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ABSTRACT. We show that if « is a positive real number, n and ¢
are integers exceeding 1, and ¢ is a prime power, then every sim-
ple matroid M of sufficiently large rank, with no U, ¢-minor, no
rank-n projective geometry minor over a larger field than GF(q),
and at least ag"™) elements, has a rank-n affine geometry restric-
tion over GF(g). This result can be viewed as an analogue of the
multidimensional density Hales-Jewett theorem for matroids.

1. INTRODUCTION

For a matroid M, let |M| denote the number of elements of M.
Furstenberg and Katznelson [3] proved the following result, implying
that GF(g)-representable matroids of nonvanishing density and huge
rank contain large affine geometries as restrictions:

Theorem 1.1. Let q be a prime power, « € R andn € Z*. If M is a
simple GF(q)-representable matroid of sufficiently large rank satisfying
M| > aq"™), then M has an AG(n, q)-restriction.

Later, Furstenberg and Katznelson [4] proved a much more gen-
eral result, namely the multidimensional density Hales-Jewett theorem,
which gives a similar statement in the more abstract setting of words
over an arbitrary finite alphabet. Considerably shorter proofs [1,13]
have since been found. We will generalise Theorem 1.1 in a different
direction:

Theorem 1.2. Let g be a prime power, o € Rt andn € Z*. If M
is a simple matroid of sufficiently large rank with no Us 44o-minor and
with |M| > ag"™) | then M has an AG(n, q)-restriction.
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In fact, we prove more. The class of matroids with no Uj 44o-minor
is just one of many minor-closed classes whose extremal behaviour is
qualitatively similar to that of the GF(g)-representable matroids. The
following theorem, which summarises several papers [5,6,9], tells us
that such classes occur naturally as one of three types:

Theorem 1.3 (Growth Rate Theorem). Let M be a minor-closed class

of matroids, not containing all simple rank-2 matroids. There exists a

real number cyq > 0 such that either:

(1) M| < cpmr(M) for every simple M € M,

(2) IM| < cpr(M)? for every simple M € M, and M contains all
graphic matroids, or

(3) there is a prime power q such that | M| < cyg™™) for every simple
M e M, and M contains all GF(q)-representable matroids.

We call a class M satisfying (3) base-q exponentially dense. Tt is
clear that these classes are the only ones that contain arbitrarily large
affine geometries, and that the matroids with no Us 449-minor form
such a class. Our main result, which clearly implies Theorem 1.2, is
the following:

Theorem 1.4. Let M be a base-q exponentially dense minor-closed
class of matroids, « € R™ andn € Z*. If M € M s simple, satisfies
M| > aq" ™), and has sufficiently large rank, then M has an AG(n, q)-
restriction.

Finding such a highly structured restriction seems very surprising,
given the apparent wildness of general exponentially dense classes. This
will be proved using Theorem 1.3 and a slightly more technical state-
ment, Theorem 6.1; the proof extensively uses machinery developed in
7], [8], [14] and [15].

We would like to prove a result corresponding to Theorem 1.4 for
quadratically dense classes, those satisfying condition (2) of Theo-
rem 1.3. The following is a corollary of the Erdés-Stone Theorem [2]:

Theorem 1.5. Let o € RY and n € Z". If G is a simple graph such
that |E(G)| > a|V(G)]? and |V (Q)| is sufficiently large, then G has a
K, n-subgraph.

In light of this, we expect that the unavoidable restrictions of dense
matroids in a quadratically dense class are the cycle matroids of large
complete bipartite graphs.

Conjecture 1.6. Let M be a quadratically dense minor-closed class
of matroids, o > 0 be a real number, and n be a positive integer. If
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M € M is simple, satisfies |M| > ar(M)?, and has sufficiently large
rank, then M has an M (K, ,)-restriction.

2. PRELIMINARIES

We follow the notation of Oxley [16]. For a matroid M, we also
write (M) for |si(M)], or the number of points or rank-1 flats in M.
If £ > 2 is an integer, we write U(¢) for the class of matroids with no
Us ¢42-minor.

The next theorem, a constituent of Theorem 1.3, follows easily from
the two main results of [5].

Theorem 2.1. There is a function as; : Z X R X Z — R so that, for
all t,n € Z and v € R with £,n > 2 and v > 1, if M € U({) satisfies
e(M) > agi(n,v,0)y"™), then M has a PG(n — 1,q)-minor for some
q>.

The next theorem is due to Kung [11].

r(M) _
Theorem 2.2. If { > 2 and M € U({), then e(M) < L.

We will sometimes use the cruder estimate e(M) < (£ + 1)"™)=1 for
ease of calculation, such as in the following simple corollary:

Corollary 2.3. If { > 2 is an integer, M € U(L), and C C E(M)
satisfies 1y (C) < r(M), then e(M/C) > (£ + 1) g (M),

Proof. Let F be the collection of rank-(ry(C') + 1) flats of M contain-
ing C'. We have e(M|F) < KTM(EC_# < (£ +1)"™(©) for each F € F.
Moreover, |F| = ¢(M/C), and e(M) < Y~ o re(M|F); the result fol-

lows. O

We apply both Theorem 2.2 and Corollary 2.3 freely. The next result
follows from [8, Lemma 3.1].

Lemma 2.4. Let q be a prime power, k > 0 be an integer, and M be
a matroid with a PG(r(M) — 1,q)-restriction R. If F' is a rank-k flat

r(M/F)+k_q 2k_1

of M that is disjoint from E(R), then e(M/F) > 1% = —q4

1 21"

3. CONNECTIVITY

A matroid M is weakly round if there is no pair of sets A, B with
union E(M), such that ry(A) < r(M) —1 and ry(B) < r(M) —
2. This is a variation on roundness, a notion equivalent to infinite
vertical connectivity introduced by Kung in [12] under the name of
non-splitting. Our tool for reducing Theorem 1.4 to the weakly round
case is the following, proved in [14, Lemma 7.2].
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Lemma 3.1. There is a function fs, : Z3 — 7 so that, for all r,d,{ €
Z with ¢ > 2 and r > d > 0, and every real-valued function g(n)
satisfying g(d) > 1 and g(n) > 2g(n — 1) for allm > d, if M € U(L)
satisfies r(M) > f31(r,d, €) ande(M) > g(r(M)), then M has a weakly
round restriction N such that r(N) > r and e(N) > g(r(N)).

Our next lemma, proved in [8, Lemma 8.1], allows us to exploit
weak roundness by contracting an interesting low-rank restriction onto
a projective geometry.

Lemma 3.2. There is a function fs : Z* — 7Z so that, for every prime
power q and all n,l;t € Z withn > 1,0 > 2 and t > 0, if M € U({)
is a weakly round matroid with a PG(f32(n,q,t,¢) — 1,q)-minor and
T is a restriction of M with r(T) < t, then there is a minor N of
M of rank at least n, such that T is a restriction of N, and N has a
PG(r(N) — 1, q)-restriction.

4. STACKS

We now define an obstruction to GF(q)-representability. If ¢ is a
prime power, and h and ¢ are nonnegative integers, then a matroid S
is a (q, h,t)-stack if there are pairwise disjoint subsets Fy, Fy, ..., F)
of E(S) such that the union of the F; is spanning in S, and for each
i€ {l,...,h}, the matroid (S/(F; U...U F;_1))|F; has rank at most ¢
and is not GF(g)-representable. We write F;(S) for F;. Note that such
a stack has rank at most ht. When the value of ¢ is unimportant, we
refer simply to a (g, h)-stack.

The next three results suggest that stacks are incompatible with large
projective geometries. First we argue that a matroid obtained from a
projective geometry by applying a small extension and contraction does
not contain a large stack:

Lemma 4.1. Let q be a prime power and h be a nonnegative integer.
If M is a matroid and X C E(M) satisfies ry(X) < h and si(M\X) =
PG(r(M) —1,q), then M/X has no (g, h + 1)-stack restriction.

Proof. The result is clear if h = 0; suppose that h > 0 and that
the result holds for smaller h. Moreover, suppose that M/X has a
(q, h + 1,t)-stack restriction S. Let F' = Fi(S). Since (M/X)|F is not
GF(q)-representable but M|F is, it follows that My, (F, X) > 0. There-
fore ra/p(X) < ry(X) < h and si(M/F\X) = PG(r(M/F) —1,q),
so by the inductive hypothesis M /(X U F) has no (g, h)-stack restric-
tion. Since M/(X U F)|(E(S) — F) is clearly such a stack, this is a
contradiction. U
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Now we show that a large stack on top of a projective geometry R
allows us to find a large flat disjoint from R:

Lemma 4.2. Let q be a prime power and h be a nonnegative integer. If
M is a matroid with a PG(r(M) — 1, q)-restriction R and a (q, (hgl))—

stack restriction, then M has a rank-h flat that is disjoint from E(R).

Proof. It h = 0, then there is nothing to show; suppose that h > 0

and that the result holds for smaller h. Let S be a (g, (h;rl))-stack

restriction of M and let F, = F;(S) for each i € {1,...,("}")}. Let
S = S} <F1 U...u F(Z)) Clearly S is a (q, (g))—s‘cack7 so inductively

there is a rank-(h — 1) flat H of M that is disjoint from E(R).

Note that (M/H)|E(R) has no loops. If M/H has a nonloop e that
is not parallel to an element of R, then cly/(H U {e}) is a rank-h flat
of M disjoint from E(R), and we are done. Therefore we may assume
that si(M/H) = si((M/H)|E(R)), and so by Lemma 4.1 applied to
the matroid M|(E(R) U H), we know that M/H has no (g, h)-stack
restriction. However the sets (F(S;) — H) U F(Z)“’ F(Z)+27 . ’F(h-;-l)

clearly give rise to such a stack. This is a contradiction.

Finally we show that a large stack restriction, together with a very
large projective geometry minor, gives a projective geometry minor
over a larger field:

Lemma 4.3. There are functions fi5 : Z* — 7 and has : Z> — 7 so
that, for every prime power q and all {,n,t € Z with {,n > 2 andt > 0,
if M € U(L) is weakly round and has a PG(fy3(n,q,t,¢) — 1, q)-minor
and a (q, haz(n,q,t),t)-stack restriction, then M has a PG(n —1,¢)-
minor for some ¢ > q.

Proof. Let q be a prime power and ¢ > 2, n > 2 and ¢t > 0 be integers.
Let @ = ag1(n,q,¢), and let A’ > 0 and r > 0 be integers so that
qT;_hl_l - qq;;t__ll > aq" for all ' > r. Set hys(n,q,0) = h = (h/;l),
and f4.3(n7 q, ta ﬁ) = f3.2(r + hl? q, th, ﬁ)

Let M € U(?) be weakly round with a PG(fy3(n,q,t,¢)—1, ¢)-minor
and a (g, h,t)-stack restriction S. We have r(S) < th; by Lemma 3.2
there is a minor N of M, of rank at least r+ 2/, with a PG(r(N)—1, q)-
restriction R, and S as a restriction. By Lemma 4.2, there is a rank-h’
flat F' of M that is disjoint from E(R). Now r(M/F) > r; the lemma
follows from Lemma 2.4, Theorem 2.1, and the definition of A’. O

5. LIFTING

The following is a restatement of Theorem 1.1:
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Theorem 5.1. There is a function fs1 : Z? x R — 7Z so that,
for every prime power ¢ and all n € Z* and B € RY, if M is a
GF(q)-representable matroid satisfying e(M) > Bq¢"™) and r(M) >
fsa(n,q,8), then M has an AG(n — 1, q)-restriction.

This next lemma uses the above to show that a bounded lift of a
huge affine geometry itself contains a large affine geometry. The proof
does not use the full strength of 5.1; the lemma would also follow from
the much weaker ‘colouring’ Hales-Jewett Theorem [10].

Lemma 5.2. There is a function fso : Z* — 7 so that, for every prime
power q and all {;n,t € Z so that {,;n > 2 and t > 0, if M € U(L) and
C C E(M) satisfy ry(C) < t, and M/C has an AG(fs52(n,q,¢,t) —
1, q)-restriction, then M has an AG(n — 1, q)-restriction.

Proof. Let ¢ be a prime power and ¢ > 2, n > 2 and t > 0 be integers.
Let d be an integer large enough so that (£ 4+ 1)7" > quT_ld, and let
m = f5.1(n7 q, (q2(€ + 1)1&)71) + d. Set f5.2(n7 4, E, t) =m.

Let M € U() and let C C E(M) be a set so that ry(C) < ¢
and M/C has an AG(m — 1, q)-restriction R. We may assume that
C' is independent and that E(M) = E(R) U C, so M is simple and
r(M) = m + |C|. Let B be a basis for M containing C, and let
e€ B—-C. Let X = B— (CU{e}). Now clyc(X) is a hyperplane
of R, so | clyyc(X)| = ¢™ 2 and there are at least ¢"* — ¢™ ™2 > ¢ 2
elements of M not spanned by X UC'. Each such element lies in a point
of M/X and is not spanned by C'in M/X. Moreover, r(M/X) =t+1,
so by Theorem 2.2, M/X has at most (¢ + 1) points; there is thus a
point P of M /X, not spanned by C, with |P| > (¢ +1)'¢™ 2.

Now P C E(R), so the matroid (M /C)|P is GF(q)-representable and
has rank at most m, and e((M/C)|P) > (£ + 1)7t¢™ 2 > %, SO
r((M/C)|P) > m—d. Furthermore, e((M/C)|P) > (¢*(£+1)))"1q™ >
((L+1))~1g"((M/ENP) "0 by Theorem 5.1 and the definition of m, the
matroid (M/C)|P has an AG(n — 1, ¢)-restriction. However, P is skew
to C'in M by construction, so (M/C)|P = M|P and therefore M also

has an AG(n — 1, ¢)-restriction, as required. O

6. THE MAIN RESULT

Since, for any base-q exponentially dense minor-closed class M, there
is some ¢ > 2 such that M C U(¢) and there is some s such that
PG(s,q') ¢ M for all ¢ > ¢, the next theorem easily implies Theo-
rem 1.4.
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Theorem 6.1. There is a function fg1 : Z3 x R — Z so that for every
prime power q and all n,¢ € Z and § € RT with n,¢ > 2, if M € U(¢)
satisfies r(M) > fe1(n,q, 0, 3) and e(M) > Bqg"™), then M has either
an AG(n — 1, q)-restriction or a PG(n — 1,q")-minor for some ¢’ > q.

Proof. Let 8 > 0 be a real number, ¢ be a prime power, and £,n > 2 be
integers. Let @ = ap1(n,q, ) and h = hy3(n,q, ). Set 0 =tg,t1,...,t,
to be a nondecreasing sequence of integers such that

tirr > fsa(fsa(n, g, €, kty), ¢, B((€ + 1) % qa)™")

for each k € {0,...,h — 1}. Let m = max(n, f13(n,q,¢,t3)), and let
r1 > (h+ 1)t be an integer large enough so that ¢*+Y%—"1=1 < o and
Bq" > asi(m,q — %,é)(q — %)T for all » > ry. Let d be an integer such
that Bqd > 17 and let 9 = f3‘1(7”1, d, 6)

Let My € U(() satisfy 7(My) > 7o and e(My) > Bq"M2): we will
show that M, has either a PG(n — 1, ¢’)-minor for some ¢’ > ¢, or an
AG(n — 1, g)-restriction. The function g(r) = pq" satisfies g(d) > 1
and g(r) > 2g(r — 1) for all r > d, so by Lemma 3.1 the matroid M,
has a weakly round restriction M; such that r(M;) > ry and e(M;) >
Bqrh).

Let k£ be the maximal element of {0,1,...,h} such that M; has a
(q, k, t)-stack restriction; call this restriction S. We split into cases
depending on whether k£ = h:

Case 1: k£ < h.

Let My = si(M,/E(S)); note that r(My) > r(M;) — ktx, and there-
fore that |My| > (0+1)7F%|M;| > (0+1)7F%pg"Mo). Let Fy be a rank-
(tr+1 — 1) flat of My, and consider the matroid M,/ Fy. If e(My/Fy) >
aq"Mo/Fo) - then we have the second outcome by Theorem 2.1, so
we may assume that e(My/Fy) < ag"Mo/fo) = qqr(Mo)=tkrat1 et
F be the collection of rank-t,; flats of M, containing Fy. Since
UF = E(M,), there is some F' € F satisfying

|F| > |F|7H Mo
> £(Mo/ Fo) (¢ + 1)~ 5g M)
Z a—lq—T(MO)+tk+1—1(£ + 1)_ktk/3qr(MO)
_ 6((£ + 1)ktkq04)_1qr(M0‘F)-

By the maximality of k, we know that My|F is GF(q)-representable,
and r(My|F) = trye1 > fs1(fs2(n,q, €, kty), q, B((€ + 1)**qa)™1), so
My|F has an AG(f52(n,q,t, kt;) — 1, q)-restriction by Theorem 5.1.
Now My = si(M;/E(S)) and 7(S) < kty, so by Lemma 5.2, M; has an
AG(n — 1, g)-restriction, and so does Ms.
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Case 2: k= h.

Note that e(M;) > Bg"M) > ayi(m,q — 5,0 (q — %)T(Ml), so by
Theorem 2.1 the matroid M; has a PG(m — 1, ¢)-minor for some prime
power ¢ > q — % If ¢ > ¢, then we have the second outcome, since
m > n. Therefore we may assume that M; has a PG(m — 1, ¢)-minor.
Sine M, also has a (q, h, t,)-stack restriction, the second outcome now

follows from Lemma 4.3 and the definitions of m and h. ]
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