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1 Introduction

For a directed graphD = (V,E), aStrongly Connected Component (SCC)is a maximal induced subgraph

S = (VS , ES) where, for everyx, y ∈ VS , there is a path fromx to y (and vice-versa). Tarjan presented

a now well-established algorithm for computing the strongly connected components of a digraph in time

Θ(v+e) [8]. In the worst case, this needsv(2 + 5w) bits of storage, wherew is the machine’s word size.

Nuutila and Soisalon-Soininen reduced this tov(1 + 4w) [6]. In this paper, we present for the first time

an algorithm requiring only3vw bits in the worst case.

Tarjan’s algorithm has found numerous uses in the literature, often as a subcomponent of larger al-

gorithms, such as those fortransitive closure[5], compiler optimisation[3] andprogram analysis[1, 7]

to name but a few. Of particular relevance is its use in model checking, where the algorithm’s storage

requirements are a critical factor limiting the number of states which can be explored [4].

2 Depth-First Search

Algorithm 1 presents a well-known procedure for traversingdigraphs, known as Depth First Search (DFS).

We say that an edgev →w is traversedif visit(w) is called from visit(v) and that the value ofindexon

entry to visit(v) is thevisitation indexof v. Furthermore, when visit(w) returns we say the algorithm is

backtrackingfromw tov. The algorithm works by traversing along some branch until aleaf or a previously

visited vertex is reached; then, itbacktracksto the most recently visited vertex with an unexplored edge

and proceeds along this; when there is no such vertex, one is chosen from the set of unvisited vertices and

this continues until the whole digraph has been explored. Such a traversal always corresponds to a series

of disjoint trees, calledtraversal trees, which span the digraph. Taken together, these are referredto as a

traversal forest. Figure 1 provides some example traversal forests.

Formally,F = (I, T0, . . . , Tn) denotes a traversal forest over a digraphD = (V,E). Here,I maps

every vertex to its visitation index and eachTi is a traversal tree given by(r, VTi
⊆V,ETi

⊆E), wherer is

its root. It is easy to see that, if visit(x) is called from the outer loop, thenx is the root of a traversal tree.
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Algorithm 1 DFS(V,E)

1: index= 0
2: for all v ∈ V do visited[v] = false
3: for all v ∈ V do
4: if ¬visited[v] then visit(v)

procedure visit(v)

5: visited[v] = true ; index= index+ 1
6: for all v→w ∈ E do
7: if ¬visited[w] then visit(w)
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Figure 1: Illustrating three possible traversal forests for the same graph. The key is as follows: vertices are
subscripted with their visitation index; dotted lines separate traversal trees; dashed edges indicate those
edges not traversed; finally, bold vertices are tree roots.

For a traversal forestF , those edges making up its traversal trees aretree-edges, whilst the remainder are

non-treeedges. Non-tree edges can be further subdivided intoforward-, back-andcross-edges:

Definition 1. For a directed graph,D = (V,E), a nodex reachesa nodey, written x
D
; y, if x = y or

∃z.[x→z∈E ∧ z
D
;y]. TheD is often omitted from

D
;, when it is clear from the context.

Definition 2. For a digraphD =(V,E), an edgex→y∈E is a forward-edge, with respect to some tree

T = (r, VT , ET ), if x→y /∈ ET ∧ x 6= y ∧ x
T
;y.

Definition 3. For a digraphD = (V,E), an edgex → y ∈ E is a back-edge, with respect to some tree

T = (r, VT , ET ), if x→y /∈ ET ∧ y
T
;x.

Cross-edges constitute those which are neither forward- nor back-edges. A few simple observations

can be made about these edge types: firstly, ifx→y is a forward-edge, thenI(x) < I(y); secondly, cross-

edges may beintra-tree (i.e. connecting vertices in the same tree) orinter-tree; thirdly, for a back-edge

x→ y (note, Tarjan called thesefronds), it holds thatI(x) ≥ I(y) and all vertices on a path fromy to x

are part of the same strongly connected component. In fact, it can also be shown thatI(x) > I(y) always

holds for a cross-edgex→y (see Lemma 1, page 9).

Two fundamental concepts behind efficient algorithms for this problem are thelocal root (note, Tarjan

called these LOWLINK values) andcomponent root: the local root ofv is the vertex with the lowest
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visitation index of any in the same component reachable by a path fromv involving at most one back-

edge; the root of a component is the member with lowest visitation index. The significance of local roots

is that they can be computed efficiently and that, ifr is the local root ofv, thenr=v iff v is the root of a

component (see Lemma 3, page 9). Thus, local roots can be usedto identify component roots.

Another important topic, at least from the point of view of this paper, is the additional storage require-

ments of Algorithm 1 over that of the underlying graph data structure. Certainly,v bits are needed for

visited[·], wherev = |V |. Furthermore, each activation record for visit(·) holds the value ofv, as well as

the current position inv’s out-edge set. The latter is needed to ensure each edge is iterated at most once.

Since no vertex can be visited twice, the call-stack can be atmostv vertices deep and, hence, consumes

at most2vw bits of storage, wherew is the machine’s word size. Note, while each activation record may

hold more items in practice (e.g. the return address), thesecan be avoided by using anon-recursiveim-

plementation. Thus, Algorithm 1 requires at mostv(1 + 2w) bits of storage. Note, we have ignoredindex

here, since we are concerned only with storage proportionalto |V |.

3 Improved Algorithm for Finding Strongly Connected Components

Tarjan’s algorithm and its variants are based upon Algorithm 1 and the ideas laid out in the previous

section. Given a directed graphD = (V,E), the objective is to compute an array mapping vertices to

component identifiers, such thatv andw map to the same identifier iff they are members of the same

component. Tarjan was the first to show this could be done inΘ(v + e) time, wherev = |V | ande = |E|.

Tarjan’s algorithm uses thebacktrackingphase of Depth-First Search to explicitly compute the local

root of each vertex. An array of size|V |, mapping each vertex to its local root, stores this information.

Another array of size|V | is needed to map vertices to their visitation index. Thus, these two arrays

consume2vw bits of storage between them. The key insight behind our improvement is that these arrays

can, in fact, be combined into one. This array,rindex[·], maps each vertex to the visitation index of

its local root. The outline of the algorithm is as follows: onentry to visit(v), rindex[v] is assigned the

visitation index ofv; then, after each successorw is visited,rindex[v]=min(rindex[v], rindex[w]). Figure

2 illustrates this.

The algorithm determines which vertices are in the same component (e.g.B,C,D,E,G in Figure 2)

in the following way: if, upon completion of visit(v), the local root ofv is notv, then pushv onto a stack;

otherwise,v is the root of a component and its members are popped off the stack and assigned its unique

component identifier. In Tarjan’s original algorithm, the local root of a vertex was maintained explicitly

and, hence, it was straightforward to determine whether a vertex was the root of some component or not. In

our improved algorithm, this information is not available and, hence, we need another way of determining
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Figure 2: Illustrating therindex computation. As before, vertices are subscripted with visitation index

and dashed edges are those not traversed. The left diagram illustratesrindex[·] after the pathA ;E has

been traversed. On entry to visit(E), rindex[E] = 4 held, but was changed tomin(4, rindex[C]) = 2

because of the edgeE → C. In the middle diagram, visit(E) and visit(F ) have completed (hence, the

algorithm is backtracking) andrindex[D] is min(3, rindex[E], rindex[F ]) = 2. Likewise, rindex[G] =

min(6, rindex[B])=1 in the right diagram because ofG→B. At this point, the algorithm will backtrack

to A before terminating, settingrindex[C]=1, rindex[B]=1 andrindex[A]=0 as it goes.
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Figure 3: Illustrating why theinComponent[·] array is needed. As before, vertices are subscripted with

their visitation index; dashed edges indicate those not traversed; finally,inComponent[v] = true is indi-

cated by a dashed border. In the leftmost diagram, we see thatthe traversal started fromB and thatD has

already been assigned to its own component (hence,inComponent[D]= true). In the middle diagram, the

algorithm is now exploring vertices reachable fromA, having assignedB, C andE to their own compo-

nents. A subtle point is that, on entry to visit(A), rindex[B]< rindex[A] held (sinceA→B is a cross-edge).

Thus, if inComponent[·] information was not used on Line 11 to ignore successors already assigned to a

component, the algorithm would have incorrectly concludedrindex[A] = min(rindex[A], rindex[B]) = 0.

In the final diagram,inComponent[I] = falseon entry to visit(H) because a vertex is not assigned to a

component until its component root has completed.
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Algorithm 2 PEA FIND SCC1(V,E)

1: for all v ∈ V do visited[v] = false
2: S = ∅ ; index= 0 ; c = 0
3: for all v ∈ V do
4: if ¬visited[v] then visit(v)
5: return rindex

procedure visit(v)

6: root = true ; visited[v] = true // root is local variable
7: rindex[v] = index; index= index+ 1
8: inComponent[v] = false

9: for all v→w ∈ E do
10: if ¬visited[w] then visit(w)
11: if ¬inComponent[w] ∧ rindex[w] < rindex[v] then
12: rindex[v] = rindex[w] ; root = false

13: if root then
14: inComponent[v] = true
15: while S 6= ∅ ∧ rindex[v] ≤ rindex[top(S)] do
16: w = pop(S) // w in SCC with v
17: rindex[w] = c
18: inCompoment[w] = true
19: rindex[v] = c
20: c = c + 1
21: else
22: push(S, v)

this. In fact, it is easy enough to see that the local root of a vertexv is v iff rindex[v] has not changed after

visiting any successor.

Pseudo-code for the entire procedure is given in Algorithm 2and there are several points to make:

firstly, root is used (as discussed above) to detect whetherrindex[v] has changed whilst visitingv (hence,

whetherv is a component root); secondly,c is used to give members of a component the same component

identifier; finally, theinComponent[·] array is needed for dealing with cross-edges. Figure 3 aims to clarify

this latter point.

At first glance, Algorithm 2 appears to requirev(3+4w) bits of storage in the worst-case. This breaks

down in the following way:v bits for visited; vw bits for rindex; vw bits for S (since a component may

contain all ofV ); 2vw bits for the call-stack (as before); finally,v bits for inComponentandv bits for

root (since this represents a boolean stack holding at most|V | elements). However, a closer examination

reveals the following observation: letT represent the stack of vertices currently being visited (thus,T is

a slice of the call stack); now, ifv ∈ T thenv /∈ S holds and vice-versa (note, we can ignore the brief

moment a vertex is on both, since it is at most one at any time).Thus,T andS can share the samevw

bits of storage (although this does require a non-recursiveimplementation), giving a total requirement of

v(3+3w) for Algorithm 2.
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Theorem 1. LetD = (V,E) be a directed graph. if Algorithm 2 is applied toD then, upon termination,

rindex[v] = rindex[w] iff verticesv andw are in the same strongly connected component.

Proof. Following Tarjan, we prove by induction the computation is correct. Let the induction hypothe-

sis be that, for every vertexv where visit(v) has completed,rindex[v] and inComponent[v] are correct.

That is, if inComponent[v] = true then rindex[v] = rindex[w], for everyw in v’s component; otherwise,

inComponent[v] = falseand rindex[v] holds the visitation index ofv’s local root. Thus,k is the num-

ber of completions of visit(·). For k = 1, visit(x) has only completed for some vertexx. If x has no

successors,rindex[x] was assigned a unique component identifier andinComponent[x] = true; otherwise

rindex[x]=min{I(y) | x→y ∈ E} andinComponent[x] = false. Both are correct because: a vertex with

no successors is its own component; and anyx→y is a back-edge since visit(y) has not completed.

Fork=n, we have that visit(·) has completedn times. Letx be the vertex where visit(x) will complete

next. Assume that, when Line 13 is reached,rindex[x] holds the visitation index ofx’s local root. Then, the

algorithm correctly determines whetherx is a component root or not (following Lemma 3, which implies

rindex[x] = I(x) iff x is a component root). If not,inComponent[x] = falseandrindex[x] is unchanged

when visit(x) completes. Ifx is a component root, then the other members of its component are stored

consecutively at the top of the stack. This is because otherwise some memberu was incorrectly identified

as a component root, or some non-memberu was not identified as a component root (either implies

rindex[u] was incorrect during visit(u) at Line 13). Since the other members are immediately removed

from the stack and (includingx) assigned to the same unique component, the induction hypothesis holds.

Now, it remains to show that, on Line 13,rindex[x] does hold the visitation index ofx’s local root.

Certainly, ifx has no successors thenrindex[x] = I(x) at this point. For the case thatx has one or more

successors thenrindex[x] = min{rindex[y] | x→y ∈ E ∧ inCompoment[y] = false} at this point. To see

why this is correct, consider the two cases for a successory:

(i) inComponent[y] = true. Let z be y’s component root. It follows that visit(z) has completed and

was assigned to the same component asy (otherwise someu, where visit(u) has completed, was

identified asy’s component root, implyingrindex[u] is incorrect). Now,x cannot be in the same

component asy, as this impliesz
T
; x (by Lemma 2) and, hence, that visit(z) had not completed.

Thus, the local root ofy cannot be the local root ofx and, hence,x → y should be ignored when

computingrindex[x].

(ii) inComponent[y]= false. Let z bey’s component root. By a similar argument to above, visit(z) has

not completed and, hence,z
T
; x. Therefore,x is in the same component asy sincey ; z and,

hence,rindex[y] should be considered when computingrindex[x].
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4 Further Improvements

In this section, we present three improvements to Algorithm2 which reduce its storage requirements to

3vw by eliminatinginComponent[·], visited[·] androot. To eliminate theinComponent[·] array we use a

variation on a technique briefly outlined by Nuutila and Soisalon-Soininen [6]. Forvisited[·] and root,

simpler techniques are possible.

The inComponent[·] array distinguishes vertices which have been assigned to a component and those

which have not. This is used on Line 11 in Algorithm 2 to prevent rindex[w] being assigned torindex[v]

in the case thatw has already been assigned to a component. Thus, if we could ensure thatrindex[v] ≤

rindex[w] always held in this situation, the check againstinComponent[w] (hence, the whole array) could

be safely removed. When a vertexv is assigned to a component,rindex[v] is assigned a component

identifier. Thus, if component identifiers were always greater than otherrindex[·] values, the required

invariant would hold. This amounts to ensuring thatindex< c always holds (sincerindex[·] is initialised

from index). Therefore, we make several specific changes: firstly,c is initialised to|V | − 1 (rather than

0) and decremented by one (rather than incremented) whenever a vertex is assigned to a component;

secondly,index is now decremented by one whenever a vertex is assigned to a component. Thus, the

invariant index < c holds becausec ≥ |V |−x and index < |V |−x, wherex is the number of vertices

assigned to a component.

Pseudo-code for the final version of our algorithm is shown inAlgorithm 3. To eliminate thevisited[·]

array we have usedrindex[v] = 0 to indicate a vertexv is unvisited. In practice, this can cause a minor

problem in the special case of a graph with|V | = 2w vertices and a traversal tree of the same depth ending

in a self loop. This happens because the algorithm attempts to assign the last vertex anindexof 2w, which

on most machines will wrap-around to zero. This can be overcome by simply restricting|V | < 2w, which

seems reasonable given that it’s providing a potentially large saving in storage.

Algorithm 3 has a storage requirement ofv(1 + 3w) because it still uses the local variableroot.

However, this can be eliminated using a very simple trick. Conceptually, the idea is to have two versions

of visit(): one specialised for the caseroot = true, and one forroot = false. When visit(v) is entered,

control starts in the former, but “drops through” to the latter when the conditional on Line 10 is taken. This

can be implemented without otherwise affecting the algorithm and, hence, allowsroot to be represented

usingcontrol-flow, rather than storage.
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Algorithm 3 PEA FIND SCC2(V,E)

1: for all v ∈ V do rindex[v] = 0
2: S = ∅ ; index= 1 ; c = |V | − 1
3: for all v ∈ V do
4: if rindex[v] = 0 then visit(v)
5: return rindex

procedure visit(v)

6: root = true // root is local variable
7: rindex[v] = index; index= index+ 1

8: for all v→w ∈ E do
9: if rindex[w] = 0 then visit(w)

10: if rindex[w] < rindex[v] then rindex[v] = rindex[w] ; root = false

11: if root then
12: index= index− 1
13: while S 6= ∅ ∧ rindex[v] ≤ rindex[top(S)] do
14: w = pop(S) // w in SCC with v
15: rindex[w] = c
16: index= index− 1
17: rindex[v] = c
18: c = c − 1
19: else
20: push(S, v)

5 Related Work

Tarjan’s original algorithm neededv(2+5w) bits of storage in the worst case. This differs from our result

primarily because (as discussed) separate arrays were needed to store the visitation index and local root of

each vertex. In addition, Tarjan’s algorithm could place unnecessary vertices onto the stackS. Nuutila and

Soisalon-Soininen addressed this latter issue [6]. However, they did not observe that their improvement

reduced the storage requirements tov(2+4w) (this corresponds to combining stacksS andT , as discussed

in Section 3). They also briefly suggested that theinComponent[·] array could be eliminated, although did

not provide details. Finally, Gabow devised an algorithm similar to Tarjan’s which (essentially) stored

local roots using a stack rather than an array [2]. As such, its worst-case storage requirement is still

v(2 + 5w).
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A Appendix

In this Section, we provide (for completeness’ sake) proofsof several key points first shown by Tarjan [8]:

Lemma 1. LetD=(V, E) be a digraph andF =(I, T0, . . . , Tn) a traversal forest overD. If x→y is a cross-edge

thenI(x) > I(y).

Proof. Suppose this were not the case. Then,I(x) < I(y) (note,x 6= y as self-loops are back-edges) and, hence,

x was visited beforey (recall visitation index is defined in terms ofindexin Algorithm 1, where it is increased on

every visit and never decreased). Thus, when visit(x) was invoked,visited[y] = false. This gives a contradiction

because either visit(x) invoked visit(y) (hencex → y is a tree-edge) or∃z.[x
Ti

; z] and visit(z) invoked visit(y)

(hence,x→y is a forward-edge).

Lemma 2. LetD = (V, E) be a digraph andF =(I, T0, . . . , Tn) a traversal forest overD. If S = (VS ⊆ V, ES ⊆

E) is a strongly connected component with rootr, then∃Ti∈F.
[

∀v∈Vs.[r
Ti

;v]
]

.

Proof. Suppose not. Then there exists an edgev→w /∈ETi
wherev, w∈Vs ∧ r

Ti

;v ∧ r 6
Ti

;w (otherwise,w is not

reachable fromr and, hence, cannot be in the same component). It follows thatI(w) < I(v), because otherwise

visit(v) would have invoked visit(w) (which would implyv→w∈ETi
). Sincev∈Ti, we know thatr

Ti

;u, for any

vertexu whereI(r) ≤ I(u) ≤ I(v) (since all vertices traversed fromr are allocated consecutive indices). Thus,

I(w) < I(r) (otherwiser
Ti

;w) which gives a contradiction since it impliesr is not the root ofS.

Lemma 3. LetD = (V, E) be a digraph,S = (VS ⊆ V, ES ⊆ E) a strongly connected component contained and

rv the local root of a vertexv ∈ VS . Then,r = v iff v is the root ofS.

Proof. Let rS be the root ofS. Now, there are two cases to consider:

i) If v = rS thenrv =v. This must hold asrv 6=v impliesI(rv)<I(v) and, hence, thatv 6=rS .

ii) If rv =v thenv=rS . Suppose not. Then,I(rS) < I(rv) and, asS is an SCC,rv ;rS must hold. Therefore,

there must be some back-edgew → rS ∈ E, whererv ; w ∧ I(rS) < I(rv) ≤ I(w) (otherwise,rv could

not reachrS). This is a contradiction as it impliesrS (notrv) is the local root ofv.
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