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Abstract. For each proper minor-closed subclassM of the GF(q2)-
representable matroids containing all GF(q)-representable matroids,
we give, for all large r, a tight upper bound on the number of
points in a rank-r matroid inM, and give a rank-r matroid inM
for which equality holds. As a consequence, we give a tight upper
bound on the number of points in a GF(q2)-representable, rank-r
matroid of large rank with no PG(k, q2)-minor.

1. Introduction

If M is a class of matroids containing at least one matroid of each
nonnegative rank, then the growth rate function hM ofM is the func-
tion whose value hM(n) at a nonnegative integer n is defined to be the
maximum of |M |, where M is a simple matroid in M with r(M) ≤ n,
or to be ∞ if no such maximum exists.

For each nonnegative integer k and prime power q, let Pq,k de-
note the set of matroids of the form M/C, where M is a GF(q2)-
representable matroid, C is a rank-k independent set in M , and M \C
is a projective geometry over GF(q). Equivalently, Pq,k is the set of
GF(q2)-representable, k-element projections of projective geometries
over GF(q). We prove the following:

Theorem 1.1. Let q be a prime power. If M is a proper minor-closed
subclass of the GF(q2)-representable matroids containing all GF(q)-
representable matroids, then there is an integer k ≥ 0 such that Pq,k ⊆
M, and hM(n) = hPq,k

(n) for all large n.

We also characterise the densest matroids in Pq,k, which will allow
us to give an explicit expression for hM(n):

Theorem 1.2. Let q be a prime power. If M is a proper minor-closed
subclass of the GF(q2)-representable matroids containing all GF(q)-
representable matroids, then there exist nonnegative integers kM and
nM so that

hM(n) =
qn+kM − 1

q − 1
− q q

2kM − 1

q2 − 1
1
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for all n ≥ nM.

The qualitative behaviour of growth rate functions in minor-closed
classes is elegantly summarised by the ‘Growth Rate Theorem’, a com-
bination of results of Geelen, Kabell, Kung and Whittle, proved in [5].
All of our results treat classes of matroids satisfying condition (3) of
this theorem in the GF(q2)-representable case.

Theorem 1.3 (Growth Rate Theorem). If M is a minor-closed class
of matroids, then either

(1) There exists c ∈ R so that hM(n) ≤ cn for all n ≥ 0, or
(2) M contains all graphic matroids, and there exists c ∈ R so that

hM(n) ≤ cn2 for all n ≥ 0, or
(3) There is a prime power q, and c ∈ R, so that M contains all

GF(q)-representable matroids and hM(n) ≤ cqn for all n ≥ 0.
(4) M contains all simple rank-2 matroids, and hM(n) =∞ for all

n ≥ 2.

Another consequence of the characterisation of the densest matroids
in Pq,k is a bound on the number of points in a GF(q2)-representable
matroid with no PG(k, q2)-minor:

Theorem 1.4. Let q be a prime power, and k ≥ 0 be an integer. There
is an integer nk,q ≥ 0 so that if M is a simple GF(q2)-representable
matroid of rank at least nk,q with no PG(k + 1, q2)-minor, then

|M | ≤ qr(M)+k − 1

q − 1
− q q

2k − 1

q2 − 1
.

Moreover, this bound is the best possible.

The theory we establish imposes severe limitations on the extremal
behaviour of exponentially dense classes of GF(q2)-representable ma-
troids, and thus also gives some interesting corollaries regarding growth
rate functions of naturally occuring classes of this sort.

Theorem 1.5. Let q be a prime power. There exists an integer nq ≥ 0
so that if j ≥ 3 is an odd integer, and M is the class of matroids
representable over both GF(q2) and GF(qj), then

hM(n) =
qn+1 − 1

q − 1
− q

for all n ≥ nq.

This second result gives an apparently uncountably large collection
of minor-closed classes of matroids, all arising naturally from repre-
sentability, whose growth rate functions together give a finite set.
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Theorem 1.6. Let q be a prime power. There is a finite set Hq of
integer-valued functions satisfying the following: let F be a set of fields
such that GF(q2) ∈ F , and all fields in F have a proper GF(q)-subfield,
but not all fields in F have a GF(q2)-subfield. If M is the class of
matroids representable over all fields in F , then hM ∈ Hq.

This suggests the following ambitious conjecture, which states that
the collection itself is not uncountable, but finite.

Conjecture 1.7. Let q be a prime power. There is a finite set Mq of
minor-closed classes of matroids satisfying the following: let F be a set
of fields such that GF(q2) ∈ F , all fields in F have a proper GF(q)-
subfield, and not all fields in F have a GF(q2)-subfield. If M is the
class of matroids representable over all fields in F , then M∈Mq.

All of our main results apply only in the GF(q2)-representable set-
ting. However, adaptations of our techniques should apply more gen-
erally; we believe that growth rate functions should have similar be-
haviour for all exponentially dense minor-closed classes of matroids;
this next conjecture would substantially refine Theorem 1.3.

Conjecture 1.8. If M is a minor-closed class of matroids satisfying
condition (3) of Theorem 1.3 for some prime power q, then there exists

an integer k ≥ 0 and an integer d with 0 ≤ d ≤ q2k−1
q2−1 such that

hM(n) =
qn+k − 1

q − 1
− qd

for all large n.

This conjecture is motivated by the belief that the densest rank-
n matroids in a class of base-q-exponential density should be small
projections of projective geometries over GF(q); the conjectured value
for hM(n) is the number of points in a rank-n matroid of this sort.

The subtractive constant −qd can take a range of values. This is a
result of the fact that there are many different ways to take k-element
projections of PG(n, q), giving rise to minor-closed classes with different
growth rate functions. The largest and smallest possible values of d are
of particular interest, and we briefly discuss them here.

If Mn is a matroid, and e ∈ E(Mn), freely placed in the flat E(Mn),
satisfies Mn \ e ∼= PG(n, q), then Mn/e is the truncation of PG(n, q).
This is a special case of a projection, and for n ≥ 2 the simple rank-n

matroid Mn/e satisfies |Mn/e| = qn+1−1
q−1 . Closing the set {Mn : n ≥ 0}

under minors gives a class M of matroids with hM(n) = qn+1−1
q−1 for all

n ≥ 2. This is an example of a class where d takes the value zero.
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A class where d = q2k−1
q2−1 is the class Pq,k of Theorem 1.1. In fact, the

theorem essentially states that ifM contains only GF(q2)-representable
matroids, then d must take this value. This is a consequence of the
fact that there is, up to isomorphism, a unique way to take a GF(q2)-
representable, k-element projection of a projective geometry over GF(q)
that is not also a (k − 1)-element projection of such a geometry. For
this reason, the GF(q2)-representable case we are considering is qual-
itatively different from the general case, and some techniques we use
will not be applicable to any proof of Conjecture 1.8.

2. Preliminaries

We assume familiarity with matroid theory, using as a base the no-
tation of Oxley [7]. Additionally, if M is a matroid, we will write |M |
to denote |E(M)|, and ε(M) to denote | si(M)|, with εM(A) denoting
ε(M |A). Thus, hM(n) = max{ε(M) : M ∈ M, r(M) ≤ n}. A point is
a rank-1 flat, and a line is a rank-2 flat. If ` ≥ 1 is an integer, then
U(`) denotes the class of matroids with no U2,`+2-minor.

The following beautiful theorem was proved by Kung in [6]:

Theorem 2.1. If ` ≥ 2 is an integer and M ∈ U(`), then

ε(M) ≤ `r(M) − 1

`− 1
.

This next theorem was proved by Geelen and Kabell in [1], but not
in this explicit form:

Theorem 2.2. There is a real-valued function f2.2(β, `, n) so that if
` ≥ 2 and n ≥ 1 are integers, β > 1 is a real number, and M ∈ U(`)
satisfies ε(M) ≥ f2.2(β, `, n)βr(M), then M has a PG(n − 1, q)-minor
for some prime power q > β.

Proof. If β ≥ 2, then let q′ = bβc, and f2.2(β, `, n) be the integer α,
depending on q′, n and `, given by Theorem 2.1 of [1]. If β < 2, then
let c = f2.2(β, `, n) be an integer large enough such that cβn ≥ anm for
all n ≥ 2, where a and m are the integers given by Theorem 2.2 of [1].
The result follows from one of these two theorems. �

A very similar lemma to the following was proved in [2] (see [2],
Lemma 2.3). The proof we give is only different in that it deals with a
larger range of values for µ.

Lemma 2.3. Let λ, µ be real numbers with λ > 0 and µ > 1. Let
k ≥ 0 and ` ≥ 2 be integers, and let A and B be sets of elements in
a matroid M ∈ U(`) with rM(B) ≤ k < r(M) and εM(A) > λµrM (A).
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Then there is a set A′ ⊆ A that is skew to B and satisfies εM(A′) >

λ
(
µ−1
`

)k
µrM (A′).

Proof. We will prove the result by induction on k; our base case is when
k = 1, in which we have r(M) ≥ 2 and may assume that rM(B) = 1.
Let e ∈ B be a nonloop. We may assume that A is minimal satisfying
ε(M |A) > λµrM (A), and that E(M) = A ∪ {e}. Let W be a flat of
M with e /∈ W , so that rM(W ) = r(M) − 2. Let H0, . . . , Hm be the
hyperplanes of M containing W , where e ∈ H0. The sets {Hi −W :
0 ≤ i ≤ m} form a partition of E(M)−W . Also, si(M/W ) ∼= U2,m+1,
so m ≤ `.

Minimality of A gives εM(H0 ∩ A) ≤ λµr(M)−1, so

εM(A−H0) > λ(µ− 1)µr(M)−1.

The union of the hyperplanes H1, . . . , Hm contains A − H0, so by a
majority argument, there is some 1 ≤ i ≤ m such that

εM(A ∩Hi) ≥ m−1εM(A−H0) > λ

(
µ− 1

`

)
µr(M)−1.

Set A′ = A ∩Hi. Now A′ is skew to e and therefore to B, and A′ has
the size we want, completing the base case.

Now, suppose that the result holds for some k ≥ 1. Let A,B ⊆ E(M)
satisfy rM(B) ≤ k + 1 and εM(A) > λµrM (A). Let e ∈ B be a nonloop.
By the base case, there is a set A′ ⊆ A, skew to {e}, and satisfying

εM/e(A
′) = εM(A′) > λ

(
`

µ−1

)
µrM (A′). Now rM/e(B − {e}) ≤ k, and

the result follows by applying the inductive hypothesis to B−{e} and
A′ in M/e. �

3. Unique Representations

We make a diversion. Our goal in this section is to establish that if
A is a matrix with entries in a finite field F, then a submatrix of A rep-
resenting a projective geometry over a subfield of F can be assumed to
only have entries in this subfield. Our main result Theorem 3.4 is likely
equivalent to statements already well-known by projective geometers.

If q is a prime power, we will write GF(q) for some canonical field
with q elements. If F has GF(q) as a subfield, M is an F-representable
matroid, and R is a restriction of M , then R is a GF(q)-represented re-
striction of M if there is an F-representation A of M such that A[E(R)]
has entries only in GF(q). We will consider the case when F = GF(q2).

Two matrices A and B with entries in a field F are projectively equiv-
alent if there is a sequence of elementary row operations and column
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scalings of A that gives B. We say that B is obtained by applying a
projective transformation to A. If this is the case, then M(A) = M(B).

Theorem 3.4 is closely related to the following:

Theorem 3.1 (Fundamental Theorem of Projective Geometry). Let
q be a prime power, and n ≥ 1 be an integer. The matroid PG(n, q)
is uniquely GF(q)-representable, up to projective equivalence and field
automorphisms.

We require two well-known results. The first is found in [3]; we only
invoke it in the simple case where M is the cycle matroid of K4.

Theorem 3.2. If M is a binary matroid, and F is a field, then M has
at most one F-representation, up to projective equivalence.

The second follows easily from the fact that the degree q polynomial
xq − x has at most q zeroes over F:

Theorem 3.3 (Subfield Criterion). Let q be a prime power. If F is a
field with a GF(q)-subfield, then this subfield is unique.

Theorem 3.4. If q is a prime power, n ≥ 3 is an integer, and F is an
extension field of GF(q), then each representation of PG(n− 1, q) over
F is projectively equivalent to a representation over GF(q).

Proof. Let M ∼= PG(n− 1, q), and A be an F-representation of M . We
will show that there is a GF(q)-subfield F of F, so that for any pair of
distinct columns u and v of A, and ω ∈ F , the vector u+ωv is parallel
to a column of A. As this property is preserved by row operations and
column scalings, we will freely apply projective transformations to A.

Let {x1, x2, x3} be an independent set of size 3 in M , and e1, e2, e3
be the first three vectors in the standard basis of Fn. The matrix B
with column set {e1, e2, e3, e1−e2, e2−e3, e3−e1} is a F-representation
of the cycle matroid of K4, and M has an M(K4)-restriction with basis
{x1, x2, x3}, so we may assume by Theorem 3.2 that Axi = ei for each
i ∈ {1, 2, 3}, and moreover that all columns of B are columns of A.

Let Z be the set of vectors in Fn that are parallel to a column of A.
Since M ∼= PG(n− 1, q) is modular, if L1 and L2 are rank-2 subspaces
of Fn, each spanned by a pair of vectors in Z, and w ∈ L1 ∩ L2, then
w ∈ Z. For simplicity, we will refer to such subspaces as lines, and
write cl(v1, v2) for the subspace spanned by vectors v1, v2 ∈ Fn.

For (i, j) ∈ {(1, 2), (2, 3), (3, 1)}, let Lij = cl(ei, ej), and Fij = {ω ∈
F : ei +ωej ∈ Z}. Since all lines in PG(n− 1, q) have q+ 1 points, and
the elements of Fij correspond to points other than uj on the line Lij,
we have |Fij| = q, and since the columns of B are columns of A, the
sets Fij contain 0 and −1.
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3.4.1. F12 = F23 = F31, and this set is closed under F-inverses of
nonzero elements.

Proof of claim: Let α ∈ F12−{0}. The lines cl(e1+αe2, e3−e1) and L23

both contain e2 +α−1e3, so α−1 ∈ F23. By applying the same argument
twice more, we get α = (α−1)−1 ∈ F31, and α−1 ∈ F12. Therefore
F12 − {0} = {α−1 : α ∈ F12 − {0}}, and the inclusions established give
F12 ⊇ F23 ⊇ F31 ⊇ F12, giving the claim. �

Let F = F12 = F23 = F31. This second claim, together with the first
claim and the fact that |F | > 1, implies that F is a subfield of F.

3.4.2. F is closed under subtraction and multiplication in F.

Proof of claim: Let α, β ∈ F . To see closure under multiplication,
assume that αβ 6= 0, and observe that α ∈ F12 and β ∈ F23, so
e1 + αe2 and e2 + βe3 are both in Z. The lines cl(e1, e2 + βe3) and
cl(e1 + αe2, e3) both contain e1 + αe2 + αβe3, so this vector is in Z.
The lines cl(e1 + αe2 + αβe3, e2) and L31 both contain e3 + (αβ)−1e1,
so αβ ∈ F by the first claim.

It remains to show that α − β ∈ F ; we may assume that α 6= β.
We have α, β ∈ F12, so e1 + αe2 and e1 + βe2 are both in Z. The lines
cl(e1+αe2, e2−e3) and cl(e1+βe2, e3) both contain e1+βe2+(α−β)e3,
and cl(e2, e1 + βe2 + (α− β)e3) and L31 both contain e3 + (α− β)−1e1,
so (α− β)−1 ∈ F31, giving α− β ∈ F by the first claim. �

We know that |F | = q, so Theorem 3.3 implies that F = GF(q).
We have therefore shown that for all ω ∈ GF(q) and distinct elements
x1, x2 ∈ E(M), the vector Ax1 +ωAx2 is parallel to a column of A. We
may assume that all columns of In are columns of A, so by repeated
applications of this fact, it follows that all nonzero vectors in Fn are
parallel to a column of A, which implies the theorem. �

This theorem has an important immediate corollary:

Corollary 3.5. If q is a prime power, M is a GF(q2)-representable
matroid, and R is a PG(r(M)−1, q)-restriction of M , then R is GF(q)-
represented in M .

Lemma 3.6. Let q be a prime power, M be a GF(q2)-representable
matroid, and let R be a PG(r(M)−1, q)-restriction of M . If e ∈ E(M)
is a nonloop, and e is not parallel or equal to a point of R, then there
is a unique line L of R so that e ∈ clM(L).

Proof. We may assume that M is simple. By Corollary 3.5, there is
a GF(q2)-representation A of M so that A[E(R)] has entries only in
GF(q). Let e ∈ E(M \ E(R)) be a nonloop, and ω ∈ GF(q2)−GF(q).



8 PETER NELSON

Since {1, ω} is a basis for GF(q2) over GF(q), there are vectors v, v′ ∈
GF(q)n so that Ae = v + ωv′. Since R ∼= PG(r(M) − 1, q), the
vectors u and v are parallel to columns Af and Af ′ of A[E(R)], so
e ∈ clM({f, f ′}), which is a line of R. By modularity of the lines of R,
and the fact that e is not a point of R, this line is unique.

�

Finally, we prove a lemma asserting that a large collection of ‘over-
long’ lines in a matroid with a spanning projective geometry guarantees
a large number of points outside that geometry:

Lemma 3.7. Let q be a prime power, d ≥ 0 be an integer, M be a
GF(q2)-representable matroid, and R be a PG(r(M)− 1, q)-restriction
of M . If L is a set of lines of M so that |L| > q+ 1 for all L ∈ L, and
|L| >

(
d+1
2

)
, then ε(M) > ε(R) + d.

Proof. We may assume that M is simple; it therefore suffices to show
that |M \ E(R)| > d. Clearly L− E(R) is nonempty for every L ∈ L;
for each L ∈ L, let eL ∈ L−E(R). Let L0 = {L ∈ L : |L∩E(R)| > 1}.
Since L∩E(R) is a line of R for each L ∈ L0, Lemma 3.6 implies that
the points eL : L ∈ L0 are distinct, so ε(M) ≥ ε(R)+|L0|. We may thus
assume that |L0| ≤ d, and therefore that |L − L0| >

(
d+1
2

)
− d =

(
d
2

)
.

Now, each L ∈ L−L0 contains at least two points ofM\E(R), and no
two lines in L−L0 contain two common points of M\E(R), so it follows

that |L − L0| ≤
(|M\E(R)|

2

)
, and therefore that |M \ E(R)| > d. �

4. The Extremal Matroids

In this section, we define and investigate the a class of matroids
which we will later show are the densest matroids in Pq,k.

Definition 4.1. Let q be a prime power, and k and n be integers with
0 ≤ k ≤ n. Define a set Z(n− 1, q, k) ⊆ (GF(q2))n by

Z(n− 1, q, k) =
{

(x y) : x ∈ (GF(q2))k, y ∈ (GF(q))n−k
}
.

Let A be a matrix whose set of columns is Z(n − 1, q, k). We denote

by PG(k)(n− 1, q) any matroid isomorphic to si(M(A)).

The matroid PG(k)(n − 1, q) is a rank-n projective geometry over
GF(q), extended by some points from a projective geometry over GF(q2).

It is clear that PG(k)(n − 1, q) has rank n. For any integers 0 ≤ k ≤
n ≤ n′, the matroid PG(k)(n′ − 1, q) has a PG(k)(n− 1, q)-restriction.

The number of points in PG(k)(n− 1, q) is simple to determine. We
will use this lemma freely:
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Lemma 4.2. If q is a prime power, and k ≥ 0 and n ≥ k are integers,
then

|PG(k)(n− 1, q)| = qn+k − 1

q − 1
− q

(
q2k − 1

q2 − 1

)
.

Proof. Let Z = Z(n − 1, q, k) be the set and A be the matrix in Defi-
nition 4.1. Let

Z1 = {(x y) ∈ Z : x ∈ (GF(q2))k, y ∈ (GF(q))n−k − {0}},
and

Z2 = {(x 0) ∈ Z : x ∈ (GF(q2))k − {0}}.
So Z = Z1∪Z2∪{0}. Each z ∈ Z1 is parallel to exactly q− 1 elements
of Z: those of the form αz : α ∈ GF(q)−{0}. Each z ∈ Z2 is parallel to
exactly q2− 1 elements of Z: those of the form βz : β ∈ GF(q2)−{0}.
We have

|PG(k)(n− 1, q)| = ε(M(A))

=
|Z1|
q − 1

+
|Z2|
q2 − 1

=
(q2)k(qn−k − 1)

q − 1
+
q2k − 1

q2 − 1
,

and the result follows by a calculation. �

Lemma 4.3. If k ≥ 0 and n > k are integers, then PG(k)(n−1, q) has
a PG(k, q2)-restriction.

Proof. Since, PG(k)(n, q) has an PG(k)(k, q)-restriction, it suffices to

show that PG(k)(k, q) ∼= PG(k, q2). A representation of PG(k, q2) can
easily be given in which all entries in the (k+ 1)th row are 0 or 1, and
hence in GF(q). Such a representation is contained in a representation

of PG(k)(k, q). Moreover, PG(k, q2) clearly contains a representation of

PG(k)(k, q), so the required isomorphism is immediate. �

This is the largest projective geometry over GF(q2) that we can find

as a minor of PG(k)(n− 1, q):

Lemma 4.4. Let q be a prime power, and 0 ≤ k ≤ n be integers. The
matroid PG(k)(n− 1, q) has no PG(k + 1, q2)-minor.

Proof. We may assume that n > k+1. Let M ∼= PG(k)(n−1, q), and let
A be the matrix whose columns are the vectors in Z(n−1, q, k), so M =
si(M(A)). The first k standard basis vectors of GF(q2)n are columns of
A, and contracting these columns gives a GF(q)-representable matroid.
Therefore, for any contraction-minor M ′ of M , there is a set C ⊆
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E(M ′) of rank at most k such that M ′/C is GF(q)-representable. Any
matroid with a PG(k+ 1, q2)-minor does not have this property, giving
the lemma. �

It is straightforward to see over which fields the matroids PG(k)(n−
1, q) are representable:

Lemma 4.5. Let q be a prime power, and n ≥ 3 be an integer. If
F is a field with a proper GF(q)-subfield, then PG(1)(n − 1, q) is F-

representable, and if F has no GF(q2)-subfield, then PG(2)(n− 1, q) is
not F-representable.

Proof. Let ω ∈ F−GF(q). Let AF,ω be a matrix, containing as columns
all vectors in Fn whose first entry lies in the set {αω+β : α, β ∈ GF(q)},
and whose other entries lie in GF(q). It is straightforward to check that
M(AF,ω) does not depend on F or ω. We may therefore assume that
F = GF(q2). The set of columns of AGF(q2),ω is the set Z(n − 1, q, 1)
from Definition 4.1, giving the first part of the lemma.

Lemma 4.3 implies that the matroid PG(2)(n− 1, q) has a PG(2, q2)-
restriction. This matroid admits no representation over a field without
a GF(q2)-subfield. Therefore, if F has no such subfield, PG(2)(n− 1, q)
is not F-representable. �

5. Finding Extremal Matroids

We give in this section a means to construct the extremal matroids
of the previous section.

If L is a set of lines in a matroid M , then L is a matching in M if
rM
(⋃

L∈L L
)

= 2|L|, or equivalently if the lines in L are mutually skew
in M . We define a new property in terms of a matching in a spanning
PG(n− 1, q)-restriction.

Definition 5.1. Let q be a prime power, M be a GF(q2)-representable
matroid, and R be a PG(r(M)−1, q)-restriction of M . By Lemma 3.6,
each nonloop of e of M is either parallel or equal to a point of R, or
there is a unique line Le of R such that e ∈ clM(Le). If X ⊆ E(M)
is an independent set of M containing no point parallel or equal to a
point of R, and {Le : e ∈ X} is an |X|-matching in R, then we say
that X is R-unstable.

Lemma 5.2. Let q be a prime power, and let k ≥ 0, n ≥ k, and
n′ ≥ n + k be integers. If a rank-n′, GF(q2)-representable matroid M
has a PG(n′− 1, q)-restriction R, and an R-unstable set of size k, then

M has a PG(k)(n− 1, q)-minor.
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Proof. Let X = {e1, . . . , ek} be an R-unstable set of size k. We show

that si((M/X)|E(R)) ∼= PG(k)(n′ − 1− k, q); the result will follow, as
n′ − k ≥ n.

We may assume that E(M) = X ∪ E(R). For each 1 ≤ i ≤ k, let
{fi, f ′i} be a basis in R of the unique line Li so that ei ∈ clM(Li). Since
{f1, . . . , fk, f ′1, . . . , f ′k} is independent in R, by Corollary 3.5 there is a
GF(q2)-representation of M of the form

A =


X f1···fk f ′1···f ′k E(R)−{f1,...,fk,f ′1,...,f ′k}

D Ik 0
Ik 0 Ik Q
0 0 0

,
where D is a k × k diagonal matrix whose diagonal entries are con-
tained in GF(q2) − GF(q), and M(A[E(R)]) ∼= PG(n′ − 1, q), with all
entries of Q in GF(q). Let P1, P2 and P3 be the matrices given by
restricting A[E(R)] respectively to its first k rows, its next k rows, and
its remaining n′ − 2k rows. Now

A =


X

D P1

Ik P2

0 P3

,
and we have

M/X = M

(
P1 −DP2

P3

)
.

For each diagonal entry ω of D, the field GF(q2) is a vector space
over GF(q) with basis {1, ω}. Since A[E(R)] is a representation of
PG(n′−1, q), it follows from the definition of D that the set of columns
of
(
P1−DP2

P3

)
is precisely the set Z(n′ − k − 1, q, k) from Definition 4.1.

Therefore si(M/X) ∼= PG(k)(n′ − k − 1, q), and the result follows. �

We now prove the important fact asserted at the beginning of the
last section: the matroids PG(k)(n− 1, q) are the densest in Pq,k.

Lemma 5.3. If q is a prime power, and n and k are integers satisfying
0 ≤ k < n, then every simple rank-n matroid in Pq,k is a restriction of

PG(k)(n− 1, q), and hPq,k
(n) = |PG(k)(n− 1, q)|.

Proof. By Lemma 5.2 applied when n′ = n+k, the fact that PG(k)(n−
1, q) ∈ Pq,k is clear; therefore it suffices to show that every simple
matroid M ∈ Pq,k has a GF(q2)-representation in which all entries
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outside the first k rows are in GF(q), as such a matroid is a restriction

of PG(k)(r(M)− 1, q).
Let M ∈ Pq,k; thus, let M ′ be a GF(q2)-representable matroid, and

C = {e1, . . . , ek} be a rank-k independent set in M ′ with M ′/C =
M and M ′ \ C ∼= PG(r(M ′ \ C) − 1, q). By Lemma 3.5, there is a
representation A of M ′ in which all entries of A[E(M)] are in GF(q).

Since GF(q2) is a dimension-2 vector space over GF(q), we may apply
a sequence of elementary row operations, scaling rows and columns
only by elements of GF(q), to A[C] so that all nonzero entries are in
the first 2k rows. Applying these operations to A, and then contracting
C, yields a representation of M in which all entries outside the first k
rows are in GF(q), giving the result. �

Using the results established so far, we will prove Theorem 1.1 by
reducing it to the following theorem. We devote the remainder of our
efforts to its proof.

Theorem 5.4. There is an integer-valued function f5.4(n, q, k) sat-
isfying the following: if q is a prime power, n and k are integers
with 0 ≤ k < n, and M is a GF(q2)-representable matroid such that
r(M) ≥ f5.4(n, q, k) and

ε(M) > |PG(k)(r(M)− 1, q)|,

then M has an PG(k+1)(n− 1, q)-minor.

6. Matching in Projective Geometries

To construct the extremal matroids of the last two sections, we need
to consider matchings in spanning projective geometries. The first
theorem of this section follows easily from the linear matroid matching
theorem of Lovász ([4], Theorem 2), but is significantly weaker, and
has a relatively short self-contained proof, which we include here. It
gives a partly qualitative sufficient condition for the existence of a large
matching.

Theorem 6.1. There is an integer-valued function f6.1(q, k) satisfying
the following: if q is a prime power, n ≥ 1 and k ≥ 0 are integers, and
M ∼= PG(n− 1, q), then for any set L of lines of M , either

• L contains a (k + 1)-matching of M , or
• there is a flat F of M with rM(F ) ≤ k, and a set L0 ⊆ L with
|L0| ≤ f6.1(q, k), such that every line L ∈ L either intersects F ,
or is in L0. Moreover, if rM(F ) = k, then L0 = ∅.
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Proof. Set

f6.1(q, k) =
(q2k − 1)(q2k+3 − 1)

(q − 1)2
.

For every e ∈ E(M), we write degL(e) = |{L ∈ L : e ∈ L}|. Let
C ⊆ E(M) be a maximal independent set so that

degL(e) >
q2k+3 − 1

q − 1

for every e ∈ C. Let C ′ = C if |C| ≤ k, and C ′ be a (k + 1)-subset of
C otherwise.

6.1.1. The set L contains a |C ′|-matching. Moreover, if there is a line
L in L skew to C ′, then L contains a (|C ′|+ 1)-matching.

Proof of claim: We prove the second part of the claim; the proof of
the first part is similar but simpler. Let C ′ = {e1, . . . , e|C′|}. Let j be
maximal so that 0 ≤ j ≤ |C ′|, and such that L contains a (j + 1)-
matching Lj = {L,L1, . . . , Lj} so that for each 1 ≤ i ≤ j, we have
Li ∩ clM(C ′) = {ei}. If j = |C ′|, then Lj satisfies the claim; we may
therefore assume that j < |C ′|. Since Lj is a matching, and every

line in Lj − {L} meets C ′ in a point, we have rM

(
C ′ ∪

⋃
L′∈Lj(L

′)
)

=

|C ′|+ 2 + j ≤ 2|C ′|+ 1.

Since degL(ej+1) >
q2k+3−1
q−1 ≥ q2|C

′|+1−1
q−1 , andM is GF(q)-representable,

there is a set X so that clM({x, ej+1}) ∈ L for all x ∈ X, and rM(X) >
2|C ′|+ 1. There is therefore some x ∈ X not in clM(C ′ ∪

⋃
L′∈Lj

(L′)).

Now, Lj ∪{clM({x, ej+1})} is a matching of M , contradicting the max-
imality of j. �

Suppose that the first outcome of the theorem does not hold; by
6.1.1, we may assume that |C| ≤ k. Let L0 be the set of lines in L that
are skew to C.

6.1.2. |L0| ≤ f6.1(q, k).

Proof of claim: By maximality of C, for each e /∈ clM(C), we have

degL(e) ≤ q2k+3−1
q−1 . Let L′0 be a maximal matching contained in L0,

and let F ′ be the flat spanned in M by the lines in L′0. We have

assumed that |L′0| ≤ k, so |F ′| ≤ q2k−1
q−1 . By maximality of L′0 and

modularity of F ′, each L ∈ L0 contains a point in F ′, so the claim
follows by this bound on |F ′|, and our degree bound. �

We now set F = clM(C). The flat F is modular, so every line in
L − L0 meets F . If rM(F ) = k, and L ∈ L0, then by 6.1.1, L contains
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a (k + 1)-matching. So if rM(F ) = k, we must have L0 = ∅. Now F
and L0 satisfy the second outcome of the lemma.

�

An easy application of this theorem allows us to find an unstable set:

Lemma 6.2. There is an integer-valued function f6.2(q, k) satisfying
the following: if q is a prime power, k ≥ 0 is an integer, M is a GF(q2)-
representable matroid, and R is a GF(q)-represented PG(r(M)− 1, q)-
restriction of M , then either

• there is an R-unstable set of size k + 1 in M , or
• there is some C ⊆ E(R) so that rM(C) ≤ k, and ε(M/C) ≤
ε(R/C) + f6.2(q, k).

Proof. Set f6.2(q, k) = (q2 + 1)f6.1(q, k). We may assume that M is
simple; let L be the set of lines L of R such that | clM(L)| > | clR(L)|.
If L contains a (k + 1)-matching of R, then choosing an element from
clM(L) − clR(L) for each line L in the matching gives an R-unstable
set of size k + 1. We may therefore assume that L contains no such
matching. Thus, let F and L0 be the sets defined in the second outcome
of Theorem 6.1. Let C = F , and D = ∪L∈L0L. We have |D| ≤
(q2 + 1)|L0| ≤ f6.2(q, k). By Lemma 3.6, each point of M \ E(R) lies
in the closure of a line in L, so ε((M/C) \ E(R)) ≤ ε((M/C)|D); the
result now follows. �

7. Weak Roundness

The results in this section concern the existence of dense, highly-
connected restrictions of large rank in dense matroids of very large
rank. These are similar to results in [2, Section 2] where the notion of
connectivity is roundness (a matroidM is round if its ground set admits
no partition into two sets of smaller rank than M). However, roundness
has shortcomings when the density is exponential with base 2; the rank-
r binary affine geometry has 2r−1 points and its only round restrictions
have rank at most 1. This necessitates relaxing our connectivity notion.

A matroid M is weakly round if E(M) cannot be written as the union
of sets A and B with r(M |A) ≤ r(M) − 1 and r(M |B) ≤ r(M) − 2.
It is easy to check that this property is closed under both contraction
and simplification.

Weak roundness is a vital property in our proof of Theorem 5.4, and
this section provides a means to reduce this theorem to the weakly
round case; we prove that a dense matroid of very large rank has a
similarly dense, weakly round restriction of large rank.

The following lemma is very similar to one that was proved in [2].
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Lemma 7.1. Let f(n) be a real-valued function satisfying 0 < f(1) ≤
f(2), and f(n) ≥ f(n− 1) + f(n− 2) for all n > 2. If M is a matroid
with r(M) ≥ 1 and ε(M) > f(r(M)), then M has a weakly round
restriction N with r(N) ≥ 1 and ε(N) > f(r(N)).

Proof. We may assume that M is not weakly round, so r(M) > 2,
and there is a partition (A,B) of E(M) with rM(A) ≤ r(M) − 1
and rM(B) ≤ r(M) − 2. Inductively, we may assume that ε(M |A) ≤
f(r(M) − 1) and ε(M |B) ≤ f(r(M) − 2). So ε(M) ≤ f(r(M) − 1) +
f(r(M)− 2) ≤ f(r(M)), a contradiction. �

The next lemma contains the connectivity reduction that is key to
our main proof. It is used in two parts of the proof with respect to
different density functions, and is thus stated in an abstract way.

Lemma 7.2. There is a real-valued function f7.2(`, d, r) satisfying the
following: if 0 ≤ d ≤ r and ` ≥ 2 are integers, g(n) is a real-valued
function satisfying g(d) ≥ 1, and g(n) ≥ 2g(n − 1) for all n > d,
and M ∈ U(`) satisfies ε(M) > g(r(M)) and r(M) ≥ f7.2(`, d, r),
then M has a weakly round restriction N so that ε(N) > g(r(N)), and
r(N) ≥ r.

Proof. Set f7.2(`, d, r) to be an integer s ≥ d such that 2−d(
√

5− 1)s ≥
`r−1
`−1 . Observe that g(n) ≥ 2n−mg(m) for all integers n and m with

n ≥ m ≥ d. Let ϕ = 1
2
(1 +

√
5).

Let M be a matroid with r(M) ≥ s and ε(M) > g(r(M)). By
Lemma 7.1, there is a weakly round restriction N of M such that
ε(N) > ϕr(N)−r(M)g(r(M)) ≥ ϕ−r(M)2r(M)−d = 2−d(

√
5−1)r(M) ≥ `r−1

`−1 ,
since r(M) ≥ s. Therefore, by Theorem 2.1, we have r(N) ≥ r ≥
d. Now, ε(N) > ϕr(N)−r(M)g(r(M)) ≥ ϕr(N)−r(M)2r(N)−r(M)g(r(N)) ≥
g(r(N)), so N is the required restriction. �

8. Exploiting Weak Roundness

The result proved in this section is a technical lemma that uses the
assumption of weak roundness to contract a set of bounded size onto a
large projective geometry. This lemma contains most of the machinery
in the proof of the main theorem of [2], and we state it here in a more
general setting than is required, to emphasise that M+ need not be
representable. The case where M = M+ is an important specialisation.

Lemma 8.1. There is an integer-valued function f8.1(n, q, t, `) so that
the following holds: if q is a prime power, t ≥ 0, n ≥ 1, and ` ≥ 2 are
integers and matroids M+ ∈ U(`), M , and a set B ⊆ E(M+) satisfy

• rM+(B) ≤ t,
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• M is a weakly round, spanning restriction of M+, and
• M has a PG(f8.1(n, q, t, `)− 1, q)-minor N ,

then there is a set X ⊆ E(M), disjoint from B, so that r(M/X) ≥ n,
and M/X has a PG(r(M/X) − 1, q)-restriction, and (M+/X)|B =
M+|B.

Proof. Let n′ = max(n, t + 1), and α = f2.2(q − 1
2
, `, n′). Let m be a

positive integer large enough so that m ≥ 2t, and so that(
q

q − 1
2

)m
≥ αq

(
`(q − 1

2
)

q − 3
2

)t
.

Set f8.1(n, q, t, `) = m. Let N = M/C \D ∼= PG(m− 1, q), where C is
independent in M .

8.1.1. There is a set C ′ ⊆ E(M) so that M/C ′ has a PG(n′ − 1, q)-
restriction N ′, and (M+/C ′)|B = M+|B.

Proof of claim: Let C0 ⊆ C be maximal so that (M+/C0)|B = M+|B,
and let M0 = M/C0 and M+

0 = M+/C0. By maximality of C0, we have
C−C0 ⊆ clM+

0
(B), and therefore rM0(C−C0) ≤ t, giving rM+

0
(E(N)) ≤

r(N) + t = m+ t. We have

εM0(E(N)) =
qm − 1

q − 1

> qm−1

≥ α`t(q − 3
2
)−t(q − 1

2
)m+t

≥ α(`(q − 3
2
)−1)t(q − 1

2
)rM0

(E(N)).

Applying Lemma 2.3 to A = E(N) and B in M+
0 gives a set A′ ⊆

E(N), skew to B in M+
0 , satisfying εM+

0
(A′) > α(q − 1

2
)
r
M+

0
(A′)

. By

Theorem 2.2, the matroid M+
0 |A′ = M0|A′ has a PG(n′ − 1, q′)-minor

N1 = (M0|A′)/C1 \D1 for some q′ > q− 1
2
, where C1 is independent in

M0.
Since A′ is skew to B in M+

0 , it is also skew to C − C0, so M0|A′ =
(M0/(C−C0))|A′ = N |A′, and therefore M0|A′ is GF(q)-representable,
and so is N1. So q′ = q, and N1 is a PG(n′−1, q)-restriction of M0/C1.
Moreover, C1 ⊆ A′, so C1 is skew to B in M+

0 , so (M+
0 /C1)|B =

M+
0 |B = M+|B. Therefore, C ′ = C0 ∪ C1 satisfies the claim. �

Let X be a maximal set satisfying the following:

• C ′ ⊆ X ⊆ E(M)−B,
• (M+/X)|B = M+|B, and
• N ′ is a restriction of M/X.
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If N ′ is spanning in M/X, then X satisfies the lemma. Otherwise, we
have rM+(B) ≤ t < n′ = r(N ′) < r(M/X). Weak roundness of M/X
thus gives some f ∈ E(M/X) not in clM/X(E(N ′)) or clM+/X(B). This
contradicts maximality of X. �

9. The Spanning Case

In this section, we show how to construct a PG(k+1)(n−1, q)-minor di-
rectly from density in the case that we have a dense GF(q)-represented
restriction that is spanning and weakly round.

Lemma 9.1. There is an integer-valued function f9.1(n, q, k) so that
the following holds: if q is a prime power, n and k are integers with
0 ≤ k < n, and M is a GF(q2)-representable matroid such that

• M has a weakly round, spanning GF(q)-represented restriction
R,
• R has a PG(f9.1(n, q, k)− 1, q)-minor, and

• ε(M) > |PG(k)(r(M)− 1, q)|,
then M has an PG(k+1)(n− 1, q)-minor.

Proof. Let s be an integer so that

|PG(k)(s′ − 1, q)| > |PG(j)(s′ − 1, q)|+ (q2 − q)f6.1(q, k)

for all j < k and s′ ≥ s. Set

f9.1(n, q, k) = max(s, f8.1(n+ k, q, 2k + 2, q2)).

We may assume that M is simple, and that R is a maximal GF(q)-
represented restriction with the required properties. Let A be a GF(q2)-
representation of M with r(M) rows, so that A[E(R)] has all entries
in GF(q). Let A′ be the matrix formed by appending to A every col-
umn with entries in GF(q) required to extend A[E(R)] to represent a
PG(r(M)− 1, q)-restriction R′. Let M ′ = M(A′); by construction, M ′

is simple, and M is a spanning restriction of M ′.
Let L be the set of lines of R′, and let L+ = {L ∈ L : clM ′(L) −

E(R′) 6= ∅}. Note that | clM ′(L)| > q + 1 for all L ∈ L+. Our goal is
to use L+ to find an unstable set in a minor.

9.1.1. L+ contains a (k + 1)-matching of R′.

Proof of claim: Suppose not. Let F ⊆ E(R′) and L0 ⊆ L+ be the
sets defined in Theorem 6.1. Let j = rM(F ); we know that 0 ≤ j ≤
k, and if j = k, then L0 = ∅. By Lemma 3.6, we have E(M ′) =(⋃

L∈L+ clM ′(L)
)
∪ E(R′). Let LF = {L ∈ L : |L ∩ F | = 1}. So each

point in E(M ′) − E(R′) is either in clM ′(F ), in a line in LF , or in a
line in L0.
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Each point of E(R′) − F lies on |F | distinct lines in LF , and each
line in LF contains exactly q points in E(R′)− F , so

|LF | =
|F |(|E(R′)| − |F |)

q
=

(qj − 1)(qr(M) − qj)
q(q − 1)2

.

Each line of R′ contains q + 1 points of R′, and its closure in M ′

contains at most q2 − q points of M ′ \ E(R′). We can now estimate
ε(M ′).

ε(M ′) = |R′|+ |M ′ \ E(R′)|

≤ |R′|+

( ∑
L∈LF∪L0

|L− E(R′)|

)
+ | clM ′(F )− E(R′)|

≤ qr(M) − 1

q − 1
+ (q2 − q)(|LF |+ |L0|) +

(
q2j − 1

q2 − 1
− qj − 1

q − 1

)
≤ (q2 − q)(qj − 1)(qr(M) − qj)

q(q − 1)2
+
qr(M) − qj

q − 1
+
q2j − 1

q2 − 1

+ (q2 − q)|L0|

=
qr(M)+j − 1

q − 1
− q

(
q2j − 1

q2 − 1

)
+ (q2 − q)|L0|.

= |PG(j)(r(M)− 1, q)|+ (q2 − q)|L0|

If j < k, then we have (q2− q)|L0| ≤ (q2− q)f6.1(q, k), so the fact that

r(M ′) = r(M) ≥ f9.1(n, q, k) ≥ s gives ε(M ′) ≤ |PG(k)(r(M) − 1, q)|.
If j = k, then L0 = ∅, so ε(M ′) ≤ |PG(k)(r(M)−1, q)|. In either case,

ε(M ′) ≤ |PG(k)(r(M)− 1, q)| < ε(M),

contradicting the fact that M is a restriction of M ′. �

Let {L1, . . . , Lk+1} ⊆ L+ be a (k+1)-matching, and let B =
⋃k+1
i=1 Li.

We have rM ′(B) = 2k+ 2. The matroid R is a weakly round, spanning
restriction of M ′, and R has a PG(f8.1(n+k, q, 2k+2, q2)−1, q)-minor,
so by Lemma 8.1, there is a set X ⊆ E(R) so that r(R/X) ≥ n+k, and
R/X has a PG(r(M/X)−1, q)-restriction R0, and (M ′/X)|B = M ′|B.

9.1.2. si(M ′/X) ∼= si(M/X).

Proof of claim: All entries of A′[E(R′)] are in GF(q). In particular, the
entries of A′[X] are in GF(q), so there is a GF (q2)-representation A0

of M ′/X such that A0[E(R′)−X] only has entries in GF(q).
But E(R0) ⊆ E(R′)−X, andR0 is a GF(q)-represented PG(r(R/X)−

1, q)-restriction of R/X, so every column of A0 with entries only in
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GF(q) is parallel in A0 to some element of R0. All elements of E(R′)
have this property, and E(M ′) = E(M) ∪ E(R′), so the claim fol-
lows. �

9.1.3. There is an R0-unstable set of size k + 1 in M ′/X.

Proof of claim: For each 1 ≤ i ≤ k + 1, let L′i = clM ′/X(Li). Since
(M ′/X)|B = M ′|B, the set {L′1, . . . , L′k+1} is a (k + 1)-matching of
M ′/X. Moreover, each Li is spanned by a pair of points of R′, and
each such point is parallel inM ′/X to a point ofR0, so for each i, the set
L′i∩E(R0) is a line of R0. Finally, ε(M ′/X|L′i) ≥ ε(M ′| clM ′(Li)) > q+1
for each i, so each L′i contains a point ei not parallel to any points of
R0. The set {e1, . . . , ek+1} is R0-unstable in M ′/X. �

By Lemma 5.2, the matroid M ′/X has a PG(k+1)(n − 1, q, k + 1)-
minor; by the second claim, so does M/X. �

10. Constellations

If the hypotheses in the previous section fail, then we use a different
method to find a PG(k)(n− 1, q)-minor.

Definition 10.1. Let s, `, j be positive integers. A matroid K is an
(s, `, j)-constellation if

• r(K) ≤ s(j + 1) and
• K has a rank-s independent set S such that for all e ∈ S, there

exists a rank-j independent set Xe in K/e, such that for all
f ∈ Xe, the line clK({e, f}) contains at least `+ 2 points.

A constellation is an independent set of points, each of which is the
centre of a ‘star’ of an independent collection of (` + 2)-point lines.
If K is any matroid satisfying the second part of the definition, then
K|
(
S ∪

⋃
e∈S Xe

)
is an (s, `, j)-constellation. Moreover, for any s′ ≤ s,

an (s, `, j)-constellation has an (s′, `, j)-constellation restriction, found
by considering an s′-subset of S.

Lemma 10.2. There is an integer-valued function f10.2(n, q, k) so that
the following holds: if q is a prime power, n and k are integers with
0 ≤ k < n, and M is a weakly round, GF(q2)-representable ma-
troid with a (f10.2(n, q, k), q, k + 1)-constellation restriction K, and a

PG(f10.2(n, q, k)− 1, q)-minor, then M has a PG(k+1)(n− 1, q)-minor.

Proof. Let d = f6.2(q, k), and let s = d(d+ 1) + k + 1. Set

f10.2(n, q, k) = max(s, f8.1(n+ k, q, s(k + 2), q2)).
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Since M is GF(q2)-representable, we know that M ∈ U(q2). By
Lemma 8.1, applied with M+ = M , and B = E(K), there is some set
X ⊆ E(M) so that r(M/X) ≥ n+ k, and M/X has a PG(r(M/X)−
1, q)-restriction R, and (M/X)|E(K) = M |E(K) = K. Let M ′ =
M/X.

10.2.1. M ′ has an R-unstable set of size k + 1.

Proof of Claim: By Lemma 6.2, we may assume that there is a set
C ⊆ E(R) so that rM ′(C) ≤ k, and ε(M ′/C) ≤ ε(R/C) + d. The
set S in the constellation K has rank at least s in M ′; let S ′ ⊆ S be
an independent set of size d(d + 1) + 1 in M ′/C. Let e ∈ S ′. Since
rM ′(Xe) > k, there is some f ∈ Xe so that {e, f} is independent in
M ′/C; let Le = clM ′/C({e, f}). The line Le contains at least q + 2
points in K, and therefore in M ′/C.

Since S ′ is independent in M ′/C, no line Le can contain more than
two points of S ′, giving |{Le : e ∈ S ′}| ≥ 1

2
|S ′| >

(
d+1
2

)
. The matroid

R/C is a spanning restriction of M ′/C, and si(R/C) ∼= PG(n − 1 −
rM ′(C), q), so Lemma 3.7 now implies that ε(M ′/C) > ε(R/C) + d, a
contradiction. �

The lemma now follows from Lemma 5.2.
�

11. The Reductions

We will prove Theorem 5.4 by showing that it can be reduced to
either Lemma 9.1 or Lemma 10.2. The following technical lemma con-
tains this reduction.

Lemma 11.1. There is an integer-valued function f11.1(m, q, k) sat-
isfying the following: if q is a prime power, m ≥ 1 and k ≥ 0 are
integers, and M is a weakly round, GF(q2)-representable matroid such
that

• M has a PG(f11.1(m, q, k)− 1, q)-minor and

• ε(M) > |PG(k)(r(M)− 1, q)|,
then one of the following holds:

(i) M has a minor M ′ such that
• M ′ has a weakly round, spanning GF(q)-represented restric-

tion R,
• R has a PG(m− 1, q)-minor, and

• ε(M ′) > |PG(k)(r(M ′)− 1, q)|,
or



GROWTH RATE FUNCTIONS 21

(ii) M has a weakly round minor M ′ with an (m, q, k+1)-constellation
restriction, and a PG(m− 1, q)-minor.

Proof. Let r be an integer large enough so that

qr
′−3m ≥ f2.2(q − 1

2
, q,m)(q − 1

2
)r

′

for all r′ ≥ r. Let n = f7.2(q
2, 3m, r) + 2m. Set f11.1(m, q, k) = n.

We may assume that M is simple and minor-minimal satisfying the
hypotheses. Let N = M/C\D ∼= PG(n−1, q), where C is independent,
and D is coindependent.

11.1.1. M has a (|C|, q, k + 1)-constellation restriction.

Proof of claim: We may assume that C is nonempty; let e ∈ C. The
matroid M/e is weakly round, GF(q2)-representable, and has an N -
minor, so

ε(M/e) ≤ |PG(k)(r(M/e)− 1, q)|
by minor-minimality of M . Let L+ be the set of lines of M containing
e and at least q + 1 other points, and L− be the set of all other lines
of M containing e. Each line in L− contains at most q points other
than e, and each line in L+ contains at most q2 points other than e.
We have ε(M/e) = |L+| + |L−|, and ε(M) ≤ q2|L+| + q|L−| + 1 =
qε(M/e) + (q2 − q)|L+|+ 1. Now

|PG(k)(r(M)− 1, q)| < ε(M)

≤ qε(M/e) + (q2 − q)|L+|+ 1

≤ q|PG(k)(r(M/e)− 1, q)|+ (q2 − q)|L+|+ 1.

This implies that

|L+| > 1

q2 − q

(
|PG(k)(r(M)− 1, q)| − q|PG(k)(r(M)− 2, q)| − 1

)
,

and a computation gives |L+| > q2k−1
q2−1 . Let X ′e be a set formed by

choosing a point other than e from each line in L+. Since M is GF(q2)-
representable, it now follows that rM/e(X

′
e) > k; let Xe ⊆ X ′e be an

independent set in M/e of size k+1. The set C, along with Xe : e ∈ C,
gives the required constellation. �

Since n ≥ m, the matroid M also has a PG(m − 1, q)-minor, so if
|C| ≥ m, we have outcome (ii) for M by 11.1.1. We may therefore
assume that |C| < m.

11.1.2. There is a weakly round, GF(q)-represented restriction R of
M so that R has a PG(m− 1, q)-minor.
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Proof of claim: Since E(N) is a spanning restriction of M/C, there is
a matrix A′ representing M over GF(q2) of the form

A′ =

C E(N) D( )
C IC Q1 Q2

[n] 0 B Q3

,

where M(B) ∼= PG(n− 1, q). By applying Theorem 3.4 to the subma-
trix A′[[n], E(M)], we may assume that all entries of B are in GF(q).
Since |C| < m, there are at most q2(m−1) distinct column vectors in
Q1, so there is some Y ⊆ E(N) so that |Y | ≥ q−2(m−1)|E(N)|, and all
columns of the matrix Q1[Y ] are the same. Now

A′[Y ] =

(
Q1[Y ]
B[Y ]

)
,

where Q1[Y ] is a matrix of rank at most 1, so by scaling the first |C|
rows of A′[Y ], we can obtain a matrix of the form:(

P
B[Y ]

)
,

where all entries of P are 0 or 1. Applying these same row scalings to
A′ gives a matrix A representing M over GF(q2), in which all entries
of A[Y ] are in P or B[Y ], and therefore in GF(q).

We have |Y | ≥ q−2(m−1)|E(N)| > qn−2m+1. Also, rM(Y ) ≤ r(M) ≤
n+m− 1, so |Y | > q−3mqr(M |Y ). Finally, M |Y is GF(q)-representable,
so rM(Y ) ≥ n − 2m + 2 ≥ f7.2(q

2, 3m, r) by our first lower bound on
|Y |. The function g(i) defined by g(i) = qi−3m satisfies the hypotheses
of Lemma 7.2 with d = 3m, so by this lemma, M |Y has a weakly round
restriction R with r(R) ≥ r, and ε(R) > qr(R)−3m.

The matrix A[E(R)] is a submatrix of A[Y ], so R is a GF (q)-
represented restriction of M . We have

ε(R) > q−3mqr(R) ≥ f2.2(q − 1
2
, q,m)(q − 1

2
)r(R),

so R has a PG(q′,m − 1)-minor for some prime power q′ > q − 1
2
.

Since R is GF(q)-representable, we must have q′ = q, so R satisfies the
claim. �

Let M ′ be minor-minimal subject to the following conditions:

• M ′ is a weakly round minor of M ,
• ε(M ′) > |PG(k)(r(M ′)− 1, q)|, and
• R is a GF(q)-represented restriction of M ′.

If R is spanning in M ′, then M ′ and R satisfy outcome (i). We may
therefore assume that r(R) < r(M ′). Since R has a PG(m−1, q)-minor,
the following claim will give outcome (ii) for M ′.
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11.1.3. M ′ has an (m, q, k + 1)-constellation restriction.

Proof of claim: We have m ≤ r(R′) ≤ r(M)− 1, so by weak roundness
of M ′, the set E(M ′)−clM ′(E(R)) has rank at least r(M)−1 ≥ m in M ;
let S be an independent set of size m in M , disjoint from clM ′(E(R)).

For each e ∈ S, the matroid M ′/e is weakly round, and we have
R = (M ′/e)|(E(R)), so R is a GF(q)-represented restriction of M ′/e.
By minimality of M ′, it follows that

ε(M ′/e) ≤ |PG(k)(r(M ′/e)− 1, q, k)|.

The remainder of the proof is very similar to that of 11.1.1. �

�

We can now prove Theorem 5.4, which we restate here for conve-
nience:

Theorem 11.2. There is an integer-valued function f5.4(n, q, k) satis-
fying the following: if q is a prime power, n and k are integers with
0 ≤ k < n, and M is a GF(q2)-representable matroid with r(M) ≥
f5.4(n, q, k) and ε(M) > |PG(k)(r(M)−1, q)|, then M has a PG(k+1)(n−
1, q)-minor.

Proof. We define the function f5.4 as follows. Let

m = max(f9.1(n, q, k), f10.2(n, q, k)).

Let α = f2.2(q − 1
2
, q2,m). Let r be an integer large enough so that

|PG(k)(r′ − 1, q, k)| ≥ α(q − 1
2
)r

′

for all r′ ≥ r, and let s = f7.2(q
2, k, r). We set f5.4(n, q, k) = s.

Let M be a GF(q2)-representable matroid with r(M) ≥ s, and

ε(M) > |PG(k)(r(M) − 1, q)|. The function g(i) = |PG(k)(i − 1, q)|
can easily be seen to satisfy g(k) ≥ 1 and g(i) ≥ 2g(i− 1) for all i > k,
so by Lemma 7.2, M has a weakly round restriction N with r(N) ≥ r

and ε(N) > |PG(k)(r(N)− 1, q)|.
By Lemma 2.2 and definition of r, N has a PG(m− 1, q′)-minor for

some q′ > q− 1
2
. Since N is GF(q2)-representable, we have q′ ∈ {q, q2},

so N has a PG(m − 1, q)-minor. The lemma now follows by applying
Lemma 11.1 to N , and then either Lemma 9.1 or Lemma 10.2 to the
minor M ′ of N given by Lemma 11.1. �

12. The Main Theorems

We first prove Theorem 1.1, which we restate here:
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Theorem 12.1. Let q be a prime power. IfM is a proper minor-closed
subclass of the GF(q2)-representable matroids containing all GF(q)-
representable matroids, then there is an integer k ≥ 0 such that Pq,k ⊆
M, and hM(n) = hPq,k

(n) for all sufficiently large n.

Proof. Since M does not contain all GF(q2)-representable matroids,
there is an integer s so that PG(s, q2) /∈ M. The set Pq,0 is just the
set of projective geometries over GF(q), so Pq,0 ⊆M. By Lemmas 4.3
and 5.3, we have Pq,s′ 6⊆ M for all s′ ≥ s; let k ≥ 0 be maximal so that
Pq,k ⊆M.

We have hM(n) ≥ hPq,k
(n) for all n; we need to show that this

holds with equality for all large n. Suppose that this is not the case.
For all integers m > k, there is therefore some M ∈ M such that
r(M) ≥ f5.4(m, q, k) and ε(M) > hPq,k

(r(M)) = |PG(k)(r(M) − 1, q)|.
By Theorem 5.4, M therefore has a PG(k+1)(m−1, q)-minor. Thus,M
contains PG(k+1)(m−1, q) for all m > k, so by Lemma 5.3, Pq,k+1 ⊆M,
contradicting maximality of k. �

Theorem 1.2 is now immediate, and Theorem 1.4 follows by applying
Lemmas 4.3 and 5.3. Theorems 1.5 and 1.6 also have easy proofs:

Proof of Theorem 1.5. Let nq be the integer n1,q given by Theorem 1.4.

By Lemma 4.5, M contains PG(1)(n − 1, q) for all n ≥ 0, but not
PG(2, q2); Theorem 1.4 gives

ε(M) ≤ qr(M)+1 − 1

q − 1
− q = |PG(1)(r(M)− 1, q)|

for all M satisfying r(M) ≥ nq. But hM(n) ≥ |PG(1)(n− 1, q)| for all
n, so the theorem follows. �

Proof of Theorem 1.6. Let n1,q be given by Theorem 1.4. Let Hq be

the set of integer-valued functions f so that 0 ≤ f(n) ≤ q2n−1
q2−1 for all

0 ≤ n < n1,q, and

f(n) =
qn+1 − 1

q − 1
− q

for all n ≥ n1,q. The set Hq is clearly finite. Let F be a set of fields
satisfying the hypotheses, andM be the class of matroids representable
over all fields in F . There is some F ∈ F with no GF(q2)-subfield, so by

Lemma 4.5, we know that PG(1)(n−1, q) ∈M for all n, and PG(2, q2) /∈
M. It now follows from GF(q2)-representability of matroids inM, and
a similar argument to the proof of Theorem 1.5, that hM ∈ Hq, giving
the theorem. �
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