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1 Introduction

For a directed grapP = (V, E'), aStrongly Connected Component (SGC3 maximal induced subgraph
S = (Vs, Eg) where, for everyr, y € Vg, there is a path from: to y (and vice-versa). Tarjan presented
a now well-established algorithm for computing the strgrggnnected components of a digraph in time
©(v+-e) [8]. In the worst case, this need§2 + 5w) bits of storage, where is the machine’s word size.
Nuutila and Soisalon-Soininen reduced this)td + 4w) [6]. In this paper, we present for the first time
an algorithm requiring onlgvw bits in the worst case.

Tarjan’s algorithm has found numerous uses in the liteeataften as a subcomponent of larger al-
gorithms, such as those ftransitive closurd5], compiler optimisatior{3] and program analysiq1, 7]
to name but a few. Of particular relevance is its use in motetking, where the algorithm’s storage

requirements are a critical factor limiting the number aftes which can be explored [4].

2 Depth-First Search

Algorithm 1 presents a well-known procedure for travergliggaphs, known as Depth First Search (DFS).
We say that an edge— w is traversedif visit (w) is called from visitv) and that the value dhdexon
entry to visi{v) is thevisitation indexof v. Furthermore, when vigit) returns we say the algorithm is
backtrackingfromw to v. The algorithm works by traversing along some branch utéi&bor a previously
visited vertex is reached; then,dacktracksto the most recently visited vertex with an unexplored edge
and proceeds along this; when there is no such vertex, ot@s®n from the set of unvisited vertices and
this continues until the whole digraph has been exploredh $itraversal always corresponds to a series
of disjoint trees, calletraversal treeswhich span the digraph. Taken together, these are reftsrasl a
traversal forest Figure 1 provides some example traversal forests.

Formally, F' = (1, Ty, ...,T,) denotes a traversal forest over a digrdph= (V, E'). Here,I maps
every vertex to its visitation index and edthis a traversal tree given ky, Vr, CV, Er, C E), wherer is

its root. It is easy to see that, if viéit) is called from the outer loop, thenis the root of a traversal tree.



Algorithm 1 DFS(V,E)

1: index=0

2: for all v € V do visitedv] = false
3: forall ve Vdo

4: if —visitedv] then visit(v)

procedure visit(v)
5: visitedv] = true ; index= index+ 1
6: forall v —w € E do
7: if —visitedw] then visit(w)
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Figure 1: lllustrating three possible traversal forestdlie same graph. The key is as follows: vertices are
subscripted with their visitation index; dotted lines sepa traversal trees; dashed edges indicate those
edges not traversed; finally, bold vertices are tree roots.

For a traversal foredt’, those edges making up its traversal treesr@eedgeswhilst the remainder are

non-treeedges. Non-tree edges can be further subdividedfimmard-, back-andcross-edges

Definition 1. For a directed graph,D = (V, E), a nodex reachesa nodey, written xS y, if x =y or

Jzjx—z€E A z'\D»y]. TheD is often omitted from, when it is clear from the context.

Definition 2. For a digraphD = (V, E), an edger — y € E is a forward-edge, with respect to some tree

T = (r,Vp,Br),ffa—y ¢ Bp Az #yAz-oy.

Definition 3. For a digraphD = (V, E), an edger — y € E is a back-edge, with respect to some tree

T = (r,Vi, Ep), ifx—y ¢ Br Ay-Sa.

Cross-edges constitute those which are neither forwandback-edges. A few simple observations
can be made about these edge types: firstly;-ify is a forward-edge, theh(x) < I(y); secondly, cross-
edges may bntra-tree (i.e. connecting vertices in the same treejraer-tree thirdly, for a back-edge
x —y (note, Tarjan called thedeonds, it holds that/(z) > I(y) and all vertices on a path fromto =
are part of the same strongly connected component. In fatnialso be shown thétx) > I(y) always
holds for a cross-edge— y (see Lemma 1, page 9).

Two fundamental concepts behind efficient algorithms far finoblem are théocal root (note, Tarjan

called these LOWLINK values) andomponent root the local root ofv is the vertex with the lowest
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visitation index of any in the same component reachable batl fromv involving at most one back-
edge; the root of a component is the member with lowest tisitandex. The significance of local roots
is that they can be computed efficiently and that; i§ the local root ofv, thenr = v iff v is the root of a
component (see Lemma 3, page 9). Thus, local roots can baagkshtify component roots.

Another important topic, at least from the point of view aftpaper, is the additional storage require-
ments of Algorithm 1 over that of the underlying graph datacture. Certainlyp bits are needed for
visited-|, wherev = |V'|. Furthermore, each activation record for \(igitholds the value ob, as well as
the current position in's out-edge set. The latter is needed to ensure each edgeated at most once.
Since no vertex can be visited twice, the call-stack can eostv vertices deep and, hence, consumes
at mostvw bits of storage, where is the machine’s word size. Note, while each activation récoay
hold more items in practice (e.g. the return address), tbasdbe avoided by usingreon-recursiveim-
plementation. Thus, Algorithm 1 requires at mogt + 2w) bits of storage. Note, we have ignoredex

here, since we are concerned only with storage proportion&f|.

3 Improved Algorithm for Finding Strongly Connected Components

Tarjan’s algorithm and its variants are based upon Algorith and the ideas laid out in the previous
section. Given a directed gragh = (V, E), the objective is to compute an array mapping vertices to
component identifiers, such thatandw map to the same identifier iff they are members of the same
component. Tarjan was the first to show this could be dort&(in+ ¢) time, wherev = |V| ande = | E]|.
Tarjan’s algorithm uses theacktrackingphase of Depth-First Search to explicitly compute the local
root of each vertex. An array of siz& |, mapping each vertex to its local root, stores this inforamat
Another array of sizeéV| is needed to map vertices to their visitation index. Thusséhtwo arrays
consume&uwvw bits of storage between them. The key insight behind ourargment is that these arrays
can, in fact, be combined into one. This arrapdex:-], maps each vertex to the visitation index of
its local root. The outline of the algorithm is as follows: entry to visi{v), rindexv] is assigned the
visitation index ofv; then, after each successoris visited,rindexv] =min(rindexv], rindex{w]). Figure
2 illustrates this.
The algorithm determines which vertices are in the same ocoent (e.9.B,C, D, E, GG in Figure 2)
in the following way: if, upon completion of visit), the local root o is notwv, then pushy onto a stack;
otherwisew is the root of a component and its members are popped off élok aind assigned its unique
component identifier. In Tarjan’s original algorithm, theedl root of a vertex was maintained explicitly
and, hence, it was straightforward to determine whethertexwas the root of some component or not. In

our improved algorithm, this information is not availabledahence, we need another way of determining
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Figure 2: lllustrating theindex computation. As before, vertices are subscripted withtatisin index

and dashed edges are those not traversed. The left diadusimalesrindex:] after the pathA ~ E has
been traversed. On entry to vidit), rindeXE] = 4 held, but was changed tin(4, rindexC]) = 2
because of the edgé — C'. In the middle diagram, vigi£) and visi{ F') have completed (hence, the
algorithm is backtracking) andndex D] is min(3, rindex E], rindex F]) = 2. Likewise, rindeXG]| =
min(6, rindex B]) =1 in the right diagram because 6f— B. At this point, the algorithm will backtrack

to A before terminating, settingndeXC|=1, rindexB]=1 andrindeXA]=0 as it goes.
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Figure 3: lllustrating why thenComponerit] array is needed. As before, vertices are subscripted with
their visitation index; dashed edges indicate those nwetsed; finallyinComponer] = trueis indi-
cated by a dashed border. In the leftmost diagram, we seththtriversal started frol and thatD has
already been assigned to its own component (henG@amponentD] =true). In the middle diagram, the
algorithm is now exploring vertices reachable fraimhaving assigne®, C and E to their own compo-
nents. A subtle point is that, on entry to vislt), rindex B] < rindex A] held (sinced — B is a cross-edge).
Thus, ifinComponerjt] information was not used on Line 11 to ignore successora@rassigned to a
component, the algorithm would have incorrectly concludadex A] = min(rindexA], rindex B]) = 0.

In the final diagramjnComponerjff| = false on entry to visi{H) because a vertex is not assigned to a

component until its component root has completed.



Algorithm 2 PEAFIND_SCC1(V,E)

1: for all v € V do visitedv] = false
2258=0;index=0;¢c=0

3: forall ve Vdo

4 if —visitedv] then visit(v)

5. return rindex

procedure visit(v)

6: root = true; visitedv] = true Il root is local variable
7: rindeX{v] = index; index= index+ 1
8: inComponeriv] = false

9: forall v—w € F do

10: if —visitedw] then visit(w)

11 if -inComponerjtw] A rindex{w] < rindexXv] then
12: rindex{v] = rindexw] ; root = false

13: if root then

14: inComponerjv] = true

15: while S # () A rindeXv] < rindeXtop(S)] do

16: w = pop(S) /I win SCC with v
17: rindex{w] = ¢

18: inCompomerjtv] = true

19: rindex{v] = ¢

20: c=c+1

21: else

22: pushS, v)

this. In fact, it is easy enough to see that the local root adréexv is v iff rindexXv] has not changed after
visiting any successor.

Pseudo-code for the entire procedure is given in Algoritham@ there are several points to make:
firstly, root is used (as discussed above) to detect whathdexv] has changed whilst visiting (hence,
whetherv is a component root); secondlyjs used to give members of a component the same component
identifier; finally, thenComponerit] array is needed for dealing with cross-edges. Figure 3 airdstify
this latter point.

At first glance, Algorithm 2 appears to requir€-+4w) bits of storage in the worst-case. This breaks
down in the following way:v bits for visited vw bits for rindex, vw bits for .S (since a component may
contain all ofV); 2vw bits for the call-stack (as before); finally,bits forinComponentandwv bits for
root (since this represents a boolean stack holding at fiigstlements). However, a closer examination
reveals the following observation: Iétrepresent the stack of vertices currently being visitedgtth is
a slice of the call stack); now, if € T' thenv ¢ S holds and vice-versa (note, we can ignore the brief
moment a vertex is on both, since it is at most one at any tiffiklis,7 and S can share the samev
bits of storage (although this does require a non-recuisipéementation), giving a total requirement of

v(3+3w) for Algorithm 2.



Theorem 1. Let D = (V, E) be a directed graph. if Algorithm 2 is applied 10 then, upon termination,

rindexX{v] = rindexX{w] iff verticesv andw are in the same strongly connected component.

Proof. Following Tarjan, we prove by induction the computation @srect. Let the induction hypothe-
sis be that, for every vertex where visitv) has completediindex{v] andinComponeriv] are correct.
That is, ifinComponerjv] = true thenrindexXv] = rindexXw], for everyw in v’s component; otherwise,
inComponerjv] = false and rindeXv] holds the visitation index of’s local root. Thusk is the num-
ber of completions of visft). Fork = 1, visit(z) has only completed for some vertex If = has no
successorgjndexx] was assigned a unique component identifier ia@mponerit:] = true; otherwise
rindexz]=min{I(y) | z—y € E} andinComponerjtz] = false Both are correct because: a vertex with
no successors is its own component; and anyy is a back-edge since visit) has not completed.
Fork=n, we have that visit) has completed times. Letz be the vertex where vigit) will complete
next. Assume that, when Line 13 is reachéuljexx] holds the visitation index of’s local root. Then, the
algorithm correctly determines whethers a component root or not (following Lemma 3, which implies
rindex{z] = I(z) iff x is a component root). If noinComponerit:| = falseandrindexXz] is unchanged
when visi{x) completes. Ifz is a component root, then the other members of its componergtared
consecutively at the top of the stack. This is because otkersome member was incorrectly identified
as a component root, or some non-membewras not identified as a component root (either implies
rindex{u] was incorrect during visj:) at Line 13). Since the other members are immediately removed
from the stack and (including) assigned to the same unique component, the induction iggistholds.
Now, it remains to show that, on Line 18ndeXz| does hold the visitation index afs local root.
Certainly, if z has no successors thendexXz] = I(x) at this point. For the case thathas one or more
successors theindexz] = min{rindeXy] | xt —y € E A inCompomery| = false} at this point. To see

why this is correct, consider the two cases for a succagsor

(i) inComponery] = true. Let z be y’s component root. It follows that vigit) has completed and
was assigned to the same componeny éstherwise some:, where visitu) has completed, was
identified asy’s component root, implyingindeXu]| is incorrect). Nowx cannot be in the same
component ag, as this implie&g x (by Lemma 2) and, hence, that vigi} had not completed.
Thus, the local root off cannot be the local root of and, hencey — y should be ignored when

computingrindexx].

(i) inComponerijy] =false Letz bey’s component root. By a similar argument to above, vigihas
not completed and, hence,«T» x. Therefore,z is in the same component gssincey ~+ z and,

hencerindexy] should be considered when computiipexz|.
O



4  Further Improvements

In this section, we present three improvements to Algorithmhich reduce its storage requirements to
3vw by eliminatinginComponerit], visited-] androot. To eliminate thenComponerit| array we use a
variation on a technique briefly outlined by Nuutila and &tws-Soininen [6]. Fowisited:] androot,
simpler techniques are possible.

TheinComponerit] array distinguishes vertices which have been assigned ampanent and those
which have not. This is used on Line 11 in Algorithm 2 to prevémdexXw] being assigned tandexv]
in the case thatv has already been assigned to a component. Thus, if we cosldesthatindexXv] <
rindexw| always held in this situation, the check agaim€omponerijiv] (hence, the whole array) could
be safely removed. When a vertexis assigned to a componentndexv] is assigned a component
identifier. Thus, if component identifiers were always geedhan otherindex:] values, the required
invariant would hold. This amounts to ensuring thrttex < ¢ always holds (sinceindex] is initialised
from indeX. Therefore, we make several specific changes: firstiy,initialised to|V'| — 1 (rather than
0) and decremented by one (rather than incremented) whenevertex is assigned to a component;
secondly,indexis now decremented by one whenever a vertex is assigned tmpooent. Thus, the
invariantindex < ¢ holds because > |V|—z andindex < |V|—z, wherez is the number of vertices
assigned to a component.

Pseudo-code for the final version of our algorithm is showAlgorithm 3. To eliminate theisited ]
array we have usedndexv] = 0 to indicate a vertex is unvisited. In practice, this can cause a minor
problem in the special case of a graph with} = 2" vertices and a traversal tree of the same depth ending
in a self loop. This happens because the algorithm atternpissign the last vertex amdexof 2, which
on most machines will wrap-around to zero. This can be owveecby simply restrictingV’| < 2%, which
seems reasonable given that it’s providing a potentiallydaaving in storage.

Algorithm 3 has a storage requirement«fl + 3w) because it still uses the local variabieot.
However, this can be eliminated using a very simple trickn€aptually, the idea is to have two versions
of visit(): one specialised for the casaot = true, and one foroot = false When visitv) is entered,
control starts in the former, but “drops through” to thedativhen the conditional on Line 10 is taken. This
can be implemented without otherwise affecting the alporiind, hence, allow®ot to be represented

usingcontrol-flow, rather than storage.



Algorithm 3 PEAFIND_SCC2(V,E)

1: for all v € V dorindeXv] = 0

22 S=0;index=1;¢c=|V|-1
3: forall v e Vdo

4 if rindex{v] = 0 then visit(v)
5. return rindex

procedure visit(v)

6: root = true // root is local variable
7: rindeX{v] = index; index= index+ 1

8: forall v—w € F do

o: if rindexw] = 0 then visit(w)

10: if rindex{w| < rindex{v] then rindexv] = rindeXw] ; root = false
11: if root then

12: index= index— 1

13: while S # () A rindeXv] < rindeXtop(S)] do

14: w = pop(S) /I win SCC with v
15: rindex{w] = ¢

16: index= index— 1

17: rindex{v] = ¢

18: c=c—1

19: else

20: push(S, v)

5 Related Work

Tarjan’s original algorithm needed?2 + 5w) bits of storage in the worst case. This differs from our resul
primarily because (as discussed) separate arrays weredgestore the visitation index and local root of
each vertex. In addition, Tarjan’s algorithm could placeercessary vertices onto the statkNuutila and
Soisalon-Soininen addressed this latter issue [6]. Howyélvey did not observe that their improvement
reduced the storage requirements (2+4w) (this corresponds to combining stackandT’, as discussed
in Section 3). They also briefly suggested thatiti@omponerit] array could be eliminated, although did
not provide details. Finally, Gabow devised an algorithmilsir to Tarjan’s which (essentially) stored
local roots using a stack rather than an array [2]. As sushyiirst-case storage requirement is still
v(2 + bw).
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A Appendix
In this Section, we provide (for completeness’ sake) prob&everal key points first shown by Tarjan [8]:

Lemma 1. Let D=(V, F) be adigraph and"= (I, Ty, ..., T,) a traversal forest oveD. If z —y is a cross-edge

thenI(z) > I(y).

Proof. Suppose this were not the case. ThBm;) < I(y) (note,z # y as self-loops are back-edges) and, hence,
2 was visited before (recall visitation index is defined in terms mfdexin Algorithm 1, where it is increased on
every visit and never decreased). Thus, when (ui$itvas invokedyisitedy] = false This gives a contradiction
because either vigit) invoked visi{y) (hencex — y is a tree-edge) ofiz.[x 4 z] and visi{z) invoked visi{y)

(henceyx —y is a forward-edge). O

Lemma 2. LetD = (V, E) be a digraph and” = (I, Ty, . .., T,,) a traversal forest oveD. If S = (Vg C V, Es C

E) is a strongly connected component with repthen3T; € F. [VU € VS.[rIlS v]} .

Proof. Suppose not. Then there exists an edgew ¢ E7, wherev, w €V A A mTﬁ}w (otherwisew is not
reachable from and, hence, cannot be in the same component). It followslthat < I(v), because otherwise
visit(v) would have invoked visftw) (which would implyv — w € Er,). Sincev € T;, we know thatr < u, for any
vertexu wherel(r) < I(u) < I(v) (since all vertices traversed fromare allocated consecutive indices). Thus,

I(w) < I(r) (otherwiser@ w) which gives a contradiction since it impliess not the root ofS. O

Lemma 3. LetD = (V, E) be a digraph,S = (Vs C V, Es C FE) a strongly connected component contained and

r,, the local root of a vertex € Vs. Theny = v iff v is the root ofS.

Proof. Letrg be the root ofS. Now, there are two cases to consider:
i) If v=rgthenr,=wv. This must hold as, #v impliesI(r,) <I(v) and, hence, that#rs.

i) If r,=vthenv=rg. Suppose not. Therd(rs) < I(r,) and, asS is an SCCy,~rg must hold. Therefore,
there must be some back-edge— rg € E, wherer,~w A I(rg) < I(r,) < I(w) (otherwise;, could

not reachrg). This is a contradiction as it implies; (notr,) is the local root ofu. 0



