Multi-touch Table User Interfaces for Co-located
Collaborative Software Visualization

Craig Anslow
School of Engineering and Computer Science
Victoria University of Wellington, New Zealand
craig@ecs.vuw.ac.nz

ABSTRACT

Most software visualization systems and tools are designed
from a single-user perspective and are bound to the desktop,
IDEs, and the web. Few tools are designed with sufficient
support for the social aspects of understanding software such
as collaboration, communication, and awareness. This re-
search aims at supporting co-located collaborative software
analysis using software visualization techniques and multi-
touch tables. The research will be conducted via qualitative
user experiments which will inform the design of collabora-
tive software visualization applications and further our un-
derstanding of how software developers work together with
multi-touch user interfaces.

ACM Classification: H1.2 [User/Machine Systems]: Hu-
man Factors; H5.2 [Information interfaces and presentation]:
User Interfaces. - Multi-touch user interfaces.

General terms: Experimentation, Human Factors.

Keywords: Multi-touch user interfaces, software visualiza-
tion, user evaluation.

1. INTRODUCTION

Everything we do in society ranging from web browsing to
purchasing items depends on reliable software. Maintaining
existing large and complex systems requires understanding
the underlying software. Understanding the complex struc-
ture and behaviour of large software systems is a hard task.
Software visualization aims to help understanding with tech-
niques to visualize the structure, behaviour, and evolution of
software [4]. Understanding software is often a social ac-
tivity and involves teams of software developers. The field
of CSCW explores how users behave with digital tools dur-
ing collaborative work. Few studies have explored how tools
support collaborative software understanding [12] and col-
laborative software visualization [19].

Most software visualization systems and tools are designed
from a single-user perspective and are bound to the desktop,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ITS’10, November 7-10, 2010, Saarbriicken, Germany.

Copyright 2010 ACM 978-1-60558-745-5/09/10...$10.00.

Integrated Development Environments (IDE) like Eclipse,
and the web. These design decisions do not allow users in
a co-located environment (within the same room) to easily
collaborate, communicate, or be aware of each others activi-
ties to analyse software [19]. Multi-touch user interfaces are
an interactive technique that allows single or multiple users
to collaboratively control graphical displays with more than
one finger, mouse pointer, or tangible object on various kinds
of surfaces and devices.

The goal of this research is to investigate whether multi-
touch interaction techniques are more effective for co-located
collaborative software visualization than existing single user
desktop interaction techniques. The research will be con-
ducted by user experiments to observe how users interact
and collaborate with a multi-touch software visualization ap-
plication. Users will complete a sequence of scenarios that
involve software understanding tasks using the software vi-
sualization application and a low-cost multi-touch table.

2. METHODOLOGY

A qualitative research approach will be used for the method-
ology as it is well suited for giving an overview of a situ-
ation and to examine how and why certain users behave in
certain environments [3]. The qualitative approach includes
observational studies conducted as part of the design process
and in situ interviews. These approaches have been success-
fully adopted within the CSCW community to understand the
different behaviour of users with tools during collaborative
work. These approaches have bee adopted to provide insight
into the design of tabletop displays for information visualiza-
tion [7], visual analytics [8], and collaborative design [17]. A
similar approach will be adopted for this research.

A significant barrier to exploring multi-touch table applica-
tions is the cost of the necessary hardware and software.
Commercial multi-touch tables such as Microsoft Surface,
Mitsubishi DiamondTouch, or Smart Touch Tables cost many
thousands of dollars and are well beyond the reach of con-
sumers and most research labs. Many research groups are
addressing the problem of the cost of commercial multi-
touch tables by developing their own low-cost multi-touch
tables [5, 6, 11]. For this research a rear diffused illumina-
tion multi-touch table will be built [16, 20].

Multi-touch programming toolkits will first be surveyed and
then a software visualization application for the multi-touch
table will be built using one of these toolkits. Successful soft-

ware visualization techniques for understanding the structure
of large software systems will be identified and then adopted
and modified where necessary for the application. Where
appropriate new multi-touch software visualization gestures
will be designed.

Once a multi-touch software visualization application has
been built user experiments will be conducted. The purpose
of the user experiments is to investigate whether the design
of the multi-touch interaction techniques are more effective
for co-located collaborative software visualization than ex-
isting single user interaction techniques. The design of the
multi-touch software visualization application and user ex-
periments will follow an iterative cycle using a grounded
evaluation process to validate the design decisions [9].

3. PRELIMINARY RESULTS

Different information visualization tools and toolkits have
been explored to create visualizations of software metrics [1].
Polymetric Views [13] have been identified as a success-
ful visualization technique for understanding the structure
of large software systems and have been widely adopted by
many tools including Code Crawler [14], CodeCity [22], and
Lagrein [10].

As part of identifying Polymetric Views a user study was
conducted to evaluate the effectiveness of one of the tech-
niques, a modified version of the System Hotspots View, us-
ing a large visualization wall [2]. Figure 1(a) illustrates the
large visualization wall which has 12 screens for a total dis-
play of 10240 x 4800 pixels. The study asked 14 participants
to identify key measurements and comparisons of the pack-
age and classes from the Java Standard API version 1.6 us-
ing the System Hotspots View displayed on the visualization
wall. The results indicated that users were able to effectively
use the modified System Hotspots View to explore the exam-
ple domain. However, there were issues around interacting
with the visualization wall as the images were static and hard
for the user to manipulate. The results of this study led to ex-
ploring the more interactive multi-touch interface paradigm.

A prototype rear DI multi-touch table was built by adapt-
ing an existing trolley table to create a 28 inch multi-touch
surface. The tabletop used Smm of clear acrylic glass (top,
detection layer) and 3mm of Plexiglas RP 99561 (bottom,
projection layer). The projector was a Sony VPS 1300 XGA
at 1024x768 (4:3) resolution. The image was bounced off
a mirror onto the bottom of the projection layer. A Sony
PS3 Eye camera was modified to see only infrared. Two in-
frared LED security spotlights (850 nanometers) were pur-
chased from a local electronics store. Community Core Vi-
sion (CCV)! 1.2 was used for blob detection. A MacBook
Pro operating MacOSX 10.5.8 with 4GB RAM and 2.6GHz
Intel Core 2 Duo was used for hosting the detection software
and the client applications.

A number of issues were discovered from building the pro-
totype table. The size of the touch surface was too small
for two or more users, and the projection layer caused IR
hotspots, created a poor viewing angle for users, and could

"http://ccv.nuigroup.com

n ‘;b‘@
(b) Rear DI multi-touch table.

(c) Multi-touch Polymetric Views.

Figure 1: Preliminary Results.

only operate in dark lighting conditions. The mirror caused
ghosting effects with the displayed image, the frame rate of
the camera was too slow for detecting fast movement, and
the table was not very portable.

Figure 1(b) illustrates the second and improved larger rear DI
multi-touch table with an example from the MT4J toolkit?.
The table is made out of a steel frame, with wooden slidable
panels, and sturdy wheels for portability. The touch surface
of the table is 1080mm width, 680mm depth, 1280mm di-

Zhttp://www.mt4j.org

agonal which is approximately 50 inches. The height of the
table is 930mm. The tabletop uses 3mm of clear acrylic glass
(top, detection layer) and Smm of Plexiglas RP 7D006 (bot-
tom, projection layer) which removes the IR hotspot issue,
allows a greater viewing angle, and can be used in natural
light. A Sanyo PLC WXL46 WXGA at 1280x768 (16:10)
resolution short throw projector is used, which removes the
mirror ghosting issue. The projector is mounted to a draw
which helps with portability as the draw slides out when in
operation and closed when transporting. The same Sony PS3
camera is used but with a wide angle lens mounted to cover
the larger touch surface. Eight infrared LED bars from Envi-
ronmental Lights and four LED security spotlights are used.
CCV 1.3 is used which allows higher frame rates and a Dell
Optiplex 780 operating Windows Vista with 4GB RAM and
2.7GHz Intel Core 2 Duo for both client and server.

Figure 1(c) shows a multi-touch System Hotspots View for
the JGraph application (Java graph application) that was im-
plemented using the TUIOZones library?, a Processing li-
brary*. The figure shows just two packages from JGraph with
about 10 classes in each package. Users can drag and resize
packages and select classes to see their inner details.

4. CONTRIBUTIONS

The first contribution will be a multi-touch software visu-
alization tool called SourceVis that supports collaborative
software visualization on the multi-touch table. SourceVis
will display metrics-based visualizations of the Java software
from the Qualitas Corpus [21] which is a collection of Java
programs to be used for empirical software engineering. The
initial visualization technique for SourceVis will use modi-
fied versions of all the different Polymetric Views [13].

Each of the different Polymetric Views will be implemented
following an iterative cycle beginning with the view that
gives an overview of a system and progressing to the views
that give more finer details about a system. The first view will
be the System Hotspots View as that focuses on packages.
The System Complexity view will come next as that shows
the different relationships between packages and classes. The
Class Blueprint will then follow as that is concerned with
looking at the inner details of classes. Finally, views con-
cerned with inheritance, methods, and attributes will be im-
plemented.

SourceVis will support many of the user defined set of ges-
tures [23]. Some of these gestures include tap for select,
dragging an object with one finger, rotating and resizing
an object with two fingers, manipulating the background by
zooming in and out and scrolling up and down, and group-
ing objects by drawing a shape around them with one fin-
ger. During the iterative development cycle domain specific
gestures for software visualization will become apparent and
where necessary these gestures will be implemented within
the visualizations. Gestures will be required to switch be-
tween different visualizations and allow users to have inde-
pendent views of the software being visualized.

In addition to the Polymetric Views the visualizations will be

3http://jlyst.com/tz/
“http://processing.org

augmented with the source code from the applications and
associated Javadoc in different views to provide comprehen-
sive documentation. For example a user will be able to select
a package or class in the visualization and the source code or
associated Javadoc page will be displayed in another view on
the multi-touch user interface.

The main (second) contribution of the research will be user
experiments conducted with SourceVis to collect qualita-
tive data. The user experiment design will involve within-
subjects testing [15]. Each experiment will have up to three
users working as a group and they will get to use all the tools
that are being tested. The tools include SourceVis and some
of the single user tools that implement the Polymetric Views
as cited earlier. The other software visualization tools will
be setups on a desktop computer. Each group will start with
either SourceVis or one of the tools that implement Polymet-
ric Views and then switch around to use the other tools. The
purpose for doing a within-subjects test is to see how the dif-
ferent technology influences the groups behaviour, whether
their behaviour is different, and how the technology leads to
different kinds of discoveries they can make.

A representative sample of applications from the Qualitas
Corpus will be selected. Different Java applications will be
used with each different tool. This is to avoid the bias of
users becoming experts from learning the structure of one
Java application with a tool and then using the knowledge
gained about that application with the next tool.

The tasks for each experiment will involve software main-
tenance scenarios where participants will answer questions
about the structure of the Java applications [12, 18]. Some
example questions could include: “what are the largest pack-
ages and classes in the application?”, “what class has grown
the most between the different versions of the application?”,
and “what classes are coupled the most with other classes?”

Participants in the experiments will be professional and stu-
dent software developers who will be recruited from local
mailing lists and from within the department. With each par-
ticipant’s consent their actions will be recorded with screen
capture software and video recording. Participants will be
asked to use the think aloud protocol which focuses on users
talking about their actions, perceptions, and expectations re-
garding the interface and functionality [15]. Getting the users
to talk about their actions and thoughts will help to gain in-
sight into how each user views the computer system, identifi-
cation of their misconceptions, and what parts of the interface
cause the most problems.

5. CONCLUSIONS

The goal of this research is to investigate whether multi-
touch interaction techniques are more effective for co-located
collaborative software visualization than existing single user
interaction techniques to understand the complex structure
of large software systems. The preliminary results of the re-
search have identified software visualization techniques for
understanding the structure of large systems and conducted
a user study of a Polymetric View. Two multi-touch tables
have been built, multi-touch toolkits have been explored,
and some multi-touch software visualization prototypes have

been implemented. The contributions of this research in-
cludes implementing a multi-touch software visualization ap-
plication and conducting user experiments to observe the in-
teraction behaviour of software developers with the multi-
touch table and application. The results will inform the de-
sign of collaborative software visualization applications and
further our understanding of how software developers work
together with multi-touch user interfaces.

ACKNOWLEDGMENTS

This work is supported by the New Zealand Foundation for
Research Science and Technology for the Software Process
and Product Improvement project, and a Telstra Clear schol-
arship. Thanks to Stuart Marshall, James Noble, Robert
Biddle, and Ewan Tempero for feedback. Thanks to Roger
Cliffe, Jordan Hochenbaum, and Owen Vallis for assistance.

REFERENCES
1. Craig Anslow, James Noble, Stuart Marshall, and Ewan
Tempero. Towards visual software analytics. In Pro-

ceedings of the Australasian Computing Doctoral Con-
sortium (ACDC), 2009.

2. Craig Anslow, James Noble, Stuart Marshall, Ewan
Tempero, and Robert Biddle. User evaluation of poly-
metric views using a large visualization wall. In
Proc. of Symposium on Software Visualization (Soft-
Vis). ACM, 2010.

3. John W. Creswell. Qualitative Inquiry and Research
Design Choosing Among Five Traditions. Sage Publi-
cations, 1998.

4. Stephan Diehl. Software Visualization: Visualizing
the Structure, Behaviour, and Evolution of Software.
Springer Verlag, 2007.

5. Jefferson Han. Low-cost multi-touch sensing through
frustrated total internal reflection. In Proc. of UIST.
ACM, 2005.

6. Jordan Hochenbaum and Owen Vallis. Bricktable: A
musical tangible multi-touch interface. In Proc. of
Berlin Open Conference, 2009.

7. Petra Isenberg. Collaborative Information Visualiza-
tion in Co-located Environments. PhD thesis, Univer-
sity of Calgary, 2009.

8. Petra Isenberg, Danyel Fisher, Meredith Ringel Mor-
ris, Kori Inkpen, and Mary Czerwinski. An ex-
ploratory study of co-located collaborative visual ana-
lytics around a tabletop display. In Proc. of the Sym-
posium on Visual Analytics Science and Technology
(VAST). IEEE, 2010.

9. Petra Isenberg, Torre Zuk, Christopher Collins, and
Sheelagh Carpendale. Grounded evaluation of infor-
mation visualizations. In Proc. of the Workshop on BE-
yond time and errors: novel evaLuation methods for
Information Visualization (BELIV). ACM, 2008.

10. Andrejs Jermakovics, Raimund Moser, Alberto Sillitti,
and Giancarlo Succi. Visualizing software evolution
with lagrein. In OOPSLA Companion. ACM, 2008.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Rilla Khaled, Pippin Barr, Hannah Johnston, and
Robert Biddle. Let’s clean up this mess: exploring
multi-touch collaborative play. In CHI Extended Ab-
stracts, 2009.

Andrew J. Ko, Robert DeLine, and Gina Venolia. In-
formation needs in collocated software development
teams. In Proc. of ICSE. IEEE, 2007.

Michele Lanza and Stéphane Ducasse. Polymetric
views-a lightweight visual approach to reverse engi-
neering. IEEE Transactions on Software Engineering,
29(9):782-795, 2003.

Michele Lanza and Radu Marinescu. Object-Oriented
Metrics in Practice. Springer Verlag, 2006.

Jakon Nielsen. Usability Engineering. Morgan Kauf-
mann, 1994.

Johannes Schning, Peter Brandl, Florian Daiber, Flo-
rian Echtler, Otmar Hilliges, Jonathan Hook, Marku
Lchtefeld, Nima Motamedi, Laurence Muller, Patrick
Olivier, Tim Roth, and Ulrich von Zadow. Multi-touch
surfaces: A technical guide. Technical Report TUM-
10833, University of Munster, 2008.

Stacey D. Scott, M. Sheelagh T., Carpendale, and
Kori M. Inkpen. Territoriality in collaborative tabletop
workspaces. In Proc. of CSCW. ACM, 2004.

Jonathan Sillito, Gail C. Murphy, and Kris De Volder.
Questions programmers ask during software evolution
tasks. In Proc. International Symposium on Founda-
tions of Software Engineering (FSE). ACM, 2006.

Margaret-Anne D. Storey, Chris Bennett, R. Ian Bull,
and Daniel M. German. Remixing visualization to sup-
port collaboration in software maintenance. In Proc.
of International Conference on Software Maintenance
(ICSM). IEEE, 2008.

Alex Teiche, Ashish Kumar Rai, Chris Yanc, Chris-
tian Moore, Donovan Solms, Grkem Cetin, Justin Rig-
gio, Nolan Ramseyer, Paul D’Intino, Laurence Muller,
Ramsin Khoshabeh, Rishi Bedi, Mohammad Taha Bin-
tahir, Thomas Hansen, Tim Roth, and Seth Sandler.
Multi-touch technologies. http://nuigroup.com/, 2009.

Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han,
Jing Li, Markus Lumpe, Hayden Melton, and James
Noble. Qualitas corpus: A curated collection of Java
code for empirical studies. In Proc. of Asia Pacific Soft-
ware Engineering Conference (APSEC), 2010.

Richard Wettel and Michele Lanza. Visualizing soft-
ware systems as cities. In Proc. of the Workshop on
Visualizing Software for Understanding and Analysis
(VISSOFT). IEEE, 2007.

Jacob O. Wobbrock, Meredith Ringel Morris, and An-
drew D. Wilson. User-defined gestures for surface com-
puting. In Proc. of CHI. ACM, 2009.

