
Proposal for an Object-Oriented Multiple Dispatch Mechanism

Miguel Oliveira e Silva
DETI-IEETA, University of Aveiro, Portugal

mos@ua.pt

Abstract
Although multiple dispatch is recognized to be a very useful tool
to properly solve difficult programming problems such as those re-
sulting from binary methods, the large majority of existing object-
oriented programming languages still don’t support it. The few
ones that provide such a mechanism do so in ways that either lie
outside object-oriented modular construct (class), or possess some
other limitations. In this short paper a new object-oriented language
mechanism for multiple dispatch is presented (using Java as the
base language) that is completely integrated within existing OO
language constructs, and provides a simple, expressive, and generic
programming dispatch tool.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory – semantics; D.3.2 [Pro-
gramming Languages]: Language Classifications – object-oriented
languages; D.3.3 [Programming Languages]: Language Con-
structs and Features abstract data types, control structures, inheri-
tance, patterns, polymorphism, procedures, functions, and subrou-
tines; D.3.m [Miscellaneous]: multiple dispatch, multimethods;
F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructs

Keywords multiple dispatch, object-oriented programming lan-
guages, multimethods, binary methods, type covariance, encapsu-
lation, modularity, static typechecking, subtyping, inheritance, Java

1. Introduction
One of the distinctive characteristics of object-oriented program-
ming languages is the existence of a (single) dynamic dispatch
mechanism: the method to be executed depends on the runtime
type of the object and not on the type of entity (variable, attribute,
method argument) through which it’s being used. This language
construct is built using the inheritance mechanism and provides
support for subtype polymorphism. This mechanism allows the
construction of more modular and abstract programs, in which the
usage of a type (in any of the language’s typed entities) can be ab-
stracted away from the concrete types of the objects being executed.

However, it is well known that this mechanism fails when the
need arises to support the runtime selection of multiple types,
as happens, for example, when binary methods are involved [2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Its expressivity is also limited by the restriction that the method
dynamic selection is hardwired with the object type used, so it is
not easy to dynamically select a method that is not defined in the
object’s type that was used in the dynamic dispatch.

It is interesting to note that, in statically typed languages, single
dynamic dispatch mechanisms are implemented with an implicit
type safe covariant type change mechanism (subtyping), and that
explicit covariant type change can only by safely implemented on
non-mutable entity types (e.g. method result type). In mutable type
entities, such as attributes or method arguments, a covariant type
change is generally unsafe.

In an attempt to properly support multiple dispatch, multi-
method languages were developed [4, 8] (other related approaches
can also be found [1, 5]). In this approach, languages allow the
definition of global methods (outside object classes) which are se-
lected for execution depending on the runtime type of the objects
passed as arguments. However, it can be argued that this mecha-
nism goes against object-oriented modular architecture precisely
because methods are defined externally to objects. It has also been
acknowledged that this approach raises encapsulation and modu-
larity problems [3, page 102]. In Tuple [7] some of these problems
were solved, but at the cost of defining a new type construct (tuple
classes), which becomes the destiny of dispatch messages (method
invocation), replacing objects in that role (and losing some impor-
tant features such as attributes and inheritance).

In this short paper a new object-oriented language mechanism
for multiple dispatch is presented. To help the presentation, we will
use a Java language extension (named MD-Java1) and the problem
of the collision of 2D figures (rectangles, circles, etc.) with be used
as an example.

2. The Proposal
We need to conciliate two apparently conflicting mechanisms: the
necessity for dynamic dispatch on a tuple of object types, and to
find a target object where such methods are to be defined and exe-
cuted (hence ensuring objects are the main modular language struc-
ture). Since making one of the objects of the tuple the target of such
selection in not a good solution, we had the idea of generalizing the
object creation mechanism for that goal. Usually, if creation pat-
terns [6] (such as factory methods) are not used, there is only one
place in object-oriented programs in which the type of an object is
known: when it is created. In our proposal that restriction is elimi-
nated.

2.1 Dynamic Creation Classes
Since a language dispatch mechanism is required, dynamically cre-
ated classes should be syntactical different from standard classes.
In our approach, a language construct similar to methods argument
definition was used.

1 Multiple Dispatch Java

Listing 1. Figure classes
p u b l i c c l a s s F i g u r e { . . . }

p u b l i c c l a s s R e c t a n g l e ex tends F i g u r e { . . . }

p u b l i c c l a s s C i r c l e ex tends F i g u r e { . . . }

Listing 1 shows some classic figure classes (deprived of their
interface). A class abstracting the interaction of two figures (with a
minimal interface) is presented in listing 2 and classes implement-
ing the interaction some concrete figures are presented in listing 3.

Listing 2. Two figure multiple dispatch class
p u b l i c a b s t r a c t c l a s s TwoFigure (F i g u r e f1 , F i g u r e f2) {

p u b l i c boolean c o l l i d e () {
boolean r e s u l t = (d i s t a n c e () <= 0) ;
i f (r e s u l t) c o l l i s i o n s D e t e c t e d ++;
re turn r e s u l t ;

}

p u b l i c a b s t r a c t double d i s t a n c e () ;

p r o t e c t e d i n t c o l l i s i o n s D e t e c t e d = 0 ;
}

Listing 3. Example of concrete dispatch classes
p u b l i c c l a s s TwoCirc le (C i r c l e c1 , C i r c l e c2)

ex tends TwoFigure {
p u b l i c double d i s t a n c e () {

re turn Math . s q r t ((c1 . x()− c2 . x ()) ∗ (c1 . x()− c2 . x ()) +
(c1 . y()− c2 . y ()) ∗ (c1 . y()− c2 . y ())) −

c1 . r a d i u s () − c2 . r a d i u s () ;
}

}

p u b l i c c l a s s C i r c l e R e c t a n g l e (C i r c l e c , R e c t a n g l e r)
ex tends TwoFigure {

p u b l i c double d i s t a n c e () {
. . .

}
}

Syntactically the only difference between dynamic creation
classes and normal classes is the existence of class arguments.
The inheritance relation of such classes retain normal inheritance
semantics, enhanced by the requirement of conformance2 between
the class arguments (Circle is a subtype of Figure). Within the
class, the formal class arguments (f1 and f2 in class Figure) are
semantically similar to to the object auto-reference this (in par-
ticular, its value is immutable in all the objects lifetime).

2.2 Dynamic Creation Instruction
Listing 4 exemplifies the use of the new creation instruction (line
10).

Listing 4. Multiple dispatch example
1 / / i m p o r t a l l d i s p a t c h c l a s s e s i n i n t e r a c t i o n package :
2 import d i s p a t c h i n t e r a c t i o n .∗ ;
3
4 p u b l i c c l a s s T e s t {
5 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
6 F i g u r e f1 = new C i r c l e (1 0 , 1 0 , 5) ;
7 F i g u r e f2 = new R e c t a n g l e (1 0 , 1 2 , 2 0 , 1 5) ;
8 . . .
9 / / M u l t i p l e d i s p a t c h on a l l TwoFigure d e s c e n d a n t s

10 TwoFigure t f i = new (f1 , f2) . TwoFigure () ;
11 / / A C i r c l e R e c t a n g l e o b j e c t was c r e a t e d !
12 System . o u t . p r i n t l n (” d i s t a n c e = ”+ t f i . d i s t a n c e ()) ;
13 }
14 }

2 Non-variant or covariant type change.

A logical consequence of this mechanism is the necessity to im-
pose some extra semantic rules to the language (so that the com-
piler can fulfill its job). The first one is the obligation that all mul-
tiple dispatch class combinations of existing non-abstract (instan-
tiable) classes (Circle, Rectangle, etc.) should match a conform-
ing non-abstract multiple dispatch class (or else, a new kind of type
hole would arise). Another convenient rule is the irrelevance on
the order of object arguments in the dynamic creation instruction
(in the example, a CircleRectangle object would be also cre-
ated with instruction “new (f2,f1).TwoFigure()”). This cre-
ation dispatch instruction will instantiate the closest combination
of the dispatch objects types involved.

With the exception of the moment of creation, multiple dispatch
objects are absolutely similar to normal objects, and all other object
oriented constructs (definition of attributes, generic types, classic
OO polymorphism, etc.) can be used. It should also be noted that
this approach to multiple dispatch does not compromise encapsu-
lation nor modularity.

3. Final Remarks
Some details on the semantics of the proposed language mecha-
nism were not presented due to the limitation in the paper size (in
particular, nothing was mentioned regarding the single inheritance
limitation of Java). Nevertheless, it should be mentioned that the
author stands for the type safety of the mechanism proposed, and is
actively working on a prototype compiler for this mechanism.

Finally, an interesting positive side-effect of this mechanism is
that it not only provides a simple language solution to visit and cre-
ation design patterns [6], but it also promotes a new programming
tool based on external object dispatching (definition of classes that
dispatch on external, possibly unrelated, object types), generalizing
the object-oriented dispatch mechanism.

References
[1] J. Boyland and G. Castagna. Parasitic methods: an implementation

of multi-methods for Java. In OOPSLA ’97: Proceedings of the 12th
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 66–76. ACM Press, 1997. ISBN
0-89791-908-4. .

[2] K. Bruce, L. Cardelli, G. Castagna, G. T. Leavens, and
B. Pierce. On Binary Methods. Theor. Pract. Object
Syst., 1(3):221–242, Dec. 1995. ISSN 1074-3227. URL
http://dl.acm.org/citation.cfm?id=230849.230854.

[3] K. B. Bruce. Foundations of Object-Oriented Languages: Types and
Semantics. MIT Press, Cambridge, MA, USA, 2002. ISBN 0-262-
02523-X.

[4] C. Chambers. Object-Oriented Multi-Methods in Cecil. In O. L.
Madsen, editor, Proceedings ECOOP’92, LNCS 615, pages 33–56,
Utrecht, The Netherlands, Jun 1992. Springer-Verlag.

[5] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava:
modular open classes and symmetric multiple dispatch for Java. In
Proceedings of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 130–145.
ACM Press, 2000. ISBN 1-58113-200-X. .

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1995. ISBN 0-201-
63361-2.

[7] G. T. Leavens and T. D. Millstein. Multiple dispatch as dispatch on
Tuples. In Proceedings of the 13th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
pages 374–387. ACM Press, 1998. ISBN 1-58113-005-8. .

[8] G. L. Steele, Jr. Common LISP: The Language (2nd ed.). Digital Press,
Newton, MA, USA, 1990. ISBN 1-55558-041-6.

