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Abstract

Flow typing offers an alternative to traditional Hindley-Milner type
inference. A key distinction is that variables may have different
types at different program points. Flow typing systems are typi-
cally formalised in the style of a dataflow analysis. In the pres-
ence of loops, this requires a fix-point computation over typing
environments. Unfortunately, for some flow typing problems, the
standard iterative fix-point computation may not terminate. We for-
malise such a problem we encountered in developing the Whiley
programming language, and present a novel constraint-based solu-
tion which is guaranteed to terminate. This provides a foundation
for others when developing such flow typing systems.

1. Introduction

Type inference is useful for simplifying and reasoning about stat-
ically typed languages. Scala [1], C#3.0 [2], OCaml [3] and, most
recently, Java 7 all employ local type inference (in some form) to
reduce syntactic overhead. Type inference can also be used to type
existing untyped programs (e.g. in JavaScript [4] or Python [5]).

Traditional type inference follows the approach of Hindley-
Milner [6, 7], where exactly one type is inferred for each program
variable. Flow typing offers an alternative where a variable may
have different types at different program points. The technique is
adopted from flow-sensitive program analysis and has been used
for non-null types [8, 9, 10, 11, 12, 13], information flow [14,
9, 15], purity checking [16] and more [8, 11, 17, 18, 19, 20,
21]. Few languages exist which incorporate flow typing directly.
Typed Racket [22, 20] provides a typed sister language for untyped
Racket, where flow typing is essential to capture common idioms
in the untyped language. Similarly, the Whiley language employs
flow typing to give it the look-and-feel of a dynamically typed
language [23, 24, 25, 26]. Finally, Groovy 2.0 has very recently
incorporated an optional flow typing system [27].

1.1 Flow Typing

A defining characteristic of flow typing is the ability to retype a
variable — that is, assign it a completely unrelated type. The JVM
Bytecode Verifier [28] provides an excellent illustration:

public static float convert (int) :
iload O // load register 0 on stack
i2f // convert int to float
fstore 0 //store float to register 0
fload 0O // load register 0 on stack
freturn // return value on stack

[Copyright notice will appear here once ’preprint’ option is removed.]

In the above, register O contains the parameter value on entry
and, initially, has type int. The type of register O is subsequently
changed to f1oat by the fstore bytecode. To ensure type safety,
the JVM bytecode verifier employs a typing algorithm based upon
dataflow analysis [29]. This tracks the type of a variable at each
program point, allowing it easily to handle the above example.

As another example, consider the following program written in
Whiley [23, 24, 25, 26] — a language which exploits flow-typing
to give the look-and-feel of a dynamically typed language:

define Point as {int x, int vy}
define RealPoint as {real x, real y}

RealPoint normalise (Point p, int w, int h):

p.x = ((real) p.x) / w
p.y = ((real) p.y) / h
return p

Here, the type of p is updated from {int x, int y} to
{real x,int vy} afterp.xisassigned, and {real x,real y}
after p .y is assigned. This is safe since Whiley employs value se-
mantics for all data types. Thus, variable p is not a reference to a
Point (as it would be in e.g. Java), rather it is a Point.

Flow typing can also retype variables after conditionals. A non-
null type system (e.g. [11, 12, 13]) prevents variables which may
hold null from being dereferenced. The following illustrates:

int cmp(String sl, @NonNull String s2) {
if(sl != null) {return sl.compareTo(s2);}
else { return -1; }

}

The modifier @NonNull indicates a variable definitely cannot
hold null and, hence, that it can be safely dereferenced. To deal
with the above example, a non-null type system will retype variable
sl to @NonNull on the true branch — thus allowing it to type
check the subsequent dereference of s1.

The Whiley programming language also supports retyping
through conditionals. This is achieved using the is operator (sim-
ilar to instanceof in Java) as follows:

define Circle as {int x, int y, int r}
define Rect as {int x, int y, int w, int h}
define Shape as Circle | Rect

real area(Shape s):
if s is Circle:
return PI x s.r x s.r
else:
return s.w * s.h

A Shape is either a Rect ora Circle (which are both record
types). The type test “s is Circle” determines whether s is a
Circle or not. Unlike Java, Whiley automatically retypes s to
have type Circle (resp. Rect) on the true (resp. false) branches
of the if statement. There is no need to explicitly cast s to the
appropriate Shape before accessing its fields.

2012/10/23



1.2 Contributions

Existing flow typing systems are generally formulated in the style
of a dataflow analysis (e.g. [29, 9, 12, 16]). In the presence of
loops, this requires a fix-point computation over typing environ-
ments. Unfortunately, for some flow typing problems, the standard
iterative fix-point computation may not terminate. We formalise
such a problem that we encountered in developing the Whiley pro-
gramming language [23, 24, 25, 26], and present a novel constraint-
based solution which is guaranteed to terminate. The result is a
small calculus, called FT (for Flow Typing), which provides a foun-
dation to help others when developing such flow typing systems.
Finally, whilst our language of constraints is similar to previous
constraint-based type inference systems (e.g. [30, 31, 32, 33, 34]),
the key novelty of our approach lies in a mechanism for extracting
recursive types from constraints via elimination and substitution.

1.3 Organisation

We first introduce the syntax and semantics of FT (§2). We then for-
mulate typing rules in the dataflow style, and identify the termina-
tion problem (§3). Finally, we present our constraint-based typing
rules and detail how these can be solved in finite time (§4).

2. Syntax, Semantics & Subtyping

We now introduce our calculus, called FT (for Flow-Typing), for
formalising flow-typing problems. This was motivated from our
work developing the Whiley programming language [23, 26, 24],
and the calculus is specifically kept to a minimum to allow us to
focus on the interesting problem. In this section, we introduce the
syntax, semantics and subtyping rules for FT. In later sections we
will present different formulations of the typing rules for FT.

2.1 Language of Types

The following gives a syntactic definition of types in FT:

T:=void | any | int | {T; £1,...,Ta £} | T1 VT2 | puX.T | X

Here, void represents the empty set of values (i.e. L), whilst any
the set of all possible values (i.e. T). Also, {T1 f1,...,Ta £u}
represents a record with one or more fields. The union T1V T»
is a type whose values are in T; or To. Union types are gener-
ally useful in flow typing systems, as they can characterise in-
formation flow at meet points in the control-flow graph. Types
of the form pX.T describe recursive data structures. For example,
pX.({int data} V {int data, X next}) gives the type of a linked
list, whilst uX.({int data} V {int data,X lhs,X rhs}) gives
the type of a binary tree. For simplicity, recursive types are treated
equi-recursively [35]. That is, recursive types and their unfoldings
are not distinguished. For example, uX.(int V {int data, X next})
and int V {int data, uX.(int V {int data, X next}) next} (i.e.
it’s one-step unfolding) are considered identical, and so on. Thus,
we do not need explicit cases for handling recursive types as, when-
ever we encounter X.T, we may implicitly unfold it to T[X — uX.T]
as necessary. Finally, recursive types are restricted to being con-
tractive [36], which prohibits non-sensical types of the form pX.X
and pX.(XV...).

2.2 Type Semantics

To better understand the meaning of types in FW, it is helpful to
give a semantic interpretation (following e.g. [31, 37, 38, 39]). The
aim is to give a set-theoretic model where subtype corresponds to
subset. The domain D of values in our model consists of the integers
and all records constructible from values in D:

]D:ZU{{fl:vl,...,fn:vnH V1G]D),...,vn€]]])}

DEFINITION 1 (Type Semantics). Every type T is characterized by
the set of values it accepts, given by [T] and defined as follows:

[any] =D
[int] = Z
-7Tn fn}]] = {f1 : V1,...7fn IVn},
Jorall v €[T1], ..., va €[Ta]
[TorV...VTa] = [T1]U...U[Ta]

[{T: £4,..

It is important to distinguish the syntactic representation from
the semantic model of types. The former corresponds to a physical
machine representation, whilst the latter is a mathematical ideal. As
such, the syntactic representation diverges from the semantic model
and, to compensate, we must establish a correlation between them.
For example {intV {int x} f} and {int £} V {{int x} £}
have distinct syntactic representations, but are semantically indis-
tinguishable. For simplicity, in this paper, we assume one cannot
distinguish a type from its equivalences. In practice, any algorithm
for representing types would need to address this (e.g. by using
canonical forms) but this is largely orthogonal to the issue at hand.

2.3 Subtyping

Amadio and Cardelli were the first to show that subtyping in the
presence of recursive types was decidable [36]. Their system in-
cluded function types, T and L. Kozen et al. improved this by
developing an O(n?) algorithm [40]. The system presented here
essentially extends this in a straightforward manner. Gapeyev et al.
give an excellent overview of the subject [41] and, indeed, our sub-
type relation is very similar to theirs.

In a nominal type system, types correspond to frees and, thus,
the subtype operator can be defined using rules such as:

T, <Ty ... Ta<Th
{T1 f1,...,To £} < {Ti f1,..., T} £o}

Here, a strong property holds that the “height” of T, is strictly less
than e.g. {T; £} — leading to a simple proof of termination since
every type has finite height. In a structural type system, like FW,
types correspond to graphs not trees. Defining the subtype operator
using rules such as above leads to non-termination in the presence
of cycles. To resolve this we employ ideas from co-induction [41].
The subtyping rules are given in Figure 1 and employ judgements
of the form “T; < T, | C”, read as: Ty is a subtype of T, under
assumptions C. To show T is a subtype of T2, we use the rules of
Figure 1 starting with no assumptions:

DEFINITION 2 (Subtyping). Let T1 and T, be types. Then, T is a
subtype of To, denoted Ty < Ty, iff Ty < Ty | (.

The set of assumptions C helps ensure the subtype rules from
Figure 1 terminate. As we ascend a typing derivation comparing
components of Ty and T, the size of the assumptions set C always
increases. The S-INDUCT rule is critical here, as it protects against
infinite recursion (by, essentially, treating the assumption set C as
a “visited” set) — this follows the standard treatment of recursive
types (see e.g. [35, 41]). Additionally, the size of C can be bounded
as follows: let m (resp. n) be the number of nodes in the type graph
of Ty (resp. T2); then, every addition to C made by a rule of Figure 1
corresponds to a pair (v,w), where v and w are (respectively)
nodes in the type graph of T; and T, — thus, |C| is O(m - n).
Apart from assumption sets, the rules of Figure 1 are mostly
straightforward. Subtyping of records is via rule S-REC which
allows for depth but (for simplicity) not width [35]. Thus, it fol-
lows that {T1 £1,...,Ta £a} < {Ti g1,...,Tagu} if n =m and
V1i<i<n.(f; =gi ATi <T}) (i.e. both records have the same
fields and each field in the former subtypes its corresponding
field in the latter). Note, it is safe for e.g. {int £} < {any £}
to hold because types in FT are not reference types (as in e.g.
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Subtyping:
T<T|C (S-REFLEX)
% (S-INDUCT)
Void<T|C (S-VOID)
T<any|C (S-ANY)

C=CU{T<T}
Ti<T;|C ... a<Thl|Co
T={Tifi, . Tafa} T={Tifs,.  Tufa} OKEO
T<T |C

Co=CiU{T1 < T, VTs}

Jie{2,3}.T: <T; | Co (S-UNIONI1)
T1 <TaVTs|Ci
CQIC1U{T1\/T2 STa}
Ty <T3|C Toa<T3|C (S-UNION2)
T1 VT < T3 | Cs
T={T1f1...,Ti VT, £fi...,Tn £n}
Si ={T1f1...,Ti f5,...,Ta £u} (S-UNION3)

So={Ti£1...,T4 £f1,...,Tn £u}

T<S;VS; | C

Figure 1. Subtyping rules for FT.

Syntax:
F == Tf£(Tiny,...,Tany) {B}
B == SBje

s u= [n= v]]Z | [[néz m]]e | [n.£ :m]]; | [n :m.fﬂ[
| [returnn]” | vhile [n <m]" {B}

v = {fi:vi,...,fn:vap]|id

Figure 2. Syntax for FT. Here, n, m represent variable identifiers,
whilst i represents the integer constants.

Java), but value types. Rule S-UNION3 is perhaps the most in-
teresting, as it captures distributivity over records. For exam-
ple, {int V {int x} £} < {int £} vV {{int x} £} holds under
S-UNION3.

Finally, FT’s subtype relation forms a join-semi lattice. That is,
any two types Ty, T, have a well defined least upper bound (denoted
Ty U Tp). This is trivially true since it corresponds to Ty V Ta.

2.3.1 Subtype Soundness and Completeness

We now briefly reconsider the relationship between the syntactic
and semantic notions of subtyping. Recall that, in the former, sub-
typing is defined by the algorithmic rules given in Figure 1 whilst,
in the latter, subtyping corresponds to the subset relation between
the semantic sets describing a type (i.e. Definition 1).

We now state the Soundness and Complete Theorems which
establish a formal connection between the semantic and syntactic
notions of subtyping.

THEOREM 1 (Subtype Soundness). Let T and T' be types where
T < T Then, [T] C [T'].

THEOREM 2 (Subtype Completeness). Let T and T' be types where
[T] C [T']. Then, T < T

Whilst we have not given proofs of these theorems, it is rela-
tively easy to see they hold by inspection. A formal proof of these
properties, however, is quite involved and outside the scope of this
report. The key challenge is that, due to the need for the assump-
tion sets C, a standard structural induction cannot be applied (see
e.g. [42, 43, 44] for more on this).

2.4 Syntax

Figure 2 gives the syntax of FT where [[]]e is not part of the
syntax but (following [45]) identifies the distinct program points
and associates each with a unique label ¢ (these will be explained
later). An example FT program is given below:

int f(int x) {

y = 1!
z = {f : 1}2
whilex<y3{x=z.f4}

return x°

}

Here, we see how each distinct program point has a unique label.
Whilst FT programs are fairly limited, they characterise an inter-
esting flow typing problem which cannot easily be solved using
an iterative fix-point computation (such as is commonly used for
dataflow analysis). Furthermore, it is relatively easy to add addi-
tional constructs such as if-else statements, function invoca-
tion, arithmetic, etc.

2.5 Semantics

A small-step operational semantics for FT is given in Figure 3. The
semantics describe an abstract machine executing statements of the
program and (hopefully) halting to produce a value. Here, A is the
runtime environment, whilst v denotes runtime values. A runtime
environment A maps variables to their current runtime value.

InFigure 3, halt (v) isused to indicate the machine has halted
producing value v. This must be distinguished from the notion of
being “stuck”. The latter occurs when the machine has not halted,
but cannot execute further (because none of the transition rules
from Figure 3 applies). For example, a statementn = m.f can result
in the machine being stuck. To see why, notice that only rule R-VF
can be applied to such a statement. This has an explicit requirement
that m currently holds a record value containing at least field f.
Thus, in the case that m does not currently hold a record value, or
that it holds a record value which does not contain a field £, then
the machine will be stuck.

Some observations can be made from Figure 3. Firstly, vari-
ables do not need to be explicitly declared — rather, they are de-
clared implicitly by assignment. Secondly, variables must be de-
fined before being used — as, otherwise, the machine will get stuck.
Finally, assignments to fields always succeed. This is captured in
rule R-FV, where the record value being assigned is updated with a
(potentially new) field £. The following illustrates:

{any £, int g} f(any y) {
x = {f : 1}!

x.f = y2

X.g = 18

return x*
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Semantics:
(&, [a=v]'B) — (A1), B) R-VO)
v=Am) (R-VV)
(A, [n=n]" B) — (A@n—v], B) ’
Am)={...,f:v,...}
(&, [a=n1] B) — (A ], B) R-VE)
Am)={f1:v4,...,f0:Vn}
v=Am)[f—Adm)] (R-FV)
(A, [n.t=n]"B) — (A[n—>v], B)
v = A(n) (R-RV)
(A, [[return n]]Z B) — halt(v) i
A(n) < A(m)
(A,while [n<m] {B:} Bs) (R-W1)
— (A, B; while [n<n]‘ {B,} B,)
A(n) > A(m) R-W2
(A,while [n<m]’ {B:} Bs) — (A, By) W2

Figure 3. Small-step operational semantics for statements in FT.

This program executes under the rules of Figure 3 without getting
stuck. Furthermore, as we will see, it can be type checked with
appropriate flow typing rules (§4). The key to this is that variable x
has different types at different program points: after initialisation,
it has type {int £f}; after the subsequent assignment to field £ this
becomes {any £ }; and, finally, after the assignment to field g it has
type {any f, int g}.

The ability to safely update field types in FT contrasts with
traditional object-oriented languages (e.g. Java) where assignments
must respect the declared type of the assigned field. The semantics
of FT are (in some ways) closer to those of a dynamically typed
language where one can assign to fields and variables at will.
Indeed, flow typing is exploited in the Whiley language [24, 26]
for this reason to give the look-and-feel of a dynamically typed
language.

3. Dataflow-Based Flow Typing

We now formulate the typing rules for FT as a dataflow analysis
(see e.g. [45]). This is an intuitive and commonly used approach
(e.g. [29, 9, 12, 16, 21]). Our purpose is to highlight an inherent
limitation of using this approach for FT — namely, that it requires
finding a fix-point over typing environments for which the standard
iterative fix-point computation fails to terminate in some cases.
Dataflow-based flow typing requires a separate environment,
T, for each program point £. This gives the types of all variables
immediately before the statement at /. For example, consider a
small program (left) along with its typing environments (right):

int f(int x) {
y = x! // T' = {x~ int}
return y? // I’ = {x — int,y > int}
}

Since y is defined on line 1, it is absent from I'! (which represents
the environment immediately before line 1). The following illus-
trates a more complex example:

int V {int g} f(int x) {
y = 1!

while x < x

y = {g : 1}3

2

}
return y4

}

The question is, what type does y have in I'*? We know that y has
type int if the loop isn’t taken, or {int g} otherwise. To capture
this, we compute the least upper bound of the type environments:

I*={x+>int,y>int} U {x+>int,y— {int g}}
—{x+>int,y—intV{int g}}

Here, I*(y) = intV{int g} as an int value can flow from before
the loop, whilst {int g} can flow from around the loop. When
reasoning about loops, we are tacitly assuming the loop body can
be executed zero or more times — even in situations, such as
above, where we could be more precise. This approach is safe
(but conservative) and does not require complex reasoning (e.g.
with an automated theorem prover). Furthermore, it is a common
assumption (e.g. Java’s treatment of definite assignment and the
final modifier [46]).

In order to define how the least upper bound on environments
is determined, we must define an appropriate partial order over
environments:

DEFINITION 3 (Environment Subtyping). Let T** and T*? be typ-

ing environments. Then, we say that T°' subtypes T*, denoted
r <12 iffvvedom(T?).r" (v) < T%(v).

For example, the following hold under Definition 3:

{v—int} < {v~ any}
{vi—{int f},w— int} < {v+ any}

Since the underlying subtype relation over types forms a join semi-
lattice, it follows that environment subtyping does as well (where
L = () and T maps all program variables to any). Hence, it follows
that any two environments have a unique least upper bound.

3.1 Dataflow-Based Typing Rules

The dataflow-based typing rules for FT are given in Figure 4. Rule
T-FUN states that an FT function can be typed if its body can be
typed with parameters mapped to their declared types. The special
variable $ is included to provide access to the return type. Rule
T-BLK threads an environment through a sequence of statements.
The typing rules for statements describe their effect on the
typing environment. They are judgements of the form I' =S : I’
where T represents the environment immediately before S, and I’
represents that immediately after. Thus, the effect of statement S is
captured in the difference between I' and I''. For example, consider:

int f(any x) {
_ -1
x = 1
return x2

}

Here, I'* = {x+>any, $++int} gives the environment immedi-
ately before the assignment. Applying T-VC yields the typing en-
vironment immediately after it, namely I’ = {x+ int, $~ int}.
Finally, T-RV confirms that x is a subtype of the declared return
type (i.e. that T?(x) < T'*($) holds).

Rule T-VC exploits the fact that values have fixed types (ob-
tained via F v : T). The requirementI'(m) = {..., T £,...} inrule
T-VF ensures that m holds a record containing field £ at the given
point. Similarly, in T-VFE, {Ty £1,...,Ta £ }[f—T] constructs a
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Function Typing (dataflow):
{n1»—>T1,...,nk»—>Tk,$»—>T}I—B:F
FT£(Tyn1,...,Te ng) {B} (T-FUN)
Block Typing (dataflow):
yF8:Ty Ty FB:T,
ILFSB: T, (T-BLK)
Statement Typing (dataflow):
Fv:T TVC
I [n—vﬂg Tln— T] (T-VE)
I'm)=v TV
FI—[[n:mﬂé Tlnw— v] (T-VV)
Im)={...,TH%,
(m) i (T-VF)
I+ [n=mf]" : Tl T]
F(n) = {T1 fl, 7Tn fn}
T =T(n)[f — T'(m)] (T-FV)
I+ [nt=n]" : T~ T
I(n) <T($)
Ik [[return n]]e 1 0 (TRV)
[LUL, FB :T,
[oUTi(n)=int T, UT;(m)=1int (T-WHILE)
To b while [n <m|" {B}:ToUT;

Figure 4. Dataflow-based typing rules for FT.

type identical to {Ty £1,...,Tn £n}, but where field £ now has
type T (even if the original didn’t contain a field £). Finally, rule
T-WHILE requires a fix-point be obtained for the typing environ-
ment produced from the body. Since this is a non-trivial process,
we discuss it in more detail in the following subsection.

3.2 Termination

Computing a fix-point for a dataflow analysis is normally done
using an iterative computation (see e.g. [47, 48, 45]). Unfortunately,
using such a computation to solve the typing rules of Figure 4 will
not always terminate. The following illustrates:

void loopy (int x, int y) {

z = {f:l}1
while x < y? {
z.f = 723

b}

This example causes an iterative fix-point solver for rule T-WHILE
to iterate forever, generating larger and larger environments:

r’ = {zw— {int £f},...}
r* = {zw~ {int Vv {int £} £},...}
r* = {z+ {int V {int £} V {int V {int £} £} £},...}

Proving that an iterative fix-point computation always terminates is
normally done by showing two key properties: firstly, the domain

(i.e. types) and partial order (i.e. subtyping) must form a join semi-
lattice (of finite height); secondly, the transfer functions (i.e. the
rules of Figure 4) must be monotonic. Unfortunately, the lattice of
types in FT has infinite height — meaning such a proof strategy
will not work in this case. Observe, however, that intuitively a valid
typing of the above example should exist:

I’ = {x— int,y — int,z — pX.{(int VX) £}} (1)

The key problem, then, is how one could obtain such a typing in
practice. In fact, there are many examples in the dataflow analysis
literature of systems with lattices of infinite height (e.g. integer
range analysis [49, 50, 45, 51, 52, 53]). Such systems are forced
to terminate through the introduction of a widening operator. Such
an operator is applied after a certain number of iterations of the
computation. Typically, it will attempt to “guess” a value which
causes the computation to converge and, if that fails, will move to
a worst-case default (e.g. I® = {x + int,y +> int,z +> any} —
which in this case prevents the program from being typed).

The use of a widening operator is an unsatisfactory solution
to this problem. Indeed, the intuitive typing given for I'® above
(1) still does not converge under the rules of Figure 4 and it
remains unclear what additional machinery would be necessary to
achieve this. In the following section, we present a novel constraint-
based solution to this flow typing problem, which is guaranteed to
terminate without the need for a widening operator.

4. Constraint-Based Flow Typing

‘We now present a novel constraint-based formulation of the typing
rules for FT in the style of e.g. [54, 55, 31, 56, 57, 58]. Critically,
this does not require a fix-point computation and, hence, is guaran-
teed to terminate. Our language of type constraints is as follows:

cu=n¢Jde|Tde
ex=T|n¢|ef|ei[frel] | ]e:

Here, T represents a fixed type from those outlined in §2, whilst
n, denotes the set of labelled type variables which range over types
(though, for simplicity, we will sometimes omit the label). The idea
is that, for a given FT program, we generate a set of such constraints
and subsequently solve them. The following illustrates the idea:

int V {int g} f(int x,int y){ // xoJdint,yodint
r = o! // riJint
while x < y2 { // ra JdrilUrs
r={g : 1} // rsJ{int g}
}
return r* // intV{intg} Jr,
}

Here, we see that the life of each program variable may be split
across multiple constraint variables (e.g. r is represented by r1, r,
and r3). Those familiar with Static Single Assignment Form [59,
60, 61] will notice a strong similarity here.

DEFINITION 4 (Typing). A typing, T, maps variables to types and
satisfies a constraint set C, denoted by T |= C, if for all ey Je, € C
we have E(T,e1) > E(T, e2). Here, L(e) is defined as follows:

E(X,T) =T (1)
E(Zn) =T if {n,—»T}CE (2)
E(Z,ef)=VTy if E(Z,e)=V{...,Ts £,...} (3)

E(E,ei[f»—>e2]) =
VAT £}t — T] if E(T,e1)=V{Tf}and E(Z,e2)=T (4)
E(Z,Uei):\/Ti if 5(2,91):T1,...,S(Z,en):Tn (5)
Rule (3) selects field £ from a union of one or more records con-
taining that field (e.g. £(0, ({int £}V {any £}).f) = int V any).
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Function Typing (constraints):

{n'~0,...,0—= 0} FB:T, | C;
Co=CU{ny JT,...,n§ JT5, T8} (T-FUN)
FT£(T'n',...,T"0")B | C,
Block Typing (constraints):
ToFS:T,|C T,FB:T, | Cs
ToFSB: T, | CLUC (T-BLK)
Statement Typing (constraints):
Fv:T
—— (T-VC)
It [n=v]" : Th—¢ | {n,3T}
Lw) =« (T-VV)
I [[n:m]]z :Tn— /4] | {neJdm.}
L(w) =« (T-VF)
I [[n:m.f]](Z :Tn— 4 | {nedme.f}
Z1"(n) =k I'(m)=2A (TFV)
Tk [[n.f:m]] Tn— 4] | {n/dn.[f—m]}
I'(n) =k (T.RV)
I [[returnn]]e 0 | {$On.}
defs(B) =n
I'=rn—4 T'FB: 2| G
Pm) =k T?@n)=A
') = T'(m)=2A\ (T-WHILE)

C> = {int Jn,,int Jmy\}
C3=CiUCyU {nggnnu n;}
I° - while [n <m] {B} : ' | Cs

Variable Definitions:

defs(S ; B) = defs(S) U defs(B)
defs([n=...]°) = {n}
defs([n.f = ﬂz) {n}
defs( [[return n] [) =0
defs(while [n < m]] {B}) = defs(B)

Figure 5. Constraint-Based Typing rules for FT.

Likewise, rule (4) updates the type of field £ across a union of one
or more records. Here, \/{T £} is a short-hand notation for a union
of records {T} fi,...,Ta fa} V...V {Ts £5,... TE ££}, while
{T £}[£ — T] constructs a type identical to {T £}, but where field
£ now has type T (even if the original didn’t contain a field £). Thus,
E(D, ({int £}Vv{int g})[f+—> any]) ={any £} V{any £, int g}.

Finally, a given FT program is considered fype safe if a valid
typing exists which satisfies all the generated typing constraints by
Definition 4.

4.1 Constraint-Based Typing Rules

Figure 5 gives the constraint-based typing rules for FT which have
a general form of Ty - S : T’y | C (except T-FUN, which is similar).

Here, T, represents the typing environment immediately before S,
whilst I’y represents that immediately after. In the constraint-based
formulation, a typing environment I' maps each variable to the
program point where its current value was defined. Finally, C is
the constraint set which must hold (i.e. admit a valid solution) for
that statement to be type safe.

As before, T-FUN initialises the typing environment from the
parameter types, and adds a constraint for the return type. The latter
employs a special variable, $, to connect the return type with any
returned values (via T-RV). The following illustrates:

int f(any x) { // xJdany,intd$ (1-FUN)
// % Jint (T-vC)

return x* // $Jx (T-&V)

x = 1!

}

Here, x; is connected to the return type through $. Rule T-VC
constrains the type of the assigned variable to that of the assigned
(constant) value. The environment produced (i.e. I'ln — £]) equals
the old (i.e. T') but with n mapped to £. Rule T-VV constrains the
type of the assigned variable to that of the right-hand side. Here,
I'(m) = ~ determines the program point (k) where the type variable
currently representing m was defined (m,,).

Rule T-VF is similar to T-VC, but instead constrains the as-
signed variable to the corresponding field of the right-hand side.
Rule T-FV uses a constraint of the form n, Jn, [ — m,]. This con-
strains all fields of n, (except for £) to their corresponding type in
n,, whilst field £ now maps to my.

Finally, rule T-WHILE is the most involved. In the rule, the
overbar (e.g. n) is a short-hand indicating a list (or set) of items.
The rule employs a support function, defs(B), to identify variables
assigned in B. Each variable n € defs(B) requires a constraint to
merge flow from before the loop (i.e. n.) with that from around
the loop (i.e. ny). For each, a variable n, is created to capture this
flow. This corresponds (roughly) to the placement of ¢—nodes in
SSA form [59, 60, 61]. However, our setting is simpler as we do
not have unstructured control-flow.

4.2 Variable Elimination

‘We now begin the process of presenting our algorithm for solving
the typing constraints generated for a given function. Our purpose
is not to present an efficient algorithm, but rather one which is easy
to understand and formalise.

We first consider the variable elimination step. The essence is,
for each variable n¢, to generate a single constraint from which we
can extract the typing for n,. We begin with some formalities:

DEFINITION 5 (Variable Scoping). Let Cx denote a constraint set
where X defines the variables permissible in any e; Jes € Cx.

DEFINITION 6 (Single Assignment). A constraint set Cx is in sin-
gle assignment form if, for each ny € X, there is at most one con-
straint in Cx of the formn, J e.

Observe that any constraint set Cx generated from the rules
of Figure 5 is almost in single assignment form. That’s because,
by construction, only T-RV can give rise to multiple constraints
with the same left-hand side (i.e. $). Thus, we can transform Cx
into single assignment form by collecting all such constraints and

combining them:
$gneo,...,$;ngn — $Qngou..,l_lngn

We now apply successive substitutions to eliminate variables
and narrow down the final constraint for a given variable:

DEFINITION 7 (Elimination Step). Let Cx be a constraint set in
single assignment form, where we have ny 1 e € Cx. Then, we can
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eliminate n, from Cx to form a (smaller) constraint set as follows:
Cx—mmy={e1d ez[np—e] |e1Jes € Cx Ner #ny}.

Here, the choice of n, to eliminate is arbitrary. Recall that e; is
either a variable n,, or a type T (i.e. not an arbitrary expression).
Furthermore, e[n; — €] substitutes all occurrences of n, with e
in e,. To determine the typing for a given variable n,, we pro-
gressively eliminate variables until only n, remains. Then, we have
n¢J e € Cpy,y and from this we extract the type for n, (discussed
further in §4.3).

To illustrate, we revisit the example from §3.2 which caused
non-termination for an iterative fix-point solver of the dataflow
typing rules (i.e. without widening):

void loopy(int x, int y) { // %o int,yo int,
// voidJ$ (T-FUN)

z = (f : 1! // zod{int £} (T-vo)
while x < y2 { // z13 zo U zg,int Jxo,
// intJyo (T-WHILE)
2. f = 2° // z23d zi[f > z4] (T-FV)

b}

Eliminating for each of the constraint variables contained in the
above yields the following constraint sets (left) and extracted vari-
able typings (right):

Cysy ={void J $} — 5(§)=void
C{Ko}:{XO | int} — Z(Xo):int
Ciyoy ={yo 2 int} — %(yo)=int
Cizy = {2zo J {int £}} = Z(zo)={int £}

Cizpy={z12{int £} Uz [fr>z4]}

= Z(z1)=pX.({(int VX) £})
Ciz;y ={z2J ({int £} U zo)[f = {int £} Lizo]}

= I(z2)=pX.({{int £} VX £})

An interesting observation lies in the difference between the type
of z; and z,. The “smallest” type contained in z; is {int £},
whilst for z; it is {{int £} £}. These types correspond to the first
iteration of the loop, with the latter representing the case where
{int £} (i.e. z’s initial value) was already assigned into field £
of variable z. Furthermore, it is relatively easy to show that
(as shown above) is a valid typing (under Definition 4) for the
constraints generated for Loopy ().

The variable elimination process is trivially guaranteed to ter-
minate. However, an important property is to show that it preserves
solutions. That is, if a solution for the original constraint set exists,
then a solution still exists a after variable elimination:

LEMMA 1 (Safe Substitution). Assume e, es, ng, £ and & where
E(T,e1) < E(ny) and E(X, ey) is well-defined. Then, it follows that
E(Z,ex[ne— e1]) < E(T, e2).

PROOF 1. By structural induction on es, where the induction hy-
pothesis states that the Lemma holds for any substructure of ea.
Proof omitted for brevity — see [62] for details.

THEOREM 3 (Elimination Preservation). Let Cx be a constraint
set in single assignment form where {n,Je} C Cx, and T an
arbitrary typing. If £ |= Cx then, £ |= Cx_{n,} for anyn, € X.

PROOF 2. Proof omitted for brevity — see [62] for details.

4.3 Type Extraction

Given the final constraint set C{n[} for a variable n;, the remaining
challenge is to extract a type for n,. In such case, we know there is
a single constraint of the form n, Je € Cy,,3 where e either uses
no variables (i.e. it’s non-recursive) or uses at most n, (i.e. it’s
recursive). For the non-recursive case, this is straight-forward as

E(D, e) (if it is well-defined) gives the typing for n, (recall £(Z, e)
from Definition 4). For example, for n, J{int f}[f — any] we
have £(0, {int £}[f — any]) = {any £}. If £(0, e) is not well-
defined (e.g. £(0, int.£)) then the original program contained a
type error.

For the recursive case, things are more involved. Given a recur-
sive constraint of the form n, J e (i.e. where n is used in e), we
first check no other ny is used in e (if not we default to rejecting
the program — see §4.4), and then proceed as follows:

Base Extraction. To extract the base case, we use the following
function:

B(ne,T) =T (1)
B(ng,ne) = o (2)
B(n,e.f) = o if B(ns,e) = o (3)
B(ng,e.f) = /Ty if B(ng,e) = V{...,T: £,...} (4)
B(ng,ei[f — ez]) = o if B(ng,e1) = e or B(ng,ex) = (5)

B(ng, el[LH e]) = s
VAT £}[f — T] if B(e:)=\{T £} and B(e2)=T (6)
B(ne,| |ei) = V T; forall Ty where 3i.B(n¢,ei) = T; (7)

Essentially, this factors out expressions which cannot generate con-
crete types (i.e. because they reference the recursive variable ny).
For example, we have B(z, {int £} U z;[f+>z;])={int £} and
B(z2, ({int £} U z5)[f—{int £} U z,]) = {{int £} £} for the
recursive constraints generated for 1oopy () above.

Base Substitution. To extract a type for n, we exploit knowledge
of the e [f — ey] construct using the following substitution func-
tion:

S(Z,T)=T (1)

S(Zn) =T if {n,—T}CZT (2)

S(T,e1.f) =exf if S(T,e1) =e2 (3)

S(Z, 91[f = ez]) = e:;[f = 92} if S(Z, 91) = e3 (4)
Sz, Jes) = ]ei if

S(z,e1) =el,...,S(Z,en) = el ()

For ey [f — e»], rule (4) substitutes into e; but not e,. For example,

S{zi—{int £}}, {int £}Uz[f—>z;])={int £}U{int £}[f+>z4].

Final Extraction. For a recursive constraint ny _J e; we extract the
base type Te = B(n¢, e1) and substitute to give e2=S({n;— Tz}, e1).
The type for n, is then determined as pX.€({n;— X}, e2). For ex-
ample, forzy J {int £} Ll z1[f+—>z1] we get uX.({int £} V {X £})
and, likewise, for z; J ({int £} U z,)[f— {int £} LI z,] we ob-

tain pX.({{int £}VX £} V {{int £} VX £}).

4.4 Limitations

The typing procedure described above is not complete. For exam-
ple, it is possible (in some unusual cases) that generated constraints
contain multiple variables in the right-hand side after the elimina-
tion procedure. The following illustrates such a program:

void loopy (int x, int y) { // xoJ int,yoJ int,
// voidd $ (T-ruN)

z = {f : 1}! // zod{int £} (T-vO)
while x < y2 { // z13 ZoUZz7int;Xo,
// int Jyo (T-WHILE)
z.f = 2% // 22 zi[f — z4] (T-FV)
t
while x < y2 { // z3d Z1UZ4,intho,
// int Jyo (T-WHILE)
z.f = 2% // 24 z3[f — z3] (T-FV)
t
}
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In this case, we have the following for z3:

Cizi,zsr = {21 D {int £} Uz [f — 2z1],23 J 24 Uzs[f — 23]}
— Clzsy = {25 2 {int £} Uz [f — z1] U z3[f — 23]}

Here, we have not successfully eliminated z; from C{Za} because it
was a recursive constraint. Therefore, in some cases, our extraction
procedure cannot be applied and we must reject the program (even
if it could, in principle, be typed). A more expressive language of
constraints would help overcome this limitation.

Claim. Our typing procedure can be used to type many interesting
examples (such as Loopy () from above). Furthermore, it is trivial
to show that it is both sound and complete for sets of non-recursive
constraints. Thus, our procedure is at least as good as the dataflow-
based approach outlined in §3 with the added benefit of guaranteed
termination. Observe that we need not be concerned about whether
our extraction procedure is sound or not. This is because we can
simply extract a typing and then certify via Definition 4 that it does
(or does not) satisfy the generated constraints. And, of course, if it
does not satisfy the constraints we simply reject the program (for
safety).

4.5 Soundness

In this section, we prove two standard properties for FT, namely:
progress and preservation. Roughly speaking, this corresponds to
showing that a well-typed program will not get stuck during execu-
tion, and that executing one step of a well-typed program preserves
the validity of typing. The following notion of a safe abstraction
captures the relationship between type environments and their cor-
responding runtime environments:

DEFINITION 8 (Safe Abstraction). Let (Z,T') be a typing and en-
vironment and A a runtime environment. Then, (L,T) safely ab-
stracts A, denoted (,T) = A, iffdom(T) C dom(A) and, for all
n—{ €T, it holds that £(n) = A(n).

Observe that we cannot require dom(I') = dom(A), as might
be expected, since runtime environments are the product of actual
execution paths. Consider a while statement with a variable n
defined in only in the body. After the statement, n ¢ I" since n was
not defined before the loop. However, if execution had proceeded
through the loop body, then we would have n € A.

THEOREM 4 (Progress). Assume A, L and T where (E,T) = A.
IfT+S:T' | Candx |EC, then either (A,SB) — (A’,B') or
(A,SB) — halt(v).

PROOF 3. By case analysis on S over the different statement forms
from Figure 2. Proof omitted for brevity — see [62] for details.

THEOREM 5 (Preservation). Assume A,E,T where (L,T)~ A
holds. If THS:T'|C, LE=C and (A,SB) — (A',B'), then
(z,T) ~ A

PROOF 4. By case analysis on S over the different statement forms
from Figure 2. Proof omitted for brevity — see [62] for details.

5. Extensions

‘We now provide some additional discussion of our constraint-based
formulation of FT and highlight a number of ways in which it could
be extended.

5.1 Effective Records

One of the less intuitive aspects of our definition of a typing (i.e.
Definition 4) is the support for unions of records. Henceforth, we
refer to these as effective records.

To illustrate the value of effective records, consider the following:

int f(int x, int y) {
z = {f:1, g:2}1
while x < y? {
z = {£:3, h:4}3
}

return z.f*

}

At the return statement, it follows that variable z has type
{int f,int g} V {int £, int h}. Therefore, one would expect
z . £ to be type safe, given that both options have the required field
f. And, indeed, this is a valid FT program under Definition 4 and
Figure 4.

5.2 Arrays

Extending FT to support array types is fairly straightforward. Sup-
pose we extend our language of types to include a type [T], which
represents an array of zero or more elements of type T. The follow-
ing illustrates how this might work:

[any] f([int] arr, any val, int n, int m) {

while n < m! { arr[n] = val? }
return arr®

}

Here, the type of arr at the return statement is [any]. This reflects
the fact that, although arr had type [int] on entry, it may now
hold one or more values of type any. Extending FT to support
arrays, such as this, is fairly straightforward. It differs from records
only in that, when an element is assigned, we cannot overwrite the
element type with the assigned type (as we did for fields). This is
because we cannot easily tell whether all elements of the array are
overwritten with the new type.

5.3 Type Tests

As discussed in the introduction, flow typing can also be used to
retype variables as a result of conditionals. The following illustrates
how this might work in FT:

int f (any x):
if x is {int field}':
r = x.field?
else:
r = 03
return r*
Here, variable x is retyped on the true branch to {int field}. At
the same time, it is retyped to —={int field} on the false branch
(read as the type not {int field}). Thus, extending FT to support
type tests requires two additional things: an 1 f-else statement to
host the type test; and, a notion of negation types of the form —T. A
more detailed discussion of this problem can be found in our earlier
work [25].

5.4 References

Some notion of reference type would be a useful extension to FT.
However, if retyping through references is permitted, care must be
taken to avoid unsoundness. For example, consider the following
(where ref <T> represents a reference to a value of type T):

ref<any> f (ref<int> r, any x):

1
*r = X ;

return r2
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The above program is unsafe because callers to f () may retain
their own copy of the reference r. The following illustrates such a
caller:

int g(ref<int> rl, any x):
r2 = f(rl,x)!
return xr1? /unsafe

The declared type of r1 suggests that dereferencing it will give
an int. However, if we permitted the above definition of f (),
the value referenced by r1 would have type any at the return
statement — thereby invalidating our assumption. In order to en-
able retyping through references, one can exploit uniqueness types
(e.g. [63, 64, 65]). These guarantee that the value referenced is not
shared with others and, hence, that one can safely update its type.

6. Related Work

The first, and most widely used type inference system was devel-
oped by Hindley [6] and later independently by Milner [7]. Since
then, numerous systems have been developed for object-oriented
languages (e.g. [30, 31, 32, 33, 66, 67, 34, 68, 69]). These, al-
most exclusively, assume the original program is completely un-
typed and employ set constraints (see [54, 55]) as the mechanism
for inferring types. As such, they address a somewhat different
problem to that studied here. To perform type inference, such sys-
tems generate constraints from the program text, formulate them
as a directed graph and solve them using an algorithm similar to
transitive closure. When the entire program is untyped, type in-
ference must proceed across method calls (known as interproce-
dural analysis) and this necessitates knowledge of the program’s
call graph (in the case of languages with dynamic dispatch, this
must be approximated). Typically, a constraint graph representing
the entire program is held in memory at once, making these ap-
proaches somewhat unsuited to separate compilation [30]. Such
systems also share a strong relationship with constraint-based pro-
gram analyses (e.g. [55, 70, 58, 71]), such as alias or points-to
analysis (e.g. [72, 73, 74, 75]). Finally, the language of constraints
presented in §4 is similar to that used in systems such as these.
However, the key novelty of our approach lies in a mechanism for
extracting recursive types from constraints via elimination and sub-
stitution.

Our earlier work on flow-typing [25] considers the problem of
handling type tests in a sound and complete manner (recall, we
briefly discussed this problem in §5.3). The aim is to automatically
retype variables as a result of runtime type tests. Consider a variable
x which has type T and is the subject of a type test, such as
x instanceof T,. It should follow that variable x automatically
has type T: A T, on the true branch (i.e. the intersection of its
original type and the tested type). The key challenge is that, on the
false branch, it should have type T1 A —T> (i.e. the intersection of
its original type and everything except the tested type). Developing
a type system which supports union, intersection and negation
types which is both sound and complete is a significant algorithmic
challenge, and our solution relies on a carefully constructed normal
form representation of types. Note that the system presented in [25]
differs from that presented here, as it does not support recursive
types at all and, hence, there is no termination problem to be
addressed.

Palsberg and O’Keefe consider the problem of finding a type
system equivalent to a constraint-based safety analysis [76]. They
find that a type system previously studied by Amadio and Cardelli
(which includes subtyping and recursive types [36]) accepts exactly
the same set of programs as the particular safety analysis they
examined. Their work shows some similarity with the problem
studied in this paper. In particular, Palsberg and O’Keefe develop

a constraint-based type inference where typings are generated by
solving constraints and extracting a least solution for each variable.
However, their type system does not include union types and this
limits the possible constraint forms needing to be considered. As
such, the problem of extracting a typing from a constraint set is
strictly simpler in their system than that studied here.

The work of Guha et al. focuses on flow-sensitive type check-
ing for JavaScript [4]. This assumes programmer annotations are
given for parameters, and operates in two phases: first, a flow anal-
ysis inserts special runtime checks; second, a standard (i.e. flow-
insensitive) type checker operates on the modified AST. The sys-
tem retypes variables as a result of runtime type tests, although only
simple forms are permitted. Recursive data types are not supported,
although structural subtyping would be a natural fit here; further-
more, the system assumes sequential execution (true of JavaScript),
since object fields can be retyped.

Tobin-Hochstadt and Felleisen consider the problem of typing
previously untyped Racket (aka Scheme) programs and develop a
technique called occurrence typing [20]. Their system will retype
a variable within an expression dominated by a type test. Like
Whiley, they employ union types to increase the range of possible
values from the untyped world which can be described; however,
they fall short of using full structural types for capturing arbitrary
structure. Furthermore, in Racket, certain forms of aliasing are
possible, and this restricts the points at which occurrence typing
is applicable.

The earlier work of Aiken ef al. is similar to that of Tobin-
Hochstadt and Felleisen [77]. This operates on a function language
with single-assignment semantics. They support more expressive
types, but do not consider recursive structural types. Furthermore,
instead of type checking directly on the AST, conditional set con-
straints are generated and solved. Following the soft typing disci-
pline, their approach is to insert runtime checks at points which
cannot be shown type safe.

The Java Bytecode Verifier employs flow typing [28]. Since lo-
cals and stack laocations are untyped in Java Bytecode, it must infer
their types to ensure type safety. A dataflow analysis is used to do
this [29], although one issue is that the Java class hierarchy does not
form a join semi-lattice. To deal with this, the bytecode verifier uses
a simplified least upper bound operator which ignores interfaces al-
together, instead relying on runtime checks to catch type errors (see
e.g. [29]). The work of Male et al. extends bytecode verification to
check @NonNull types [12]. This additionally permits variables
to be retyped by conditionals such as x != null.

Gagnon et al. present a technique for converting Java Bytecode
into an intermediate representation with a single static type for
each variable [78]. Key to this is the ability to infer static types for
the local variables and stack locations used in the bytecode. Since
local variables are untyped in Java bytecode, this is not always
possible as they can — and often do — have different types at
different points; in such situations, a variable is split as necessary
into multiple variables each with a different type.

Bierman ez al. formalise the type inference mechanism to be
included in C# 3.0, the latest version of the C# language [2]. This
employs a very different technique known as bidirectional type
checking, which was first developed for System F by Pierce and
Turner [79]. This approach is suitable for C# 3.0 because variables
cannot have different types at different program points.

Information Flow Analysis is the problem of tracking the flow
of information, usually to restrict certain flows for security reasons.
Hunt and Sands use dataflow-based flow typing for tracking infor-
mation flow [9]. Their system is presented in the context of a simple
While language not dissimilar to our dataflow formulation. Russo
et al. use an extended version of this system to compare dynamic
and static approaches [15]. They demonstrate that a purely dynamic
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system will reject programs that are considered type-safe under the
Hunt and Sands system. JFlow extends Java with statically checked
flow annotations which are flow-insensitive [14]. Finally, Chugh
et al. developed a constraint-based (flow-insensitive) information
flow analysis of JavaScript [80].

7. Conclusion

We have presented a small calculus, FT, for reasoning about flow
typing systems which is motivated from our experiences develop-
ing the Whiley language [23, 24, 25, 26]. This characterises a flow-
typing problem which is not well-suited to being solved with a
dataflow analysis. This is because the dataflow formulation requires
a fix-point computation over typing environments which, unfortu-
nately, may not terminate. We then presented a novel constraint-
based formulation of typing which is guaranteed to terminate. This
provides a foundation for others developing such flow typing sys-
tems. Finally, whilst our language of constraints is similar to pre-
vious constraint-based type inference systems (e.g. [30, 31, 32, 33,
34]), the key novelty of our approach lies in a mechanism for ex-
tracting recursive types from constraints via elimination and sub-
stitution.

In the future, we would like to extend our type extraction mech-
anism to cover all cases (recall from §4.4 that there are cases where
extraction fails). We speculate this can be achieved by ensuring that
the variable elimination procedure eagerly resolves recursive con-
straints when they arise.
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