
Delegation isn’t quite Inheritance
Objects, Classes and Initialisation in Grace

James Noble
Victoria University of Wellington

New Zealand
kjx@ecs.vuw.ac.nz

Abstract
Inheritance and delegation are often considered roughly
equivalent, but their initialisation semantics are very differ-
ent. Grace’s hopes to support both object- and class-based
programming is greatly complicated by this difference.

1. Objects
Objects in Grace (an object-oriented, block-structured, grad-
ually- and structurally-typed language) are created ex nihilo
by object constructors [1, 2, 4, 6, 10].

def amelia = object {

inherits cat.new("Amelia")

def question = answer

var capacity := 3

print "The answer is {question}"

method answer {39 + capacity}

}

Object constructors can define constants, variables, and
methods: code initialising constants and methods is exe-
cuted when it is encountered in the constructor body, along
with any other inline code (the “print” statement.)

2. Inheritance from Classes
Grace aims to support classes as well as objects. The object
above inherits from the cat class’s sole factory method new.

class cat.new(name : String) {

def answer is public = name

print "New cat {self}"

}

Initialisation occurs in the context of the final object:
self is bound to amelia; the answer method overrides
the cat’s. This supports a number of common programming
idioms, but also causes a range of problems. Pragmatically,
this imports many of the initialisation and undefinedness
problems common to Java and its successors [5, 12, 15].

Conceptually, Grace claims to be an object-oriented lan-
guage, one that can be understood without classes, but this
kind of inheritance and initialisation is not easily explica-
ble purely in terms of objects (why is cat’s answer method
somehow overridden?) and the explanation is not composi-
tional (writing “cat.new("Amelia")” in straight-line code
creates a new cat object: why should an inherits clause
change that?)

3. Delegation from Objects
Delegation can avoid the conceptual problems of classes and
inheritance — objects can be understood without classes,
and inherited (parts of) objects stand-alone and are created
in exactly the same whether or not inherited [7–9, 11, 14].
On the other hand, programming patterns (like the explicit
self in cat) will not bind to the “final” inheriting object;
and debuggers must make the multiple super-part-objects ex-
plicit. Precisely because delegation borrows behaviour from
preëxisting objects that become super-parts of the final ob-
ject, the preëxisting objects can never be initialised in the
context of the final object: every object has its own identity.
Indeed, because they are preëxisting, super-part objects can
become “shared parts” of many different final objects [3].
Concatenation (by value where delegation is by reference)
has similar benefits and problems due to preëxisting super-
part objects [13].

4. Traits
These problems can also be resolved by permitting delega-
tion (or inheritance) only from traits — objects (or classes)
without mutable state, without initialisation, and that do no
explicitly or implicitly capture self. Unfortunately these re-
strictions make trait declarations quite different from object
constructors: more different than class declarations.



References
[1] BLACK, A. P., BRUCE, K. B., HOMER, M., AND NOBLE,

J. Grace: the absence of (inessential) difficulty. In Onward!
(2012), pp. 85–98.

[2] BLACK, A. P., JUL, E., HUTCHINSON, N., AND LEVY,
H. M. The development of the Emerald programming lan-
guage. In History of Programming Languages III (2007),
ACM Press.

[3] CHAMBERS, C., UNGAR, D., CHANG, B.-W., AND

HÖLZLE, U. Parents are shared parts of objects: inheritance
and encapsulation in Self. Lisp and Symbolic Computation 4,
3 (1991).

[4] DEDECKER, J., CUTSEM, T. V., MOSTINCKX, S.,
D’HONDT, T., AND MEUTER, W. D. Ambient-oriented pro-
gramming in AmbientTalk. In ECOOP (2006), pp. 230–254.

[5] GIL, J. Y., AND SHRAGAI, T. Are we ready for a safer
construction environment? In ECOOP (2009).

[6] IERUSALIMSCHY, R., DE FIGUEIREDO, L. H., AND CELES,
W. The evolution of Lua. In HOPL-III (2007).

[7] LIEBERMAN, H. Using prototypical objects to implement
shared behavior in object oriented systems. In OOPSLA (Nov.

1986).

[8] LIEBERMAN, H., STEIN, L. A., AND UNGAR, D. Treaty of
Orlando. In Addendum to OOPSLA Proceedings (May 1988).

[9] NOBLE, J., TAIVALSAARI, A., AND MOORE, I., Eds.
Prototype-Based Programming: Concepts, Languages and
Applications. Springer-Verlag, 1999.

[10] SEVERANCE, C. JavaScript: Designing a language in 10 days.
IEEE Computer 45, 2 (Feb. 2012), 7–8.

[11] STEIN, L. A. Delegation is inheritance. In OOPSLA (Dec.
1987).

[12] SUMMERS, A. J., AND MÜLLER, P. Freedom before com-
mitment: a lightweight type system for object initialisation.
In OOPSLA (2011).

[13] TAIVALSAARI, A. Delegation versus concatenation or
cloning is inheritance too. OOPS Messenger 6, 3 (1995).

[14] UNGAR, D., AND SMITH, R. B. SELF: the Power of Sim-
plicity. Lisp and Symbolic Computation 4, 3 (June 1991).

[15] ZIBIN, Y., CUNNINGHAM, D., PESHANSKY, I., AND

SARASWAT, V. Object initialization in X10. In ECOOP
(2012).


	Objects
	Inheritance from Classes
	Delegation from Objects
	Traits

