
A Case Study of Web API Evolution

S M Sohan, Craig Anslow, Frank Maurer
Department of Computer Science

University of Calgary, Calgary, Alberta T2N 1N4

Email: {smsohan, craig.anslow, frank.maurer}@ucalgary.ca

Abstract—When applications are integrated using web APIs,
changes on a web API may break the dependent applications. This
problem exists because old versions of the APIs may no longer
be supported, a lack of adequate documentation to upgrade to
a newer version, and insufficient communication of changes. In
this paper we conducted a case study of evolving Web APIs to
investigate what changes are made between versions and how the
changes are documented and communicated to the API users.
The findings are a list of recommendations for practitioners
and researchers based on API change profiles, versioning, doc-
umentation and communication approaches that are observed
in practice. This study will help inform developers of evolving
Web APIs to make decision about versioning, documentation and
communication methods.

Keywords—Case Study; RESTful, SOAP, Web API Evolution;
WSDL

I. INTRODUCTION

Web APIs are used as a key interconnectivity mechanism
to access software services over the Internet. Interconnected
applications can provide better service at a lower cost to their
users. For example, a business search portal can display the
businesses near a user’s current location on a map by using the
Google Maps API. The actual implementation of Web APIs
can follow various protocols, such as SOAP1 and RESTful2

web services. In this paper, the term Web API is used to
describe any protocol unless otherwise specified.

Web APIs connect independently maintained applications.
As a result, when a Web API evolves, all the integrated appli-
cations using the Web API may not be able to evolve on the
same schedule. For example, in the case of the aforementioned
business search portal, if the Google Maps API changes, it
may also require the portal to change. This introduces unique
challenges to the evolution of Web APIs compared because the
evolution is out of the control of the API users. For example,
API users of a local API can use a copy of an older version,
but for evolving Web APIs, API users are forced to upgrade
if older versions are no longer supported. Documentation of
evolving Web APIs is an important topic for case study because
of the unique challenges it presents. Web APIs are defined by
their HTTP interface, including both HTTP headers as well as
request and response data formats. As a result, for an evolving
Web API, its documentation needs to indicate changes in any
of these fields, unlike the local APIs, where typically no HTTP
specific information is involved.

The primary goal of this research is to investigate the
challenges that are currently faced by developers and users of
evolving Web APIs so that future research can be performed
to address the problems. To this regard, we analyzed existing

1http://www.w3.org/TR/soap/
2http://www.ics.uci.edu/∼fielding/pubs/dissertation/rest arch style.htm

literature on the topic of Web API evolution. We analyzed
the evolution of multiple Web APIs to understand the current
industry trends and challenges. The juxtaposition of current
industry practices with the literature reveals insights that are
otherwise unseen when viewed from a single perspective. We
use the differences between the literature and industry practices
to identify unresolved research problems.

In this case study, multiple Web APIs representing a variety
of application areas are selected, analyzed and compared to
gain a broader perspective about current industry practices
on Web API versioning, documentation and communication
of changes. The result of this analysis is a summary of
different approaches to Web API evolution, and a list of
recommendations for developers of evolving Web APIs.

The remainder of this paper is organized as follows: the
next section is related work on Web API evolution. Then,
we discuss the case study of multiple Web API evolution.
In the following section, we list our findings, followed by a
discussion about the findings. Finally, we conclude with the
contributions of this work.

II. RELATED WORK

We look at related work in the following areas: Empirical
Research on Web API evolution, techniques to evolve Web
APIs and, tool support for evolving Web APIs.

A. Empirical Research on Web API evolution

Several case study papers were published on Web API
Evolution. Maleshkova et al. analyzed multiple Web APIs
to identify the different approaches related to Web API de-
scriptions, data formats, protocols, reusability, granularity, and
authentication [1]. They found that a lack of a standard format
to document Web APIs and manual documentation led to
API under-specification causing confusions about how to use
the APIs for different use cases. They identified a need for
automated approaches.

Fokaefs et al. performed an empirical study on Web API
evolution involving multiple SOAP web services, Amazon
EC2, FedEx Rate, Bing, Paypal, and Fedex Pack., and provided
an evolution profile showing the percentage of changes be-
tween two consecutive versions of the Web APIs [2]. The same
Web APIs were studied by Romano et at., but they provided an
alternate evolution profile of the Web APIs. Instead of using
percentage of change, they profiled the number of operations,
parts and XML file elements from WSDL files for each version
of the Web APIs [3]. These change profiles point to the ever
changing nature of Web APIs.

Jun et al. performed case studies on the evolution of Web
APIs and compared the evolution of Web APIs against local

2015 IEEE World Congress on Services

978-1-4673-7275-6/15 $31.00 © 2015 IEEE

DOI 10.1109/SERVICES.2015.43

244

2015 IEEE World Congress on Services

978-1-4673-7275-6/15 $31.00 © 2015 IEEE

DOI 10.1109/SERVICES.2015.43

245

2015 IEEE World Congress on Services

978-1-4673-7275-6/15 $31.00 © 2015 IEEE

DOI 10.1109/SERVICES.2015.43

245

library APIs [4]. For studying Web APIs, a selection criteria
was provided as follows: Web APIs with large number of
clients, covering different application areas, owned by different
companies in different countries, and well documented API
reference and migration guides. They extracted 16 patterns
to describe different types of changes on the Web APIs as
follows: add or remove parameter, change type of return value,
delete method, rename method, rename parameter, change for-
mat of parameter, change format of return value, change XML
tag, combine methods, split method, expose data, unsupport
request method, change default value of parameter, chance
default value of parameter, change upper bound of parameter,
restrict access to API. They also presented six challenges
specific to Web API evolution that are not found with library
APIs such as: transformation between JSON and XML, M to
N Mapping, delete method, authorization protocol change, rate
limit, and authorization of API access.

Espinha et al. looked at the growing pains with Web API
evolution from the perspective of Web API users by conducting
interviews [5]. The interviewees were selected based on the
activity of their open-source projects that used Web APIs.
They found that when a Web API evolves, maintaining the
integration with a Web API took more effort than integrating
it the first time since maintenance is carried out over a longer
period of time. This makes the evolution of Web APIs an
important subject for a case study.

We distinguish our case study from these case studies
as follows: we provide up-to-date information and include a
diverse set of Web APIs. Our analysis uses new data sources
such as API user forums, and question and answer sites. We
focused this study on different approaches to versioning, doc-
umentation, and communicating changes as an API evolves.

B. Techniques to evolve Web APIs

Kaminski et al. presented a design technique called “Chain
of Adapters” to implement evolving Web APIs [6]. Using this
approach, the source code of a Web API can evolve from a
version to the next by introducing an adapter on the original
version to implement any required change for new versions.
This technique allows for multiple versions to be deployed
concurrently since older versions are left unchanged.

Leskey suggests following a consistent and meaningful
naming scheme to identify different versions of APIs [7]. Such
a naming scheme can be used to identify if two versions of an
API are compatible. Given the URL scheme, Leskey suggests
a self documenting Web API, one that exposes API endpoints
to describe the details for each version.

Treiber et al. showed a conceptual model to capture the
changes of a Web API [8]. A graphical representation to
display the evolution of SOAP Web Services is presented
by Aversano et al. where the differences between versions
are highlighted based on their meta information found in the
WSDL files [9].

Some papers focused on automatic migration of Web API
clients to newer versions. For example, Wilde proposed a
conceptual framework where WSDL can be extended so a
client can be compatible with potential Web API changes
[10]. A similar approach is proposed by Fang et al. where

a fixed set of new XML nodes are used instead of arbitrary
extensions [11]. Juric et al. proposed a number of versioning
related extensions to WSDL that can be applied to version
SOAP web services in multiple levels of granularity such as,
service level and operation level [12]. Zuo et al. developed a
formal XML based change specification format to describe the
evolution of SOAP Web services [13].

For RESTful Web APIs, Mangler et al. introduced an XML
based language called RIDDL [14]. RIDDL allows incremental
composition of Web API documentation for different versions
by adding a changelog to the documentation of an old version.

VRESCo demonstrates an approach where a router between
the Web API client and server is used to automatically route
Web API calls to new API versions. The router routes API calls
to the desired version based on free form version names such
as: latest, stable, and fixed version [15]. Meng et al. compared
different approaches for evolving Web APIs across multiple
criteria: granularity of evolution, terminal of evolution, type
of evolution, scalability, and maintainability [16]. They iden-
tified an aspect oriented approach, where an intermediate tier
between a Web API and its clients is used similar to VRESCo,
can reduce coupling between the two.

Existing techniques to evolve Web APIs focused on finding
different techniques for implementing evolving SOAP based
Web APIs that cannot be readily applied to RESTful Web
APIs. From our case study, we identified future research
opportunities on techniques to solve the problems Web API
evolution that are also applicable to RESTful APIs.

C. Tool support for evolving Web APIs

Analyzing the available tool support for evolving Web APIs
helped us identify opportunities for future research in this
area. WSDarwin introduces a layer of adapters on both the
Web API and its client to automatically migrate Web API
clients to use a newer version of an API [17]. WSDarwin
uses WSDL description of the SOAP service to automatically
infer the changes between versions and uses preset default
values for newly added objects to adapt the client request.
VTracker, predecessor of WSDarwin, produces a changelog
between versions of WSDL files [2]. WSDLDiff extends this
by incorporating the semantic meaning of WSDL with an XML
Schema Definition into their changelog computation [3].

To identify if a new version of a Web API has any impact
on a specific API client, Zou et al. show a technique to generate
client specific change logs [18]. A customized per API client
change log is generated by filtering the change log based on
recorded API usage data so that only relevant API changes can
be communicated effectively to each user.

Existing research on tool support for RESTful Web API
evolution is rather limited. hRESTS is an HTML-based speci-
fication for describing RESTful Web APIs that can be used
by computers to auto-generate client code [19]. RESTdesc
is another specification for describing RESTful Web API
documentation where APIs are described using pre and post
conditions [20]. However, the input to both hRESTS and
RESTDesc require manual effort to produce the desired spec-
ification.

245246246

TABLE I: Case Study - Representative Sample of Web APIs.

Web API URL Categories Num of Dates
Industry Popularity Maturity Code Releases

Facebook Platform API https://developers.facebook.com/docs/apps/versions Social High Est Closed 11 01/2013-07/2014
Twitter REST API https://dev.twitter.com/docs/api Social High Est Closed 2 Not Available
Wordpress REST API http://wp-api.org/ Business Growing New Open 8 08/2013-06/2014
Salesforce & Chatter REST API https://www.salesforce.com/us/developer/docs/api rest/ Business Popular Est Closed 4 01/2013-08/2014
Google Calendar API https://developers.google.com/google-apps/calendar/ Business Popular Est Closed 2 Not Available
Stripe Payment Processor API https://stripe.com/docs/api Business Growing New Closed 30 09/2011-10/2014
Github API https://developer.github.com/ Productivity Growing New Closed 59 09/2012-10/2014
Google Maps API https://developers.google.com/maps/web/ Productivity Popular Est Closed 102 01/2011-09/2014
OpenStreetMap API http://wiki.openstreetmap.org/wiki/API Productivity Growing New Open 1 Not Available

In the literature, we found multiple tools exist that rely
on WSDL files. WSDL solutions have limited applicability
for RESTful Web APIs since WSDL files cannot be used to
fully describe RESTful APIs. Based on our case study, we
will discuss future research problems on tool development to
support the challenges with RESTful Web API evolution.

III. CASE STUDY

When companies evolve their Web APIs in practice the new
changes can often break applications that rely on these APIs.
The aim of this case study is to investigate current industry
practices on Web API Evolution to answer the following
research questions.

A. Research Questions

RQ1 Versioning: How are Web APIs versioned as they
evolve?

RQ2 Documentation: How are Web API changes docu-
mented as they evolve?

RQ3 Communication: How are Web API changes com-
municated as they evolve?

B. Selection Strategy

To gain a broad perspective, we selected evolving Web
APIs to represent each of the following categories as shown
in Table I.

Industry - APIs representing different domains: social,
business, and productivity.

Popularity - APIs with different number of users.

Maturity - Newer vs. established Web APIs.

Source code - Open source vs. closed source.

C. Research Method - Qualitative Analysis

The APIs in this case study are proprietary and open-source
evolving Web APIs. For each API, we collected publicly
available data from the following sources: API home page,
formal API reference, and user forums and question-answer
sites. A homepage provides a general introduction to the Web
API. The formal API reference described the different elements
of the API. The user forums and question-answer sites are
used to communicate news and collect feedback about the Web
APIs, for example StackOverflow.com.

The first author of this paper read the the API homepages
and followed relevant hyperlinks to find answers to RQ1. A
summary of the strategies were presented to the co-authors,
which was used to categorize Web API versioning strategies
into groups. Web API homepages contain changelogs and links
to API references which were used to find answers to RQ2.

We used codes to annotate the API changelogs to identify
the different types of API changes. The coding scheme started
with a set of codes based on the codes from Jun et al. [4].
New codes emerged from our analysis as the existing codes
did not describe an API change scenario. An overview of the
used codes is provided in Table II. The codes were applied to
the different API elements as described through the following
example Web API description:

“A Web API to post a comment on a photo.”

Endpoint - URLs to access the the API. Resource -
An input or output object. For example, comment, photo,
etc. Method - An API operation on a resource. e.g. post a
comment. Field - An attribute of the resource. e.g. timestamps
of a comment. FieldValue - Possible value for a field. For
example: a timestamp value of January 1, 2015. Error - Error
cases. e.g. not found error. Authentication - Authentication
methods. e.g. HTTP Basic authentication.

These codes were applied to the text from the Web API
homepages and API changelogs for multiple versions to pro-
duce a change profile. The first and second authors of this
paper arrived at the same conclusion when they independently
applied the codes on 18 snippets of changelogs randomly
sampled from the studied Web APIs. The coding process was
manual since the data comprises of unstructured text that are
not suitable for automated tagging. Here is an example of a
change log from WordPress API with the codes:

“Add post meta endpoints (AddEndpoint). Creating, reading,

updating and deleting (AddMethod * 4) post meta (AddResource)
is now possible by using the/posts/〈id〉/meta endpoints.”

We analyzed the API user forums and newsboards to find
answers to RQ3. Messages in these sources were filtered to
focus on the evolution of Web APIs. These data sources
provided the perspectives of both the developers and users
of Web APIs. To find evolution related messages, based on
trial search runs, full text search features on the forums were
used to search for these keywords: version, release, migration,
breaking, deprecate, change.

246247247

TABLE II: List of Codes

Category Description
Add<APIElements> New API elements introduced: Adds a new resource, field, field value, endpoint or method
Remove<APIElements> API elements completely removed: Removes a resource, field, field value, endpoint or method
Change<APIElements> Existing API element is replaced by another: Replaces or renames a resource, field, field value, endpoint or

method
ErrorConditionChange Changes the possible error conditions: New, changed or removed error response
ChangeFieldDataType Changes the data type of a field: Single item to an array or vice versa, number to strings or vice versa, required

to optional or vice versa
BehaviorChange Changes the outcome or fixes bug: Uses new formula for computing API return values
ChangeAuthentication Changes how API clients are authenticated: New, changed or deprecated API authentication methods
ChangeAuthorization Changes who can access which API elements: Add, remove or modify permissions of API user

IV. FINDINGS

In this section we present our findings for RQ1-3.

A. RQ1 Versioning

1) Patterns of Changes: Based on our coding scheme,
we identified the following new change patterns to describe
changes between versions of Web APIs in addition to the 16
patterns described by Jun et al. [4] as follows:

Move API elements - We found 114 occurrences of
element moves, where API elements are moved under new
hierarchy or renamed. For example, Stripe API moved two
objects under a new API element as found in the following
change log from version 2013-08-13:

“Remove fee and fee details properties on charge and transfer
objects. Instead, fee information is now stored on the corresponding
balance transaction. ”

Rename API elements - We found that 31 API elements
were renamed for consistency. The following example from
the Facebook API shows a rename 3:

“Facebook will be renaming the adgroup status value AD-
GROUP PAUSED TO PAUSED to be consistent with the rest of the
object’s APIs. ”

Behavior change - We have found 247 examples where
Web APIs changed the resultant data while keeping the API
interfaces intact. These are commonly triggered by bug fixes.
For example, Wordpress REST API 1.1 changed as follows 4:

“Correct password-protected post handling. Password-protected
posts could previously be exposed to all users, however could also
have broken behavior with excerpts. Password-protected posts are
now hidden to unauthenticated users.. ”

Another example that demonstrates a behavior change can
be found from the 2013-10-29 version of Stripe API 5:

“When we apply a $Y coupon to a $X dollar invoice, we are no
longer applying the remainder of the coupon to the account balance if
Y > X. Applications of coupons to $0 invoices will no longer count
as a redemption of the coupon.”

Post condition change - In the studied Web APIs we found
examples where the immediate result of an API call remained

3https://developers.facebook.com/docs/apps/migrations/
ads-api-changes-2014-07-02

4http://make.wordpress.org/core/2014/06/23/json-rest-api-version-1-1/
5https://stripe.com/docs/upgrades#2014-01-31

unchanged but new post conditions are imposed requiring
additional work for the API users. The following change on
Facebook platform API illustrates this 6:

“Starting May 13th, 2014, developers that accept payments will be
required to subscribe to and honor Realtime Updates to ensure order
fulfillment and appropriate handling of disputes from all payers. If
you do not subscribe to and honor these updates, Facebook reserves
the right, under our Developer Payment Terms to withhold payouts
and/or stop your app from accepting payments. ”

HTTP header change - Web APIs also change the custom
HTTP headers that are used as meta data. For example, the
following shows a change when the WordPress Web API
introduced two new headers to describe the pagination status
of an API call 7:

“Send X-WP-Total and X-WP-TotalPages headers for information
on post/pagination counts”

Similarly, the Github API changed their custom headers
about pagination in the following example 8:

“No longer using the X-Next or X-Last headers. Pagination info
is returned in the Link header instead.”

Error condition change - Web APIs change the error
conditions that may require the users to adapt their integration.
For example, in Salesforce API Version 29 the error codes were
changed 9:

“...different ExceptionCode and StatusCode values are now re-
turned for some error conditions when saving user records. We
strongly recommend that you test your code and modify it accordingly
if your clients rely on specific ExceptionCode and StatusCode values
being returned... ”

These extended list of change patterns need to be addressed
by future work on finding techniques and developing tool
support for evolving Web APIs.

2) Version Identifiers: We analyzed different approaches
to identify the versions of Web APIs to understand if the
version identifiers can be used to infer information about their
evolution. We can categorize the Web APIs into these groups:

6https://developers.facebook.com/docs/apps/migrations/
payments-disputes-realtime-updates-required-2014-05-13

7http://make.wordpress.org/core/2013/09/12/json-rest-api-version-0-5/
8https://developer.github.com/v3/versions/
9https://na1.salesforce.com/help/pdfs/en/salesforce winter14 release notes.

pdf#rn 186 api objects

247248248

2
0

1
3

-0
1

2
0

1
3

-0
4

2
0

1
3

-0
7

2
0

1
3

-1
0

2
0

1
4

-0
1

2
0

1
4

-0
4

2
0

1
4

-0
7

0

20

40

N
o

.
o

f
C

h
an

g
es

(a) Facebook API Changes (11 Releases)

2
0

1
1

-0
9

2
0

1
2

-0
1

2
0

1
3

-0
1

2
0

1
4

-0
1

2
0

1
4

-1
0

0

2

4

6

N
o

.
o

f
C

h
an

g
es

(b) Stripe API Changes (30 Releases)

2
0

1
3

-0
8

2
0

1
3

-1
1

2
0

1
4

-0
3

2
0

1
4

-0
6

0

10

20

N
o

.
o

f
C

h
an

g
es

(c) WordPress REST API Changes (8 Releases)

2
0

1
2

-0
9

2
0

1
2

-1
2

2
0

1
3

-0
3

2
0

1
3

-0
6

2
0

1
3

-0
9

2
0

1
3

-1
2

2
0

1
4

-0
3

2
0

1
4

-1
0

0

10

20

N
o

.
o

f
C

h
an

g
es

(d) GitHub API Changes (59 Releases)

2
0

1
1

-0
1

2
0

1
1

-0
7

2
0

1
2

-0
1

2
0

1
2

-0
7

2
0

1
3

-0
1

2
0

1
3

-0
7

2
0

1
4

-0
1

2
0

1
4

-0
7

2
0

1
4

-0
9

0

5

10

N
o

.
o

f
C

h
an

g
es

(e) Google Maps Web API (102 Releases)

2
0

1
3

-1
0

2
0

1
4

-0
1

2
0

1
4

-0
4

2
0

1
4

-0
7

2
0

1
4

-1
0

50

100

N
o

.
o

f
C

h
an

g
es

(f) Salesforce REST API (4 Releases)

Fig. 1: Case Study - Change Profiles for the Web APIs.

Numbered identifiers - Contiguous integers are used to
identify new versions by Salesforce and GitHub Web APIs.
Such naming scheme clearly communicates the sequence
between versions but cannot be used to infer compatibility
between versions.

Timestamped identifiers - Stripe Web API uses date as
a version identifier. While timestamped versions provide the
time frame of a version, they do not provide any compatibility
information between versions.

Identifiers with major and minor version numbers -
Most of the Web APIs studied use major and minor version
numbers to identify a version. Facebook, Twitter, WordPress,
Google Calendar, Google Maps and OpenStreetMap follow
this approach. However, an explanation of the major and minor
version numbers aren’t provided and cannot be used to infer
compatibility information.

Also, web APIs often evolve with breaking changes with-
out issuing a new version identifier. For example, Facebook,
Google Calendar and GitHub APIs often receive breaking
changes without using a new version identifier.

3) Upgrade Mode: From our case studies, we found the
Web APIs followed several different approaches to versioning.

Single Version - Web APIs that force the API clients to
migrate either because only one version is available or depre-
cated older versions will be removed. These include Facebook

REST API (90 days), Twitter REST API (no specific time
frame), Github API (no specific time frame), OpenStreetMap
API (no specific time frame), Google Calendar (6 months),
Google Maps (no specific time frame).

Multiple Versions - Multiple versions of the Web API are
supported for longer duration. These include Wordpress REST
API, Salesforce API, Stripe API.

Both of these categories, single and multiple available
versions, have their advantages and disadvantages. Forcing API
clients to use a single stable version makes it easy to maintain
the Web APIs at the expense of scheduling flexibility for API
users. These APIs keep a deprecated version for a limited
period of time to provide a buffer time for the API users. For
example, Google Calendar API is supporting its deprecated
version for 6 months.

Maintaining multiple versions of the Web APIs provide
more scheduling flexibility to the API clients but requires more
effort from the API publisher. As a result, not all the older
versions are maintained. When API clients lag far behind the
latest version, migrating to the latest version becomes harder.
For example, here is an excerpt of a comment from a Stripe
Web API client developer 10:

“...I just learned that we’re about 14 versions behind and would

like to work on upgrading but there are lots of breaking changes...”

10https://groups.google.com/a/lists.stripe.com/forum/#!searchin/api-discuss/
version/api-discuss/x8TM-yHnhYQ/y9JJKytSiUAJ

248249249

While both the forced and on demand modes are found in
practice, future work needs to be carried out to compare and
contrast the benefits of these modes in greater detail.

4) Change Profiles: The Web APIs evolve at different
frequencies as well as the actual change that takes place during
their evolution varies from one API to another. Fig. 1 shows an
aggregated view of the count of different categories of changes
observed for different Web APIs based on the aforementioned
coding scheme.

The APIs here show very different change trajectories.
Facebook API shows an alternating pattern of smaller and
larger number of changes between subsequent versions, and
each release consists of multiple categories of changes. On
the other hand, Stripe and GitHub API changes are more
frequent, but on the majority of the releases only include
a single category of change. WordPress REST API releases
contain multiple categories of changes, but shows only a single
API element removal for the studied period. GoogleMaps API
changes are also very frequent, dominated by AddAPIElement
and BehaviorChange categories in a way that once new API
elements are introduced, the subsequent releases primarily
focus on bug fixes. The GoogleMaps API shows signs of
stability with time. The Salesforce API changelog shows a
different picture. Unlike the other APIs studied, Salesforce API
evolves quarterly and involves a larger number of API elements
with each release. We observed most Web API releases broke
backward compatibility as shown by the presence of colors in
addition to the green areas on the charts. We consider API
changes to be backward compatible when changes are limited
to only AddAPIElements category.

Google Calendar API, not shown in a chart, changed the
format of all API request and response data from a custom
XML to JSON in a single release, effectively forcing all its
users to upgrade with a deprecation policy of one year. A plot
for the Twitter and OpenStreetMap APIs could not be produced
since changelogs for these APIs were no longer available.

These change profiles have little similarity, implying the
fact that a common solution to solve their evolution related
challenges may not work. Future research on Web API evo-
lution needs to consider these variation of change profiles to
find effective solutions for the case in hand.

5) Implementation: In our case studies, we included two
open-source Web APIs, WordPress and OpenStreetMap, be-
cause it gave us access to their source code to study how
versioning is actually implemented. Wordpress REST API is
developed as a plugin for Wordpress. As a result, a new version
of the Web API is released with a new version of the plugin and
it all API clients are affected when a new version is deployed.
The source code for OpenStreetMap.org Web API shows the
use of configuration files for API Versioning. We found its
implementation only allows for a single API version.

To summarize the change profiles, version identifiers and
implementation of evolving Web API versions, we observed
little convergence and a lack of any common scheme that was
followed by the studied Web APIs.

B. RQ2 Documentation

Web API documentation is used by API users as the
primary source of information for system integration. We

analyzed the API reference documentation to understand the
contents and the presentation style of their documentation. The
documentation is commonly comprised of the following:

Web API access information - Web API documentation
includes information about the URL where the API can be
reached. The studied APIs used one of the URL, HTTP
headers, or a user interface to identify specific API versions.

Authentication - Web API documentation includes infor-
mation about authentication for their API clients. This is also
used to implement client specific rules, such as rate limits and
time zones.

API Interface definition - The interface definition is a
major part of the Web API documentation where each API
element is described with a general overview and related
business rules.

Example usage - Examples that describe different use
cases of the Web APIs are also commonly found in the docu-
mentation. The examples contain the data and HTTP headers
for sample requests and the corresponding API responses.

Some of the studied Web APIs also provide live web
browser based API explorers, where API users can make API
calls without needing to write any code. However, the studied
Web APIs that offered Live API Explorer only did so for the
latest API versions.

Web API documentation needs to include additional in-
formation compared to local APIs since HTTP is used for
communication. As an API evolves lack of documentation for
older API versions causes difficulties with the upgrade process
as found in the following comment from a Stripe API user11

“Does the full API documentation only reflect the current version
of the API? Is there a way to access the API docs for outdated
versions? ...That would be very helpful. When you are trying to
upgrade from one version to another it’s impossible to know the
implementation differences. We are currently about 4 API versions
behind and are stuck behind a version that causes a significant amount
of work on our end to support. I’d like to be able to upgrade
incrementally through each version.”

We also investigated how the API documentation is gen-
erated. We found that, Web API documents are manually
generated and updated, unlike the documentation for local
APIs which are are typically auto-generated. For WordPress
and OpenStreetMap, this is apparent from their source code,
as we found the use of manually edited wiki and Markdown
files to generate the documentation12.

In our case studies, we found one example of self-
documenting Web API as discussed by Laskey [7]. The Sales-
force Web API has API endpoints that describe all available
versions of the API that can be used to programmatically
determine the changes between versions.

To summarize, we found that Web API documents are
manually generated and widely vary in terms of both their
contents and presentation formats.

11https://groups.google.com/a/lists.stripe.com/forum/#!searchin/api-discuss/
version/api-discuss/li4PyVcweiw/NT9SFTtF-vQJ

12http://en.wikipedia.org/wiki/Markdown

249250250

C. RQ3 Communication

Communicating updates and changelogs is an important
activity for evolving Web APIs. The communication channels
used by the studied Web APIs is categorized as follows:

API home page - Web APIs announce the API changes
in their home pages. In practice, the announcements include
partial change log with the key changes that are made in a
release. These announcements are unstructured text and do not
follow any standard format even for the same API.

API response - Some Web APIs use custom HTTP
headers to indicate when a call is made to a deprecated
version. For example, Wordpress REST API sends the X-WP-
DeprecatedFunction header in response to API calls made to
deprecated endpoints.

Email - Facebook sends customized email alerts to its API
clients based on their usage of the API, similar to the idea
as presented by Zou et al. [18]. API calls are recorded to
determine if a change has an impact on users. The granularity
of the change tracking often results into false-positives, as
found in this comment by a Facebook API user 13:

...I have received the same notification for one of my apps. My
app definitely does not read or create comments on Facebook posts
or objects ... Thus Facebook’s message is not relevant to every app
they send it to. The change should only affect apps which read or
publish comments.

Newsfeed - To keep up-to-date with API changes, the Web
API clients are requested to subscribe to newsfeed, typically
delivered via mailing lists and Twitter feeds. User feedback is
also collected on these platforms. For example, at the time of
writing this paper there were 13,239 questions tagged against
google-maps-api-314.

To summarize, we found both formal and informal channels
are used to communicate Web API changes. Most messages
are primarily driven by manually edited unstructured text.

V. DISCUSSION

Our case study findings such as a lack of standard ap-
proaches to deal with Web API versioning, documentation and
change communication confirms the findings from previous
case studies. In addition to the Web API change patterns
identified by previous case studies, we have identified six
new change patterns: 1) move API elements, 2) rename API
elements, 3) behavior change, 4) post condition change, 5)
HTTP header change, and 6) error condition change. When
creating API changelog and developing related tool support,
these new change patterns can be used to communicate the
changes using a shared vocabulary. In addition to these new
change patterns, from our case study we have compiled a list of
recommendations and identified new research problems related
to RQ1-3 as discussed in the following paragraphs.

RQ1 Versioning - From our case study, we found that
when a new version is released for a Web API, the version
identifiers provide little information about backward compati-
bility and the impact of the new version on existing API users.

13http://stackoverflow.com/questions/16270446/
updating-app-for-breaking-change-non-threaded-comments

14https://stackoverflow.com/questions/tagged/google-maps-api-313.239

As a result, the API users are left to follow the free-form
newsfeeds to understand the impact for each new API version.
To improve this situation, for practitioners, we recommend
using Semantic Versioning. Semantic Versioning is a naming
technique for versioning software so that it is possible to infer
if two versions are backward compatible simply by interpreting
the version identifiers15. Future research can be carried out to
automatically generate a Semantic Versioning identifier based
on the compatibility between versions.

Our change profiles show that Web APIs often evolve as
fast as several times a month and forces API clients to upgrade.
Also, releases often combine both bug fixes and other breaking
changes, forcing the API users to adapt even though they only
need the fixes. For practitioners, we recommend that bug fixes
and breaking changes be released under separate versions to
provide more flexibility to the API clients. Future research
needs to focus on finding strategies for evolving Web APIs
so that bug fixes and other changes can be easily delivered in
separate versions and multiple versions can be made available
at the same time.

RQ2 Documentation - We observed a that largely manual
process is used for generating API documentation for most
RESTful APIs. Manually generating and maintaining such
documentation is expensive and error-prone. From our anal-
ysis, we showed that even when Web APIs are versioned,
documentation for older versions is not always available, and
the difference between two versions of a Web API cannot be
easily derived from their manually edited API references. We
also found that the changelogs and API references are two
disconnected documents even though a user needs to read both
documents while upgrading. For practitioners, we recommend
releasing Web API documentation for each available version
that is cross-linked with the changelog. Future research on
tool development can be aimed to support automated, version-
aware documentation needs of evolving Web APIs.

Live Web API explorers are used by API users to try the
APIs with little effort. However, there is a lack of reusable
approach to create Live Web API explorers and bespoke
implementation of the live API explorers are expensive since
they need additional software development. We have seen only
two of the nine studied APIs to provide a live API explorer.
Moreover, we found that live Web API explorers are only
offered for latest versions. Future research can focus on the
implementation of a reusable, version-aware live Web API
explorer for evolving Web APIs.

Self documenting Web APIs can be used to automatically
determine compatibility between two versions of a Web API.
We found Salesforce REST API to be the only example from
our case studies that implemented self documenting Web APIs.
For practitioners, we recommend providing self-documenting
Web APIs. We also identify this as an opportunity for future
research so that reusable tool support can be provided to create
self-documenting Web APIS.

RQ3 Communication - For communicating API changes,
we found a number of different channels that are used in
practice. These channels need to be compared so that the
effective channels can be used for communicating between the
API developers and users.

15http://semver.org/

250251251

In the change profiles we found the APIs change frequently
and this requires manual effort to understand the impact of
a change on a specific API user. This can be simplified
by alerting users about an API change with a customized
changelog. We also found that API related discussions are
carried out external to the API documentation sites. API users
need to search multiple disconnected information sources when
API related questions arise. For practitioners, we recommend
publishing a customized changelog for their Web APIs and
providing discussion forums with API documentation. Previ-
ous research showed a solution based on WSDL files [18].
Future research is needed to solve this problem for RESTful
Web APIs.

The open source Web APIs (Wordpress and Open-
StreetMap) had limited documentation and change log infor-
mation compared to the proprietary Web APIs. This presents an
opportunity for researchers and industry practitioners to create
reusable open source versioning and documentation tools for
evolving Web APIs.

Limitations - We recognize the number of Web APIs
studied to be a threat to the construct validity. Although our
selection involves a diverse set of Web APIs, the findings may
not be generalized for all evolving Web APIs. Our selection
criteria included different industry domains, API sizes, pop-
ularity and maturity levels to minimize selection bias. The
selected APIs represent only publicly available evolving Web
APIs because only publicly available data is used for the case
study. Future work need to be carried out to compare the ap-
plicability of our findings and related implications on privately
maintained evolving Web APIs. To mitigate the interpretation
bias of the coding scheme, the first two authors of this paper
independently annotated randomly selected snippets of change
logs from different Web APIs and reached the same conclusion
indicating the replicability of the given coding scheme.

Given the state of practice we found a wide variety of ways
to evolve Web APIs in terms of versioning, documentation
and communication of changes and no consistent way to deal
with the changes. This indicates an immature area where cost-
effective solutions that are acceptable for both API developers
and users are still missing - as discussed. Further research
needs to be carried out to validate the usefulness of the
aforementioned recommendations and solve the new research
problems as identified by this case study.

VI. CONCLUSION

Web API evolution poses challenges since a change may
break applications that are developed by different teams and
organizations. We presented a case study of Web API evolution
focusing on the challenges involved with versioning, documen-
tation and communication of API changes. Recommendations
for practitioners from our analysis include the use of semantic
versioning, separate releases for bug fixes and new features,
auto generated API documentation cross-linked with changel-
ogs and providing live API explorers. A list of open research
problems are discussed related to Web API evolution that we
want to solve in our future work.

REFERENCES

[1] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web
APIs on the world wide web,” in Proc. of European Conference on
Web Services (ECOWS). IEEE, 2010, pp. 107–114.

[2] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An
empirical study on web service evolution,” in Proc. of International
Conference on Web Services (ICWS). IEEE, 2011, pp. 49–56.

[3] D. Romano and M. Pinzger, “Analyzing the evolution of web services
using fine-grained changes,” in Proc. of International Conference on
Web Services (ICWS). IEEE, 2012, pp. 392–399.

[4] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service api
evolution affect clients?” in Proc. of International Conference on Web
Services (ICWS). IEEE, 2013, pp. 300–307.

[5] T. Espinha, A. Zaidman, and H.-G. Gross, “Web API growing pains:
Stories from client developers and their code,” in Proc. of Conference
on Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE). IEEE, 2014, pp. 84–93.

[6] P. Kaminski, M. Litoiu, and H. Müller, “A design technique for evolving
web services,” in Proc. of Conference on Center for Advanced Studies
on Collaborative Research (CASCON). IBM Corp., 2006, p. 23.

[7] K. Laskey, “Considerations for soa versioning,” in Proc. of Enterprise
Distributed Object Computing Conference (EDOC) Workshops. IEEE,
2008, pp. 333–337.

[8] M. Treiber, H.-L. Truong, and S. Dustdar, “On analyzing evolutionary
changes of web services,” in Proc. of Service-Oriented Computing
Workshops (ICSOC). Springer, 2009, pp. 284–297.

[9] L. Aversano, M. Bruno, M. Di Penta, A. Falanga, and R. Scognamiglio,
“Visualizing the evolution of web services using formal concept anal-
ysis,” in Proc. of International Workshop on Principles of Software
Evolution. IEEE, 2005, pp. 57–60.

[10] E. Wilde, “Semantically extensible schemas for web service evolution,”
in Web Services. Springer, 2004, pp. 30–45.

[11] R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola, Y. Chen, and N. Du,
“A version-aware approach for web service directory,” in Proc. of
International Conference on Web Services (ICWS). IEEE, 2007, pp.
406–413.

[12] M. B. Juric, A. Sasa, B. Brumen, and I. Rozman, “WSDL and UDDI
extensions for version support in web services,” Journal of Systems
and Software, vol. 82, no. 8, pp. 1326–1343, 2009, sI: Architectural
Decisions and Rationale.

[13] W. Zuo, A. Benharkat, and Y. Amghar, “Change-centric model for web
service evolution,” in Proc. of International Conference on Web Services
(ICWS). IEEE, 2014, pp. 712–713.

[14] J. Mangler, P. P. Beran, and E. Schikuta, “On the origin of services using
riddl for description, evolution and composition of restful services,”
in Proc. of International Conference on Cluster, Cloud and Grid
Computing (CCGrid). IEEE/ACM, 2010, pp. 505–508.

[15] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “End-to-
end versioning support for web services,” in Proc. of International
Conference on Services Computing (SCC), vol. 1. IEEE, 2008, pp.
59–66.

[16] R. Meng and C. He, “A comparison of approaches to web service
evolution,” in Proc. of International Conference on Computer Sciences
and Applications (CSA), 2013, pp. 138–141.

[17] M. Fokaefs and E. Stroulia, “Wsdarwin: Studying the evolution of web
service systems,” in Advanced Web Services, A. Bouguettaya, Q. Z.
Sheng, and F. Daniel, Eds. Springer, 2014, pp. 199–223.

[18] Z. Le Zou, R. Fang, L. Liu, Q. B. Wang, and H. Wang, “On synchroniz-
ing with web service evolution,” in Proc. of International Conference
on Web Services (ICWS). IEEE, 2008, pp. 329–336.

[19] J. Kopecky, K. Gomadam, and T. Vitvar, “hrests: An html microformat
for describing restful web services,” in Proc. of International Confer-
ence on Web Intelligence and Intelligent Agent Technology (WI-IAT),
vol. 1. IEEE, 2008, pp. 619–625.

[20] R. Verborgh, T. Steiner, D. Van Deursen, J. De Roo, R. d. Walle,
and J. Gabarr Valls, “Capturing the functionality of web services with
functional descriptions,” Multimedia Tools and Applications, vol. 64,
no. 2, pp. 365–387, 2013.

251252252

