
Practical Verification Condition Generation for a
Bytecode Language

David J. Pearce

School of Engineering and Computer Science
Victoria University of Wellington, New Zealand

djp@ecs.vuw.ac.nz

January 21, 2015

Abstract

Automatic program verifiers typically generate verification conditions from the program and
discharge them with an automated theorem prover. An important consideration is the manner
in which program code and invariants are expressed. We have developed a bytecode language
(similar, in spirit, to Java bytecode) on which verification is performed. This serves as both an
intermediate language for use within the compiler, and a binary format with which dependen-
cies (e.g. for libraries) can be resolved. Our bytecode language is a three-address code with
semi-structured control-flow. Program code and invariants are represented uniformly to ensure
bytecode programs are compact. In this paper, we present our bytecode language and outline a
verification condition generator based on a path-sensitive forward-propagation algorithm.

1 Introduction
An important aspect of any tool for program verification is that of generating verification condi-
tions [1]. This is the process by which programs expressed at the source-level are converted into one
or more logical conditions whose validity determines the program’s overall correctness. Verification
condition generation must be performed on some abstraction of the program source. This could be,
for example, a classical Abstract Syntax Tree (AST) representation, or on some kind of Intermediate
Language (IL). Compilers face similar choices in determining when to perform the various stages of
compilation (e.g. type checking, name resolution, code optimisation, etc). The trade-offs here are
well known: operating on a high-level AST enables better feedback, but introduces more cases and
implementation complexity. In contrast, operating on a low-level intermediate language simplifies a
given stage’s implementation, but makes it harder to provide useful feedback to the user (i.e. because
of the greater separation between the original source and the representation being manipulated).

In a program verification tool, the verification condition generator is critical to the tool’s overall
soundness. This component is already complex in nature, and efforts to reduce this complexity can
be enormously beneficial. As with compilers, one approach to tackling this problem is through an
intermediate language. The authors of the widely acclaimed Spec# tool took this approach, and
described it thusly [2]:

“The gap between the program and the formula is bridged by translating the Spec#
program into a much simpler program, much as a compiler bridges the gap between
source program and machine code by translating into an intermediate representation”

Indeed, the authors went on to state that introducing an intermediate language (i.e. Boogie) was
“the best and most far-reaching single design decision we made in implementing the Spec# veri-
fier” [2]. Another important benefit from intermediate languages are that different source languages

1

may target them. This has been particularly evident for JVM bytecode, which now hosts a variety of
additional source languages (e.g. Scala, Groovy, Kotlin, JRuby, etc). Such source languages benefit
from the existing efforts to make the JVM a versatile execution platform. In a similar way, Boogie is
also targeted by languages other than Spec# (e.g. Dafny [3, 4], VCC [5], etc). In this case, however,
the benefits are from Boogie as a versatile verification platform.

Numerous pioneering verification tools have been developed over the last few decades, such as
Gypsy [6], the Stanford Pascal Verifier [7], the Extended Static Checker for Modula-3 [8] and, more
recently, ESC/Java [9], Spec# language [10, 11] and Dafny [3, 4] (to name but a few). Following in
this line of work, we are developing a verifying compiler for the Whiley programming language [12].
Whiley is an imperative language designed to simplify verification. For example, Whiley uses un-
bound integer and rational arithmetic in place of e.g. IEEE 754 floating point, which is notoriously
difficult to reason about [13]. Likewise, pure (i.e. mathematical) functions are distinguished from
those which may have side-effects.

The Whiley compiler generates verification conditions from programs expressed in a bytecode
language, rather than at the source-level. This offers a number of important benefits. Operating
on a small bytecode language allows for a simpler verification condition generator, compared with
operating at the source-level (which is much more expressive). Some constructs (e.g. break and
continue statements) are particularly difficult to handle in a clean manner at the source level [14].
In the bytecode language, such constructs do not exist and are implemented uniformly using semi-
structured control-flow. Finally, operating on a generic bytecode language offers flexibility in the
future. For example, other programming languages may compile down to this bytecode language
and can leverage our verification pipeline (i.e. as happened with Boogie). Likewise, future exten-
sions to the Whiley source language may not always require changes to the verification pipeline (i.e.
if they can be encoded using the existing bytecodes).

The contributions of this paper are:

1. We present a bytecode language into which program code and invariants can be uniformly
compiled, and from which verification conditions can be safely extracted.

2. We outline a forward-propagation algorithm for generating verification conditions from pro-
grams written in our bytecode language.

2 Overview
Our goal with Whiley is to develop a language whose programs are both verifiable and can be com-
piled to run efficiently on different platforms, including a virtual machine. To that end, we have
developed a bytecode language for representing Whiley programs in binary form. The bytecode
language retains all type information and program invariants (particularly, pre- and post-conditions)
necessary for compiling against. Thus, libraries and applications can be distributed in binary form
(as with e.g. Java bytecode, MSIL and LLVM bitcode). The bytecode language also serves as a
suitable intermediate language for different compiler back-ends and could be used for efficient inter-
pretation and Just-In-Time compilation. In developing our bytecode language, we opted for a three-
address code representation with semi-structured control-flow. This differs from e.g. Java bytecode
(which adopts a stack-based representation) but is quite comparable with LLVM bitcode and the
Dalvik Bytecode used for Android. A key requirement was to minimise the number of opcodes by
representing program code and invariants uniformly within the same bytecode instruction set. This
means that all program invariants are encoded using standard (imperative) bytecode instructions. To
verify a program, the verification condition generator must reconstruct these invariants as logical
conditions from their (imperative) bytecode encoding. Care must be taken in doing this to ensure the
transformation is correct. In particular, the encoding of quantified formulas into imperative forall
loops presents some challenges.

2

2.1 Basics
The Whiley Intermediate Language (WyIL) is a register-based intermediate language which loosely
resembles Java Bytecode. The following illustrates a simple function in Whiley (left) which adds
one to its parameter, alongside its WyIL representation (right):

function f(int x) => int:
return x + 1

function f(int)=>int:
body:

const %1 = 1
add %2 = %0, %1
return %2

A bytecode block (such as body above) has an unlimited register set available to it, and these are
prefixed with % above (e.g. %1). As for JVM bytecode, the set of registers used in any given block is
statically known and, furthermore, registers hold parameter values on entry (i.e. %0 holds parameter
x on entry). In the above example, the const bytecode loads an integer constant into register %1.
The add bytecode performs addition on its two operands, assigning a result to a given register. The
operand types for this bytecode must match and be either of type int or real. Finally, the return
bytecode returns its (optional) operand.

Bytecode blocks, such as above, are statically typed and, as with the JVM, registers may have
different types at different points. The latter increases flexibility and ties more closely the flow-
typing discipline used in Whiley [15, 16]. Nevertheless, the type of each register at any given point
in a block can be statically determined using a dataflow analysis similar to that found in the JVM
(although there are some challenges here which we discuss elsewhere [17]).

2.2 Conditionals
Conditional constructs at the source-level are implemented using conditional and unconditional
branches. These provide a form of semi-structured control-flow as they are restricted to forward
branching only. That is, neither conditional nor unconditional branching instructions can form loops.
The following illustrates:

function abs(int x) => int:
if x >= 0:

return x
else:

return -x

function abs(int) => int:
body:

const %1 = 0
ifge %0, %1 goto lab_0
neg %0 = %0

.lab_0
return %0

Here, the ifge bytecode branches to a label if its first operand is greater-or-equal to its second
operand, whilst neg negates its operand and assigns this to a given register.

2.3 Loops
Since branching instructions cannot generate loops, special looping bytecodes are provided. This
simplifies the process of establishing loop invariants and, at the same time, allows a variety of source-
level statements to be encoded. The following illustrates:

3

function abs(int n) => int:
int i = 0
while i < n:

i = i + 1
return i

function abs(int) => int:
body:

const %1 = 0
loop modifies %1

ifge %1, %0 goto lab_0
const %2 = 1
add %1 = %1, %2

.lab_0
return %1

Here, the loop bytecode denotes a loop block. By itself, this says nothing about how the loop
will be exited. In this example, a conditional branch is placed at the beginning of the loop to simulate
the while loop. Equally, the condition could be placed at the end of the loop body to implement a
do-while loop. The following illustrates:

function f(int n) => int:
int i = 0
do:

i = i + 1
while i < n
return i

function f(int) => int:
code:
const %1 = 0
loop modifies %1

const %4 = 1
add %1 = %1, %4
ifge %1, %0 goto lab_0

.lab_0
return %1

This examples illustrates the flexibility of the loop bytecode — namely, that it can be used
to implement multiple source-level constructs. This in turn simplifies the verifier by reducing the
number of cases to be considered.

Finally, the loop bytecode always includes a modifies clause which indicates those registers
which may be modified by the loop (in this case, register %1 maybe modified). It is an error for
any variable declared outside of the loop body to be modified within the loop without being present
in this clause. The purpose of the modifies clause is to simplify the verification of variables not
modified in the loop — specifically, so they can be omitted from the loop invariant (see §3.3). This
follows Beckert et al. [18].

Forall Loops. The Whiley programming language supports first-class sets, maps and lists. In order
to access the elements of a set, map or list, a special forall bytecode is provided. The following
illustrates:

function sum({int} xs) => int:
int r = 0
for x in xs:

r = r + x
return r

function sum({int}) => int:
body:

const %1 = 0
forall %2 in %0 modifies %1

add %1 = %1, %2
return %1

Here, the type {int} indicates a set of integers. In the example, the forall bytecode declares
register %2 to iterate over the contents of register %0 (i.e. the parameter xs) and, as before, reg-
ister %1 is declared in the modifies clause. As we’ll see in §3.2, forall loops are also useful for
implementing quantifiers in source-level assertions.

Break / Continue. The break and continue statements are also implemented using conditional
and unconditional branches. As before, this simplifies verification condition generation as no addi-
tional support is required. The following illustrates:

4

function f([int] xs,int x)=>int:
int i = 0
while i < |xs|:

if i >= x:
break

i = i + 1
return i

function f([int],int)=>int:
body:

const %2 = 0
loop modifies %2

lengthof %6 = %0
ifge %2, %6 goto label0
ifge %2, %1 goto label0
const %10 = 1
add %2 = %2, %10

.label0
return %2

Here, the break statement is implemented using a single conditional branch. We can see that,
from the verifier’s perspective, the loop condition and the break can be handled uniformly. Finally,
continue statements are implemented in much the same way, but branch to the end of the loop

body.

3 Assertions
Verification of Whiley source files requires appropriate assertions (i.e. pre-/post-conditions, loop
invariants, etc) are provided by the programmer. This limits verification to an intraprocedural activity
which considerably improves tractability (and follows other tools, such as ESC/Java, Spec#, Dafny,
etc). The assertions are themselves compiled into the bytecode language and (for the most part)
reuse the existing bytecodes provided for implementing source-level statements and expressions.
The bytecode language enables a wide range of source-level assertions to be encoded, making it
extremely flexible.

3.1 Basics
Simple assertions are encoded directly using conditional and unconditional branching statements. A
special fail bytecode is included to represent an assertion failure:

function f(int x) => (int r)
requires x >= 0
ensures r > 0:

//
return x + 1

function f(int) => int:
requires:

const %1 = 0
ifge %0, %1 goto label0
fail

.label0
return
...

Here, the requires and ensures clauses respectively represent the pre- and post-conditions
of the function. The translation of the requires clause is shown on the right. We can see that the
assertion is translated into a conditional branch over a fail bytecode. The intuition behind this is
that the verifier will explore both execution paths and, for the failing path, must establish that it is
unreachable (else report an error).

3.2 Quantifiers
Encoding of quantifiers at the source-level is achieved through the forall bytecode, which provides
sufficient expressivity for a range of different quantifiers. For example:

5

function sum([int] ixs) => int
requires all {x in xs | x>=0}:

...

function sum([int]) => int:
requires:

forall %1 in %0
const %2 = 0
ifge %1, %2 goto lab_1
fail

.lab_1
nop // dummy

return
...

Here, the universal quantifier all is used at the source level to require all elements of xs be
greater-or-equal to zero. This is translated using the forall bytecode and makes use of a conditional
branch and the fail bytecode. The dummy nop is included just to clarify the nesting level of lab_1
— i.e. that it is within the body of the loop.

In addition to the all quantifier, the other supported quantifiers are: some (existential) and
no (universal negated). These are encoded in a similar fashion, and the following illustrates the
existential quantifier:

function sum([int] ixs) => int
requires some {x in xs | x>=0}:

...

function sum([int]) => int:
requires:

forall %1 in %0
const %2 = 0
ifge %1, %2 goto lab_1

fail
.lab_1

return
...

In this case, the precondition for sum requires one or more elements of xs to be greater-or-equal
to zero. This is implemented in a similar manner as before, except the loop terminates as soon a
valid element is found. Furthermore, in the case the loop executes to completion (i.e. no matching
elements were found), then the assertion fails.

Other useful source-level quantifiers could be supported through this scheme. For example,
following Alloy [19], we could easily support quantifiers such as one (exactly one), lone (one or
zero), etc.

3.3 Loop Invariants
Loop invariants are an important and challenging aspect of any verification system, and different
systems have used a range of approaches for handling them. In particular, although Hoare logic
provides a foundation for such tools, it leaves open many questions related to verification of loop
invariants in real world systems. For example, how side effects should be handled, how break /
continue statements should be handled, how do/while statements should be implemented, etc. Our
bytecode language provides a flexible approach to dealing with such issues that supports a wide
range of common approaches.

3.3.1 While Loops.

While loops illustrate the basic ideas behind the encoding of loop invariants in our bytecode lan-
guage, and serve as a starting point for the remainder. The following illustrates a simple loop:

6

function f(int n) => (int r)
requires n >= 0
ensures r >= 0:

//
int i = 0
while i < n where i >= 0:

i = i + n
//
return i

function f(int) => int:
...

body:
const %1 = 0
loop modifies %1

invariant:
const %2 = 0
ifge %1, %2 goto lab_0
fail

.lab_0
return

ifge %1, %0 goto lab_1
add %1 = %1, %0

.lab_1
return %1

Here, we can see a special invariant block is used to represent the loop invariant. This block
may be positioned anywhere within the loop itself, which enables a wide range of looping constructs
to be encoded. In this case, the invariant block is placed at the start of the loop body, before even
the condition. This reflects the usual interpretation of loop invariants, where the condition may rely
on the loop invariant to hold but not vice-versa [20].

The loop invariant must hold on the first iteration of the loop (base case) and, assuming it held
on the last iteration, must be shown to hold on this iteration (inductive case). The exact position
of the invariant affects how this is interpreted (more later). This flexibility of position allows dif-
ferent source-level looping constructs to be represented, as well as more exotic approaches to loop
invariants. For example, in Frama-C (an extension of C with support for assertions) multiple loop
invariants may be specified at different positions within the loop [21, 22].

3.3.2 Do/While Loops.

A useful example which illustrates the value of the invariant block is the do-while loop:

method f(int x) => int
requires x >= 2:

//
int i = 0
do:

i = i + 1
while (i+1) < x where i > 0
...

function f(int) => int:
...

body:
const %1 = 0
loop modifies %1

add %1 = %1, %0
invariant:

const %2 = 0
ifge %1, %2 goto lab_0
fail

.lab_0
return

ifge %1, %0 goto lab_1
.lab_1

...

This example is interesting because it highlights the difference between the while and do-while
loops. Specifically, on entry to a while loop the loop invariant must hold. However, on entry to
a do-while loop this is not the case — rather, the loop invariant must hold at the end of the first
iteration. To implement this the invariant block is placed at the end of the loop body, but before
the loop condition. This allows the condition to rely on the loop invariant, which is consistent with
the treatment of while loops. Observe that, if one were compiling a language where the semantics
for do-while loops were such that the loop invariant must hold on entry to the loop, then this could
easily be accommodated by placing the invariant at a different position.

7

3.3.3 Break and Continue

The treatment of break and continue statement varies between different tools. In particular, an
important question is whether or not the loop invariant must hold at the point of a break. This
is often seen as necessary to obtain the usual guarantees of Hoare logic — namely, that the loop
invariant holds after the loop has finished. Whiley, like a number of tools (including Dafny and
Frama-C) has adopted an alternative approach. Specifically, that the disjunction of the loop invariant
and the strongest assertion at the point of the break hold after the loop. The following illustrates:

method f(int n) => (int r)
requires n >= 0
ensures r == n || r == 10:

//
int i = 0
while i < n where i <= n:

if i == 10:
break

i = i + 1
//
return i

function f(int) => int:
requires:

...
body:

const %1 = 0
loop modifies %1

invariant:
ifle %1, %0 goto lab_0
fail

.lab_0
return

ifge %1, %0 goto lab_1
const %2 = 10
ifeq %1, %2 goto lab_1
add %1 = %1, %0

.lab_1
return %1

Intuitively, the verifier takes what is known at the point of a branch exiting the loop and carries
this forward through the remainder of the function. Thus, what is known after the loop is simply a
product of where the invariant is positioned in relation to those branches which exit the loop.

4 Verification Condition Generation
We now outline the algorithm for generating verification conditions from our bytecode representa-
tion. In doing this, we assume an appropriate target language for verification conditions which is
some variant of first-order logic. In practice, this could be the input language for an SMT solver,
such as SMT-LIB [23]. The algorithm operates in a path-sensitive forward propagation style. Al-
though this can potentially result in large number of paths being explored, we have not encountered
significant problems in practice. Furthermore, this approach means the verifier could report path-
sensitive error messages which might be considerably more instructive for users (although we have
not investigated this yet).

4.1 Overview
The verification condition generator traverses the control-flow graph of the bytecode function in a
path-sensitive fashion. When a branching bytecode is encountered, the generator forks and proceeds
independently down each path. At certain points during this traversal, verification conditions are
generated from the current state and checked independently by the theorem prover. For example,
upon reaching a return bytecode a verification condition is generated to ensure the function’s post-
condition holds. The following illustrates:

8

function abs(int) => int:
ensures:

...
body:

const %1 = 0
ifge %0, %1 goto lab_1
neg %0 = %0

.lab_1
return %0

const %1 = 0

ifge %0, %1

neg %0 = %0

return %0

false

true

Here, the generator would explore two distinct paths through the function and, for each, generate
separate verification conditions at the return bytecode (i.e. to enforce the post-condition). In doing
this, the generator accumulates knowledge about the current path taken through conditional branches
and the effect bytecodes have on registers. Thus, reaching the return bytecode through the true
branch of the conditional might yield the state %10 = 0 ∧%00 ≥ %10 (ignore the subscripts for
now). In contrast, traversing the false branch might yield %10 = 0 ∧%00 < %10 ∧%01 = −%00.

Subscripts are used in intermediate generator states to denote the current assignment of variables
(which is similar, in some ways, to static single assignment form [24]). In any given state, the
greatest subscript for a given register denotes the “current” value, whilst lower subscripts denote
“earlier” values. For example, %01 represents the value of register %0 after its assignment by
the neg bytecode, whilst %00 represents its value before that point. Observe that we cannot discard
earlier values since they may contain important and relevant information (such as on the false branch
above).

4.2 Preconditions and Postconditions
Postconditions generate assertions (i.e. verification conditions), whilst preconditions generate as-
sumptions (i.e. initial states). A function’s postcondition is traversed when a return bytecode is
encountered to generate appropriate verification conditions. To do this, the generator first instanti-
ates the postcondition by substituting the return value and any parameters used in the post-condition
appropriately. Then, the generator traverses the post-condition using the current state. When a fail
bytecode is encountered, it emits a verification condition which consists of exactly the current state.
This establishes that the current state is unreachable or, if not, that an error exists.

The generator forms its initial state for the function by traversing the precondition. This is done
slightly differently from the postcondition, since it is an assumption. Specifically, when a fail

bytecode is encountered, the current state is simply dropped (i.e. rather than emitting a verification
condition). Thus, those states which survive and exit the precondition form the assumptions fed into
the start of the function body proper.

4.3 Loop Invariants
The treatment of loops and loop invariants is, as expected, slightly more involved. We begin by
outlining a rough approach and then consider how to generalise it. We’ll assume for now that the
invariant block is located at the beginning of the loop block, so that no bytecodes in the loop
precede it. For example:

...
while i < n where i >= 0:

i = i + n
...

...
loop modifies %1

invariant:
...

ifge %1, %0 goto lab_1
...

.lab_1

...

9

In this case, the treatment of the invariant is relatively straightforward. When the generator
reaches the start of the loop block, it traverses the loop invariant in a similar way as for a postcon-
dition and any verification conditions emitted then enforce the invariant on entry. At this point, the
generator prepares to traverse the loop by sending any variables modified in the loop to havoc (this is
the reason for having an explicit modifies clause). This is achieved by incrementing the suffix for
each such variable, which disconnects the current knowledge of the variable from that prior to the
loop. This is necessary as the only knowledge we can retain about loop modified variables must be
encoded in the invariant [18]. The generator then traverses the loop invariant in a similar way as for
traversing a precondition to effectively assume the invariant. At this point, the generator traverses
the loop body in the usual manner and, when the end is reached, will traverse the invariant again to
assert it. In between the start and end of the loop multiple branches may be encountered which exit
the loop. These are treated in the normal fashion with the generator forking to follow those branches
without taking any other special action. In the case of our loop above, this means the assumed loop
invariant (with the branch condition) carry forward directly out of the loop as expected. In this way,
any number of branches which exit the loop are handled in a uniform fashion.

We now return to consider the general case where the loop invariant may be located at any point
within the loop body. The treatment is essentially the same, though is somewhat less intuitive.
Specifically, the generator operates in two phases as before. Initially, it proceeds upto the loop
invariant and asserts it based on the state carried forward from before the loop. Then, it assumes the
invariant and proceeds through and around the body until the loop invariant is reach again. In the
specific case where the invariant occurs first in the loop, this has exactly the same effect as described
above. Another way to think of this, is that the loop body is partially unrolled so that the invariant is
now located at the start of the remaining loop.

4.4 Quantifiers
Quantifiers also present a challenge since these are encoded as forall loops and, hence, quantified
expressions must be extracted from them. Furthermore, since a single kind of bytecode is used
to encode all source-level quantifiers, it must be possible to extract a range of quantifiers as well.
This requires careful tracking of which parts of the current state are from within the forall body,
and those which came from before. The intuition is that those parts of the state generated within
the forall body will form the body of the quantified expression. Then, the manner in which the
current path exits the forall body determines which kind of quantifier is used. The following two
examples illustrates the different ways quantifiers are generated:

requires:
forall %1 in %0:

const %2 = 0
ifge %1, %2 lab_1
fail

.lab_1
nop // dummy

return

requires:
forall %1 in %0:

const %2 = 0
ifge %1, %2 lab_1

fail
.lab_1

return

The left example represents a precondition such as “all {x in xs | x >= 0}”, whilst the
right one such as “some {x in xs | x >= 0}”. The intuition is that there are two kinds of path
which exit a forall bytecode. The first represents the “normal” termination of the loop (i.e. where
all elements are iterated), whilst the second represents “abnormal” termination (i.e. where a branch
exits the loop before iteration is completed). In the former case, a universal quantifier is constructed
for the state generated within the body and, in the latter case, an existential quantifier is generated.

A key challenge faced in extracting quantifiers from forall loops is the presence of registers
local to a loop. To understand why, consider again the left example above. Based on our description
thus far, one might expect the state generated at the end of the loop to be: %20 = 0 ∧%10 >= %20.

10

But, how to universally quantify this? For example, ∀%10∈%00,%20.(%20 = 0 ∧%10 >= %20)
is clearly incorrect as ∀%20.(%20 = 0) does not hold in general. The problem here is that register
%2 is local to the loop and, hence, should not be universally quantified at all. One option is to exis-
tentially quantifying all such local variables. However, reducing the number of quantifiers generated
from expressions is important to improve success rates with the automated theorem prover1. Our
solution is simpler, and doesn’t require additional quantifiers. Specifically, whenever a register is
defined we record the assigned expression and this is then substituted when a subsequent use of that
variable is encountered. This ensures all generated states are purely in terms of the function’s argu-
ments and/or other declared variables (e.g. the index variable of a forall bytecode). Furthermore,
since all states explored by the generator represent unique paths through the control-flow graph,
situations where a variable has multiple definitions cannot arise.

Finally, we note that the special treatment of forall loops described above is used selectively
within assertion blocks only (i.e. requires, ensures, invariant, etc). This prevents quantified
expressions being generated unexpectedly from general loops, in particular those which e.g. may
mutate non-local registers, etc.

5 Related Work
Perhaps the most comparable work is that of the Boogie Intermediate Language (Boogie IL) [25],
which was developed as part of the Spec# project [2]. The goal of Boogie was to provide an interme-
diate target for verification which more closely resembles a programming language (in fact, Boogie
shares some similarity with Dijkstra’s language of guarded commands [26]). This contrasts with
the common approach of generating verification conditions directly in the language of the theorem
prover (e.g. SMT-LIB [23]), which usually resembles first-order logic. Such languages are much
more “low-level” than Boogie and, hence, leave more work for the language implementer. Specifi-
cally, Boogie handles the generation of verification conditions over a function’s control-flow graph.
In contrast, when using SMT-LIB directly, one must implement this critical component as well.
Boogie was considered a resounding success, and has been subsequently used as the verification
“back-end” for other languages and systems, including Dafny [4], VCC [5], and more (e.g. [27, 28]).

In a similar fashion, the ESC/Java tool first translated functions into a guarded-command lan-
guage, before generating verification conditions [9]. Guarded commands are another useful and
interesting intermediate language for a verifying compiler [29]. Such a language typically consists
of assignment, assume and assert statements as well as non-deterministic choice (amongst other
things). This is much simpler than the original source language, but may encode a wide variety of
source-level constructs. In particular, a function’s potentially cyclic control-flow graph is translated
into an acyclic guarded command program [30]. Loops are handled by removing back edges and
assuming the invariant at the beginning of the body, and asserting it at the end. Thus, whilst guarded
commands provide a useful intermediate step for verification, they still remain much “lower level”
than the bytecode language presented here.

Barnett and Leino extended the basic use of guarded commands to support a so-called “passive
form” where assignments are converted into assume statements [30]. The purpose of this is to reduce
the size of generated verification conditions. Furthermore, their approach supports unstructured
control-flow by introducing auxiliary variables to flag when a given set of instructions is active.
Furthermore, loops identified from back-edges in the control-flow graph.

Another relevant work is that of Chalin, who examines the verification of real-world loops which
contain unstructured control-flow (i.e. break/continue statements) and conditions with potential side-
effects [20]. For example, a loop condition which contains a post-increment operator matches this
form. Chalin identifies that “40% of the 1500 loops in the Eclipse JDT (an industrial grade open
source Java compiler) have conditions with side-effects, and/or bodies containing breaks, continue
or return statements”. His approach to verifying such loops is to adopt a variation on the classical
loop rule of Hoare Logic. The approach proposed by Chalin is to move the position within the

1Note that, whilst existential quantifiers are not in general a problem for automated theorem provers, they easily become
universal quantifiers when assertions are negated, and this can have significant negative consequences.

11

loop where the invariant must hold to just after the condition, rather than before it. Furthermore, in
contrast to the approach taken in Whiley, Chalin argues that loop invariants should “be asserted to
hold no matter how a loop is exited (be it via a break or return)”. Thus, we can see that the approach
of Chalin could easily be supported within our bytecode language, as the position of loop invariants
is not fixed.

Bannwart and Müller present a Hoare-style logic for a sequential bytecode language similar to
e.g. JVM Bytecode or MSIL [31]. The primary motivation for their work is to enable the verification
of proof-carrying code. The unstructured nature of bytecode languages presented a key challenge.
To handle this, instructions are treated individually and the correctness of methods defined in terms
of all execution paths contained, with a fixed-point iteration being used to converge loops.

Finally, Quigley developed a program logic for Java Bytecode encoded using Isabelle [32]. The
goal was to enable more aggressive compiler optimisations within the JVM. Again, a significant
challenge was the lack of structured information about loops. Her approach was to identify common
patterns which, unfortunately, does not generalise to arbitrary loops expressible in bytecode.

6 Conclusion
In this paper, we have presented a bytecode language for encoding statements, expressions and
assertions and, furthermore, outlined an algorithm for generating verification conditions over it.
The bytecode language has two key features. Firstly, it minimises the number of bytecode types
necessary by encoding assertions within those imperative bytecodes already required for statements
and expressions, and with only a single additional bytecode being added (i.e. fail). Secondly, the
bytecode language presents a flexible compilation target for verifying compilers which supports a
wide range of source-level constructs. A particularly unusual feature of the language is the ability
to place the loop invariant anywhere within a loop, thus making it possible to accurately encode a
range of source-level loop statements (e.g. while versus do/while, etc). In the future, we would like
to formalise our verification condition generator and provide an accompanying proof of soundness
(which was outside the scope of this paper).

References
[1] Maria João Frade and Jorge Sousa Pinto. Verification conditions for source-level imperative

programs. Computer Science Review, 5(3):252–277, 2011.

[2] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and H. Venter. Specification
and verification: the Spec# experience. Communications of the ACM, 54(6):81–91, 2011.

[3] K. Rustan M. Leino and Rosemary Monahan. Dafny meets the verification benchmarks chal-
lenge. In Proceedings of the Conference on Verified Software: Theories, Tools, Experiments
(VSTTE), volume 6217 of LNCS, pages 112–126. Springer-Verlag, 2010.

[4] K. Rustan M. Leino. Developing verified programs with Dafny. In Proceedings of the Con-
ference on Verified Software: Theories, Tools, Experiments (VSTTE), volume 7152 of LNCS,
pages 82–82. Springer-Verlag, 2012.

[5] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
and S. Tobies. VCC: A practical system for verifying concurrent C. In Proceedings of the
Conference on Theorem Proving in Higher Order Logics (TPHOL), pages 23–42, 2009.

[6] D. I. Good. Mechanical proofs about computer programs. In Mathematical logic and program-
ming languages, pages 55–75, 1985.

[7] D. Luckham, SM German, F. von Henke, R. Karp, P. Milne, D. Oppen, W. Polak, and
W. Scherlis. Stanford Pascal Verifier user manual. Technical Report CS-TR-79-731, Stan-
ford University, Department of Computer Science, 1979.

12

[8] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static
checking. SRC Research Report 159, Compaq Systems Research Center, 1998.

[9] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java. In Proceedings of the ACM conference on
Programming Language Design and Implementation (PLDI), pages 234–245, 2002.

[10] Mike Barnett, K. Rustan, M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. Technical report, Microsoft Research, 2004.

[11] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants. Journal of Object Technology,
3(6):27–56, 2004.

[12] The Whiley Programming Language, http://whiley.org.

[13] R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and B. A. Brady. De-
ciding bit-vector arithmetic with abstraction. In Proceedings of the conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages 358–372, 2007.

[14] Marieke Huisman and Bart Jacobs. Java program verification via a Hoare logic with abrupt
termination. In Proceedings of the Conference on Fundamental Approaches to Software Engi-
neering, pages 284–303, 2000.

[15] D. J. Pearce and J. Noble. Implementing a language with flow-sensitive and structural typing
on the JVM. Electronic Notes in Computer Science, 279(1):47–59, 2011.

[16] D. J. Pearce. Sound and complete flow typing with unions, intersections and negations. In
Proceedings of the Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI), pages 335–354, 2013.

[17] D. J. Pearce. A calculus for constraint-based flow typing. In Proceedings of the Workshop on
Formal Techniques for Java-like Programs (FTFJP), page Article 7, 2013.

[18] Bernhard Beckert, Steffen Schlager, and Peter H. Schmitt. An improved rule for while loops
in deductive program verification. In Proceedings of the International Conference on Formal
Engineering Methods (ICFEM), pages 315–329, 2005.

[19] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2006.

[20] Patrice Chalin. Adjusted verification rules for loops are more complete and give better diagnos-
tics for less. In Proceedings of the Conference on Software Engineering and Formal Methods
(SEFM), pages 317–324. IEEE Computer Society Press, 2009.

[21] ACSL: ANSI/ISO C specification language (version 1.8).

[22] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C:
A Software Analysis Perspective. In Proceedings of the Conference on Software Engineering
and Formal Methods (SEFM), volume 7504 of LNCS, pages 233–247. Springer-Verlag, 2012.

[23] The SMT-LIB standard: Version 2.0.

[24] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Kenneth Zadeck. An efficient method
of computing static single assignment form. In Proceedings of the ACM symposium on the
Principles Of Programming Languages (POPL), pages 25–35, 1989.

[25] M. Barnett, B. Evan Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modu-
lar reusable verifier for object-oriented programs. In Proceedings of the Formal Methods for
Components and Objects (FMCO), pages 364–387, 2006.

13

[26] Edsger W. Dijkstra. Guarded commands, nondeterminancy and formal derivation of programs.
Communications of the ACM, 18:453–457, 1975.

[27] Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, and Paul Thomson. GPU-
Verify: a verifier for GPU kernels. In Proceedings of the ACM conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages 113–132. ACM Press,
2012.

[28] K. Rustan M. Leino, Peter Müller, and Jan Smans. Verification of concurrent programs with
chalice. In Foundations of Security Analysis and Design, volume 5705 of LNCS, pages 195–
222. Springer-Verlag, 2009.

[29] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java programs via guarded
commands. In Proceedings of the Workshop on Formal Techniques for Java-like Programs
(FTFJP), 1999.

[30] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured programs. In Pro-
ceedings of the Workshop on Program Analysis for Software Tools and Engineering (PASTE),
pages 82–87. ACM Press, 2005.

[31] Fabian Bannwart and Peter Mller. A program logic for bytecode. Electronic Notes in Computer
Science, 141(1):255 – 273, 2005.

[32] Claire L. Quigley. A programming logic for Java Bytecode programs. In Proc. TPHOLs, pages
41–54, 2003.

14

