
OwnKit: Ownership
Inference for Java

by

Constantine Dymnikov

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Science
in Computer Science.

Victoria University of Wellington
2011

Abstract

Object ownership allows us to statically control run-time aliasing in order to pro-
vide a strong notion of object encapsulation. Unfortunately in order to use own-
ership, code must first be annotated with extra type information. This imposes
a heavy burden on the programmer, and has contributed to the slow adoption
of ownership. Ownership inference is the process of reconstructing ownership
type information based on the existing ownership patterns in code. This thesis
presents OwnKit — an automatic ownership inference tool for Java. OwnKit con-
ducts inference in a modular way: by only considering a single class at the time.
The modularity makes our algorithm highly scalable in both time and memory
usage.

ii

Acknowledgments

I would like to thank Vicky for being extra awesome, my family for being sup-
portive and supervisors Dr Alex Potanin and Dr David Pearce for being a contin-
uous source of guidance and inspiration.

Finally, I would also like to thank coffee for making this thesis possible.

iii

iv

Contents

1 Introduction 1
1.1 Object Ownership . 3
1.2 OwnKit . 3
1.3 Contributions . 4
1.4 Chapter Outline . 4

2 Background 5
2.1 Aliasing . 5
2.2 Ownership . 6

2.2.1 Flexible Alias Protection . 7
2.2.2 Generic Ownership . 8
2.2.3 @Owned . 8
2.2.4 Universes . 10

2.3 Related Work . 10
2.3.1 Points-to Analysis . 10
2.3.2 UNO . 11
2.3.3 Dominance Inference . 12
2.3.4 Generic Universe Inference 13
2.3.5 Boxes Inference . 13

3 Ownership Inference with OwnKit 15
3.1 Software Development with Ownership 15
3.2 Modularity . 17

3.2.1 Modularly Checkable Annotations 17
3.3 Value Flow and Exposure . 19

3.3.1 Value Flow . 19
3.3.2 Variable Exposure . 19

3.4 Ownership and Exposure Inference 23
3.4.1 Directly Exposed Variables 23
3.4.2 Indirect Exposure . 26

3.5 Self Exposure Inference . 30

v

vi CONTENTS

3.6 Arrays . 32

4 Formalisation 35
4.1 Abstract Syntax . 36
4.2 Class Flow Graph . 37

4.2.1 CLFG Construction Algorithm 38
4.3 Variable Exposure . 44
4.4 General Exposure Inference . 45

4.4.1 Initialisation rules . 46
4.4.2 Propagation rules . 46
4.4.3 Rule application algorithm 49

4.5 Self-Exposure and Field Ownership Inference 52
4.5.1 Self-Exposure . 52
4.5.2 Field Ownership . 52

4.6 Correctness . 53
4.6.1 Termination . 53
4.6.2 Ownership Guarantees . 55

5 Case Studies 57
5.1 Methodology . 57

5.1.1 Benchmarks . 57
5.1.2 Experiment . 57

5.2 Results . 59
5.2.1 Ownership and Self-Exposure 59
5.2.2 Exposure Reasons . 61
5.2.3 Performance . 63

6 Conclusions 65
6.1 Contributions . 65
6.2 Future Work . 66

Chapter 1

Introduction

Software systems are inherently complex [11]. One of the most common ways to
deal with complexity is to make the system modular. In object-oriented systems
this principle manifests itself as object encapsulation - each object has an interface
(public methods and fields) as well as a hidden internal implementation. The
idea is that the amount of information that has to be considered at any one time
is reduced by the fact that modules only depend on the interfaces and guarantees,
not the internal implementation of other modules [24].

Despite the fact that encapsulation is a fundamental concept of object-oriented
design, most of the currently used languages don’t protect against another funda-
mental object-oriented concept: aliasing. Aliasing occurs whenever two reference
fields or variables point at the same object in memory. While aliasing is very use-
ful, it can also have a negative effect on object encapsulation by creating aliases
that bypass an object’s interface and access the internal implementation [23].

The undesired aliasing cannot be avoided by simply marking fields as private.
For example, consider the classes in Figure 1.1. The field tank of class Car is
marked as private, but due to an error in driveCars a single instance of the
FuelTank becomes aliased by two different Car objects. This causes the call of
drive on Car a to change the state of Car b, hence breaking the encapsulation
property.

Aliasing bugs are notoriously hard to deal with because they create implicit
dependencies between various parts of the system. This can make them very
hard to detect because individual components can work correctly in isolation but
fail when integrated together. Once discovered, the part of code containing the
actual bug can often seem unrelated to the part of code that produces the error.
For instance in our example the error occurs during the use of one of the Car

objects, however the actual error is in the code that constructs them.

1

1public class Main {
2 public void driveCars(){
3 FuelTank tank = new FuelTank(10);
4 Car a = new Car(tank);
5 Car b = new Car(tank);
6

7 a.drive();
8

9 b.drive(); // Out of fuel!
10 }
11}
12

13public class Car {
14 private FuelTank tank;
15

16 public Car(FuelTank tank){
17 this.tank = tank;
18 }
19

20 public void drive(){
21 tank.useFuel(10);
22 }
23}
24

25public class FuelTank {
26 private int fuel;
27

28 public FuelTank(int fuel){
29 this.fuel = fuel;
30 }
31

32 public void useFuel(int amount) throws OutOfFuelException{
33 if(fuel < amount) throw new OutOfFuelException();
34

35 fuel = fuel - amount;
36 }
37}

Figure 1.1: Aliasing Example

2

1public class Car {
2 @Owned private FuelTank tank;
3

4 ...
5}

Figure 1.2: Ownership Annotation Example

1.1 Object Ownership

The concept of object ownership provides us with the ability to mark certain fields
or variables as owned — part of the representation of the containing object [32].
Various ownership checking systems have been developed over the years [32, 14,
39, 13, 12, 8]. Most of these systems work by analysing the code at compile-time
in order to ensure that none of the owned fields or variables have aliases outside
of the containing object. For instance, in our previous example we could have
annotated the field tank as owned (see Figure 1.2). This would have allowed
us to pinpoint the bug automatically at compile-time, instead of first having to
discover it at run-time and then try to find the line of code responsible.

The aliasing constraints provided by ownership means that it is easier to iso-
late the influence that one of the program’s components has on the other. The
improved ability to modularly analyse the program has importance in many ar-
eas:

• Concurrent and Parallel Systems [45, 8, 43, 15].

• Real-Time Systems [10, 40, 6]

• Specification Languages [29, 7]

• Program Comprehension [19].

1.2 OwnKit

Most existing approaches to ownership rely on the programmer to add type an-
notations by hand — a difficult and time-consuming process [37]. This becomes
especially problematic when dealing with large legacy systems that lack owner-
ship annotations.

Our proposed solution to this problem is to divide the ownership tool set
into two parts: an ownership inferrer and an ownership checker. The ownership
inferrer allows us to automatically create ownership type annotations. Since the

3

inferrer cannot always capture the programmer’s intent, the annotations can be
manually edited. The checker is then used to ensure that the resulting set of type
annotations is consistent.

One of the important distinctions between the ownership annotation schemas
is whether or not the annotations can be checked in a modular way — that is,
by only considering a single class or method at a time. Checking modularly al-
lows for a faster and more scalable type checking algorithm, as well as making
it easy to implement the checking inside the compiler. In this thesis we present
OwnKit [3] — an ownership inference tool that creates modularly checkable an-
notations.

1.3 Contributions

The contributions of this thesis are as follows:

• Implementation of OwnKit — a modular ownership inference tool;

• Extension to the OwnKit inference algorithm in order to facilitate a more
accurate analysis of array elements;

• Corpus study comparing the accuracy and performance of OwnKit and
UNO [26].

1.4 Chapter Outline

The rest of the thesis is split into the following chapters:

• Background - An overview of concepts and algorithms our inference relies
on and a survey of existing approaches to ownership inference.

• Ownership Inference with OwnKit - An explanation of how OwnKit fits
into the software development process as well as a top-down view of the
inference algorithm.

• Formalisation - A formal and detailed presentation of the inference algo-
rithm, including a discussion of termination and the correctness of inferred
annotations.

• Case Studies - Explanation and analysis of a small comparative corpus
study.

• Conclusions - Summary of the thesis and an outlook on future work.

4

Chapter 2

Background

In this chapter we will present the concepts of aliasing and ownership in object-
oriented programming languages, as well as common static analysis techniques
and concepts that our inference algorithm relies on.

2.1 Aliasing

We say that an object in memory is aliased if there exist two or more variables that
reference it at the same time. Consider the following example:

1public void method(){

2 Car a = new Car("Yellow"); // Car 1
3 Car b = new Car("Red"); // Car 2
4

5 b = a;

6

7 b.setColour("Green"); // Car 1 is now green
8 a.getColour(); // returns ”Green”
9}

Just before the statement b = a is executed the references and objects in mem-
ory can be pictured as follows:

a

b

Car 1
"Yellow"

Car 2
"Red"

5

As we can see each of the variables refers to a different objects in memory,
hence there is no aliasing. However the execution of the assignment statement
b = a; makes both a and b refer the same object:

a

b

Car 1
"Yellow"

Car 2
"Red"

At this point in time we can say that object Car1 has been aliased, and that a and
b are aliases. The effect of aliases is that executing the statement b.setColour(“Green′′)
affects the statements that invoke methods on a.

a

b

Car 1
"Green"

Car 2
"Red"

Aliasing is an essential feature in object-oriented languages as without it any
object graph [41] (a graph where nodes are run-time objects, references are di-
rectional edges) would be limited to being a tree, severely restricting expressive-
ness of the language. Aliasing also allows for major performance improvements
because large data structures can simply be referenced by multiple components
instead of having to be copied.

2.2 Ownership

The concept of object ownership [32, 14] has emerged in order to address the fun-
damental aliasing problem. The idea is that since aliasing cannot be removed
completely, we need to be able to control the usage of it in order to preserve en-
capsulation. Ownership type systems allow us to mark certain fields or variables
as part of the internal representation [32] of an object. We say that such fields or
variables are owned by the containing object. Once the field or variable has been
marked it is possible to use type information in order to statically ensure that the
field cannot have aliases outside of the containing object [9].

In the rest of this section we will give an overview and comparison of different
ownership systems that have been proposed in literature.

6

2.2.1 Flexible Alias Protection

Flexible Alias Protection [32] is the earliest work to put forward the concept of
ownership (even though the actual word “ownership” is not used). The paper
provides a conceptual model for enforcing object encapsulation based on the sep-
aration of roles of objects inside the program.

Encapsulation is presented in terms of an the aggregate object — that is, an
object that acts as an interface for a group of other objects that together form a
single conceptual entity. For instance Car is an aggregate object in the example
from the previous chapter (Figure 1.1).

The main insight of the paper is that there are two types of objects an aggre-
gate object interacts with: the objects that are part of the implementation of the
single conceptual entity (representation objects) and objects that are not (argument
objects). The idea is that any alias protected container (an aggregate object that is
well encapsulated from the point of view of aliasing) must obey the following
properties:

• Representation objects must not have aliases outside of the aggregate.

• The aggregate object must not depend on mutable aspects of an argument
object’s state.

• Each object should only have exactly one of these roles (i.e. representation
or argument).

In order to ensure that these properties are followed, the programmer first
needs to annotate all of the fields, parameters and return types with special alias-
ing modes indicating the roles each of them play. These aliasing mode annotations
can later be used to automatically ensure the encapsulation properties of the ag-
gregate. The representation objects are identified with the rep aliasing mode. The
aggregate objects have 4 sub-roles identified with arg, free, val and var.

The rules for use of each of the aliasing modes is as follows:

• rep - objects that are part of the aggregate representation. These objects are
not allowed to have aliases outside of the aggregate.

• arg - objects that are arguments to the aggregate (e.g. “contained” by the
aggregate). The declared type of the variable is not allowed to expose the
mutable aspects of its state.

• free - variables or expressions that contain the only reference to an object.

7

• val - primitive values. These values can be used freely by the aggregate
since they are immutable (the containing variable may change, but not the
value itself).

• var - variables containing mutable objects with no aliasing or mutability
restrictions.

Like most other ownership systems [14, 39, 13, 12, 8], Flexible Alias Protec-
tion enforces owner-as-dominator or deep ownership property in the run-time object
graph. The property states that if object A owns object B then B is located in a
sub-graph that is dominated by A.

2.2.2 Generic Ownership

Ownership Generic Java [37, 38, 39] is an extension to the Java language that intro-
duces ownership without imposing additional syntactic or run-time overheads.
The language works by allowing generic parameters to not only specify the type
of objects, but also their owner.

For example, Figure 2.1 shows code for a simplified List collection in the
original Java language. The generic parameter E allows us to specify the type
of objects that can be contained in the list. For example if we wanted to create a
new list that can only contain cars, we would provide Car as a type parameter (1).
Figure 2.2 shows a declaration and usage of List in Ownership Generic Java with
the additional ownership information added. The List class now has two type
parameters, the first specifies the type and the owner of the elements, while the
second specifies the owner of the List object itself. myMethod shows the possible
combination of the type arguments that can be used to specify different aliasing
restrictions for different instances of the List objects. The language uses World

as an owner parameter for objects that have no aliasing restrictions and This for
specifying object owned by containing object.

2.2.3 @Owned

Our ownership type system uses the @Owned type annotation in order to indi-
cate which (non-primitive) fields are owned. For example, Figure 2.3 shows a
field declaration annotated with @Owned. The annotation provides the guarantee
of deep ownership. Any of the aliases of myField will fall into the one of two
categories:

1. Fields of this (the containing object with type MyClass) and fields of myField
itself.

8

1public class List<E> {
2 ...
3 public E get(int pos){
4 ...
5 }
6

7 public void add(E element){
8 ...
9 }

10}
11

12public class MyClass {
13 public void myMethod(){
14 // List of cars (1)
15 List<Car> carList = ...;
16 }
17}

Figure 2.1: List list declaration and usage in original Java.

1public class List<E extends Object<EOwner>, Owner extends World> {
2 ...
3 public E get(int pos){
4 ...
5 }
6

7 public void add(E element){
8 ...
9 }

10}
11

12public class MyClass<Owner extends World> {
13 public void myMethod(){
14 // Public list of any cars (1)
15 List<Car<World>, World> a = ...;
16

17 // Public list of my cars (2)
18 List<Car<This>, World> b = ...;
19

20 // My list of my cars (3)
21 List<Car<This>, This> c = ...;
22 }
23}

Figure 2.2: List list declaration and usage in Generic Ownership Java.

9

1public class MyClass {
2 // Annotation on a field
3 @Owned private Object myField;
4

5 ...
6}

Figure 2.3: @Owned example

2. Local variables, method parameters and method returns of this and myField.

The @Owned annotation provides the same guarantees as rep in Flexible Alias
Protection. Inference of other ownership annotations, such as “same owner” [39]
is a much harder problem from the point of view of modular inference and is not
the focus of this work.

2.2.4 Universes

Universes [30, 31, 18, 16] is a variation on the the deep ownership type system.
While deep ownership restricts aliasing of the aggregate representation by en-
forcing the owner-as-dominator constraint, the universe approach uses a more
flexible owner-as-modifier constraint on the object graph. Owner-as-modifier only
focuses on disallowing the aggregate representation to be modified by external
objects, while not making any restrictions on aliasing.

2.3 Related Work

In this section we discuss techniques related to static (compile-time) ownership
inference as well provide an overview of other ownership inference approaches.

2.3.1 Points-to Analysis

At their core, ownership inference and checking analyses consist of analysing
existing aliasing patterns in the target code. For instance, it is important to be able
to determine whether two variables or fields can ever be aliases of each other.

A common technique used to answer this question is called points-to analy-
sis [22, 34, 21]. Points-to analysis allows us to analyse a program at compile time
in order to determine the possible sets of objects that each variable of a field can
point at run-time — these are referred to as points to sets. Once the points-to sets
are computed, the task of determining if two variables may be aliases of each

10

1public void method(){
2 while(...){
3 this.f = new Car(); // 1
4 this.g = new Car(); // 2
5 }
6}

Figure 2.4: @Owned example

other simply becomes the task of checking if their respectful points-to sets inter-
sect.

Due to the fact that the general problem is undecidable (it is a special case of
The Halting Problem [25, 42]), the points-to analysis algorithm must use some
approximations. The most common of these is to approximate groups of runtime
objects that are created using the same new expression with a single object.

For example, the method in Figure 2.4 creates an arbitrary number of new
Car objects and assigns them to fields f and g. In order to determine the exact
points-to sets of f and g we would have to analyse (the potentially very complex)
condition of the while loop. Instead of this we approximate all of the created Car

objects with just two: O1 and O2, each representing a different creation location
(i.e. new expression). The resulting points to sets for f and g are {O1} and {O2}
respectively (assuming there is no other code that interacts with these fields).
Since the sets do not intersect, we can conclude that f and g cannot be aliases of
each other.

While our tool does not directly use any of the existing points-to analyses, the
Class Flow Graph Construction described in Chapters 3 and 4 uses the similar
approach.

2.3.2 UNO

UNO [26] is an ownership and uniqueness inference tool for Java based on the
Soot compiler framework [5]. Similarly to OwnKit, UNO’s definition of object
ownership is based on flexible alias protection [32] and provides deep ownership
property.

The tool uses intra-procedural points-to analysis followed by a whole-program,
on-demand evaluation of ownership, uniqueness, containment and other related
predicates. For example in order to evaluate predicate OwnField(f (field is owned
by this) the system will evaluate NEscField(f) (field f does not escape this) and
OwnFieldIn(f, m) (f is owned in all methods m that use it). This approach allows us
to avoid unnecessary sub-predicate evaluations once it is clear that the top-level

11

predicate can not be true (for instance in the previous example, if NEscField(f)
fails, then OwnFieldIn(f, m) will not be evaluated). Another advantage is the abil-
ity to present proof trees for the evaluated predicates.

Both OwnKit and UNO use static analysis in order to determine possible flows
of values, with OwnKit using a intra-class flow analysis and UNO using an inter-
procedural analysis. The main point of difference between the tools lies in the
fact that UNO uses a whole-program approach in order to evaluate its predicates,
while OwnKit analyzes a program strictly one class at a time. The effect of this is
that in order to check ownership annotations produced by OwnKit we only need
to consider a single class, which is not a case with UNO.

2.3.3 Dominance Inference

Dominance Inference [27, 28] is a technique for inference of both (deep) owner-
ship types and universe types [18]. Like UNO and OwnKit, the algorithm also
works on unannotated Java source code.

The inference uses a whole-program Anderson-style points-to analysis [20, 44]
in order to create an approximation of all possible run-time object graphs. The re-
sulting graph contains edges that can have one or more labels corresponding to
the four different types of interactions between objects. These interactions in-
clude: creation of one object by another, passing of an object as a method pa-
rameter to another, return of an object out of the method, and exposure of this
pointer to another object (similar to our concept of self-exposure).

In order to infer ownership properties, the inferrer uses an algorithm that
computes a dominance boundary for each of the objects. The algorithm uses an
iterative work-list approach and maintains In and Out object sets. The In set rep-
resents objects that can only be accessed through the currently analysed top-level
object. This set initially consists of all objects that are directly created by the top-
level object, while the Out set initially contains all of the remaining objects. The
algorithm then analyses all of the possible connections that may cause objects in
In to be accessible by an object in Out. If an object in the in set In is discovered to
be exposed, it is moved to Out and its connections also analysed. The computed
dominance boundary of an object corresponds to all the objects that it owns.

While both OwnKit and the dominance inference algorithm construct a graph
structure that shows the possible flows of objects, the two structures are very
different in nature. The object graph used in dominance inference describes the
object flows for the entire program under analysis and has individual objects as
nodes, while our class flow graph has individual variables as nodes and only
describes flows inside a single class.

12

2.3.4 Generic Universe Inference

Tunable Static Inference for Generic Universe Types [17] is a approach for auto-
matic inference of universe types [16, 30, 31]. The inference consists of 3 main
stages: identification of type variables (additional type information, similar to
aliasing modes in Flexible Alias Protection), generation of constraints on these
variables and the solving of constraints in order to obtain concrete values for the
type variables.

An interesting aspect of the universe inference, is the absence of the most gen-
eral solution for the type variables. To address this issue the paper presents the
use of user-defined heuristics in order to find a solution that has a suitable balance
between stronger encapsulation and easier information sharing.

2.3.5 Boxes Inference

Boxes [36] is an alias control schema based on ownership types. The system re-
quires that the program is split into a series of modules, each of which is similar to
alias-protected containers [32]. While containers are only allowed to have a single
external interface providing encapsulation, modules can have multiple external
interfaces, potentially making the system more flexible.

Inferring Ownership Types for Encapsulated Object-Oriented Program Components [35]
describes a technique for inferring box types. The inference is much more narrow
in scope than the other approaches we have described. Before the inference can
begin, the user needs to identify each of the modules together with all of the ex-
ternal interfaces. This can sometimes result in cases the where inference process
fails due to the inconsistency of user annotations.

13

14

Chapter 3

Ownership Inference with OwnKit

In this chapter we will discuss the problem of ownership inference and present
our approach. The aim of this chapter is to provide a feel for the problem as well
as the basic intuition behind our solution. Formal details of the algorithm will be
given in Chapter 4.

3.1 Software Development with Ownership

In order to evaluate the practical usefulness of ownership annotations, two crite-
ria must be used:

1. Completeness - The more types augmented with ownership information
the more it helps us to understand, verify or optimise the code in question.

2. Correctness - The type annotations must be correct, otherwise they cannot
be used to make reliable judgments regarding the code in question.

To help achieve these requirements we use two tools: an ownership inferrer
(called OwnKit) and an ownership checker. OwnKit is used to help create the
initial set of type annotations, which then may be manually edited. After this, as
code modifications are made the checker is used to ensure that the changes do
not violate the annotations. This serves to stop changes to the code from subse-
quently breaking the ownership protocol.

There are two ways to create annotations in the code: manual and automatic.
On the one hand, in the case of a program being written from scratch, it is easy for
a programmer to simply add annotations manually as classes are created. How-
ever this approach becomes time consuming and error-prone if a large legacy
code base is required to be annotated.

On the other hand automatic process is very good for dealing with large code
bases, but may result in “overzealous” annotations. This happens because the

15

1public class MyClass {
2 private String errorMessage = "Too fast!";
3 // Returns ”OK” or an error message
4 public String doCheck(){
5 // Unfinished
6 return "OK";
7 }
8}

Figure 3.1: Unfinished method

1public class MyClass {
2 @Owned private String errorMessage = "Too fast!";
3 // Returns ”OK” or an error message
4 public String doCheck(){
5 if(...) {
6 return "OK";
7 }
8 else {
9 // Error: Public method cannot return value of an owned field

10 return errorMessage;
11 }
12 }
13}

Figure 3.2: Type checking error after the modification of the code

automatic tool can only calculate de-facto owned fields, not the fields that were
intended to be owned.

When OwnKit analyses the class in Figure 3.1 it will infer that field errorMessage

in Figure 3.1 is owned because its value is never given to the outside and therefore
will annotate it as @Owned. However most programmers looking at this class will
understand the comments and realize that errorMessage will probably be passed
outside of the class once doCheck is complete. The problem with overzealous an-
notations is that once they are in place they will unnecessarily restrict future code
by restricting operations on the owned fields. For example when the method
doCheck is complete the class will fail the type checking process (Figure 3.2).

As we have mentioned in the previous chapter, the main reason for having
the checker as a separate tool is to allow for the mixture of the two annotation
approaches. For example, a previously unannotated program can be at first an-
notated automatically, then have some of the overzealous annotations removed
manually. Then as the program continues to be modified. The ownership checker
can be used at any point in time to verify that none of the @Owned fields have their

16

values exposed. In this sense the ownership checker is used in a manner similar
to a type checker.

3.2 Modularity

All program analysis algorithms can be divided into two broad categories:

• Modular - Algorithms that generate a complete solution for a particular
unit (for example a class) by only iterating over elements (methods or state-
ments) of the unit in question and using limited type information regarding
other units.

• Whole Program - Algorithms that generate a complete solution for a unit
by iterating over elements of all units in the program.

A particularly important example of a modular program analysis is the Java
Compiler (javac). In this case the “unit” of the target program is a single Java file;
whilst the “complete solution” for a unit is the corresponding class file1.

In most cases the Java Compiler will only consider the current Java file while
doing this, and disregard all other Java files in the target program. However,
sometimes the current Java file may reference symbols defined in other Java files.
If this happens the compiler will analyse the relevant files in order to determine
the type information. The important point here is that the compiler will not at-
tempt to compile these files, but only retrieve the type information: a compara-
tively cheap computational procedure.

3.2.1 Modularly Checkable Annotations

In our system we made the decision to make all of our @Owned annotations mod-
ularly checkable. This means that if a particular class has a number of @Owned
annotations, our ownership checker can ensure their validity by only having ac-
cess to the containing class and some of the basic type information about other
classes. The modularity of our annotations sets our system apart from the other
(non-modular) schemas (e.g. [26, 28, 16]).

One of the main advantages comes from the fact that both our proposed type
checking algorithm and The Java Compiler work on programs modularly. This
means it is feasible to implement the checking of @Owned annotations as one of
the Java Compiler’s type checking stages.

1Technically a single Java file can produce multiple classes if it contains inner, anonymous or
non-public classes.

17

1public class MyClass {
2 private String myField = ...;
3 public String getMyField(){
4 return myField;
5 }
6}

Figure 3.3: Single Class Example

From an performance standpoint the modularity of annotations means that
both our type checking and inferencing algorithms cannot be constructing and
maintain large global data-structures such as call graphs or inter-procedural points-
to analysis (e.g. as in [44]). The result of this is that the maximum memory
needed to analyse the given program does not depend on the number of classes
it has, only the size of the biggest class. Similarly, because the analysis of indi-
vidual classes does not exchange any data, the analysis time of a whole program
grows linearly with respect to the number of classes.

Another advantage of modular algorithms is the small amount of time re-
quired to find a new solution after changes to a small number of units. This
is important for type checking algorithms as typically only a small number of
classes are modified in each iteration of the target program. In particular, since
the checker only has to consider the newly changed classes, it makes it easy to
implement the checking as one of the stages of the compiler. Since the process of
type checking different classes is not dependent on each other, it makes the pro-
cess of type checking inherently easy to parallelize and distribute. The modular
approach also makes it easier to allow the inferrer to be integrated with incre-
mental compiler, such as found in Eclipse [1].

One of the disadvantages of modular inference is that it will typically pro-
duce more conservative annotations. This is because a modular algorithm has to
assume that any value that can potentially leak outside of the currently analysed
class is exposed. The whole-program approach on the other hand can analyse
other units in the target program to see if they actually obtain the exposed value.

For example, consider a simple program in Figure 3.3 that consists of only
a single class. Here a modular inferrer will start on MyClass, and after seeing
public getMyFieldS method will immediately assume that myField is not owned.
However a whole-program inferrer may be able to see that even though the value
of myField can be obtained by calling getMyField, this method is in fact never
called.

It is important to note that the precision advantage mostly occurs whenever
we can guarantee that no new classes will be loaded at run-time (for example

18

analysis of complete applications). However, if we are analysing library code,
we have to make conservative assumptions regarding the (currently unknown)
classes of an application that will use the said library. In this case, both modu-
lar and whole-program approach would have to operate under a similar set of
assumptions.

3.3 Value Flow and Exposure

We will now present the fundamental concepts used in our inference algorithm,
value flow and variable exposure. The actual inference algorithm will be introduced
in the next section.

3.3.1 Value Flow

We say that there is a value flow from non-primitive variable A to a non-primitive
variable B if during the execution of the program a value of A may be passed
into B. This concept allows us to abstract away from the actual mechanism of
value transfer, for example assigning to a local variable or passing a field as an
argument to a method. Figure 3.4 provides some examples of value flows inside
a class.

We also do not concern ourselves with whether the value assignment is guar-
anteed to happen during the actual execution of a program. For example, con-
sider the method with a non-trivial if statement in Figure 3.5. In this example
each execution of myMethod may carry out one of two possible assignments, how-
ever in any particular execution only one may be taken. Because we define value
flow as the the possibility of value transfer, we would say that there are two value
flows occurring: a flow from x to a and a flow from x to b.

Note that value flow is strictly directional, for example an assignment a = x

will result in a flow from x to a, but not the other way around. This property
of value flows makes a directed graph the natural representation of all the flows
inside a program: here nodes are individual variables and edges are the flows.
We will present the formal definition of this flow graph in Chapter 4.

3.3.2 Variable Exposure

Another important concept is variable exposure. A non-primitive variable is
said to become exposed when external objects gain access to objects it references.
There are two types of exposure a variable can have.

19

1public class MyClass {
2 private String a;
3 private String b;
4

5 public void method(){
6 // Value flow from b to a
7 a = b;
8

9 // Value flow from a to par
10 work1(a);
11

12 // Value flow from the return of work2 into b
13 b = work2();
14 }
15

16 private void work1(String par){
17 ...
18 }
19

20 private String work2(){
21 String tmp = "123";
22

23 // Value flow from tmp to return of work2
24 return tmp;
25 }
26}

Figure 3.4: Value Flow Examples

1public class MyClass {
2 private String x,
3 private String a, b;
4 public int number = ...
5

6 public void myMethod(){
7 if(number > 5){
8 a = x;
9 } else {

10 b = x;
11 }
12 }
13}

Figure 3.5: Inference with Conditional Statements

20

1public class MyClass {
2 private List<String> myList = ...;
3

4 public List<String> getMyList(){
5 return myList;
6 }
7}
8

9public class External {
10 public void expose(){
11 MyClass mc = ...;
12 List<String> alias = mc.getMyList();
13 alias.add("bad");
14 }
15}

Figure 3.6: Read Exposure Example. The value of myList can potentially leak
through the getMyList method and then becomes aliased by a field in an another
class.

The first type of variable exposure is Read Exposure. The variable is said to
be read exposed if its value is readable by external objects. This occurs when the
object that is initially referred to by the variable can later become aliased by any
of the variables in external objects.

Consider the class in Figure 3.6: we can see that an external object can poten-
tially obtain the reference to field myList, create an alias and proceed to modify
elements of the list. Despite this, it is important to note that in this example no
external object can change the field reference myList.

The second type is Write Exposure. A variable is said to be write exposed if its
value can be changed to point to an object that may also be aliased by a variable
in an external object.

We present a similar example in Figure 3.7. Just as with the previous example,
the external object is able to create an alias to field myList. This time however, it
can change what list object myList references. The external object however, can
never create a reference to the original value of myList.

It is also possible for a variable to have both or neither types of exposure, as
shown in Figure 3.8. Public field fieldA is both read and write exposed because
we have to conservatively assume that external objects will both copy its values
and assign their own values to it. In contrast, a private field that is never used is
clearly not exposed (and hence is owned).

21

1public class MyClass {
2 private List<String> myList = ...;
3

4 public void setMyList(List<String> par){
5 myList = par;
6 }
7}
8

9public class External {
10 public void expose(){
11 MyClass mc = ...;
12 List<String> alias = ...;
13 mc.setMyList(alias);
14 }
15}

Figure 3.7: Write Exposure Example. The value of myList can be overwritten
by another class with the help of setMyList method. If the called of setMyList
remembers the said value then this will result in the creation of an alias to myList.

1public class MyClass {
2 public List fieldA = ...;
3 private List fieldB = ...;
4}

Figure 3.8: Combinations of Exposure Types. The field fieldA can be both read
and written to by external objects, giving it both types of exposure. Field fieldB

on the other hand is safe from all external manipulation, making it have neither
type of exposure.

22

Read Exposed Write Exposed
Parameter of a Non-Private Method X
Return of a Non-Private Method X
Non-Private Field X X
Non-This Method Parameter X
Non-This Method Return X
Non-This Field X X

Figure 3.9: Direct Exposure

3.4 Ownership and Exposure Inference

In our system, exposure and ownership of fields have a simple relationship.

Definition: A variable (field, method parameter or method return value) is
considered to be owned if it is neither read exposed nor write exposed.

So the problem of ownership inference comes down to identifying exposure
types for every variable in the currently analysed class. From the point of view
of carrying out the exposure inference, the variables can be separated into two
categories: directly and indirectly exposed. The remainder of this section describes
how the exposure of both categories are inferred.

3.4.1 Directly Exposed Variables

In order to identify the exposure types of all variables in a class we start by iden-
tifying variables that are exposed simply by virtue of their declaration. Figure 3.9
shows all of the cases for this kind of “direct exposure”.

The first category refers to variables and methods that belong to this object,
but do not have the private visibility (public, protected and package). Non-
private methods can be invoked either by code in external objects (in case of
public and package, see Figure 3.10), or by code in the subclasses (in the case
of protected, see Figure 3.11).

Due to the modular nature of our analysis, we have to conservatively assume
that the values provided as arguments to these methods are will exposed - giving
the parameters write exposure (case #1 in our code examples). Similarly, we have
to assume that the values returned by these methods will be potentially aliased
resulting in read exposure (case #2). Non-private fields can potentially be both
read and written to, giving them both types of exposure (cases #3-4)

The second category of direct exposure shown in Figure 3.9 is fields and meth-
ods that do not belong to this. These include both static methods and methods

23

1public class MyClass {
2 public List<String> x;
3

4 public List<String> foo(List<String> par){
5 ...
6 }
7}
8

9public class OtherClass {
10 public List<String> exposed;
11

12 public void expose(A a){
13 // 1
14 exposed = a.foo(...);
15

16 // 2
17 a.foo(exposed);
18

19 // 3
20 exposed = a.x;
21

22 // 4
23 a.x = exposed;
24 }
25}

Figure 3.10: Exposure of public variables by an external object.

24

1public class MyClass {
2 protected List<String> x;
3

4 protected List<String> foo(List<String> par){
5 ...
6 }
7}
8

9public class OtherClass extends MyClass {
10 public List<String> exposed;
11

12 public void expose(){
13 // 1
14 exposed = super.foo(...);
15

16 // 2
17 super.foo(exposed);
18

19 // 3
20 exposed = super.x;
21

22 // 4
23 super.x = exposed;
24 }
25}

Figure 3.11: Exposure of protected variables by the subclass.

25

1public class MyClass {
2 private List<String> f = ..;
3

4 public void method(OtherClass a){
5 // 1
6 a.set(f);
7

8 // 2
9 f = a.get();

10

11 // 3
12 a.exposed = f;
13

14 // 4
15 f = a.exposed;
16 }
17}
18

19public class OtherClass {
20 public List<String> exposed;
21

22 public void set(List<String> p){
23 this.exposed = p;
24 }
25

26 public List<String> get(){
27 return exposed;
28 }
29}

Figure 3.12: Exposure of other variables

of external objects (see Figure 3.12). We consider their exposure types from the
point of view of this object. This means that the method parameters of another
object are read exposed (the external object can read them) as seen in case #1. The
return values of other objects are write exposed since the external object can re-
turn an aliased value (case #2). Finally, just like in the previous example, fields
are both read and write exposed (cases #3-4).

3.4.2 Indirect Exposure

Once we know the exposure types for all of the directly exposed variables, we
need to consider how their exposure affects other variables in the currently anal-
ysed class. To do so we consider all of the node pairs that are directly connected

26

[a] 99K [b] [a] L99 [b]
[b] [b]W [b]R [b]WR [b] [b]W [b]R [b]WR

[a] [a] [a] [a]R [a]R [a] [a]W [a]W [a]WR
[a]R [a]R [a]R [a]R [a]R [a]R [a]WR [a]WR [a]WR
[a]W [a]W [a]W [a]WR [a]WR [a]W [a]W [a]W [a]W

[a]WR [a]WR [a]WR [a]WR [a]WR [a]WR [a]WR [a]WR [a]WR
Case: #0 #4 #1 #1 #0 #2 #3 #2+ 3

Figure 3.13: Possible Cases During the Value Flow

by value flows. Figure 3.13 shows the rules for inferring the exposure of node a.
There are 32 cases in total: 4 possible exposures for each node (no exposure, read
exposure, write exposure, read and write exposure) and two possible directions
of the flow. The rules only specify the exposure of node a; if we want to find the
exposure of b we would have to swap the order of the nodes involved.

We can see that the only changes to the exposure of a (highlighted in black)
are the additions of new exposure types and never the removal of existing expo-
sure types. Furthermore we can see that the effects of the inference can be easily
categorized:

• No Change - Cases #0 and #4.

• Addition of Read Exposure - Case #1, if node a already has write exposure,
then its exposure remain unchanged.

• Addition of Write Exposure - Cases #2 and #3, again, if node a already has
read exposure, then its exposure remain unchanged.

We will now carefully consider each of the cases and explain the reasoning
behind them.

Case #0 - neighbor node b does not have either type of exposure. This means
that any values we read from b cannot be aliased by an external object; writing
values into b will also not make them exposed. We can therefore infer that node
a will simply keep its current exposure types (if any).

Case #1 - the current node a has a flow to a read-exposed node b. An example
of this case is given in Figure 3.14a. Here the solid lines represent the pointers,
and the dashed lines represent the possible value flow between the variables. In
our example variable b is directly read exposed (for example it could be a return
value of a public method in X).

We now consider the possible effects of the value flow between the three vari-
ables involved. The value of a is possibly assigned to b, and then to c. Figure 3.14b

27

shows the possibility of value transfer between the variables that results in alias-
ing. While the object Y has 3 aliases (a, b and c), the only important ones from the
perspective of our rule are a and c. The two aliases mean that object Y can not
be part of the internal representation of X. In turn that means that the variable a

is exposed. According to our definition, since a is exposed by virtue of a value
escaping from it, it is read exposed.

X
this

a b Z

thisc

Y
...

(a) Before

X
this

a b Z

thisc

Y
...

(b) After

Figure 3.14: Case #1

Case #2 - the current node a has a flow from a write-exposed node b (for ex-
ample a parameter of a public method). Figure 3.15a provides the initial example
object graph with possible value flows. These value flows allow for the possibil-
ity of the value of external variable c to be transferred to b and then eventually to
a (Figure 3.15b). Similar to the previous example this results in an object that is
aliased by both a and c. However, this time the exposure of a occurs by virtue of
an aliased value being assigned to it, making a write exposed.

X
this

a b Z

thisc

Y
...

(a) Before

X
this

a b Z

thisc

Y
...

(b) After

Figure 3.15: Case #2

Case #3 - the current node a has a flow from a read-exposed node b (Fig-
ure 3.16a). In this case, the aliasing can occur due to the value of b flowing into
both a (Figure 3.16b) and the node that is read exposing b itself (in our example it
is c). As with Case #1, the variable a becomes write exposed, because the exposed
value is written into it (from b).

28

X
this

a b Z

thisc

Y
...

(a) Before

X
this

a b Z

thisc

Y
...

(b) After

Figure 3.16: Case #3

Case #4 - current node a has a flow to a write-exposed node b (Figure 3.17a).
Even though the variable a is interacting with an exposed variable b, unlike pre-
vious cases, a does not become exposed. Due to the value flows in our example,
the only variable that changes its value is b - it can either receive a value from a

or a value from c.

While b can potentially point at both Y1 and Y2 during the execution of the
program. This means there are only three possible states for the variables: the
initial state (Figure 3.17a); the state where b references Y1 (Figure 3.17b); and the
state where b references Y2 (Figure 3.17c). As we can see, none of these three
states can result in a situation where a and c alias an object.

X
this

a b

Z

thisc

Y1
...

Y2
...

(a) Before

X
this

a b

Z

thisc

Y1
...

Y2
...

(b) State 1

X
this

a b

Z

thisc

Y1
...

Y2
...

(c) State 2

Figure 3.17: Case #4

29

1public class Z {
2 public Z(){
3 S.staticField = this;
4 }
5}
6

7public class S {
8 public static Z staticField = ...;
9}

Figure 3.18: Self-Exposing Class

1public class MyClass {
2 private Z myField = new Z();
3}

Figure 3.19: Self-Exposing Field

So far we have described the rules for calculating the change in the exposure
of a node, given a flow to or from its neighbor, avoiding the question of how
and when these rules should be applied. An important fact to note about our
inference rules is that there is no “wrong” time to apply them, since they either
leave the exposure of the node the same, or add an additional exposure type -
once the exposure type is inferred it is never removed. This means the order of
rule applications does not matter, as long as we keep applying the rules until all
of the nodes have their exposure types inferred. The formal description of the
application algorithm will be given in Chapter 4.

3.5 Self Exposure Inference

In most cases it is possible to infer field ownership by just looking at one class at
a time. There is however a special case in which this can not be done.

Consider the declaration of the class Z in Figure 3.18. When an object of class
Z is created, it will immediately share its identity with a static field of class S, after
which any number of external classes may potentially access it. The consequence
of this is that any variables that can contain objects of type Z are read exposed as
shown in Figure 3.19.

Even though MyClass will never expose the value of myField, the field is au-
tomatically exposed as soon as we assign a value to it. In this situation we say
that class Z is a self-exposing class.

In order to address this problem, we introduce the Self-Exposure Inference stage

30

1public class C {
2 private Object f;
3

4 public void m1(){
5 m2(this); // 1
6 }
7

8 private void m2(Object par){
9 f = par; // 2

10 }
11

12 public Object getF(){
13 return f; // 3
14 }
15}

Figure 3.20: Indirect exposure of this

before we perform ownership inference. Just as with field exposure inference, self
exposure inference has to deal with cases where a value is propagated through
a number of intermediate variables before being exposed outside of the instance
as can be seen in Figure 3.20. Here, a reference to the current object (this) is
propagated from the special local variable (1) into a parameter and into m2, and
then through field f into a public return value (2, 3).

We can determine whether a given class is self-exposed by reusing our algo-
rithm for field exposure. The only difference is that instead of looking at whether
the fields of the class have either read or write exposure, we only need to know
if this reference has become read exposed (it is not possible to assign to this in
Java). Once the self-exposure of all classes is determined we can proceed with the
field ownership inference as usual. The only addition is that all variables whose
type allows them to contain objects of self-exposed classes are now marked as
read exposed.

This finding has interesting consequences for modular ownership inference
- it is not possible to safely infer ownership of variables inside a class without
knowing the self-exposure information of their types. In general, this is not prob-
lematic when dealing with code bases such as applications, where we can infer
the self-exposure information for all of the classes. It does however mean that
safe ownership annotations cannot be inferred on library code, unless we enforce
constraints on the self-exposure of client classes. This issue however, is not spe-
cific to our system, but rather a general problem with ownership inference in
cases where complete list of classes is not available for analysis.

31

1class MyClass {
2 private String[] x = ...;
3

4 private String a = ...;
5 private String b = ...;
6

7 public void myMethod(){
8 x[0] = a;
9 b = x[5];

10 }
11}

Figure 3.21: Array Example

3.6 Arrays

The presence of arrays in the Java language introduces many implicit value flows
in the target program which serves to complicate the ownership inference pro-
cess. The simplest approach for dealing with arrays is to simply ignore these
implicit flows and declare that all array elements are automatically exposed (this
approach is used by UNO [26]). This approach maintains the safety of annota-
tions as fields marked with @Owned are still guaranteed to be owned. This does
however result in more conservative field ownership as any other variables that
have a flow to or from array elements also become exposed.

Our inference tool uses a more precise approach that is commonly used by
other pointer analysis algorithms [22, 34, 21]. Instead of simply deciding that
all array elements are exposed, we ignore the value of the index during array
accesses. This results in less conservative annotations while not resulting in major
changes to the algorithm or incurring a large computational cost. From the point
of view of flow analysis, this allows us to treat each of the arrays as if they contain
a single element. When it comes to generating variable flow information this
allows us to represent all interactions with array elements as interactions with a
single variable.

Figure 3.21 provides an example. There are two variable flows here: a flow
from a to “elements of x” and from “elements of x” to b. While these flows may
seem to be quite conservative in this case, we can see that they serve to be a much
better approximation when an operation is performed for each of the elements in
an array. For example, consider Figure 3.22. The only variable flow we would
generate for the program is from “elements of x” to “elements of y”.

Once the flow information of the array elements has been represented in this
way, we can treat them in the same way we treat all other variables in the pro-

32

1public class MyClass {
2 private String[] x = ...;
3 private String[] y = ...;
4

5 public void myMethod(){
6 for(int i = 0; i < x.length; i++){
7 y[i] = x[i];
8 }
9 }

10}

Figure 3.22: Loop Example

gram. The only new special case occurs when the base reference of the array has
been exposed. When a base reference is exposed, it means that an object other
than this has complete read and write access to all of the elements inside the
array. It is important to note that we will have to mark the array elements to be
both read and write exposed no matter what the type of exposure is calculated
for the base reference. A formal description of this rule will be given in the next
chapter.

33

34

Chapter 4

Formalisation

This section provides formalisation of the ownership inference algorithm. We
will then use this formalisation to sketch a termination proof of the algorithm. In
order to aid understanding we present a basic version of the algorithm that will
infer ownership on a simplified Java-like language. There are three non-trivial
parts to the algorithm:

1. Class Flow Graph Construction (CreateCLFG) — Creation of a mathemat-
ical model (directed graph) that shows all possible flows of values between
variables (in this thesis we use the term “variables” to mean method param-
eters, fields, local variables, etc) inside a class.

2. General Exposure Inference (ExposedNodes) — Once we have obtained the
flow graph for a class, we use a series of rules to determine which vari-
ables are to be considered to be “exposed”. Variable exposure occurs if it is
possible a variable to contain values accessible by objects other than this.
This stage takes into account only exposures that occur due to code inside
the currently analysed class; the self-exposure of the variables is not consid-
ered.

3. Self-Exposure Inference (ExposedClasses) — The goal of this stage is to
analyse all of the target classes and determine which ones potentially ex-
pose their this reference.

4. Field Ownership Inference (OwnedFields) — Given the set of exposed fields,
ownership inference is trivial — if a field is not “exposed” then it is owned
by the class given the field is not “self-exposed”.

We now proceed to give a detailed formalisation for each of these parts.

35

4.1 Abstract Syntax

For our formalisation we use a simplified version of the Java language. The two
main changes are:

1. No branches in the control-flow graph: Method bodies do not contain if,
else, for, while, switch or other conditional statements.

2. Flat class hierarchy: This version of the language does not have interfaces
or classes extending other classes.

Figure 4.1 shows the syntax of our simplified language. The top level decla-
ration in our language definition is the Program — a definition of the whole pro-
gram, which we represent as a list of class definitions. In turn, each of the class
definitions consists of the name, a list of field definitions, and a list of method
definitions. Since our simplified language avoids class hierarchies, fields and
methods can only be private or public.

The definition of a method consists of two parts: the header containing type
information and the name, followed by the body — simply a list of statements.
Each of the statements can either be an assignment or a return. For simplicity we
only allow assignment of the results of methods to local variables. There are 7
forms of expression in our language:

• newη C() or newη C[] - Creation sites for objects and arrays. Each of these ex-
pressions has a unique η number in order to make it easy to identify. In our
implementation we can easily generate this unique identifier by considering
file, line and column of the occurrence of the new expression.

• this - Same as in Java: a reference to the enclosing object.

• l - A local variable.

• pi - A variable referring to a formal parameter of the method. For example,
p1 refers to the first, p2 to the second, and so on. To simplify the presentation
of our algorithm, our intermediate language does not allow reassignment
of the value of the parameter inside the method.

• v.f - A field access.

• e[k] - Array element access.

We also make the following restrictions in order to simplify our formalisation:

36

Programdef ::= Classdef
Classdef ::= class C {Fielddef Methoddef}
Fielddef ::= Modifier T f

Methoddef ::= Modifier T m(T p1, ... ,T pn) {Stmt}
pi ::= method parameter #i

Stmt ::= l = Invk | l = e | this.f = e | return e

Invk ::= v.m(e)
e ::= newη C() | newη C[] | v | e[k]
v ::= this | l | pi | v.f

Modifier ::= private | public
T ::= types
C ∈ class names
m ∈ method names
f ∈ field names
l ∈ local variable names
k ∈ array indexes
η ∈ {0, 1, ...}

Figure 4.1: Intermediate Language Syntax

• Method invocations are not allowed as arguments. For example: x.m(y.m())
is not permitted.

• No two classes have a field or a method with the same name.

• Arrays cannot be elements of other arrays (no multidimensional arrays).

4.2 Class Flow Graph

As we have mentioned in Chapter 3, our inference algorithm relies on informa-
tion about the flow of values in the target program. In this section we present a
construct representing this information: The Class Flow Graph.

A Class Flow Graph (CLFG) is a directed graph where nodes correspond to
individual variables and edges correspond to the potential flows of values. In our
algorithms we will use nodes(G) to refer to the nodes of graph G and edges(G) to
refer to its edges. We also assume that if we add an extra edge to the graph then
its nodes will also be automatically added.

The definition of CLFG and its nodes is given in Figure 4.2. Here the nota-
tion newη is used to represent the values generated by a particular new expression.
We use the unique identifying number η to easily distinguish the nodes for dif-
ferent new expressions. Fields of the current instance are represented by nodes
of the form this.f, fields of all other instances are represented by nodes of the
form other.f. Nodes corresponding to formal parameters of methods are of the

37

G :: {N 7→ N}
N ::= newη | this | this.G | other.G | N[∗]
G ::= field name | method name#α
α ∈ ret ∪ {0, 1, ...}

Figure 4.2: CLFG Definition

1class Foo{
2 public void method(Object a, Object b){
3 ...
4 }
5}

Figure 4.3: CLFG nodes for method parameters. In CLFG, parameter a would be
represented by node this.method#0 and parameter b would be represented by
node this.method#1

forms this.m#i or other.m#i (where i is the number of the parameter, see Fig-
ure 4.3). The nodes for the return values of the methods are similar, except that
they contain ret instead of parameter number.

As we have mentioned in the previous chapter our analysis ignores the indices
and sizes of arrays, effectively treating each array as if it only had one element. If
N is a variable referring to the base of an array, then we use N[∗] to represent the
elements of N. We refer to N itself as the base node and N[∗] as the element node.

Nodes of the CLFG loosely correspond to the variables of the program. There
is however an important difference: we do not have separate nodes for variables
or fields that belong to objects other than this. For example, consider the code
in Figure 4.4. The graphical representation of CLFG for MyClass is given in Fig-
ure 4.5. It contain the following nodes: this.a, this.b, other.f. Notice that node
other.f represents both x.f and y.f. This results in both c[0] and c[4] being repre-
sented by the single array element node this.c[∗].

4.2.1 CLFG Construction Algorithm

Now that we have described the structure of the CLFG we will present a simple
algorithm that constructs the CLFG for a given class. The top level structure of
the algorithm is to first analyse each of the methods in the target class, and then
combine the results to create the CLFG for the whole class. The analysis of each
method results in a partial flow graph. To combine particular graphs into the
preliminary CLFG we simply use a graph union operation. We then proceed
to augment the preliminary CLFG with information about the flow between the

38

1class Foo{
2 private String a;
3 private String b;
4 private String[] c = ..;
5

6 public void method(Bar x, Bar y){
7 this.a = x.f;
8 this.b = y.f;
9

10 this.c[0] = a;
11 this.c[4] = b;
12 }
13}

Figure 4.4: Example class. The CFLG generated for this class is given in Figure 4.5.

this.a

this.b

other.fthis.c[*]this.c

Figure 4.5: CLFG for the class given in Figure 4.4. Notice that this.c[0] and
this.c[4] as well as x.f and y.f are represented by shared nodes.

element nodes of the different arrays in order to obtain the complete CLFG, the
pseudo code for the top level algorithm is presented in Figures 4.6, 4.7 and 4.8.

In order to compute the effect of a particular method on the CLFG, we analyse
each of the statements in sequence. As the statements are analysed we maintain
the local variable mapping information Γ - an environment that maps local vari-
ables to the non-local variables that they currently alias. For each of the state-
ments we use the cf function (Figure 4.7) to see what effect the statement has on
the CLFG (G) and the local variable environment Γ.

The cf function (Figure 4.8) identifies the local (inside the current method)
value flows that result from the execution of a given statement. For example, an
assignment statement of the form A = B results in a single flow from B to A, while a
method invocation results in flows from all of the arguments to the corresponding
formal parameters of the method. The node(..) function is used to identify CLFG
nodes corresponding to the expressions in the language.

Before we proceed to describe the array element flow generation function we

39

Input:
class C {fieldsC methodsC} - Definition of class C

Output:
GC - CLFG for class C

[1] GC = {}

[2] for all fi ∈ fieldsC do
[3] nodes(GC) = nodes(GC) ∪ {node(fi)}

[4] for all Modifieri Ti mi(..){statementsi} ∈ methodsC do
[5] Γ = {}
[6] for all stmtj ∈ statementsi do
[7] (G′C, Γ) = cf(stmtj, Γ)
[8] GC = GC ∪ G′C

[9] GC = AugmentArrayFlow(DefC, GC)

[10] ⇒ output GC

Figure 4.6: CLFG creation algorithm. The definitions of helper functions are given
in Figures 4.7 and 4.8. Since the parameters cannot be reassigned inside the body
of the method, the initial environment G is simply an empty mapping.

cf generation rules
cf(li = Invki, Γ, mcur) := (arg map(Invki), Γ / li 7→ node(Invki))

cf(li = ei, Γ, mcur) := ({}, Γ / li 7→ node(ei))
cf(this.fi = ei, Γ, mcur) := ({node(ei) 7→ node(this.fi)}, Γ)

cf(return ei, Γ, mcur) := ({node(ei) 7→ this.mcur#ret}, Γ)
arg map(this.mi(e1, .., en), Γ) := {node(ej) 7→ node(this.mi#j) | 0 < j < n}

arg map(vi.mi(e1, .., en), Γ) := {node(ej) 7→ node(other.mi#j) | 0 < j < n}

Figure 4.7: Statement Flow Effects. The symbol / is used to indicate an overwrit-
ing update to the environment, for example: {a 7→ x} / (a 7→ y) = {a 7→ y}. The
helper function arg map is used to create flows from the arguments of a method
invocation to the formal parameters of the method.

40

node :: (e, m, Γ)→ N

node(newη C(), mcur, Γ) ::= newη
node(newη C[], mcur, Γ) ::= newη

node(this, mcur, Γ) ::= this

node(pi, mcur, Γ) ::= this.mcur#i

node(li, mcur, Γ) ::= Γ(li)
node(this.fi, mcur, Γ) ::= this.fi

node(vi.fi, mcur, Γ) ::= other.fi
node(this.mi(e), mcur, Γ) ::= this.mi#ret

node(vi.mi(e), mcur, Γ) ::= other.mi#ret

node(ei[ki], mcur, Γ) ::= node(ei)[∗]

Figure 4.8: Node Creation Function

will present an example of CLFG generation for a small class that does not contain
array variables. Class C shown in Figure 4.9 contains four fields (a, b, c, d) and five
methods. Figure 4.10 shows the resulting CLFG where this.a flows into the getA

method, and this.c flows into the setA method which in turn flows into this.a.
Similarly, this.b has a flow from f and this.d has a flow from Foo.

We now consider the problem of array element flows. Figure 4.11 shows a sim-
ple class with two array fields, a method that carries out an assignment between
them and a method that transfers the value of field f to one of the elements of
a. Figure 4.12 describes the preliminary CLFG generated before the implicit flow
between array elements is added. Consider the effects of the assignment b = a.
Once the assignment has been completed, accessing elements of a will access the
exact same elements as accessing the elements of b. In our example this means
that there must be an edge from the node this.f to the node this.b[∗].

In order to infer the implicit value flows between the array elements we pro-
vide the array augmentation function, which works by looking at all of the edges
in the preliminary CLFG. If the edge happens to be between two variables that
have array types, it will find the corresponding element nodes and add a bi-
directional edge between them. The bi-directional property comes from the fact
that both array element nodes are now potentially representing the same set of el-
ements. For instance, in our example class A a value flow into elements of this.a
or elements of this.b may potentially affect the elements of the other field. Fig-
ure 4.13 has a dashed edge representing the new flows added by the augmenta-
tion algorithm.

We can now clearly see that values from this.f may potentially flow to the el-
ements of both a and b. The predicate IsArrayBase returns true if the given node
is the base reference of an array, or false otherwise based on the type information.
The formal description of the augmentation function is given in Figure 4.14.

41

1class C {
2 private Foo a;
3 private Foo b;
4 private Foo c;
5 private Foo d;
6

7 public Foo getA(){
8 return this.a;
9 }

10

11 public void setA(String par){
12 this.a = par;
13 }
14

15 public void m1(Bar x){
16 this.b = x.f;
17 }
18

19 public void m2(){
20 this.setA(this.c);
21 }
22

23 public void m3(){
24 this.d = new Foo();
25 }
26}

Figure 4.9: Example Class

this.a this.b

this.c this.d

other.f

this.setA
 #0

this.getA
 #ret

new0

Figure 4.10: Example CLFG

42

1class A {
2 private Foo a[5];
3 private Foo b[5];
4

5 private Foo f;
6

7 public void m1(){
8 this.b = this.a;
9 }

10

11 public void m2(){
12 this.a[3] = this.f;
13 }
14}

Figure 4.11: Array Assignment Example

this.f

this.a

this.a[*]

this.b

this.b[*]

Figure 4.12: Preliminary CLFG for class A

this.f

this.a

this.a[*]

this.b

this.b[*]

Figure 4.13: Augmented CLFG for class A

43

Input:
GC - Preliminary CLFG for class C

Output:
G′C - Complete CLFG for class C

[1] G′C = GC

[2] for all Na 7→ Nb ∈ edges(GC) do
[3] if IsArrayBase(Na) then
[4] edges(G′C) = edges(G′C) ∪ {Na[∗] 7→ Nb[∗]}
[5] edges(G′C) = edges(G′C) ∪ {Nb[∗] 7→ Na[∗]}

[6] ⇒ output G′C

Figure 4.14: Array Augmentation Function

4.3 Variable Exposure

Given a flow graph for a particular class, we perform the exposure propagation
algorithm in order to determine how variables inside a class may have their val-
ues exposed to the outside.

First we define the concept of exposure. We say that a node in the class flow
graph G is exposed if it may have aliases outside of the containing object. As we
have mentioned before in Section 3.3.2, there are two types of exposure:

1. Read Exposure - A node is read exposed if its value may be read by external
objects (and therefore assumed to be aliased).

2. Write Exposure - A node is write exposed if a previously externally refer-
enced value may flow into it.

Each node can have one or both types of exposure. Consider the example
class in Figure 4.15. Here, field a has write exposure because an external value
can be passed into it through the parameter of method setA. However, if we
put some value into a, this value will not be exposed to the outside, as values
of a do not propagate to external objects (hence a is not read exposed). The case
is reversed for field b: any value we put into b may potentially leak to external
objects through method getB, but b itself will never contain externally generated
values (hence b is read exposed, but not write exposed). The field c is public, and
hence external objects can both potentially read and write to it and is therefore
has both read and write exposure. Field d does not have either type of exposure,
as it is private and is never used.

44

1class C {
2 private String a;
3 private String b;
4 public String c;
5 private String d;
6

7 public void setA(String p){
8 this.a = p;
9 }

10

11 public String getB(){
12 return this.b;
13 }
14}

Figure 4.15: Read and Write Exposure Examples

In order to keep track of exposure types of various nodes, our algorithm main-
tains a mapping called ∆C (where C is the name of the currently analysed class).
This mapping has a (possibly empty) set of exposure types for each node in the
currently analysed class. There are two possible attributes a node can have: WRITE
(write exposure) or READ (read exposure). The definition is given in Figure 4.16.

∆C :: {N 7→ ExposureType}
ExposureType ::= READ | WRITE

Figure 4.16: Definition of Exposure Mapping ∆C

4.4 General Exposure Inference

This section presents the algorithm for finding complete variable exposures. This
algorithm is then reused in both self-exposure and ownership inference analyses.

In order to obtain the complete exposure mapping ∆C we require the definition
of the class in question as well as the previously calculated CLFG. We start with
an empty ∆C and proceed to repeatedly apply a series of inference rules. Each
rule application adds new exposure information to ∆C until there are no more
applicable rules. At this point, ∆C is complete.

The first set of rules are the initialisation rules. These rules identify nodes that
have certain types of exposure independent of the value flow or exposure of other

45

nodes. Examples of such “inherently” exposed nodes include public fields, pa-
rameters of public methods, or return values of public methods.

After the initial set of variable exposures have been established we proceed
to repeatedly apply propagation rules. These rules look at nodes that already have
exposure types, and see how this affects the exposure of other nodes. For exam-
ple, if node A has READ exposure and there is a value flow B→ A, then B also has
READ exposure.

The rest of this section will describe the types of rules in greater detail, and
the rule application algorithm will be given at the end.

4.4.1 Initialisation rules

The set of initialisation rules is used to identify CLFG nodes that have various
exposures simply by virtue of their declaration (e.g. a public field is always both
read and write exposed as previously discussed in Section 3.4.1). The formal
description of the rules and their helper predicate is provided in Figure 4.17. We
use the isPrivate predicate to determine if the node in question is either a private
field, parameter of a private method or a return value of a private method.

The first three rules (I-PField, I-PPar and I-PRet) address the exposure types
of public fields, method parameters and method return values. Public method
parameters always have WRITE exposure as external classes can invoke public
methods with any set of arguments. Similarly, the return values of public meth-
ods can always be potentially captured, giving them READ exposures. Public fields
can have both types of exposure.

The next three rules (I-OField, I-OPar and I-ORet) are very similar, except
they deal with fields and methods of other (i.e. not this) objects. Because all
of the exposure attributes are assigned from the perspective of this instance,
the exposures types are inverted. For example, we consider nodes of the form
other.m#i (parameter of a method belonging to another instance) to have READ

exposure (I-OPar). This is because if we pass a value as a parameter to an un-
known method, we must conservatively assume that this value will become ex-
posed. For a similar reason the return value of a method of another instance con-
tains externally generated values and is therefore a WRITE node (I-ORet). Fields
of external instances are both WRITE and READ as before (I-OField).

4.4.2 Propagation rules

The propagation rules are used to determine the effect of initially exposed nodes
on the exposure types of all the other variables inside a class (previously dis-

46

Initialisation rules

¬isPrivate(this.f)
this.f 7→ READ, this.f 7→ WRITE ∈ ∆C

[I-PField]

¬isPrivate(this.m#i)
this.m#i 7→ WRITE ∈ ∆C

[I-PPar]

¬isPrivate(this.m#ret)
this.m#ret 7→ READ ∈ ∆C

[I-PRet]

other.f 7→ READ, other.f 7→ WRITE ∈ ∆C
[I-OField]

other.m#i 7→ READ ∈ ∆C
[I-OPar]

other.m#ret 7→ WRITE ∈ ∆C
[I-ORet]

Figure 4.17: Initialisation rules

cussed in Section 3.4.2). Both initialisation and propagation rules follow the same
form, however there are a few important differences between them.

The difference is that unlike the initialisation rules, which consider a single
node at a time and have no use for the CLFG, all of the propagation rules operate
on pairs of nodes that usually have some sort of value flow between them.

The propagation rules are presented in Figure 4.18. The definition of the
helper function ReflectToThis can be found in Figure 4.19.

P-WriteFlow - The first rule says that if there is a node Na whose values may
contain externally generated (WRITE) values, and there is a flow to Nb, then Nb is
also WRITE exposed. This comes from the transitive nature of the value flow: if
there is a flow Ne 7→ Na and Na 7→ Nb, then there is a flow of values Ne 7→ Nb.

P-ReadFlow - Similar to the previous rule, except for a READ exposed node.
Note that the direction of the flow is different; if there is a value flow Na 7→ Nb,
and Nb has its values leaked to the outside, then so does Na.

P-ReadToWrite - This rule is similar to P-WriteFlow, except the initially ex-
posed node Na has READ exposure. Like before, the second node Nb will become
WRITE exposed. This is best illustrated with the example in Figure 4.20.

P-OtherWriteToRead - In some cases when dealing with other instances of
the same class, the exposure of fields can occur indirectly. Consider Figure 4.21.
The problem is that even though the return values of getA are used externally, the
node this.getA#ret itself does not gain READ exposure from any of the previous

47

Basic Propagation rules

Na 7→ WRITE ∈ ∆C
Na 7→ Nb ∈ GC

Nb 7→ WRITE ∈ ∆C

[P-WriteFlow]

Nb 7→ READ ∈ ∆C
Na 7→ Nb ∈ GC

Na 7→ READ ∈ ∆C

[P-ReadFlow]

Na 7→ READ ∈ ∆C
Na 7→ Nb ∈ GC

Nb 7→ WRITE ∈ ∆C

[P-ReadToWrite]

Na 7→ WRITE

Nb = ReflectToThis(Na)
Nb 7→ READ ∈ ∆C

[P-OtherWriteToRead]

Na 7→ READ

Nb = ReflectToThis(Na)
Nb 7→ WRITE ∈ ∆C

[P-OtherReadToWrite]

Nele is an element node of Nbase
Nbase 7→ READ

Nele 7→ READ, Nele 7→ WRITE ∈ ∆C

[P-ArrayBaseRead]

Nele is an element node of Nbase
Nbase 7→ WRITE

Nele 7→ READ, Nele 7→ WRITE ∈ ∆C

[P-ArrayBaseWrite]

Figure 4.18: Propagation rules

ReflectToThis
ReflectToThis :: N→ N

SameClass(other.f)
ReflectToThis(other.f) = this.f

SameClass(other.m#i)
ReflectToThis(other.m#i) = this.m#i

SameClass(other.m#ret)
ReflectToThis(other.m#ret) = this.m#ret

Figure 4.19: ReflectToThis Helper Function. Function converts all of the
nodes of form other.X into the form this.X. The function SameClass(Ni) is used to
ensure that the node Ni belongs to the same class as this (we omit the definition).

48

1class MyClass {
2 private Object a;
3 private Object b;
4

5 public Object getA(){
6 // Field a is exposed
7 return this.a;
8 }
9

10 public void method(){
11 // potentially exposed value is written into b
12 this.b = this.a;
13 }
14}

Figure 4.20: P-ReadToWrite Example. All of the values stored in a can be po-
tentially aliased by external objects. If we were to write any of those values into
b, then b would become exposed as well. We choose to make b WRITE exposed,
because writing other values into it will not cause them to become exposed. Note
that in our case the WRITE exposure does not mean that external nodes can modify
the values of b.

rules. When the return value of getA is used in myMethod, the node is identified as
other.getA#ret instead of this.getA#ret. Since the two nodes do not have an
explicit flow between them, we rely on the P-OtherWriteToRead rule to transfer
the WRITE exposure of other.getA#ret into the READ exposure of this.getA#ret.

P-OtherReadToWrite - This rule is very similar to the previous one, the only
difference is that exposure types are reversed. Consider example in Figure 4.22.

P-ArrayBaseRead and P-ArrayBaseWrite - These rules describe the situation
in which the base of the array has been either READ or WRITE exposed. In either
case this means that an external object can potentially have a reference to the
array. This means that the external object is free to do both read and write op-
erations on any elements of the arrays using the base reference. For example, in
Figure 4.23 we can see that even though the reference to array myArray is only
READ exposed, the elements of myArray have both types of exposure. Similarly, a
WRITE exposure of the base reference exposes the elements to both reading and
writing.

4.4.3 Rule application algorithm

Our inference algorithm consists of an initialisation step and an iterative prop-
agation step. The initialisation step determines the initial ∆C, which contains

49

1class MyClass {
2 private Object a;
3

4 private Object getA(){
5 return this.a;
6 }
7

8 public Object myMethod(MyClass other){
9 Object tmp = other.getA();

10

11 // tmp is read exposed
12 return tmp;
13 }
14}

Figure 4.21: P-OtherWriteToRead Example. myMethod exposes the return value
of getA, which indirectly exposes the value of field a.

1class MyClass{
2 private Object a;
3

4 private void setA(Object p){
5 this.a = p;
6 }
7

8 public void myMethod(MyClass other, Object x){
9 other.setA(x);

10 }
11}

Figure 4.22: P-OtherReadToWrite Example. myMethod passes an externally pro-
vided value of x as an argument to a private method setA of another instance.

50

1class MyClass {
2 private Object myArray[] = ...;
3

4 public Object[] getArray(){
5 return myArray;
6 }
7}
8

9class ExternalClass {
10

11 private Object extA, extB;
12

13 public void method(MyClass c){
14 // Reading a value of myArray
15 this.extA = c.getArray()[0];
16

17 // Writing a value to myArray
18 c.getArray()[1] = this.extB;
19 }
20}

Figure 4.23: Array Base Exposure

exposure attributes for all inherently exposed nodes (such as public fields, pa-
rameters to public methods, etc). The propagation step takes the current ∆C and
information about flow of values GC to determine which other nodes may contain
externally accessible values. ∆C is then updated with the new results.

Both steps of the inference are performed by application of the inference rules
on ∆C. Each of the rules takes in the information required for inference and returns
a set of extra attribute mappings (for example {a 7→ READ, a 7→ WRITE}) which is
then added to the existing ∆C. If the rule is not applicable because its precondition
is not satisfied, it simply returns an empty set {} .

The algorithm tries to apply every initialisation rule to every single node once
and then repeatedly tries to apply every propagation rule to every possible pair
of nodes.

The algorithm terminates when no further rule applications can add any ad-
ditional exposures to ∆C (i.e. it reaches a fix point). Since exposure types are never
removed, ∆C much reach fix point and our algorithm will terminate.

We note that the actual implementation of this algorithm in OwnKit uses a
much more efficient work list approach. However both versions use the same
rules and will produce the same results, so in the interests of a simpler explana-
tion we will use the unoptimised version.

51

 CLFG
Construction

General Exposure
 Inference

Self-Exposure
 Inference

Field Ownership
 Inference

Flow Graph (Γ)

 Exposed
Variables (∆)

 Exposed
Variables (∆)

List of Self-Exposing
 Classes

Figure 4.24: Dependencies of sub-algorithms

4.5 Self-Exposure and Field Ownership Inference

We have previously described the two most important parts of our inference al-
gorithm: the CLFG generation step that calculates the value flow inside a class,
and the General Exposure Inference step that calculates the exposure of all the
variables inside a class. Figure 4.24 shows how these two stages interact with the
other parts of the algorithm. Note that General Exposure Inference provides the
exposure information to both Self-Exposure and Field Ownership, but does not
depend on them.

4.5.1 Self-Exposure

The task of this stage is to determine a set of self-exposed classes out of all the
classes in the target program. To do so we compute the complete exposure map-
ping ∆C for each of the variables in each of the classes using the algorithm and
rules from the previous stage. To know if the class is self-exposing we simply
extract the exposure information of the this node. A pseudo code description is
given in Figure 4.25. Note that we only have to check if this is READ exposed, as
it is impossible to assign a value to it.

4.5.2 Field Ownership

The final stage of the algorithm is to infer the ownership of the actual fields for
each of the classes. The approach is very similar to self-exposure inference, except
that as well as having a complete exposure mapping ∆C for each of the classes

52

Input:
Ci - All of the classes in the target program
∆C - Corresponding exposure mappings

Output:
Cself−exp - All of the self-exposing classes

[1] Cself−exp = {}

[2] for all Ci ∈ Ci do
[3] if this 7→ READ ∈ ∆i then
[4] Cself−exp = Cself−exp ∪ {Ci}

[5] ⇒ output Cself−exp

Figure 4.25: Self-Exposure Inference Algorithm

we also have a previously calculated set of self-exposed classes. In order for a
field to be owned it must not have either type of exposure. The class of the field
(ClassOf(..) predicate) must also not belong to the set of self-exposed classes. The
pseudo code description of this can be found in Figure 4.26.

4.6 Correctness

In this section we will discuss the two main correctness properties of our infer-
ence algorithm: termination and ownership guarantee.

4.6.1 Termination

In order to see why our inference algorithm terminates, we need to show the
termination of four main components shown in Figure 4.24.

CLFG Construction

There are two stages to this part: the construction of a preliminary CLFG, and
addition of array element flow information. The construction of a preliminary
CLFG (Figure 4.6) simply traverses all of the fields and statements inside class.
Since it does not modify the underlying a class, the termination is obvious. The
augmentation algorithm (Figure 4.14) iterates over all of the edges in the prelim-
inary CLFG (GC). The GC is finite and is never modified, therefore providing us
with a guarantee of termination.

53

Input:
class C {fieldsC methodsC} - Definition of class C
∆C - Corresponding exposure mapping
Cself−exp - Self-exposed classes

Output:
fowned - All of the owned fields

[1] fowned = {}

[2] for all fi ∈ fieldsC do
[3] if ¬(this.f 7→ READ ∈ ∆C) then
[4] fowned = fowned ∪ {f}
[5] else if ¬(this.f 7→ WRITE ∈ ∆C) then
[6] fowned = fowned ∪ {f}
[7] else if ¬(ClassOf(f) ∈ Cself−exp) then
[8] fowned = fowned ∪ {f}

[9] ⇒ output fowned

Figure 4.26: Field Ownership Inference Algorithm

Self-Exposure Inference and Field Ownership Inference

The pseudo code for these algorithms is given in Figures 4.25 and 4.26. As we
can see both of the algorithms simply iterate over collections of fixed sizes that
are not being modified, and hence are always guaranteed to terminate.

General Exposure Inference

As before, we will consider the termination of this stage by considering the ter-
mination of its two parts: the initialisation step and the propagation step. The
termination of the initialisation stage is trivial. We simply try to apply all of the
rules from Figure 4.17 to all of the nodes in the CLFG for the current class (the
CLFG is not being modified by this process).

During the propagation step, we repeatedly try to apply all of the propagation
rules (Figure 4.18). Each of the rules modifies the exposure mapping ∆C, but does
not modify the CLFG. This stage terminates when no further applications of the
rules can result in a change of ∆C.

In order to show the termination of this stage we need to show that ∆C has a
least fixed point. This amounts to showing the following two properties:

1. The sub-typing relation between exposure mappings is a join-semi-lattice.

54

2. The transfer function (in our case, the propagation rules) is monotonic with
respect to the sub-typing relation.

We can treat our exposure mappings as a set of pairs (node 7→ exposure). This
allows us to define the sub-typing relation as a normal subset operation. For
example, {a 7→ READ} is a sub-type of {a 7→ READ, a 7→ WRITE}.

The least lower bound between two exposure mappings is the union of pairs.
The semi-lattice is also bounded; the greatest element is an exposure mapping
where each of the nodes is both READ and WRITE exposed.

For the second property we need to show that all of our propagation rules
are monotonic with relation to the sub-typing relation. In terms of our exposure
mappings this means that if a rule starts with an initial ∆C and produces ∆′C, then ∆C

has to be a subtype of ∆′C. Since our sub-typing relation is simply a subset relation,
this means that ∆C has to be a subset of ∆′C. As we have mentioned before, if we
consider the propagation rules in Figure 4.18, we can see that all of them only add
extra elements to ∆C and never remove them, hence satisfying monotonicity.

4.6.2 Ownership Guarantees

The ownership guarantee theorem guarantees that inferred ownership properties are
correct. It can be informally stated as follows:

If our inference algorithm determines that a field f is owned, then at no point during the
execution of the program will f have external aliases.

Ideally, we would provide a more formal statement of this theorem and in-
clude a rigorous proof of its correctness. However, to do this we would first need
to provide operational semantics for our intermediate language — a complicated
task that is beyond the scope of this project.

55

56

Chapter 5

Case Studies

In this chapter we present the results of a corpus study used to evaluate the per-
formance and accuracy of OwnKit. We use our tool to infer field ownership in a
number of open-source programs, including the Java Standard Library. In order
to gain a better perspective on the results we then analyse how our tool performs
against UNO [26].

5.1 Methodology

In our experiment we have used both tools to infer field ownership in the selected
set of benchmarks. In order to compare the performance of the tools, the run-
times for individual benchmarks were also recorded. Since UNO uses the whole
program analysis approach and OwnKit uses the modular approach, the general
expectation is that UNO will find more owned fields, while OwnKit would have
better run times.

5.1.1 Benchmarks

The list and description of our benchmarks are are provided in Figure 5.1. As
we have mentioned before, OwnKit is built on top of the experimental compiler
JKit [2]. Unfortunately JKit is often unable to compile large programs due to
limitations with type checking of generics. Due to this fact, the number of bench-
marks we were able to analyse is somewhat limited.

5.1.2 Experiment

In order to compare OwnKit and UNO we ran both tools and recorded the num-
ber of fields inferred as owned, as well as measuring the time it took for both tools
to run. Additionally we used OwnKit to measure number of self-exposed classes

57

Benchmark Version Description
java-std 1.5 Core Java Standard Library packages
javacc 5.0 Parser Generator
polyglot 1.3.2 Compiler Framework (excluding extensions)
asm 3.2 Assembly Simulator
jgraph 5.9.2.0 Graph Visualization Tool
jvm98 raytracer - From the SPECjvm98 Suite

Figure 5.1: Corpus. See Figure 5.5 for list of java-std packages.

Machine Optiplex 760
CPU Intel R© CoreTM 2 Duo CPU E8400 3.00GHz

RAM 3.2 GB
Operating System GNU/Linux

Kernel Version 2.6.38-ARCH
JVM JavaTM SE Runtime Environment (build 1.6.0 26-b03)

Figure 5.2: Environment

as well as maintaining statistics on exposure reasons. During the design of the ex-
periment we ensured that both tools operated under the same assumptions. For
example, by default OwnKit allows for String fields to be owned, while UNO
does not. Figure 5.2 provides information regarding the environment used to
conduct the experimental runs.

When running OwnKit on the benchmarks, we did it twice, one in each of the
following modes:

1. Fast Mode - The default mode of inference. In this mode OwnKit simply
infers the set of owned fields. When applying the rules, we use an efficient
work-list algorithm in order to avoid rule applications unless they lead to
new exposures. This mode produces correct ownership annotations fast,
but does not capture the reasons for the exposure of non-owned fields.

2. Reasoning Mode - In this mode OwnKit infers not only the set of owned
fields, but also a complete reasoning for why non-owned fields are exposed.
This mode is significantly slower and we only use it to gain deeper insight
into how the fields gain their exposures.

One of the problems during the experiment was that UNO does not directly
present the statistics regarding ownership of the fields in the given benchmark.
Instead UNO produces a file containing evaluations of all generated predicates.
To deal with this we have created two tools, uno2xml and xmlanalysis. The first
tool allowed us to take the UNO output file and using pattern matching convert

58

Program Lines Total % of Owned Fields Classes
of Code Fields OwnKit UNO Self-Exp. % Total

java-std 62,508 690 3.77 - 16.0 763
javacc 36,672 406 4.7 11.8 13.3 150
polyglot 14,148 421 0.5 2.9 11.0 327
asm 22,474 259 4.2 10.8 14.0 172
jgraph 12,262 178 5.1 3.9 29.2 89
jvm98 raytracer 1,928 40 12.5 5.0 28.0 25
Average 5.13 6.91 19.1

Figure 5.3: OwnKit Ownership Inference Results. Lines of code are “Total Phys-
ical Source Lines of Code” as generated using David A. Wheeler’s ’SLOCCount’
[4]. Self-Exp refers to the percentage of classes that are determined to be self-
exposed by OwnKit.

it into an XML file that describes the ownership status of each of the fields. The
second tool can take the XML outputs of OwnKit itself or uno2xml in order to
carry out comparisons or to generate ownership statistics.

5.2 Results

5.2.1 Ownership and Self-Exposure

Figure 5.3 presents the ownership and self-exposure information generated from
our experiment. “Total Fields” here indicates the number of non-primitive fields
in the target program. Like UNO, we decided to ignore fields of type String and
fields of inner classes in order to make the comparison between the two more
objective. The total numbers of inferred owned fields for both tools are presented
in Figure 5.4. We were not able to analyse java-std with UNO because of a de-
pendency analysis bug in Soot.

We would expect whole program analysis to be more precise and this was the
case for of the most benchmarks. As expected, the whole-program approach of
UNO results in more annotations. However the difference is not very significant,
6.91% vs 5.15% on average. Cases where OwnKit outperformed UNO (jgraph
and jvm98 raytracer) could be attributed to our more precise treatment of array
element flows (UNO simply assumes all array elements are exposed).

The number of classes that were inferred to be self-exposing were quite high;
19% on average, with some benchmarks reaching up to 29%. This could be at-
tributed to the conservative nature of the self-exposure inference algorithm; we
analyse the effect of this self-exposure on ownership in the next section.

59

0

5

10

15

java-std

javacc
polyglot

asm jgraph
jvm98 raytracer

Average

O
w
ne
d
F
ie
ld
s(
%
)

Benchmark

OwnKit
UNO

Figure 5.4: Field Ownership. The averages do not include the ownership results
for java-std.

Package Lines Total % Owned Total % Self-
Name of Code Fields Fields Classes Exposed
java 62,508 690 3.77 763 15.99
java.lang 16,490 221 2.26 212 10.38
java.lang.reflect 1,482 44 0.00 22 18.18
java.lang.instrument 75 2 0.00 5 0.00
java.lang.ref 246 9 11.11 12 8.33
java.lang.annotation 72 15 0.00 6 0.00
java.lang.management 529 8 0.00 16 0.00
java.io 10,269 101 12.87 113 19.47
java.util 35,749 368 5.98 438 17.81
java.util.concurrent 6,468 69 18.84 90 23.33
java.util.concurrent.locks 853 4 0.00 7 14.29
java.util.concurrent.atomic 1,158 13 0.00 18 22.22
java.util.regex 4,345 12 0.00 86 5.81
java.util.jar 1,378 27 3.70 17 35.29
java.util.prefs 1,879 21 4.76 21 9.52
java.util.logging 2,499 57 14.04 31 16.13
java.util.zip 2,101 27 18.52 21 4.76

Figure 5.5: Ownership and Self-Exposure Results for Individual Packages using
OwnKit. Class java.util.Collections was excluded due to JKit type-checking
problems.

60

1package pac.a;
2public class MyClass {
3 @Owned private X myField;
4

5 ...
6}
7

8

9package pac.b;
10public class Y extends X {
11 // Self-Exposing
12 ...
13}

Figure 5.6: Self-Exposure and Modularity

In order to gain a better understanding of the ownership and self-exposure
patterns we have analysed each of the java-std packages in isolation. The Fig-
ure 5.5 presents the results. As we can see, both field ownership and self-exposure
numbers vary a great amount depending on the package.

We have mentioned before that due to self-exposure, the inferred ownership
annotations cannot be safe, unless the entire code base is analysed. The isolated
analysis of packages demonstrates this fact very clearly. When we analysed the
top level package java, we inferred 26 owned fields. However, when we analysed
java.lang, java.io and java.util separately and added the results, there were 40
owned fields.

This problem is not unique to our algorithm, but is common to all ownership
inference where full sets of classes are unavailable for analysis. In order to under-
stand the cause of this problem, consider the classes in Figure 5.6. The inference
algorithm must either make a very conservative assumption (any field that may
contain object of a non-final class cannot be owned), or make an assumption that
the classes that extend it will not have self-exposure. When analysing package
pac.a we may infer that class X is not self-exposing (assuming we use the sec-
ond assumption), and field myField is owned. However, when we consider both
pac.a and pac.b together we would realize that myField may in fact contain a
self-exposing object of type Y, and not mark myField as owned.

5.2.2 Exposure Reasons

As part of our experiment we have analysed each of the benchmarks by using
OwnKit in ”Complete Reasoning Mode“. The statistics on the exposure reasons

61

0

20

40

60

80

100

java-std

javacc
polyglot

asm jgraph
jvm98 raytracer

Average

F
ie
ld
E
xp
os
ur
e
R
ea
so
n
(%

)

Benchmark

Non-Private
Flow to Read

Flow from Read
Flow from Write
Other-Instance
Self-Exposed

Static

Figure 5.7: Field Exposure Reasons

of the fields is given in Figure 5.7. Note that each of the fields can have multiple
exposure reasons. The description for reasons is as follows:

• NonPrivate - The field is not marked as private (for example, it is public

or protected).

• Flow to Read - A value from the field flows into a READ exposed node (Case
#1 described in Chapter 3).

• Flow from Read - A value flows from a READ exposed node into the field
(Case #3 described in Chapter 3).

• Flow from Write - A value flows from a WRITE exposed node into the field
(Case #2 described in Chapter 3).

• Self-Exposed - The type of the field is a subtype of some self-exposing class.

• Static - The field is static.

• Other-Instance - The field is accessed by a different instance of the contain-
ing class.

As we can see the exposure reasons differ a lot from benchmark to benchmark.
This could be attributed to the fact that our benchmarks consist of very different
classes of code bases. For instance, since java-std is a large and general API
library, we would expect its coding style and patterns to be quite different from
jvm98raytracer, which is a small and narrow purpose tool.

62

Benchmark OwnKit Time (s) UNO Time (s)
java-std 83.25 -
javacc 20.46 9.55
jgraph 12.24 8.11
asm 26.52 7.18
jvm98 raytracer 0.99 7.99
polyglot 15.07 6.77
Total (excl. java-std) 75.28 39.6

Figure 5.8: Run Times

Across all of the benchmarks, we can see that all of the exposure mechanisms
played significant roles, with the exception of ”Other-Instance“ which only oc-
curred in 6.86% of the cases. A particularly interesting result is a high proportion
of fields that are exposed due to not being declared as private — 60% on aver-
age, however even as high as 95% in jgraph. According to a brief inspection of
jgraph, most of the non-private exposure comes from the fact that non-primitive
fields are often declared as protected. Another unexpected result is that while
the average number of self-exposed classes is 19%, they result in 39% of all expo-
sures. This demonstrates that self-exposure is indeed a significant problem which
cannot be simply ignored during ownership inference.

5.2.3 Performance

Figure 5.8 presents the times it took both tools to infer annotations for each bench-
mark. In order to better differentiate the performance of the tools, the given num-
bers omit the run-times of the underlying compilers (JKit [2] for OwnKit and
Soot [46, 5] for UNO) as well as any input/output interactions performed during
the analysis.

It is hard to make any definitive conclusions by analysing performance of the
two tools as the intermediate languages they work on are provided by different
front-ends (JKit and Soot). While the analysis times are comparable, we can see
that overall UNO has better time performance on the corpus. One of the possible
reasons for this is that the current implementation of OwnKit ends up perform-
ing CLFG construction (the most time expensive part of the algorithm) twice for
every class. Reworking the top-level of the algorithm to eliminate this could al-
low the run time of OwnKit to be cut in half. For example, when we disabled the
self-exposure inference stage, the run-time of OwnKit on javacc reduced from
20.46 seconds to 10.54 seconds.

63

64

Chapter 6

Conclusions

Encapsulation is a fundamental concept of object oriented design. Despite this,
current programming languages do not offer mechanisms for protecting the in-
ternal representation of aggregate objects from being aliased by external entities.
The concept of object ownership is designed to address this issue; however, cur-
rent ownership schemas impose onto programmers the heavy burden of type an-
notation - a factor that works against the wide adoption of ownership in real-life
projects.

In this thesis we have presented an algorithm capable of automatically infer-
ring ownership annotations. Unlike other approaches our algorithm works in a
modular fashion - only considering a single class at the time. While this leads
to more conservative annotations, it theoretically leads to higher scalability. The
run time of the analysis is linear on the number of classes in the program, and the
peak space usage is only dependent on the size of the largest class.

6.1 Contributions

The main contributions of this thesis are as follows:

• Modular Ownership Inference Algorithm - We have designed and for-
malised of our modular inference algorithm.

• Working Implementation - The algorithm was used to create an automatic
inference tool based on the JKit [2] compiler - OwnKit. A large suite of
automated tests (89 tests in total) have been created in order to ensure the
correctness of the tool.

• Corpus Study - The accuracy and performance of the tool has been evalu-
ated by conducting of a small corpus study.

65

6.2 Future Work

Due to time restrictions, there are a number of projects that have been left outside
the scope of this work:

• Package-Level Analysis - Our current algorithm only considers a single
class at a time. While this makes it highly scalable, it also leads to conser-
vative assumptions about the other classes in the program, producing less
@Owned annotations as a result. Analysing the program one package at
the time may allow us to achieve more precise analysis, without significant
performance loss.

• Further Corpus Studies - As we have mentioned before, our choice of bench-
marks is limited to those that can be compiled by JKit. The improvement
of JKit or use of a different front-end could pave the way for a larger, more
detailed corpus study of modular ownership inference.

• Operational Semantics - The intermediate language in our current formal-
isation is lacking a description of the operational semantics. The introduc-
tion of this aspect would allow us to provide formal proofs for termination
and the ownership guarantee theorem.

• Using Uniqueness Information - One of the possible ways to improve the
accuracy of our inference would be to use uniqueness information gener-
ated by other tools. For example, JPure [33] allows to infer @Fresh anno-
tations on method return types, indicating that the returned reference is a
unique reference to the object. This information could allow OwnKit to be
less conservative by not treating values returned by these methods as ex-
posed.

66

Bibliography

[1] Eclipse. http://www.eclipse.org/.

[2] Java Compiler Kit. http://homepages.ecs.vuw.ac.nz/˜djp/jkit/.

[3] OwnKit. http://elvis.ac.nz/Main/OwnKit.

[4] SLOCCount Homepage. http://www.dwheeler.com/sloccount/.

[5] Soot: a Java Optimization Framework. http://www.sable.mcgill.ca/
soot/.

[6] ANDREAE, C., NOBLE, J., COADY, Y., GIBBS, C., VITEK, J., AND ZHAO, T.
Stars: Scoped types and aspects for real-time systems. In Proceedings of Eu-
ropean Conference on Object-Oriented Programming (ECOOP) (2006), Springer-
Verlag, Berlin, Heidelberg, Germany, pp. 124–147.

[7] BARNETT, M., DELINE, R., FÄHNDRICH, M., LEINO, K. R. M., AND

SCHULTE, W. Verification of object-oriented programs with invariants. JOT
3, 6 (2004), 27–56.

[8] BOYAPATI, C., LEE, R., AND RINARD, M. Ownership types for safe pro-
gramming: Preventing data races and deadlocks. In Proceedings of ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA) (Seattle, WA, USA, November 2002), ACM Press, New York,
NY, USA.

[9] BOYAPATI, C., LISKOV, B., AND SHRIRA, L. Ownership Types for Object
Encapsulation. In Proceedings of ACM Symposium on Principles of Program-
ming Languages (POPL) (New Orleans, LA, USA, Jan. 2003), ACM Press, New
York, NY, USA, pp. 213–223. Invited talk by Barbara Liskov.

[10] BOYAPATI, C., SALCIANU, A., BEEBEE, JR., W., AND RINARD, M. Owner-
ship types for safe region-based memory management in Real-Time Java. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI) (2003), ACM Press, pp. 324–337.

67

[11] BROOKS, F. No silver bullet: Essence and accidents of software engineering;,
computer 20/4, 1987.

[12] CLARKE, D. Object Ownership and Containment. PhD thesis, School of CSE,
UNSW, Australia, 2002.

[13] CLARKE, D., AND DROSSOPOULOU, S. Ownership, Encapsulation, and the
Disjointness of Type and Effect. In Proceedings of ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA) (Seat-
tle, WA, USA, Nov. 2002), ACM Press, New York, NY, USA, pp. 292–310.

[14] CLARKE, D., POTTER, J., AND NOBLE, J. Ownership Types for Flexible Alias
Protection. In OOPSLA (Vancouver, Canada, Oct. 1998), ACM Press, New
York, NY, USA, pp. 48–64.

[15] CRAIK, A. J., AND KELLY, W. A. Using ownership to reason about inher-
ent parallelism in object-oriented programs. In CC (2010), Lecture Notes in
Computer Science (LNCS), Springer-Verlag, Berlin, Heidelberg, Germany,
pp. 145–164.

[16] DIETL, W., DROSSOPOULOU, S., AND MLLER, P. Generic Universe Types. In
Proceedings of European Conference on Object-Oriented Programming (ECOOP)
(2007), Springer, pp. 28–53.

[17] DIETL, W., ERNST, M. D., AND MÜLLER, P. Tunable Static Inference for
Generic Universe Types. In European Conference on Object-Oriented Program-
ming (ECOOP) (July 2011). To appear.

[18] DIETL, W., AND MÜLLER, P. Universes: Lightweight ownership for
JML. Journal of Object Technology 4, 8 (2005), 5–32. http://www.jot.fm/
issues/issue_2005_10/article1.

[19] DOLADO, J. J., HARMAN, M., OTERO, M. C., AND HU, L. An empirical
investigation of the influence of a type of side effects on program compre-
hension. 665–670.

[20] HENDREN, L. Scaling Java points-to analysis using Spark. In Compiler Con-
struction, 12th International Conference, volume 2622 of LNCS (2003), Springer,
pp. 153–169.

[21] HIRZEL, M., DINCKLAGE, D. V., DIWAN, A., AND HIND, M. Fast online
pointer analysis. Tech. rep., ACM Transactions on Programming Languages
and Systems, 2005.

68

[22] HIRZEL, M., DIWAN, A., HIND, M., HIRZEL, M., DIWAN, A., AND HIND,
M. Pointer analysis in the presence of dynamic class loading. In In ECOOP
(2004), pp. 96–122.

[23] HOGG, J., LEA, D., WILLS, A., DE CHAMPEAUX, D., AND HOLT, R. The
Geneva convention of the treatment of object aliasing. OOPS Messenger 3, 2
(April 1992), 11–16.

[24] INGALLS, D. Design principles behind smalltalk. BYTE, 6 (1981), 286–298.

[25] LANDI, W. Undecidability of Static Analysis. ACM Letters on Programming
Languages and Systems 1, 4 (Dec. 1992).

[26] MA, K.-K., AND FOSTER, J. S. Inferring Aliasing and Encapsulation Proper-
ties for Java. In Proceedings of ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA) (2007), ACM Press,
New York, NY, USA, pp. 423–440.

[27] MILANOVA, A., AND LIU, Y. Practical static ownership inference, 2009.

[28] MILANOVA, A., AND VITEK, J. Static dominance inference. In TOOLS Europe
2011 (2011). To appear.

[29] MÜLLER, P. Modular Specification and Verification of Object-Oriented Programs,
vol. 2262 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[30] MÜLLER, P., AND POETZSCH-HEFFTER, A. Universes: A Type System for
Controlling Representation Exposure. In Programming Languages and Funda-
mentals of Programming (1999), A. Poetzsch-Heffter and J. Meyer, Eds., Fer-
nuniversität Hagen, pp. 131–140. Technical Report 263.

[31] MÜLLER, P., AND POETZSH-HEFFTER, A. Programming Languages and
Fundamentals of Programming. Tech. rep., Fernuniversität Hagen, 2001.
Poetzsh-Heffter, A. and Meyer, J. (editors).

[32] NOBLE, J., VITEK, J., AND POTTER, J. Flexible Alias Protection. In Proceed-
ings of European Conference on Object-Oriented Programming (ECOOP) (July
1998), vol. 1445 of Lecture Notes in Computer Science (LNCS), Springer-Verlag,
Berlin, Heidelberg, Germany, pp. 158–185.

[33] PEARCE, D. J. JPure: A Modular Purity System for Java. In CC (2011),
vol. 6601 of Lecture Notes in Computer Science (LNCS), Springer-Verlag, Berlin,
Heidelberg, Germany, pp. 104–123.

69

[34] PEARCE, D. J., KELLY, P. H. J., AND HANKIN, C. Efficient field-sensitive
pointer analysis for c. In In ACM workshop on Program Analysis for Software
Tools and Engineering (PASTE (2004), ACM Press, pp. 37–42.

[35] POETZSCH-HEFFTER, A., GEILMANN, K., AND SCHÄFER, J. Infering own-
ership types for encapsulated object-oriented program components. In Pro-
gram Analysis and Compilation (2006), vol. 4444 of Lecture Notes in Computer
Science (LNCS), Springer-Verlag, Berlin, Heidelberg, Germany, pp. 120–144.

[36] POETZSCH-HEFFTER, A., AND SCHFER, J. Modular specification of en-
capsulated object-oriented components. In Formal Methods for Components
and Objects, F. de Boer, M. Bonsangue, S. Graf, and W.-P. de Roever, Eds.,
vol. 4111 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2006, pp. 313–341.

[37] POTANIN, A., NOBLE, J., CLARKE, D., AND BIDDLE, R. Defaulting Generic
Java to Ownership. In Proceedings of the Workshop on Formal Techniques for
Java-like Programs in European Conference on Object-Oriented Programming (FT-
fJP) (Oslo, Norway, June 2004), Springer-Verlag, Berlin, Heidelberg, Ger-
many.

[38] POTANIN, A., NOBLE, J., CLARKE, D., AND BIDDLE, R. Featherweight
Generic Ownership. In Proceedings of the Workshop on Formal Techniques for
Java-like Programs in European Conference on Object-Oriented Programming (FT-
fJP) (Glasgow, Scotland, July 2005), Springer-Verlag, Berlin, Heidelberg, Ger-
many.

[39] POTANIN, A., NOBLE, J., CLARKE, D., AND BIDDLE, R. Generic Owner-
ship for Generic Java. In Proceedings of ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA) (Portland, OR,
USA, 2006), ACM Press, New York, NY, USA.

[40] POTANIN, A., NOBLE, J., ZHAO, T., AND VITEK, J. A high integrity profile
for memory safe programming in real-time Java. In The 3rd workshop on Java
Technologies for Real-time and Embedded Systems (San Diego, CA, USA, 2005).

[41] POTTER, J., NOBLE, J., AND CLARKE, D. The ins and outs of objects. In
Australian Software Engineering Conference (Adelaide, Australia, November
1998), IEEE Press.

[42] RAMALINGAM, G. The undecidability of aliasing. ACM Trans. Program.
Lang. Syst. 16 (September 1994), 1467–1471.

70

[43] ROBERT L. BOCCHINO, J., ADVE, V. S., DIG, D., ADVE, S. V., HEUMANN,
S., KOMURAVELLI, R., OVERBEY, J., SIMMONS, P., SUNG, H., AND VAKIL-
IAN, M. A type and effect system for deterministic parallel Java. In Proceed-
ings of ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) (2009), ACM Press, New York, NY, USA, pp. 97–
116.

[44] ROUNTEV, A., MILANOVA, A., AND RYDER, B. G. Points-to Analysis for
Java Using Annotated Constraints. ACM Press, pp. 43–55.

[45] VAKILIAN, M., DIG, D., BOCCHINO, R., OVERBEY, J., ADVE, V., AND JOHN-
SON, R. Inferring method effect summaries for nested heap regions. pp. 421–
432.

[46] VALLÉE-RAI, R., CO, P., GAGNON, E., HENDREN, L., LAM, P., AND SUN-
DARESAN, V. Soot - a Java bytecode optimization framework. In Proceedings
of the 1999 conference of the Centre for Advanced Studies on Collaborative research
(1999), CASCON ’99, IBM Press, pp. 13–.

71

