to distribute operations on an internalnode down
to the leaf nodes for Composite, or to evaluate expressions for In-
terpreter; the Observer pattern is a many-to-many relationship be-
tween subjects and observers, with additional behaviour todetect
changes in the subjects and notify observers; and the Chain of Re-
sponsibility pattern is essentially a one-to-many relationship be-
tween clients and handlers, with additional behaviour to distribute
a client’s requests to its handlers.

We expect that programmers will be able to use the Relationship
Aspect Library to implement patterns in a number of ways. Patterns
could still be implemented directly, in the object-oriented style, but
using relationship aspects to support the relationships required by
the patterns. Some patterns (in particular Observer) couldbe im-
plemented by extending relationship aspects to add in the pattern
specific behaviour. Most patterns, however, could be implemented
as independent aspects in their own right, but again using relation-
ship aspects to provide inter-object relationships.

The main difference between using aspects to implement pat-
terns and to implement relationships is one of focus: the purposes
and structures of patterns vary greatly, whereas relationships are
essentially about maintaining associations between groups of ob-
jects. This common purpose supports our common relationship in-
terface, which allows programmers to exchange implementations
of relationships without changing the code that uses the relation-
ships. On the other hand, many of the refactoring techniquesthat
have been developed for replacing object-oriented patternimple-
mentations with aspects [14, 24, 11] should also support refactoring
object-oriented programs to use relationship aspects.

5.5 Library Interface Design
Interface design is one of the most important parts of library de-
sign. We have designed theRelationship interfaces to include
all the key operations that are required on relationships. Thus, rela-
tionship implementations that do not explicitly storePair objects
offer an API that can supply pairs, and generates them as required.
Different operations on different implementations will have differ-
ent performance characteristics: the common interface allows im-
plementations to be changed without affecting the rest of the pro-
gram.

Our Relationship interfaces are not generally compatible
with Java’s existing Collections interfaces. This is because we
consider that relationships are fundamentally different to collec-
tions: relationships are aspects, rather than classes; they are typi-
cally bidirectional, rather than unidirectional; their implementation
often cross-cuts multiple participating classes. Of course, relation-
ships use classes from the collections library both in theirinter-
faces (Sets and Iterator s) and also in their implementations



(particularlyHashSet s andHashMaps), and some special cases
(ManagedRelationships) do implementCollection s interfaces
as is.

The main area where we would like to improve the design of
library is in the complex declarations required to instantiate rela-
tionship aspects. Each different kind of relationship — unidirec-
tional or bidirectional navigability; static or dynamic implementa-
tion; many-to-many or one-to-many arity; and ideally othervari-
ants on relationships such as keeping pairs indexed either by inser-
tion order, or by an attribute of the participating objects —needs
a separate abstract generic aspect implementation, and that imple-
mentation must be named explicitly in the aspect declaration. Even
the distinction between the “standard” relationships (that take an
explicit Pair class argument to represent the individual associa-
tion tuples) and “simple” relationships (that use a standard Pair
implementation implicitly) must be reflected in the names ofthe
aspects.

Perhaps a future version of Aspect/J could support some form
of type inference, default generic arguments, or even the use of
annotations so that a declarations such as:

aspect Attends extends
@Dynamic Relationship<@One Company,

@Many @Unique @Sorted Employee> {

could replace the much more cumbersome (and overly precise)
DynamicMany2OneUniqueSortedRelationship .

6. RELATED WORK
Relationships, associations, or collaborations have longbeen an
important part of object-oriented analysis and design, in one way or
another. Responsibility driven design’s collaborations,for exam-
ple, are primarily abstractions of message sends between objects
[41], while other methods focus more on the structure of inter-
object relationships [32, 3], inspired by entity-relationship mod-
elling [5]. The unified modelling language [33] codified associa-
tions (in the entity-relationship style) and they have beena impor-
tant part of UML modelling from the earliest version.

However relationships are modelled in programs’ analyses or de-
signs, object-oriented programmers are faced with the problems of
translating those relationships into the basic features (references,
collections) supported by programming languages. We have de-
scribed a set of patterns describing how relationships can be hand-
coded in common cases — ranging from using single reference at-
tributes for straightforward one-to-one relationships, employing a
collections library, to reifying relationships as individual objects
in their own right [25]. The implementations of the relationship
aspects in our library are based on these patterns. Hand-coding re-
mains by far the most common practice for implementing relation-
ships in object-oriented, and now aspect-oriented programming. In
order to avoid programmers having to hand-code relationships, a
number of more explicit approaches have been investigated [26].
Recently, many of these have focused on either executing UML
models directly [29] or (more commonly) translating UML associ-
ations into code in an object-oriented programming language [34,
15, 12]. Directly executing UML has not yet proved effectivein
practice; translating associations suffers from the common prob-
lems of code generation: programmers need to work with their
programs at two separate levels of abstraction, and then need to edit
the resulting code, making “round trips” back to the designsharder.
This is particularly difficult when code actually implementing rela-
tionships has to be edited — the relationships must be implemented
in terms of lower-level programming language constructs, so the
relationships cannot be made explicit in the resulting code.

For this reason, a number of researchers or language design-
ers have proposed adding explicit relationship constructsto object-
oriented programming languages, to support an entity-relationship
modelling style more explicitly. Rumbaugh [30, 31, 36] proposed
adding relationships to object-oriented languages relatively early,
including support for operations to be automatically propagated
across relationships. Rather more recently Bierman & Wren [2]
have formally described a programming language where relation-
ships are first class constructs, in parallel with classes. Instances of
these relationships (individual relationship objects) can have their
own state and behaviour similar to the “extensible pairs” inour
relationship aspects. The design of the interface for our relation-
ships is also inspired by their design, although, of course,we use
generic aspects to represent relationships, while their design uses a
specialised first-class language construct.

Given how natural modelling relationships with aspects turns out
to be, it is surprising that there does not seem to be more work
adopting this approach. Jiri Soukup developed pattern classes [38,
37] based on an ad-hoc aspect weaver for C++, that could be used
to support static inter-object relationships (as well as tosupport ob-
ject persistence). More recently, many of the aspect-oriented case
studies investigating design patterns, especially Mediator and Ob-
server [13, 27, 19] also describe aspects that implement inter-object
relationships. Relationship aspects are designed to implement rela-
tionships between objects rather more specifically, and usea com-
mon interface to hide implementation details from client code.

The Adaptive Programming approach [21, 20] similarly sepa-
rates the relationships between objects (in Demeter terminology
the class graphandobject graph) from the base code of the pro-
gram. Because the class graph gives a global view of the program’s
structure, an adaptive programming system is able to navigate be-
tween any number of objects or classes automatically, and exe-
cute behavioural code wherever most appropriate. Our approach is
more modest: relationship aspects are organised with the program’s
code as any other class or aspect definition. Although (like adap-
tive programs) relationship aspects abstract away the implementa-
tion details of relationships, a global class graph is not maintained
explicitly, so programmers need to use each relationship tonav-
igate around programs. Sullivan and Lieberherr earlier proposed
a graph-based schema, where vertices and edges represent classes
and their relationships [39]. This supports more complex types of
relationship than we do, including the representation of functions
as relationships mapping parameters to their results. As with UML
class diagrams, their schema is somewhat abstracted from a real
implementation and, in particular, does not consider the tradeoffs
between different relationship implementations on which we focus.

Special purpose Association Aspects [35] have been proposed
to model relationships, effectively as a kind of per-instance aspect
that can be connected to more than one target object. Association
aspects can also contain advice that executes in the contextof each
associated object. In comparison with relationship aspects, associ-
ation aspects are a special-purpose extension (although toAspect/J,
rather than a standard object-oriented language) which focus on be-
havioural modification of the associated objects, rather than man-
aging the relationships between them. Thus, while association as-
pects do provide a rudimentary interface for adding and removing
associations, support for iterating over a relationship, or traversing
from one end to the other seems to be lacking. Finally, associa-
tion aspects are implemented in terms of hash tables, while —even
in Aspect/J — relationship aspects can use a number of different
implementation strategies, with different modifiability and perfor-
mance tradeoffs.

Finally, inasmuch as it relates analysis and design models to code



— and uses aspect-orientation to keep designs explicit and untan-
gle relationships from their participating classes — this work is
also related to work on aspect-oriented analysis and design. The
Theme approach, to take one example, identifies relatively large-
scale concerns early in the analysis and design process: using an
aspect-oriented language keeps those concerns separate inthe im-
plementation as well as the design [6, 7]. Jacobson et al. [17],
use aspects to map the code from use cases onto domain objects,
so avoiding tangling code between peer use-cases. Theme makes
a major change to existing object-oriented development processes,
while Jacobson et al. makes a more minor change: if you are al-
ready following a use-case based process, aspect design andcom-
position replaces programmers manually apportioning use-cases to
classes in the design. In contrast, our contribution is preserving re-
lationships from either object- or aspect- oriented designexplicitly
into program code.

7. CONCLUSION
Early programming languages provided little support for represent-
ing either objects or the relationships between them. FORTRAN,
for example, began with integers, reals, and arrays; COBOL and
Algol offered a great advance by adding a range of string data
types and records. Structured languages, such as Pascal, added
pointers and dynamic memory allocation (rudimentary objects) to
these constructs: programmers could model real-world entities as
dynamically allocated records linked together with pointers. While
dynamic dispatch streamlined object-oriented programs, the actual
“object model” in languages from Smalltalk to Java remains essen-
tially the same as in Pascal: dynamically allocated recordslinked
together by pointers — with, eventually, garbage collection, and a
library offering sets, bags, and lists to supplement arrays.

In this paper, we have demonstrated how aspects can raise the
level of abstraction of data structures, by modelling relationships
between objects explicitly. Treating relationships as aspects in-
creases the clarity and straightforwardness of a program’scode,
allows programmers to interchange relationship implementations
with ease, and has a negligible effect on the program’s perfor-
mance. Many paradigmatic uses of aspects address non-functional,
often peripheral concerns, such as logging, tracing, security, per-
sistence, or synchronisation. In contrast, using aspects to represent
relationships between objects places aspect-orientationat the very
core of everyday program design.
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