Relationship Aspects

David J. Pearce
Computer Science
Victoria University of Wellington, NZ

djp@mcs.vuw.ac.nz

ABSTRACT

The relationships between objects in object-oriented narmg are
as important as the objects themselves. Unfortunatelyt afject-
oriented programming languages provide little supporstarh re-
lationships, leaving the task of implementing them enjitel the
programmer. Relationships are typically hard-coded imsgaartic-
ipating classes, resulting in tangled code that unnedgssauples
these classes together. The classes become harder totanders
and cannot be reused independently. Aspect-orientedgragcan
model relationships explicitly, treating them as sepacatecerns
that cross-cut their participants. We show how relatiopslean be
implemented as a library of aspects in Aspect/J. Aspects kee
lationships independent of their participants, makingrdmulting
programs easier to read, write and reuse, and as efficierarats h
written code.

Categories and Subject Descriptors

D.3.3 [Programming Language$: Language Constructs and Fea-
tures; D.2.11 $oftware Engineering: Software Architectures—
Languages

General Terms
Design, Languages

Keywords

Relationships, Associations, Aspect-Oriented Programgmi

1. INTRODUCTION

As John Donne once famously said: “no man is an island, entire
of itself”. The same situation exists in our programs — no ob-
ject stands alone. Indeed, without relationships, mostatbjare
meaningless: what use is a button widget if it cannot be plau®e

a window for display? or a student which cannot be enrolled in
a course? or an album without any tracks? For this reasaa, rel
tionships are as important as objects in most object-@tanal-
ysis and design methodologies: class or instance diagraow s

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

AOSD 06March 20-24, 2006, Bonn, Germany

Copyright 2006 ACM 1-59593-300-X/06/03%$5.00.

James Noble
Computer Science
Victoria University of Wellington, NZ

kix@mcs.vuw.ac.nz

not only objects (or their defining classes), but also, allgithe
relationships or associations between them, as well asfispat
tributes of those relationships (e.g. that one window maytaia
manybutton widgets; that disposing of the window also disposes
of its widgets and so on).

Modern object-oriented languages, however, carry ralbtifew
of these relationships through from design into implemibora
The exception that proves the rule is, of course, inheréandts
various forms — that one class is a specialisation (or s@)tpp
another or that it conforms to some interface. Support fisrriia-
tionship is one of the defining features of the OO paradignj.[40
And yet, more mundane relationships — windows and widgets,
dungeons and dragons, students and courses, productslasd sa
transactions and accounts — do not have this kind of dirgat su
port. Rather, their implementations are hand-crafted amelased
across the objects which participate in those relatiosshidost
OO0 languages do provide some support here, in the form afcoll
tion libraries, but this is fairly rudimentary. For exampéewindow
might have avector of widgets where each widget has a pointer
to the window. The code necessary to maintain this relatipns
must ensure that adding a widget to a window updates the link —
but this is outside the scope of an individual collectiorssland,
hence, must be managed explicitly by the programmer.

In this paper, we tackle these problems by modelling refatio
ships as separable, cross-cutting concerns. The defimfiarre-
lationship, its attributes, and the code required to imgletit are
moved out of the participating classes and into a sepag&ttion-
ship aspect In this way, we increase the clarity and cohesion of
each participating class, since it now focuses solely oroHjects
it is modelling, rather than their relationships with otludgjects.
The implementation of the relationship can be improved aead,
or replaced, without affecting the participating class€sirther-
more, the program’s coupling is reduced because, althchaghet
lationship may be coupled to participants, they themsedvesot
coupled to the relationship. This allows them to be reusddout
necessarily bringing along the implementation of the refethip
and, in particular, all the other participating classes.

This paper makes the following contributions:

e \We demonstrate that Aspect/J can be used to model relation-
ships explicitly, separating them from their participatiob-
jects.

e \We present an extensible implementation of relationship as
pects, called thRelationship Aspect Library (RALthat pro-
vides a diverse, interchangeable, range of relationshsipgu
only features found in Java and Aspect/J.

e We provide preliminary performance data showing the Rela-
tionship Aspect Library is as efficient as hand-crafted code

2. RELATIONSHIPS Prerequisite

Figure 1 shows the almost generic diagram of students atignd
courses. Versions of this diagram are found in many pulitioat

*

on relationships [2, 4, 28, 9]. Many students attend manyses; Student Course
Courses have a course code, a title string and a teacheenssud Name * Attends * [itle *
have numbers and (reluctantly, at least at our universiggéstry) Number Code
names. Such relationships (also knownaasociationsn UML) Fee
can be viewed as sets of paifX,Y’) where (JoeCOMP205 < Workload
Attendsif Joe attends the cours€OMP205[33]. Here,Joe and *
COMP205are said to bgarticipantsin the relationship. Amount --------1 Teaches
Figure 2 shows skeleton implementations of the student amcse *
classes in standard object-oriented style. At the top of etass
are the easy and obvious declarations for attributes (@mégires Faculty
for methods) that provide the central functionality for leatass. Name
These are relatively simple, storing the key attributes doimg Office
basic calculations. At the bottom of each declaration we Ved
ious pieces of code for explicitly representing and mamta the Figyre 1: A simple UML diagram, describing students that at-
relationships between these classes. This includes, fmpgle, tend courses.
data structures to record which student is attending whathrse
(and vice versa), as well as code for enrolling and withdnaveitu- class Student {
dents, whilst ensuring that all data structures remainisterst and String name;
correct. But, consider the UML in Figure 1 again: we havedhre |nteger number;
classes, each with a few attributes, and simple straighéiat re- HashSet<Course> attends:
lationships between them. While the classes and attrititaes-
fer directly into our object-oriented language, the relaships do int totalWorkload() {
not. Instead, their implementation is spread across tteipating int total = O
classes which are more distant from the original UML as altesu for(Course c - attends) {
Clearly, there is some asymmetry here. total = total + c.workload:
An inherent problem with the implementation of Figure 2 is
that the participating classes are infected with code atal steuc- return total:
tures implementing the relationships. The classes are tangér, 1

less cohesive, and more complex than they otherwise neeel.to b

Care is needed to ensure both participants keep the redatipn 355 Course {
consistent (indeed, the code in Figure 2 contains such akeist String code;
in withdraw). Changing any details of the relationship (such String title:

as storingattends information only inCourse) necessitates int workload:

changes in both participants. Nor does this approach scelle w

as larger systems will see classes participating in moedioe- HashSet<Student> attendees:
ships. For example, students could be related to billingmai, HashSet<Course> prerequisites;
clubs membership, campus housing, transport concessicaikof- HashMap<Faculty,Amount> teacher;
them further increasing the complexity 8fudent . The presence

of relationship code istudent andCourse reduces the possi- void enrol(Student s) {

bility of their reuse. Perhaps we have a curriculum systetailieg if(s.totalWorkload() < 40) {
courses and their prerequisites. Such a system does nailuaune attendees.add(s);

which students are enrolled in which courses. To rebsarse s.attends.add(this);

in this system as it is implemented in Figure 2 necessarilgmae
including Student (even if not used) and allowing students tobe yjg withdraw(Student s) {
enrolled (which does not make sense in that application). attendees.remove(s);

2.1 Relationship Aspects }}

To address these issues, we model relationships explastigs- Figure 2: A typical implementation of Fig. 1. Protection spei-

pects, calledRelationship AspectsAspects are a natural fit for fiers on fields and accessor methods are omitted for simpligit
modelling relationships. Conceptually, relationshipsraot classes,

rather they are separate concerns that crosscut sevetialpzging

classes. Pragmatically, relationship implementatiorenodrosscut
their participating classes’ code, as illustrated in FégRiralthough
they can also be implemented as an additional class (e.gg asi comp205.enrol(Joe):

separatéiashMap). The difference between these two approaches for(Student x : comp205.attendees) {

is really an implementation detail — a trade-off for perfamae System.out.printin(x + " is enrolled”); }
over storage, as introducing fields gives faster lookuprégtires
space in all instances of the class. Relationship aspestsaab
away these details, ensuring code belonging to the rekdtipris
always centralised, regardless of what implementatiorh@sen.

Course comp205 = new Course(...);
Student Joe = new Student(...);

Figure 3: lllustrating how the implementation of Figure 2
might be used.

class Student {
String name;
Integer number;
}

class Course {
String code;
String title;

int workload;

}

aspect Attends extends
SimpleStaticRel<Student,Course> {

int totalWorkload(Student s) {

int total = O;

for(Course c : from(s)) {
total = total + c.workload;

}

return total,

void add(Student s, Course ¢) {
if(totalWorkload(s) < 40) super.add(s,c);
1

aspect Teaches extends
StaticRel<Course,Faculty,Amount>{}

aspect Prerequisites extends
SimpleStaticReflexiveRel<Course>{}

Figure 4: Implementation of Figure 1 with relationship aspects.
Again, protection specifiers are omitted for simplicity.

Course comp205 = new Course(...);
Student Joe new Student(...);

Attends.aspectOf().add(Joe,comp205);
for(Student x : Attends.to(comp205))
System.out.printin(x + " is enrolled");

Figure 5: lllustrating how the implementation of Figure 4
might be used.

Relationship aspects provide a uniform interface for malaifing
the relationship (navigating, adding and removing pgéats) al-
lowing relationship implementations to be interchangeihatit af-
fecting client code.

Figures 4 and 5 show the basic idea. First, the extraneouws cod
and data structures required to implement the relatiosship re-
moved fromStudent andCourse — thus, these classes corre-
spond more closely to the UML design. Then, we introduceethre
relationship aspects which correspond directly to theethedation-
shipsAttends Prerequisitesand Teachesn the design of Figure 1.

Attends is declared as a simple, static relationship from stu-
dents to courses. This is a many-to-many relationship, eviaer
student can be enrolled at most once in any given course. dtie d
laration extends genericAspect/J aspecSimpleStaticRel)
from our library, supplyingStudent andCourse for its generic
parameters. Because this aspect implements a “stati¢ioreship,
fields and methods implementing the relationship will be edib
ded directly into theStudent andCourse classes, resulting in
something almost identical to the hand-coded version ofifei@

(see section 3 for details). The operations for enrollinghevaw-
ing and so on have been replaced by standard methods for wmanip
lating relationships, such @id() andremove() , provided by
the relationship aspect. Access to the relationship igreia()
andto() methods, wheréfom(x) returns the set o€ourse s
attended byx. Likewise, the set oStudent s enrolled iny is
obtainable withto(y)

We can immediately see from Figure 4 that the advantages of re
lationship aspects lie in separating out the relationsbipzerns. In
the original implementation of Figure Student andCourse
were tightly coupled — one always needed the other. In the re-
lationship aspect implementation, however, this is notdimse —
Student andCourse are independent. Thus, they can be reused
without modification in other applications whe#¢tendsdoes not
make sense. The code for checking a student is eligible @l enr
is now in one place, rather than being spread out over thécpart
ipants. This makes the program clearer, as this code isamev
only to the relationship, rather than any of the participarithis
design is also more flexible as relationships can be addeahved
or replaced (by extending different relationship aspestt) ease.
Perhaps we need to change thigendsrelationship to be imple-
mented using &ashMap, to allow efficient enumeration of all
(StudentCourse pairs (e.g. for printing). Making this change to
the object-oriented implementation in Figure 2 is quitessabtial
— code from bothStudent andCourse must be removed and
engineered into a new class; worse still, we could try ancbfiet
the new requirements around the existing code (perhapsibyg us
more complex data structures@ourse andStudent) leading
to more tangling of code and coupling to this specific apgilica
With relationship aspects, this change is trivial: we siyngilange
Attends to inherit fromSimpleHashRel and we are done.

The Teaches relationship aspect in Figure 4 is implemented
as a static relationshigs(aticRel). This differs from asimple
relationship in that a third type parameter specifies thesciesed
to represent pairs of objects — and so individual pairs caokbe
jects in their own right. In the exampl&mount is a pair which,
in addition to storing a course and faculty member, storealaev
representing the amount of the course taught by the facudtym
ber. In UML terminology, this corresponds to association class
The final relationship declared in Figure 4Rserequisites This
is areflexiverelationship, meaning it connects objects of the same
type. As we will see, reflexive relationships also permitcher set
of operations, compared with standard relationships.

In proposing relationship aspects, we are arguing that bsth
lationships and classes should be represented expliaitly,sep-
arately, in a program’s text. This philosophy is fundamktta
the idea of relationship aspects and, we believe, promotasra
reusable, flexible and simpler approach to design and toranog
ming. Of course, one might argue that this is simply a caseef o
engineering — where time is wasted building in support fourfe
changes that never happen. Code using relationship aspsats
pler than code that implements relationships manually,gvew so
using relationship aspects from the outset should come atidib
tional programming cost, whilst still providing greaterilaility.

2.2 Dynamic Relationships

Some relationships do not exist for the entire life of thegoam.
Consider again the prerequisites relationship. This desta graph
structure which is applicable to a large number of graphrélyos,
such as depth-first search and transitive closure. We caginma
transitively closing the prerequisite graph to determine ¢com-
plete set of dependencies for each course. This might beethuie
year to ensure a given degree can be completed in three y#acs.

this check has been made, however, the transitive closlatore
ship can be discarded. Unfortunately, using a static meiatiip to
implement the transitive closure would add fields to Gmurse
class. Every course object would contain those fields, coims
storage even when the relationship is not being used.

To support these situations, our library includbsamicrela-
tionship aspects. While static relationship aspects seprterela-
tionships that are fixed (as typically intended in UML class-d
grams), dynamic relationship aspects can be created byrthe p

grammer as and when required. For example, we can create a dy:

namic relationship (perhaps implemented by an externdl ks
ble), use it to calculate the transitive closure, and dispdst when
we are done.

3. RELATIONSHIP ASPECT LIBRARY

We have designed and implemented Relationship Aspect Li-
brary (RAL)to allow programmers to use relationships aspects.
The relationship aspect library contains static and dynample-
mentations for a range of relationships. The library is ifigant
because it successfully abstracts quite different impleat®ns
using only features present in Java and Aspedtilhis section,
we explore the design of the library focusing particulanytbe re-
lationship interface provided by RAL, and the way both statid
dynamic relationships can implement this interface. Thealy it-
self is available for downloading under an open source iedrom
http://www.mcs.vuw.ac.nz/"djp/RAL/

3.1 Relationships

The key concept in the library is tHeelationshipinterface, which
provides the following main features:

interface Relationship<FROM,TO,
P extends Pair<FROM,TO>> {
public void add(P);
public void remove(P);
public Set<P> toPairs(TO t);
public Set<P> fromPairs(FROM f);
public Set<FROM> to(TO t);
public Set<TO> from(FROM f);

}

This interface represents a relationship as a set of F@ROM TO),
such that two objectg andt are related if(f, ¢) is in the set. The
type parameter§ROMand TO dictate the permissible types ¢f
andt. The third type parametePR, determines the actual type of
the individual associations, and must ext&air<FROM,TO> :

interface Pair<FROM,TO> {
public FROM from();
public TO to();

}

The advantage of this third type parame®es that it allows us to
treat individual pairs as objects, allowing them to modellUMyle
association classes. Programmers can add state and heh@vio
their ownPair subclasses, benefiting from inheritance and poly-
morphism. For example, to store additional informatiorhivitthe
associations (such asmountin Figure 1) we implement a spe-
cialisedPair class which includes this information.

Many relationships (such asttendsin Figure 1) do not need
this extra behaviour. We call thesemplerelationships, and pro-
vide aSimpleRelationship interface that does not require an

explicit Pair type parameter (we abbrevidB@OMandTOwith F
andT for space reasons):

interface SimpleRelationship<F,T>

extends Relationship<F,T,FixedPair<F,T>> {
public boolean add(F f, T t);

public boolean remove(F f, T t);

}

For simple relationships, pairs are instanceBigédPair , which
is afinal class containing just twdinal fields holding the
FROMandTOreferences (hence, its instances are guaranteed to be
immutable). This frees simple relationship implementaifrom
the burden of having to store pairs explicitly — althoughytheust
still be generated when eitherPairs() or fromPairs() are
called. Thus, simple relationships benefit from leaving Plaér
implementation up to the particular underlying relatidpsispect.
For general relationships with user-defined pairs, thiotgossi-
ble as we expect to get back the actual pair object put in.

Relationships ardéidirectional Given aFROMnstancef, we
can get thelfOinstances it is associated with throufybm(f)
Likewise, given aTO instancet, we get itsFROMnstances via
to(t) . Thus,from() enablesforward traversal, whileto()
givesbackwardtraversal. In a similar wayromPairs(f) and
toPairs(t) return thePair objects matchingf, *) and (x, t)
respectively.

3.2 Static Relationships

A static relationship allows the programmer to indicate rbla-
tionship will persist for the duration of the program. Theadis
that this information can be exploited to obtain a more efficim-
plementation. The library provides a range of static retathip
aspects. Programmers can then implement a relationshighwhi
cross-cuts the participants simply by extending a librespeat,
such asStaticRel<FROM,TO,P> | rather than modifying the
participants by hand. We employ Aspect/iiger-type declara-
tionsto implement the static relationship aspects. The othenmai
features of Aspect/J (i.e. pointcuts / advice) are not neéoiethe
implementation. The basic static relationship aspectfin€ee as:

aspect StaticRel<F,T,P extends Pair<F,T>>
implements Relationship<F,T,P> {
interface Fwd<X> {}
interface Bwd<X> {}
declare parents : F implements Fwd<P>;
declare parents : T implements Bwd<P>;
HashSet<X> Fwd.fwd = new HashSet<X>();
HashSet<X> Bwd.bwd = new HashSet<X>();
public void add(P t) {
t.from().fwd.add(t);
t.to().bwd.add(t);

StaticRel isageneric aspect whose type parameters match those
of the Relationship interface. Thedeclares syntax is used

to modify the actual types df andT to implement theFwd<P>
andBwd<P>interfaces respectively. Then, a fidldd is defined

for Fwd<P>, which has the effect of defininfigvd for every class

that implementswd<P> (i.e. the class participating in tHeEROM
position of the relationship). A similar situation holds favd and

Bwd<P> An interesting question is what its means to define a
field for some class. In the current Aspect/J compiler (@g.),

it means the field is physically inserted into the class. Thues
see how extendin@taticRel gives some almost identical to a
hand-coded implementation where fields are placed diréatty
the participants (such agtends andattendees from Figure
2). However, it is important to realise the semantics of Asfdedo
not dictate that fields must be physically inserted and, mesen-
vironments, this may differ. Nevertheless, we assume thst effi-
cient implementation available for permanently assauipé field
with a class will be chosen and this corresponds with the addea
static relationship.

An important point to understand here is that generic aspect
in Aspect/J are semantically different from generic claseelava
where type parameters are purely syntactic (due to erasuires
is because the actual values supplied for type parametensriae
the effect that extending a generic aspect has. Considéoltber-

ing:

aspect X extends StaticRel<A,B,P> {};
aspect Y extends StaticRel<B,C,P> {};

The concrete aspet results in fieldsFwd.fwd and Bwd.bwd
being defined for classésandB respectively. LikewiseY results
in Fwd.fwd andBwd.bwd being defined foB andC. Thus, the
effect of extendingstaticRel depends very much on the actual
type parameters supplied.

While multiple concreteStaticRel s (such a andY above)

/I --- polymorphic method ---

void printFrom(Student s,
SimpleRelationship<Student,Course> r) {

for(Course c : r.from(s)) {
System.out.printin(s + " attends " + c);
1

/I --- client code ---

aspect Attends extends
SimpleStaticRel<Student,Course> { }

SimpleRelationship<Student,Course> a =
Attends.aspectOf();

SimpleRelationship<Student,Course> b =
new SimpleHashRel<Student,Course>();

Student joe = new Student(...);
Course comp205 = new Course(...);

a.add(joe,comp205);
b.add(joe,comp205);
printFrom(joe,a);
printFrom(joe,b);

can coexist in the same program, an issue arises when they sha Figure 6: Static and dynamic relationships can be used inter
the same=ROMor TOtype. This is because both aspects define a changeably.

Fwd.fwd (resp.Bwd.bwd) field on the same class. In the current
Aspect/J implementatiorajc), this results in a collision. We be-
lieve such fields should be distinguished according to tmeeie
aspect they are instantiated within. Indeed, there are razagm-
ples where this behaviour would be valuable, such as thenpare
child relationship [1] and the subject-observer patte3) [16]. As

a workaround, the library provides several copieStfticRel
namedStaticRelX for X > 1. Thus, when two static relation-
ships share either theEROMor TO position, the situation can be
resolved by extending one of these alternative (but otlsden-
tical) implementations.

Finally, in practice the inter-type declarations foxvd.fwd and
Bwd.bwd are markecgrivate — meaning these fields are vis-
ible only to code within the aspect itself. This ensures pram-
capsulation by preventing other code from relying on the@nee
of these fields.

3.3 Dynamic Relationships

Dynamic relationship aspects have fairly straightforwargle-
mentations. A good example isashRel :

class HashRel<F,T,P extends Pair<F,T>>
implements Relationship<FROM,TO,P> {

private HashMap<F,HashSet<P>> fwd;

private HashMap<T,HashSet<P>> bwd;

}

Thus we see that, contrasting wiitaticRel , this implemen-
tation is completely dynamic — neither participants areualty
modified (i.e. have fields defined on them) and, instead, tlae re
tionship is implemented using twidashMaps for efficient bidi-
rectional access. This means the relationship can be dreste

necessary and discarded when no longer needed. Note, the imp
mentation of our dynamic relationship aspects do not useétsp
constructs at all. Nevertheless, we regard them as asjiecesisey
replace code which might otherwise be tangled in the ppsitis.

3.4 Relationship Polymorphism

The ability to use dynamic and static relationships polyphor
cally is an important advantage of our design. Figure 6tilates
the idea, showing both a static and dynamic relationshipgoei
passed to a method that is unaware of the differences initheir
plementation. A key point is that a static relationship jeg a
Relationship object through which it can be accessed. This
is a singleton object, which makes sense as it corresponds to
static compile-time relationship. Notice that we expldit tfact
that Aspect/J implements aspects as singletons (in theala@ase,
at least), providing access to their instancesagpectOf() . Of
course, all this comes at some cost to efficiency as, insidg)
the fields inserted int8tudent to implementAttends must be
accessed indirectly via the singleton object (althougficgeht type
information is present that these accesses can be inlinad boyp-
timising VM).

With hand-coded implementations, this kind of polymorphis
is much harder to achieve as the relationship code is sp@adsa
— and tightly coupled with — the participants. Considerimgia
the example in Figure 2 it is quite hard to see how a single atkth
could print both the hardcoded relationship and an exterolédc-
tion without significant extra work.

3.5 Specialised Relationships

The relationship aspect library contains a number of diffietypes
of relationship. This is important so that it can offer a it al-

ternative to hand-coded relationship implementatiomgesit must

be able to describe many of the diverse types of relationséul

in practice. Figure 7 gives an overview of the main interfate
the library. A curious point is thaRelationship is not the
root of this hierarchy! This reflects the fact that, while wediéve
Relationship captures the most fundamental concept, it is by
no means the simplest.

Figure 7 shows the structure of the key interfaces in thatipr
The library provides a range of implementations for thesppert-
ing both dynamic (e.g.ReflexiveHashRel) and static (e.qg.
ReflexiveStaticRel) relationships. Compared to the basic
relationship implementation$faticRel andHashRel), these
interfaces either provide more functionality or enforcerenocon-
straints. For example, implementations@heToManyRelat-
ionship enforce the invariant that ea@i®participant has at most
one FROMparticipant and raises an exception if this invariant is
broken. In the same way, implementationsfdirectedRe-
lationship represent individual relationships internally in such
a way as there is no difference betwdeny) and(y, x).

A uni(directional) relationship represents a relationship which
can be traversed only in one direction. This correspondsutodi-
rectionalassociation in UML and represents a common structure in
programs, where only one of the participants has a referenite
other. We can think of this as providing a space optimisatidhe
case that only one direction of traversal is required. Thulffers
from Relationship only inthat neitheto() nortoPairs()
are necessary.

A multi-relationship may contain identical pairs, meaning it de-
scribes aag of pairs rather than a set. This would correspond, in
our Student-Course example, to allowing Joe to enrol in CQO&P
more than once (presumably to allow him to attempt to sit the
exam twice). A multi-relationship implementation can berenef-
ficient that a (set) relationship, because it can store psirsg a
simpler and more efficient container (suchfasayList , rather
thanHashSet). If we know that adding identical pairs can never
happen in our program (for whatever reason), choosing ai-mult
relationship implementation can be more efficient. Obsénee
Attends would correspond to a multi-relationship in Figure 2, if
itwas implemented using &arayList , rather than &ashSet .

A reflexive relationshiprepresents the case whéfROM=TO.
That is, where the association goes between objects of the sa
type (as forPrerequisites in Figure 1). Thus, reflexive rela-
tionships correspond to reflexive associations in UML. Tdase
is special because it can describe complex structures suthes
and graphs which permit a richer variety of operations. Refle
ive relationships can be traversed using depth-first ordbhefirst
search and are amenable to a large variety of graph algaigbuch
as transitive closure, shortest-paths, cycle detection et sub-
tle point is that reflexive relationships are directadt undirected.
This may seem strange, since reflexive relationships peovidi-
rectional access vimom() andto() . However, it is important
to realise that, given a reflexive relationship over some #@and
two instances: andy of T', we can still have two distinct tuples
(z,y) (wherex is theFROMpart) and(y, =) (wherey is theFROM
part).

In the sense that reflexive relationships descdipectedgraphs,
undirected relationships describeundirectedgraphs. Thus, the
distinction between the paifs;, y) and(y,) is lost, meaning that
if (y,x) is present then, by definition, so {g,y). This raises
the question as to whether an undirected relationship iflexies
relationship or vice versa. Certainly, any undirectedtietship
can be represented as a reflexive relationship, while theecsae
is not true — a reflexive relationship containing jyst y) is not

‘ UniMuItiRelationship‘

%

‘ UniRelationship ‘MultiReIationship

Relationship

T

| |

OneToManyReIationshi&(ReflexiveReIationshi%

[= I

UndirectedReIationshi# TreeReIationshi#

Figure 7: An overview of the interface hierarchy for the Re-
lationship Aspect Library. Since these correspond to Javan-
terfaces, rather than classes, multiple inheritance is penitted.
To simplify the diagram, a some inheritance relationships ave
been left out. For example, a tree relationships-a one-to-many
relationship.

undirected sincéy, =) is missing. The difficulty is that a method
expecting a reflexive relationship may be surprised wheringdd
(z,y) automatically addgy, =) as well!

A one-to-many relationshipcorresponds to a relationship where
each participant has at most one parent. Thus, in UML teriogyo
itis a(0..1) — * association. In the case that the relationship is
also reflexive, then this constraint describeésea (hence, a one-to-
many, reflexive relationship is taee relationship). One-to-many
relationships are implemented by suitably simplified varsiof the
many-to-many relationship aspects.

Finally, amanaged relationshipallows the entire set of associ-
ations it represents to be iterated. It is useful to separatehis
concept, since many relationship implementations do niniraby
support this operation. For examptaticRel is not a man-
aged relationship, because its associations are disdbactross
participants, but the relationship does not track thoséqgiaants.
The library providesStaticManagedRel as an extension of
StaticRel which also records the set of participants. In this
way, all of its associations can be iterated, although thises at a
cost — both in terms of performance and space usage. Thefibra
does not provide an interfaddanagedRelationship ; rather,
we use theSet interface from the Java Collections Library. Thus,
StaticManagedRel implementsSet<Pair<FROM,TO>> , but
StaticRel does not.

These different concepts support different operationsekample,
Relationship includes the following:

interface Relationship<FROM,TO,P>
extends ... {

void clearFrom(FROM X);
void clearTo(TO X);

}

Thus, clearFrom(x)
tion, whileclearTo(x)

clears all pairs withe in the FROMposi-
clears all those with in theTOposition.

In a reflexive relationshipFROM= TOand, hence, the following
is now possible:

interface ReflexiveRelationship<T,P>
extends Relationship<T,T,P> {

void clear(T x);

}
This clears all pairs where is in either theFROMr TO position.

4. PERFORMANCE

We consider that performance is a crucial factor in deteimgin
whether relationship aspects are likely to be adopted iotice
Relationship aspects are unlike many other applicationaQ,
such as debugging or logging, which can be removed befork fina
program deployment. Rather relationships are crucial édtihc-
tionality of the program and, as such, their performancestedes
directly into program performance. Therefore, we havelaiad
the performance of our relationship aspects, and comp&erd t
with the hand-coded alternatives. We are not attemptingrde p
vide a definitive study — this is beyond the scope of this papelr
the space available. Instead, we present some straiglatforex-
amples as a proof-of-concept that the performance of oeistip
aspects is comparable with that of hand-written code.

For each study that follows, we constructed two version$ef t
test programs: a relationship aspect version and a haretoget-
sion. The two were entirely separate, although very simildth
the only difference being in the implementation of the iietaghips.
For the hand-coded version, these were implemented by rianua
adding fields and accessor methods as necessary to thépyzentisc
For the relationship aspect version, two relationship em@nta-
tions were testedStaticRel andHashRel . Thus, three im-
plementations were evaluated (i.8taticRel , HashRel and
hand codeli for each study. The experiments were repeated on
three different machines, with different processors andfrat-
ing systems in an effort to see general trends. Details atlage
given in Table 1. In each case, Sun’s Java 1.5.0 (J2SE 5.QjrRein
Environment and Aspect/J 1.5 (development snapshot 2@3§01
were usell Note, this development snapshot fixed a number of
bugs with the 1.5.0 release of Aspect/J needed to compilRetee
tionship Aspect Library. Timing was performed using thendtard
System.currentTimeMillis() method, which has a reso-
lution of 10ms or less, depending on the operating systene Th
complete source for all the code used in each study can bmebta
from http://www.mcs.vuw.ac.nz/"djp/RAL/

4.1 Study 1 — Students and Courses

For the first case study, we used the student-course exarfrpig-o
ures 2 + 4. We looked at the cost of enrolling students, itegahe
courses attended by each student and the students atteratihg
course. Our benchmark code consisted of creating 20,006&®u
and 100,000 students, performing 500,000 random enrofveertt
running a tight loop which traversed the courses attendeekloh
student, as well as the students enrolled in those coursesdh
testing both directions of traversal), as shown below:

for(Student s :
for(Course ¢ :
for(Student s2 :

1

!We were unable to compare against the abc compiler, as this do
not currently support Java 1.5 generics.

students) {
r.from(s)) {

r.to(c)) {

[Name]| Machine |
Pentium M Intel Pentium M 1.6Ghz, 1GB
RAM, Windows XP
Pentium IV Intel Pentium IV 2.5Ghz, 1GB
RAM, NetBSD v3.99.7
64Bit PowerPC 1.8Ghz, 1GB
PowerMac G5)| ¢ AM, MAC 0S X v10.4.2

Table 1: The three machines used in our experiments.

Here,r is the relationship object. For the hand-coded version, we
haves.from() rather tharr.from(s) . The entire procedure
was repeated 10 times to get an average runtime for eaclorelat
ship implementation.

4.2 Study 2 — Road Networks

For our second study, we looked at a relationship represgmti
road network connecting cities together. This describesaply
structure which is both reflexive (as cities are associafdtaities)
and weighted (as roads have distance). Many interestingitims
are relevant to this relationship. A representative exangDijk-
stra’s classic algorithm for determining tebortest-pattbetween
two points [8]. Our benchmark is an implementation of Dijkst
algorithm computing the shortest path between every citp\{in
as the all-pairs, shortest paths problem). As input, we aseth-
domly generated graph with 100 cities and 5000 roads of ngryi
distance. Each relationship implementation was testetisisame
input to ensure a fair comparison.

All three relationship implementations used the followingple-
mentation ofPair to represent roads:

class Road implements Pair<City,City>
private final City from;

private final City to;

private int distance;

... /I accessor methods as needed

Thus, we havétaticRel<City,City, Road> and, likewise,
HashRel<City,City,Road> for the relationship aspect im-
plementations, while the hand coded version storedRwad sets
inside eaclCity object (one for incoming roads and one for out-
going roads).

4.3 Results

The results are shown in Figures 8 and 9. The main observation
is that StaticRel is competitive with, but consistently slower
than the hand-coded implementation. The majority of theslbgad
arises from our relationship implementations wrappingsiis re-
turned byfrom() /to() /toPairs() / fromPairs() with
immutable adaptors. This prevents clients modifying theete and
potentially putting the relationship in an inconsisteritst These
adaptors are created on-the-fly when these methods ard aalie
hence, some cost is incurred. The hand coded implemendation
not use such adaptors (E®urse.enrol(Student s) must
be able to modifys.attends) and, thus, they have a slight ad-
vantage.

Figure 9 presents a few surprises. The relative behaviotreof
three implementations is remarkably consistent acroskrak ma-
chines. More significant, is thadashRel is consistently faster

StaticRel zzza
HashRel sz
Hand Coded

[y
2.5 A

Average Runtime (normalised)

PowerMac G5
(11.5s)

Pentium IV
(5.1s)

Pentium M
(4.7s)

Figure 8: Charts of our experimental data for the student-
course benchmark (Study 1). For each machine, the data
is given relative to the St at i cRel implementation, to allow
them to be shown on the same chart. Underneath each ma-
chine name, the absolute average time (in seconds) for the
St at i cRel implementation is shown for reference.

StaticRel zzza
HashRel =z
Hand Coded &

1.4 A

1.2 4

Average Runtime (normalised)

PowerMac G5
(11.3s)

Pentium M
(8.4s)

Pentium IV
(9.6s)

Figure 9: Charts of our experimental data for the road-
network benchmark (Study 2). For each machine, the data is
given relative to the St at i cRel implementation, with the ab-
solute average time shown underneath (as for Figure 8).

than the other two (albeit by a small amount). This is strevegte
causeHashRel must perform a hash table lookup in, for example,
from(x) to get the set of objects associated withIn contrast,

the other two implementations store this set in objectsiieThus,
they should benefit from a static lookup firom(x) (hence, we
would expect them to be somewhat faster as in Figure 8). While
the exact reasons for the performancélashRel remain unclear,
there are some observations to make. The relationshipsiusieel
road-network are far smaller than for the student-coursefmaark

— 100 objects and 5000 pairs, compared with 120,000 objects a

into play here. The idea is thelashRel may fit entirely into the
cache where the other two do not. This could happen becaase th
shortest paths algorithm does not actually need accesy tf &me
additional state contained inGity object. Rather, it needs the ref-
erence for &City object in order to identify those it is connected
to. Thus, if the relationship is spread across @iy objects,
these will be loaded in their entirety into the cache. HashRel ,
however, theCity objects are not needed and, hence, they do not
occupy precious space in the cache. We must caution, of &ours
that this is entirely speculative and further work is neetteflilly
understand the performancetéfishRel .

In spite of this unexpected behaviour, Figure 9 does highba
interesting advantage of relationship aspects: differeationship
implementations can be quickly and easily tested sincedaéion-
ship code is properly abstracted. Exactly the same cliedé ¢®
used in our static and dynamic relationship examples: thedifi
ference is the declaration of$taticRel or aHashRel . With
hand-coded relationships, however, this is not the cagezecting
between different implementations means making largeggsato
the code.

5. DISCUSSION

In this section, we discuss various issues in the designraptei
mentation of relationship aspects.

5.1 Encapsulation and Attributes

Encapsulation is an important principle of software desmmob-
ject’s implementation details should not be visible owgdidat ob-
ject. Representing relationships as aspects could be sdmeak-
ing encapsulation, because (especially static) relgtipssnay need
direct access to the internals of their participating cisjed¢dow-
ever, our aspect-oriented design strongly encapsulagegrtple-
mentation of the relationships themselves. The relatipistlients
(including their participating objects) manipulate théatenship
via theRelationship interface. Participants cannot access any
details of a particular implementation, and any fields othods in-
serted into participating objects are visible only to tHatienship.
This is in contrast to most object-oriented relationshigigies [25]
— especially those that scatter the relationship impleatents
across multiple classes (see figure 2) — which break objects’
capsulation rather more directly than our aspect-oriedéesigns.
Reifying each relationship as an aspect also makes it gessib
to apply visibility constraints to each relationship indwally, in-
dependently of its participating objects: in Aspect/Jatiehship
aspects can be encapsulated within their defining packaeé, t
defining class, or that class and its subclasses by usingahe s
dard Java-style access specifiers. Relationship aspecisrelke
explicit the choice between modelling associations byti@iahip
aspects and by object attributes (and thus fields or cadies)i Our
practice is to use fields or collections when the relatignghcom-
pletely straightforward and unimportant in itself, thawiden there
are no invariants, constraints, or behaviours on the aastsmej and
when in UML it would be modelled by an object’s attribute. For
example, a Student object could have a “name” String fieldicin
Number field, and an “address” field holding a vector of sting
none of these merit being implemented as a relationshipoBcg
the relationship is at all complex, has design invariargastraints,
and behaviours of its own, then it should certainly be imgatad
explicitly using a relationship aspect. Students attegaiourses,

500,000 pairs. The road-network benchmark spends more timemaking payment transactions, and their tenancy in hallsesf r

traversing the relationship as the algorithm involved igenmom-
plex. Thus, it seems plausible that the machine’s cachensngp

dence, for example, are all sufficiently important or comptie
model explicitly and implement with relationship aspects.

5.2 Relationship Reuse

Treating relationships as aspects facilitates code retise.com-
monRelationship interface makes it easier to reuse code, since
they permit relationship implementations to be intercleshgyith-

out changing the client code. Because Aspect/J allows itinee
between aspects, we obviously permit inheritance amoiagjoat
ship aspects. The Relationship Aspect Library uses irdreré to
organise its implementations, and programmers using Hrarii
can also employ inheritance to organise their code.

There is one drawback to using inheritance to add common oper
ations to relationship aspects. Aspect/J requires thét eaacrete
relationship aspect extends a generic abstract in theyibraas in
the definition ofAttends in Figure 4:

aspect Attends extends
SimpleStaticRel<Student,Course> {

int totalWorkload(Student s) { }

.

At this point, any code added into the relationship, suchhas t
totalWorkload() method is tied to that relationship: it can-
not be reused across many different relationship impleatients.

In Aspect/J, inheritance-based reuse is possible only alifitract
aspects, and then only via single inheritance. This can hi@jha
mitigated by makingAttends abstract, so many concrete rela-
tionships can inherit it and reusetalWorkload() — this is,
after all, the principle underlying the design of the lily.akll these
concrete relationships, however, are now forced to usedine se-
lationship implementation.

There are a number of alternative designs that avoid thieétsp
limitation. Using a classically object-oriented approdased on
the Decorator pattern [10], we can make a new relationship as
pect that contains the extra code, but which delegates tfeeree
lationship operations to a second relationship aspect. exist-
ing relationships accessed via this decorator effectigaliyn the
additional behaviour. Given that Aspect/J is an aspeented lan-
guage, however, we can place the behaviour we wish to retgsa in
separate aspect that mixes it into those relationship &speeding
the extra behaviour.

curriculum changed just before the exam! ThG@surse objects
behave differently (i.e. they don't accept changes) whey #re
participating in a relationship from when they are not (they do
accept changes).

Aspect-oriented languages should provide a natural means o
pressing these behavioural aspects of relationships. \WWe tw
consider this in more detail in the future and it will be irgsting to
see whether Aspect/J and the Relationship Aspect Librarjudly
support these ideas.

5.4 Relationships and Patterns

Using aspects to represent relationships has much in conition
using aspects to represent role models and patterns [18,4]3,
From our perspective, many important patterns are prisnaei
lationships with added behaviour. The Composite and Intééep
patterns [10], for example, are primarily tree relatiopshiith ad-
ditional behaviour to distribute operations on an intenmale down
to the leaf nodes for Composite, or to evaluate expressiamkh{
terpreter; the Observer pattern is a many-to-many relshipnbe-
tween subjects and observers, with additional behaviodetect
changes in the subjects and notify observers; and the Ch&ir-o
sponsibility pattern is essentially a one-to-many retathip be-
tween clients and handlers, with additional behaviour siritiute
a client’s requests to its handlers.

We expect that programmers will be able to use the Relatipnsh
Aspect Library to implement patterns in a number of waystePas
could still be implemented directly, in the object-orieshyle, but
using relationship aspects to support the relationshigsired by
the patterns. Some patterns (in particular Observer) coeldn-
plemented by extending relationship aspects to add in thierpa
specific behaviour. Most patterns, however, could be impleed
as independent aspects in their own right, but again usiatjoe-
ship aspects to provide inter-object relationships.

The main difference between using aspects to implement pat-
terns and to implement relationships is one of focus: thegqaes
and structures of patterns vary greatly, whereas reldtipasare
essentially about maintaining associations between grofipb-
jects. This common purpose supports our common relatiprighi
terface, which allows programmers to exchange implemientat
of relationships without changing the code that uses tteiosl-

The issue discussed here is an example of a more general propShiPs. On the other hand, many of the refactoring technitus

lem identified with reusing Aspects in Aspect/J [23]. Thernsz®
arises when an abstract aspect containing the primary imgie
tation defers itbinding via an abstract pointcut. Ainding aspect
extending this then provides the concrete pointcut (i.ebthding).
The problem (as above) is that any code in the binding aspect (
cluding the binding itself) cannot be reused with differabhstract
aspects (perhaps providing alternative, but equivaleptdmenta-
tions). More advanced aspect-oriented languages, suchesafl
[23, 22], address this problem directly and would allevthgeissue
identified here with our relationship aspects.

5.3 Relationships and Behaviour

This paper has focused exclusively on the structural aspéabod-
elling relationships, such as the interfaces for addingoréng and
navigating pairs. Behavioural aspects have not been cenmesid
That is, the possibility that objects may behave differemthen
participating in a relationship from when they are not. Gdes
again the student-course example of Figure 1. In practiceuese
will have many more attributes, such as a curriculum, thahawe
shown. Such attributes will change over time in line withrues
to the course. A useful constraint would be to prevent anyngés
when students are attending the course — it would be unftieif

have been developed for replacing object-oriented pattephe-
mentations with aspects [14, 24, 11] should also suppattefing
object-oriented programs to use relationship aspects.

5.5 Library Interface Design

Interface design is one of the most important parts of ljoide-
sign. We have designed tRelationship interfaces to include
all the key operations that are required on relationshipsisTrela-
tionship implementations that do not explicitly stétair objects
offer an API that can supply pairs, and generates them agreequ
Different operations on different implementations wilMiealiffer-
ent performance characteristics: the common interfacsvalim-
plementations to be changed without affecting the rest efptto-
gram.

Our Relationship interfaces are not generally compatible
with Java’s existing Collections interfaces. This is bessawe
consider that relationships are fundamentally differentallec-
tions: relationships are aspects, rather than classesatieetypi-
cally bidirectional, rather than unidirectional; theirplamentation
often cross-cuts multiple participating classes. Of ceurslation-
ships use classes from the collections library both in theer-
faces Gets andlterator s) and also in their implementations

(particularlyHashSet s andHashMaps), and some special cases
(ManagedRelationships) do implemédollection s interfaces
asis.

The main area where we would like to improve the design of
library is in the complex declarations required to instatatirela-
tionship aspects. Each different kind of relationship —dineic-
tional or bidirectional navigability; static or dynamic plementa-
tion; many-to-many or one-to-many arity; and ideally otkari-
ants on relationships such as keeping pairs indexed eithiesbr-
tion order, or by an attribute of the participating objectsneeds
a separate abstract generic aspect implementation, aninible-
mentation must be named explicitly in the aspect declarafitven
the distinction between the “standard” relationshipst(ta&e an
explicit Pair class argument to represent the individual associa-
tion tuples) and “simple” relationships (that use a staddrair
implementation implicitly) must be reflected in the nameghaf
aspects.

For this reason, a number of researchers or language design-
ers have proposed adding explicit relationship constiiootdject-
oriented programming languages, to support an entitytiogiship
modelling style more explicitly. Rumbaugh [30, 31, 36] pospd
adding relationships to object-oriented languages rxegtiearly,
including support for operations to be automatically pggiad
across relationships. Rather more recently Bierman & W@n [
have formally described a programming language whereioalat
ships are first class constructs, in parallel with classesahces of
these relationships (individual relationship objects) bave their
own state and behaviour similar to the “extensible pairsoim
relationship aspects. The design of the interface for olation-
ships is also inspired by their design, although, of cowsepuse
generic aspects to represent relationships, while theigdauses a
specialised first-class language construct.

Given how natural modelling relationships with aspectaguwut
to be, it is surprising that there does not seem to be more work

Perhaps a future version of Aspect/J could support some form adopting this approach. Jiri Soukup developed patterrsetag38,

of type inference, default generic arguments, or even tieeofis
annotations so that a declarations such as:

aspect Attends extends
@Dynamic Relationship<@One Company,
@Many @Unique @Sorted Employee> {

37] based on an ad-hoc aspect weaver feHG that could be used
to support static inter-object relationships (as well asujpport ob-
ject persistence). More recently, many of the aspect-twtenase
studies investigating design patterns, especially Mediand Ob-
server [13, 27, 19] also describe aspects that implemestotiject
relationships. Relationship aspects are designed to mierela-

could replace the much more cumbersome (and overly precise)tionships between objects rather more specifically, andusem-

DynamicMany20neUniqueSortedRelationship

6. RELATED WORK

Relationships, associations, or collaborations have loeen an
important part of object-oriented analysis and designniway or
another. Responsibility driven design’s collaboraticios, exam-
ple, are primarily abstractions of message sends betweentsb
[41], while other methods focus more on the structure ofrinte
object relationships [32, 3], inspired by entity-relabip mod-
elling [5]. The unified modelling language [33] codified asse
tions (in the entity-relationship style) and they have baémpor-
tant part of UML modelling from the earliest version.

However relationships are modelled in programs’ analyses-o
signs, object-oriented programmers are faced with thel@naob of
translating those relationships into the basic featurefeifences,
collections) supported by programming languages. We have d
scribed a set of patterns describing how relationships eamabd-
coded in common cases — ranging from using single reference a
tributes for straightforward one-to-one relationshipspéoying a
collections library, to reifying relationships as indivia objects
in their own right [25]. The implementations of the relatship
aspects in our library are based on these patterns. Haridecost
mains by far the most common practice for implementing ietat
ships in object-oriented, and now aspect-oriented progriagn In
order to avoid programmers having to hand-code relatipssta
number of more explicit approaches have been investig&ep [
Recently, many of these have focused on either executing UML
models directly [29] or (more commonly) translating UML asis
ations into code in an object-oriented programming languad,
15, 12]. Directly executing UML has not yet proved effectine
practice; translating associations suffers from the commamb-
lems of code generation: programmers need to work with their
programs at two separate levels of abstraction, and thehtoesslit
the resulting code, making “round trips” back to the desigmsler.
This is particularly difficult when code actually implemag rela-
tionships has to be edited — the relationships must be imghéea
in terms of lower-level programming language construotsthe
relationships cannot be made explicit in the resulting code

mon interface to hide implementation details from clierdeo

The Adaptive Programming approach [21, 20] similarly sepa-
rates the relationships between objects (in Demeter teiogy
the class graphandobject graph from the base code of the pro-
gram. Because the class graph gives a global view of the gmogr
structure, an adaptive programming system is able to nivige
tween any number of objects or classes automatically, apd ex
cute behavioural code wherever most appropriate. Our appris
more modest: relationship aspects are organised with tuggmn’s
code as any other class or aspect definition. Although (ldapa
tive programs) relationship aspects abstract away thecimghta-
tion details of relationships, a global class graph is nantamed
explicitly, so programmers need to use each relationshipate
igate around programs. Sullivan and Lieberherr earlieppsed
a graph-based schema, where vertices and edges repressascl
and their relationships [39]. This supports more compl@esyof
relationship than we do, including the representation atfions
as relationships mapping parameters to their results. AsWNL
class diagrams, their schema is somewhat abstracted fraala r
implementation and, in particular, does not consider thdeoffs
between different relationship implementations on whiehfecus.

Special purpose Association Aspects [35] have been prdpose
to model relationships, effectively as a kind of per-ins@aspect
that can be connected to more than one target object. Asisocia
aspects can also contain advice that executes in the cafteath
associated object. In comparison with relationship aspesisoci-
ation aspects are a special-purpose extension (althouggpct/J,
rather than a standard object-oriented language) whialsfon be-
havioural modification of the associated objects, rathen timan-
aging the relationships between them. Thus, while assogias-
pects do provide a rudimentary interface for adding and wémgo
associations, support for iterating over a relationshigraversing
from one end to the other seems to be lacking. Finally, aasoci
tion aspects are implemented in terms of hash tables, whiéwen
in Aspect/J — relationship aspects can use a number of €ifter
implementation strategies, with different modifiabilitycaperfor-
mance tradeoffs.

Finally, inasmuch as it relates analysis and design modeisde

— and uses aspect-orientation to keep designs explicit atahu
gle relationships from their participating classes — thisrkvis
also related to work on aspect-oriented analysis and dedige
Theme approach, to take one example, identifies relatieetyet
scale concerns early in the analysis and design processy asi
aspect-oriented language keeps those concerns sepathgeiin-
plementation as well as the design [6, 7]. Jacobson et a], [17

use aspects to map the code from use cases onto domain pbjects [7]

so avoiding tangling code between peer use-cases. Themesmak
a major change to existing object-oriented developmertgsges,

while Jacobson et al. makes a more minor change: if you are al-

ready following a use-case based process, aspect desigroand
position replaces programmers manually apportioningoases to
classes in the design. In contrast, our contribution isgrésg re-
lationships from either object- or aspect- oriented desigulicitly
into program code.

7. CONCLUSION

Early programming languages provided little support faresent-
ing either objects or the relationships between them. FORYR
for example, began with integers, reals, and arrays; COB@L a

Algol offered a great advance by adding a range of string data

types and records. Structured languages, such as Pasdat] ad
pointers and dynamic memory allocation (rudimentary disjeto
these constructs: programmers could model real-worldientas
dynamically allocated records linked together with paist&Vhile
dynamic dispatch streamlined object-oriented prograhesattual
“object model” in languages from Smalltalk to Java remassea-
tially the same as in Pascal: dynamically allocated rectinted
together by pointers — with, eventually, garbage collettand a
library offering sets, bags, and lists to supplement arrays

In this paper, we have demonstrated how aspects can raise the{14]

level of abstraction of data structures, by modelling refethips
between objects explicitly. Treating relationships aseatpin-
creases the clarity and straightforwardness of a prograote,
allows programmers to interchange relationship impleaténts
with ease, and has a negligible effect on the program’s perfo
mance. Many paradigmatic uses of aspects address noriefugict
often peripheral concerns, such as logging, tracing, ggcper-
sistence, or synchronisation. In contrast, using aspecepresent
relationships between objects places aspect-orientatitine very
core of everyday program design.

Acknowledgements

Thanks to Adrian Colyer, Elisa Baniassad, Joerg Evermaaul P
H. J. Kelly, Todd Millstein and the anonymous AOSD refereas f
some excellent comments on various drafts of this paper alpd h
with Aspect/J. This work is supported by the University Resh
Fund of Victoria University of Wellington, and the Royal Sety
of New Zealand Marsden Fund.

8. REFERENCES

[1] The AspectJ 5 development kit developers notebook,
http://www.aspectj.org/ .

G. Bierman and A. Wren. First-class relationships in an
object-oriented language. Proceedings of the European
Conference on Object-Oriented Programming (ECOQP)
volume 3586 oL ecture Notes in Computer Sciengages
262-282. Springer-Verlag, 2005.

G. Booch.Object Oriented Analysis and Design with
Applications Benjamin Cummings, second edition, 1994.

(2]

(3]

[4] G. Booch, I. Jacobson, and J. Rumbaughe Unified
Modeling Language User Guid@ddison-Wesley, 1998.

P. P. Chen. The entity-relationship model — toward a edifi
view of data.ACM Transactions on Database Systems
(TODS) 1(1):9-36, 1976.

S. Clarke and E. Baniassafispect-Oriented Analysis and
Design: The Theme Approachddison-Wesley, 2005.

S. Clarke and R. J. Walker. Generic aspect-orientechdesi
with Theme/UML. In R. Filman, T. Elrad, S. Clarke, and

M. Aksit, editors,Aspect-Oriented Software Development
chapter 19. Addison-Wesley, 2004.

E. W. Dijkstra. A note on two problems in connection with
graphs Numerische Mathematik:269-271, 1959.

D. F. D’Souza and A. C. WillsObjects, Components, and
Frameworks With UML: The Catalysis Approach
Addison-Wesley, 1998.

E. Gamma, R. Helm, R. E. Johnson, and J. Vlissi@esign
Patterns Addison-Wesley, 1994.

A. Garcia, C. Sant'Anna, E. Figueiredo, U. Kulesza,

C. Lucena, and A. von Staa. Modularizing design patterns
with aspects: A quantitative study. Rroceedings of the
ACM Aspect-Oriented Software Development (AOSD)
conferencepages 3-14. ACM Press, 2005.

G. Génova, C. R. del Castillo, and J. Llorens. MappinglU
associations into Java codmurnal of Object Technology
(JOT), 2(5):135-162, 2003.

J. Hannemann and G. Kiczales. Design pattern
implementations in Java and AspectJPimceedings of the
ACM conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSI Aages 161-173.
ACM Press, 2002.

J. Hannemann, G. C. Murphy, and G. Kiczales. Role-based
refactoring of crosscutting concerns.Pmoceedings of the
ACM Aspect-Oriented Software Development (AOSD)
conferencepages 135-145. ACM Press, 2005.

W. Harrison, C. Barton, and M. Raghavanchari. Mapping
UML design to Java. IfProceedings of the ACM conference
on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA)ages 178-188. ACM Press, 2000.
W. Iseberg. Check out library aspects with AspectJ 5. In
AOP@Work serie2006.http://www-128.ibm.com/
developerworks/javallibrary/j-aopwork14/

I. Jacobson and P.-W. Néspect-Oriented Softare
Development with Use Casesddison-Wesley, 2005.

E. A. Kendall. Role model designs and implementatioits w
aspect-oriented programming. Broceedings of the ACM
conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSI.Aages 353—-370.
ACM Press, 1999.

G. Kiczales and M. Mezini. Separation of concerns with
procedures, annotations, advice and pointcuts. In
Proceedings of the European Conference on Object-Oriented
Programming (ECOOR)pages 195-213. Springer-Verlag,
2005.

K. Lieberherr. Controlling the complexity of software
designs. IrProceedings of the International Conference on
Software Engineering (ICSE)ages 2—-11. ACM Press, 2004.
K. Lieberherr and D. H. Lorenz. Coupling aspect-orezht
and adaptive programming. In R. Filman, T. Elrad, S. Clarke,
and M. Aksit, editorsAspect-Oriented Software
Developmentchapter 6. Addison-Wesley, 2004.

(5]

(6]

(8]
(9]

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

M. Mezini and K. Ostermann. Integrating independent
components with on-demand remodularization. In
Proceedings of the ACM conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA) pages 52—-67. ACM Press, 2002.

M. Mezini and K. Ostermann. Conquering aspects with
Caesar. IProceedings of the ACM Aspect-Oriented
Software Development (AOSD) confererages 90-99.
ACM Press, 2003.

M. P. Monteiro and J. M. Fernandes. Towards a catalog of
aspect-oriented refactorings. Bmoceedings of the ACM
Aspect-Oriented Software Development (AOSD) conference
pages 111-122. ACM Press, 2005.

J. Noble. Basic relationship patterns. In N. Harrison,

B. Foote, and H. Rohnert, editoRattern Languages of
Program Design 4chapter 6, pages 73-94. Addison-Wesley,
2000.

J. Noble and J. Grundy. Explicit relationships in
object-oriented development. Rroceedings of the
conference on Technology of Object-Oriented Systems and
Languages (TOOLSpages 211-226. Prentice-Hall, 1995.
K. Ostermann, M. Mezini, and C. Bockisch. Expressive
pointcuts for increased modularity. Rroceedings of the
European Conference on Object-Oriented Programming
(ECOOP) volume 3586 of_ecture Notes in Computer
Sciencepages 214-240. Springer-Verlag, 2005.

R. Pooley and P. Steveridsing UML: Software Engineering
with Objects and Componentadddison-Wesley, 1999.

D. Riehle, S. Fraleigh, D. Buckna-Lassen, and N. Ombeog
The architecture of a UML virtual machine. Rroceedings

of the ACM conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSpéges
327-341. ACM Press, 2001.

J. Rumbaugh. Relations as semantic constructs in an
object-oriented language. Proceedings of the ACM
conference on Object-Oriented Programming Systems,
Languages and Applications (OOPS| Axges 466—481.
ACM Press, 1987.

J. Rumbaugh. Controlling propagation of operatioriagis
attributes on relations. IRroceedings of the ACM conference
on Object-Oriented Programming Systems, Languages and
Applications (OOPSLApages 285-296. ACM Press, 1988.
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and

W. LorensenObject-Oriented Modeling and Design
Prentice Hall, New Jersey, 1991.

J. Rumbaugh, I. Jacobson, and G. Boothe Unified
Modeling Language Reference Manuatidison-Wesley,
1998.

J. E. Rumbaugh. Models for design: Generating code for
associationsJournal of Object-Oriented Programming
(JOOP) 8(9):13-17, 1996.

K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, and
S. Komiya. Association aspects. Rioceedings of the ACM
Aspect-Oriented Software Development (AOSD) conference
pages 16-24. ACM Press, 2004.

A. V. Shah, J. H. Hamel, R. E. Borsari, and J. E. Rumbaugh.
DSM: An object-relationship modeling language. In
Proceedings of the ACM conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA) pages 191-202. ACM Press, 1989.

J. Soukup. Implementing patterns.Rattern Languages of
Program Designpages 395-412. Addison-Wesley, 1994.

[38] J. SoukupTaming G++: Pattern Classes and Persistence
for Large Projects Addison-Wesley, 1994.

[39] G. Sullivan and K. Lieberherr. An object-oriented dgsi
methodology. Technical Report NU-CCS-95-1, Northeastern
University, 1995.

[40] P. Wegner. Concepts and paradigms of object-oriented
programmingOOPS Messengget(1):7-87, 1990.

[41] R. Wirfs-Brock, B. Wilkerson, and L. WienelResigning
Object-Oriented Softward’rentice-Hall, 1990.

